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In these notes, we will review the following topics from Matrix Alge-
bra:

• Matrices and vectors

• Systems of linear equations

• Square matrices and elementary row operations

• Rank of a matrix

• Singular and non-singular matrices

• Linear economic models

• Matrix multiplication as a linear function: injectivity, surjectivity, bi-
jectivity.

Vectors and matrices

Recall from high school the notion of vectors in the plane and in three-
dimensional space. A vector is an object with a length and a direction. It
is convenient to regard vectors as arrows that start at the origin and end at
some point (in the plane or in space depending on the context). With this
way of thinking, each vector can be identified with the coordinates of its
endpoint.
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In the plane R2, a vector x is an ordered pair of its coordinates along
the two axis x = (x1, x2) where xi is a real number for i ∈ {1, 2}. Notice
that the order matters and e.g. (1, 2) 6= (2, 1). In three dimensions, x =
(x1, x2, x3). In the plane, vector y = (y1, y2) is equal x = (x1, x2) if y1 = x1
and y2 = x2, and similarly for the three dimensional case.

We define the addition of vectors by x + y = (x1 + y1, x2 + y2) and the
multiplication of vectors by a real numbers a ∈ R by ax = (ax1, ax2). With
this definition, sums and real multiples of vectors are again vectors.

We can define vectors in a similar manner for any dimension k. A
vector x is a k -dimensional vector if x = (x1, x2, ..., xk), where xi is a
real number for all i ∈ {1, ..., k}. In this case, we write x ∈ Rk. For any
x,y ∈ Rk, define x + y = (x1 + y1, x2 + y2, ..., xk + yk) and for a ∈ R, ax =
(ax1, ax2, ..., axk). A fancy way of saying that sums and scalar multiples of
k -dimensional vectors are also k -dimensional ’vectors is that: Rk is a real
vector space for all k.

A matrix is an array of real numbers into rows and columns. An m× n
-matrix is a matrix with m rows and with n columns. For now, think of
matrices as just being arrays. (Later in these notes, it will become apparent
that matrices represent linear functions on vectors.)

A matrix A is then an array of the following form:
a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn


We write then the product of an m × n -matrix A and a vector x ∈ Rn

as:


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn




x1
x2
...
xn

 =


a11x1 +a12x2 · · · +a1nxn
a21x1 +a22x2 · · · +a2nxn

...
... . . . ...

am1x1 +am2x2 · · · +amnxn

 .

At this point, it should be somewhat mysterious why we define multi-
plication in this way. Hopefully this becomes clear when we talk about
matrices as representing linear functions. Just note that the end result
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of the multiplying an m × n -matrix A and a vector x ∈ Rn is an m -
dimensional vector.

We can view vectors as special matrices. A row vector is an (1 × n)
-matrix and a column vector is an (m × n) -matrix. Whenever we write
x ∈ Rk, we take x to be a column vector.

Gaussian Elimination

Systems of linear equations

A single equation of the form:

ax = b,

has a solution for all b if a 6= 0. The situation is not as obvious if we have
many such equations in many real variables. Consider as a first example
the following pair of equations:

1x +2y +3z = 4,
2x +4y +6z = 6.

The equality of the left-hand side and the right-hand side of an equa-
tion is maintained if both sides are multiplied by the same number. Mul-
tiplying the first equation by 2, we get:

2x+ 4y + 6z = 8,

and this is inconsistent with the second equation. Hence we see that this
pair of equation has no solutions. If the constant on the right hand side
of the first equation is 3, the first equation holds if and only if the second
equation hold. As a result, and triple (x, y, z) = (3 − 2y − 3z, y, z) gives a
solution to the system.

Gaussian elimination provides a systematic approach to the number of
solutions to linear systems of equations. A system of m linear equations in
n real variables (x1, ..., xn) is written as:

a11x1 +a12x2 · · · +a1nxn = b1,
a21x1 +a22x2 · · · +a2nxn = b2,

...
... . . . ...

...
...

am1x1 +am2x2 · · · +amnxn = bm.

(1)
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In matrix form this is:
Ax = b,

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn

 , x =


x1
x2
...
xn

 , b =


b1
b2
...
bm

 .

The key to Gaussian elimination process relies on two basic arithmetic
facts.

1. The solution to an equation is unchanged if both sides of the equa-
tion are multiplied by the same non-zero number.

2. If (x1, ..., xn) satisfies

a11x1 +a12x2 · · · +a1nxn = b1,

and
a21x1 +a22x2 · · · +a2nxn = b2,

then (x1, ..., xn) satisfies:

(a11 + a21)x1 + ...+ (a1n + a2n)xn = b1 + b2.

We call the two fundamental steps in this elimination process elemen-
tary row operations. They are:

i) Swapping equations in the system (i.e. swapping rows in the associ-
ated matrix).

ii) Summing scalar multiples of one equation to another equation (adding
a scalar multiple of a row in the augmented matrix to another row).

Solving systems of equations via elementary row operations

Homogenous systems

Consider the system of equations in matrix form

Ax = 0,
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where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn

 , x =


x1
x2
...
xm

 .

Since the right hand side of the equation is zero, this is called a homogenous
system. It has always a trivial solution x = (0, ..., 0), but we want to know
if it has other solutions.

If column k of A has only zeroes, then any vector x such that xi = 0 for
i 6= k satisfies the equation system and there are infinitely many solutions
(and xk is not really a variable in the system). Therefore, assume that all
columns of A have a non-zero element.

Gaussian elimination gives a systematic way to follow the process of
using one of the equations for solving a variable in terms of the other
variables and then substituting the result into the other equations. This
corresponds to the second type of elementary row operations. The first
operation is used to keep the matrix in a format that is easy to read.

If necessary, swap rows of A so that you can eliminate x1 from the
equation given by the top row, i.e. a11 6= 0. Add first row multiplied by
−ak1
a11

to row k for all k > 1. This eliminates (makes zero) the elements in
the first column of the matrix on rows k > 1. We get the following new
matrix

A(1) =


a11 a12 · · · a1n
0 a22 − a21 a12a11

· · · a2n − a21 a1na11
...

... . . . ...
0 am2 − am1

a12
a11
· · · amn − am1

a1n
a11



=:


a
(1)
11 a

(1)
12 · · · a

(1)
1n

0 a
(1)
22 · · · a

(1)
2n

...
... . . . ...

0 a
(1)
m2 · · · a

(1)
mn

 .

Make sure that you understand how this corresponds to the elimina-
tion of x1 from equations given by row k > 1 by using the equation on row
1.

Continue by eliminating x2. If a(1)22 6= 0, add the second row multiplied

by −a
(1)
k2

a
(1)
22

to each row k > 2.
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If a(1)22 = 0, swap row 2 with k′ such that a(1)k′2 6= 0 and proceed as before.
If a(1)k2 = 0 for all k ≥ 2, the elimination of x1 also eliminated x2. In this case,

continue by eliminating x3, i.e. multiply the second row of A(1) by a
(1)
k3 =0

a
(1)
23

and add to all rows k > 2. If a(1)23 = 0, swap rows if needed and proceed as
before.

This results in a new matrix

A(2) =


a
(2)
11 a

(2)
12 · · · a

(2)
1n

0 a
(2)
22 · · · a

(2)
2n

...
... . . . ...

0 0 · · · a
(2)
nn

 .

By repeating the above steps, we get matrices A(3),A(4) etc. until after k
eliminations, we get e.g. for m = n = 5,

a
(5)
11 a

(5)
12 · · a

(5)
15

0 a
(5)
22 a

(5)
23 · a

(5)
25

0 0 a
(5)
33 a

(5)
34 a

(5)
35

0 0 0 a
(5)
44 a

(5)
45

0 0 0 0 a
(5)
55

 ,

or 
a
(4)
11 a

(4)
12 · · a

(4)
15

0 a
(4)
22 a

(4)
23 · a

(4)
25

0 0 0 a
(4)
34 a

(4)
35

0 0 0 0 a
(4)
45

0 0 0 0 0

 .

We say that a matrix A is in row echelon form if each row k has a larger
number of initial zero elements than row k− 1. Both of the matrices above
are in row echelon form. All matrices can be transformed into row echelon
form by elementary row operations. The first non-zero element on each
row is called a pivot of the matrix.

The number of non-zero rows (or pivots) is the called the row rank of a
matrix in row echelon form. The top matrix above has row rank 5 and the
one below it has row rank 4.
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Since each row in the row echelon form starts with more zeros than
the previous row, the row rank is always less than or equal to the number
of columns. If the row rank is equal to the number of columns, the only
solution is the trivial solution x = 0. If row rank is less than the number
of columns, the system has infinitely many solutions.

In the first case above, the trivial solution is the only solution to the
system. This can be seen as follows. The last row in the row echelon form
implies that x5 = 0 in any solution. Using this, the second to last row
implies that x4 = 0 etc.

In the second case above, x3 can be chosen freely. For each choice of x3,
the other variables are uniquely determined.

Example 1. Find the row echelon form of the following matrix:

A =

 2 1 −1
1 2 2
1 0 1


i9 Multiply first row by −1

2
and add the the second and third row: 2 1 −1

1− 1 2− 1
2

2 + 1
2

1− 1 0− 1
2

1 + 1
2

 =

 2 1 −1
0 3

2
5
2

0 −1
2

3
2


ii) Multiply second row by 1

3
and add to third row: 2 1 −1

0 3
2

5
2

0 0 3
2

+ 5
6

 =

 2 1 −1
0 3

2
5
2

0 0 7
3

 .

Since the row echelon form has three pivots, it has rank 3, and we know
that the system

Ax = 0

has a unique solution x = 0.

Example 2. The following matrix A does not have full rank:

A =

 2 0 4
1 1 3
2 1 5

 .
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To see this, eliminate the first entry in the second and the third row by
using the first row:  2 0 4

0 1 1
0 1 1

 .

When eliminating the second entry on the third row by using the second,
we get row echelon form:  2 0 4

0 1 1
0 0 0

 .

Hence any x = (−2x3,−x3, x3) solves the system

Ax = 0.

Non-homogenous systems

Consider next the system of n equations in n variables.

Ax = b.

We will perform elementary row operations to transform A to its row ech-
elon form. It is now useful to consider the augmented matrix:

(A
...b) =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
b1
b2
...
bn

 .

We perform the elementary row operations on the entire matrix (A
...b) to

keep track of the right hand side. Obviously this was not necessary in the
homogenous case where the right hand side is zero.

a
(2)
11 a

(k)
12 · · · a

(k)
1n

0 a
(k)
22 · · · a

(k)
2n

...
... . . . ...

0 0 · · · a
(k)
nn

∣∣∣∣∣∣∣∣∣
b
(k)
1

b
(k)
2
...
b
(k)
n

 .
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i) If A and (A
...b) have the same rank, then the system has a solution.

ii) If rank (A
...b)) = rank (A) = n, the solution is unique.

iii) If rank (A
...b) = rank (A) < n, the system has infinitely many solu-

tions.
iv) If rank (A

...b) > rank (A), then it has no solution.
v) If x0 is a solution to the homogenous system and x1 is a solution of

the non-homogenous system, then x0 + x1 is also a solution to the non-
homogenous system.

vi) If x′ and x′′ solve the non-homogenous system, then (x′−x′′) solves
the homogenous system.

Example 3. Consider a numerical example for the previous system:

2x1 +x2 −x3
x1 +2x2 +2x3
x1 +x3

=
2
1
0 2 1 −1

1 2 2
1 0 1

 x1
x2
x3

 =

 2
1
0

 .

The augmented matrix is now: 2 1 −1
1 2 2
1 0 1

∣∣∣∣∣∣
2
1
0

 .

Repeat the elementary row operations: 2 1 −1
0 3

2
5
2

0 −1
2

3
2

∣∣∣∣∣∣
2
0
−1


and  2 1 −1

0 3
2

5
2

0 0 7
3

∣∣∣∣∣∣
2
0
−1

 .

We get:

x3 =
−3

7
.
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Substituting into the second row:

3

2
x2 +

5

2

(
−3

7

)
= 0.

Hence:
x2 =

5

7
.

The first row gives:

2x1 +
5

7
− −3

7
= 2 ⇐⇒ x1 =

3

7
.

Linear dependence

Consider a set of n column vectors a1, a2, ..., an ∈ Rm, where

ai =

 a1i
...
ami


We say that {a1, a2, ..., an} are linearly dependent if there exists λ 6= 0,
λ = (λ1, λ2, ..., λn) such that

λ1a1 + λ2a2 + ...+ λnan = 0.

Write the vectors as a matrix:

A = (a1, a2, ..., an) =

 a11 · · · a1n
... . . . ...

am1 · · · amn

 .

The vectors are linearly dependent of there is a λ 6= 0, such that

Aλ = 0.

By using the rank criterion, {a1, a2, ..., an} are linearly dependent if and
only if

rank (A) < n.

We see immediately that {a1, a2, ..., an} are linearly dependent if m < n.
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Matrix Algebra

Let A be a m× n -matrix. The element of A on the ith row and jth column
is denoted by aij. Similarly for B,C, etc. we write the typical element as
bij, cij, etc.

• Matrix equality:
A = B

if for all i, j:
aij = bij.

• Scalar multiplication:

For r ∈ R.
rA = C,

where for all i, j:
cij = raij.

• Addition (defined only for matrices of same size):

A + B = C,

where for all i, j:
cij = aij + bij.

• Matrix difference: (combining the two previous ones).

A−B = A + (−B) = C,

where for all i, j:
cij = aij − bij.

• Matrix multiplication: Let A be an m × n -matrix and B an n × k
-matrix. The product of A and B is defined as:

AB = C,

where

cij =
n∑
h=1

aihbhj.
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In other words, the element cij of the product matrix C is the dot
product of the i th row of A and the jth column of B.

Note that A must have the same number of columns as B has rows
for multiplication to be defined.

• Why define multiplication like this? Why not element by element?
Let

y = Ax ∈ Rm.

This is a particular form of a function y = f(x). Consider then

z = By ∈ Rk.

This is a particular form of z = g(y) If you write the composite func-
tion z = g(f(x)) for this case

z = Cx = BAx,

and follow the rules for multiplying a matrix and a vector, you get
the above definition for matrix multiplication. In other words, ma-
trix multiplication corresponds to the composition of the functions
represented by the matrix.

• A truly wonderful webpage for a first course in linear algebra can
be found on the (amazing) 3blue1brown channel at Linear Alge-
bra. Chapters 3 and 4 cover this material, but the whole package
is strongly recommended.

• Some rules:

(A + B) + C = A + (B + C) ,

(AB)C = A (BC) ,

A + B = B + A,

A (B + C) = AB + AC,

(A + B)C = AC + BC.

• Note:
AB 6= BA.

• Can you find easy examples of this?
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• Transpose:

The transpose of A denoted by A> is defined as:

aTij = aji.

In other words, we obtain A> from A by turning row i into column
i (and therefore column j into row j).

Rules for transpose:

(A + B)> = A> + B>,(
A>
)>

= A,

(AB)> = B>A>.

Special matrices

• A square matrix has the same number of rows and columns.

• Column matrix is a column vector, i.e. it has m rows and a single
column.

• Unit column vector ei: ej = 0 if j 6= i ja ej = 1 if j = i.

• Row matrix is a row vector. It has a single row and n columns.

• Diagonal matrix Λ is a square matrix such that λij = 0 if i 6= j. λ1 0 0

0
. . . 0

0 0 λn

 .

• Identity matrix I (the multiplicative unit) is a diagonal matrix with
λii = 1 :

I =

 1 0 0

0
. . . 0

0 0 1

 .
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• Upper triangular matrix A is a square matrix such that aij = 0 if
i > j :  a11 · · · a1n

0
. . . ...

0 0 ann

 .

• Lower triangular matrix A is a square matrix such that aij = 0 if
i < j :  a11 0 0

... . . . 0
an1 · · · ann

 .

• A symmetric matrix is A a square matrix such that

A = A>.

• Permutation matrix is a matrix with zeros and ones as elements.
Each row and each column has a single one. Permutation matri-
ces are obtained from the unit matrix by interchanging (permuting)
rows. For example with n = 3 we get

E23 =

 1 0 0
0 0 1
0 1 0


by permuting the last two rows of the identity matrix.

• Elementary row operations can be represented as results of matrix
multiplication as follows. Let Eij be a permutation matrix where
rows i and j have been permuted. Permuting the rows i and j of A
can be written as matrix product:

EijA.

Let Ei (r) be the matrix obtained by multiplying row i of the identity
matrix by scalar r.

E2 (r) =

 1 0 0
0 r 0
0 0 1


14



Multiplying the ith row of A corresponds to the product

Ei (r)A.

Let Eij (r) be a matrix obtained by adding to the identity matrix a
matrix whose element ji is r and all other elements are zeros.

E23 (r) =

 1 0 0
0 1 0
0 r 1

 .

Adding row i of A multiplied by r to row j is obtained by:

Eij (r)A.

Hence we have shown that the elementary operations can be per-
formed as matrix multiplications by elementary matrices Eij,Ei(r),Eij(r).

Inverting a matrix
Consider square matrices A with n columns and rows. The inverse

matrix of A is denoted by A−1. For the inverse matrix, we have:

AA−1 = I.

Recall from the previous section that he system of equations

Ax = b

has a unique solution for all b if rank(A) = n.
Solve the systems of equations

Ax = ei

for alli = 1, ..., n, and denote the solutions by xi. In other words,

Axi = ei

for all i.
By the definition of matrix multiplication, we have:

A−1 = (x1, ...,xn) .
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As a result, we see that we can find the inverse matrix via elementary
row operations for the augmented matrix.

(A |I ) .

Example:

A =

 2 3 1
0 2 1
1 0 1


(A|I) =

 2 3 1
0 2 1
1 0 1

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 .

Eliminate the first element on the third row with the first row: 2 3 1
0 2 1
0 −3

2
1
2

∣∣∣∣∣∣
1 0 0
0 1 0
−1

2
0 1

 ,

and the second element using the second row: 2 3 1
0 2 1
0 0 5

4

∣∣∣∣∣∣
1 0 0
0 1 0
−1

2
3
4

1

 .

Multiply the third row by4
5 2 3 1
0 2 1
0 0 1

∣∣∣∣∣∣
1 0 0
0 1 0
−2

5
3
5

4
5

 ,

Add third row multiplied by -1 to second and first row: 2 3 0
0 2 0
0 0 1

∣∣∣∣∣∣
7
5
−3

5
−4

5
2
5

2
5
−4

5

−2
5

3
5

4
5


Divide second row by 2: 2 3 0

0 1 0
0 0 1

∣∣∣∣∣∣
7
5
−3

5
−4

5
1
5

1
5
−2

5

−2
5

3
5

4
5

 ,
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Multiply second row by -3 and add to first: 2 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
4
5
−6

5
2
5

1
5

1
5
−2

5

−2
5

3
5

4
5

 .

Finally divide first row by 2: 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
2
5
−3

5
1
5

1
5

1
5
−2

5

−2
5

3
5

4
5

 .

We obtain:

A−1 =

 2
5
−3

5
1
5

1
5

1
5
−2

5

−2
5

3
5

4
5

 .

To check the result:

AA−1 =

 2 3 1
0 2 1
1 0 1

 2
5
−3

5
1
5

1
5

1
5
−2

5

−2
5

3
5

4
5

 =

 1 0 0
0 1 0
0 0 1

 .

Rules for inverse matrices:(
A−1

)−1
= A,(

A>
)−1

=
(
A−1

)>
,

If A and B have inverse matrices:

(AB)−1 = B−1A−1.

Determinant
Consider n × n square matrix A. For n = 1 define the determinant as

detA = a11.
For a general n × n matrix A and remove row i and and column j to

get an (n− 1)× (n− 1) matrix Aij . Let

Mij = detAij.

Matrix A (i, j) has a cofactor Cij defined as:

Cij ≡ (−1)i+jMij.
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The determinant of A is defined recursively as:

detA = Σn
j=1 (−1)(i+j) aijCij.

(Where is the recursion in the previous formula?)
The determinant can also be computed by expanding similarly along a

column:
detA = Σn

j=1 (−1)(i+j) aijCij.

Example 4.

A =

 2 3 1
0 2 1
1 0 1

 .

detA = 2 det

(
2 1
0 1

)
− 0 det

(
3 1
0 1

)
+1 det

(
3 1
2 1

)
= 4 + 1 = 5.

Example 5.

det

 a11 · · · a1n

0
. . . ...

0 0 ann

 = a11 · a22 · . . . · ann.

Proposition 1. i) The determinant is zero if and only if the matrix does not
have full rank.

ii) Swapping rows changes the sign of the determinant.
iii) Adding (scalar multiples) of rows does not change the determinant.

Proof. (Sketch) The first point results from ii) and iii) since elementary op-
erations can only change the sign of the determinant. To see the second
point, show that this is true for 2x2 matrices and therefore for all matrices
(by expanding along rows that were not swapped). For the third, compute
the determinant for

A′ =


a11 · · · a1j · · · a1n

... . . . ... . . . ...
aj1 + rai1 · · · ajj + raij · · · ajn + rain

... . . . ... . . . ...
an1 · · · anj · · · ann


18



Expand via row j to get:

detA′ = rΣn
k=1ajkCjk + rΣn

k=1aikCik

= detA + r detB,

where

B =



a11 · · · aij · · · a1n
...
ai1
...

...
aij
...

...
ain
...

ai1 · · · aij ain
...

...
...

an1 · · · anj · · · ann


.

Matrix B has the ith row of A as both row i and row j. Since the deter-
minant can be developed along any row, i and j can always be left as the
last two to be eliminated. For 2× 2 matrices one sees immediately that the
determinant is zero if the rows are identical.

Rules for computing the determinant:

detA> = detA.

detAB = detA detB,

detA−1 =
1

detA
,

detA + B 6= detA + detB in general.

Cramer’s rule

Assume that A has full rank and therefore detA 6= 0). The system of
equations

Ax = b

has then a unique solution

xi =
detBi

detA
,

where Bi is the matrix obtained by replacing the ith column of A by the
column vector b.
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Example 6.  2 3 1
0 2 1
1 0 1

 x1
x2
x3

 =

 2
1
0

 .

x1 =

det

 2 3 1
1 2 1
0 0 1


det

 2 3 1
0 2 1
1 0 1

 =
1

5
,

x2 =

det

 2 2 1
0 1 1
1 0 1


5

=
3

5
,

x3 =

det

 2 3 2
0 2 1
1 0 0


5

=
−1

5
,

Inverting a matrix with determinants

Cofactor matrix of A is given by:

C = (Cij) ,

where the cofactors are as above. Its transpose C> is called the adjungated
matrix of A (or the classic adjoint) adj (A) :

adj (A) = C>.

Then:
A−1 =

1

detA
· adj (A) .

Example 7. Compute adj(A), for

A =

 2 3 1
0 2 1
1 0 1

 .
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C11 = 2, C12 = 1 , C13 = −2,

C21 = −3, C22 = 1, C23 = 3,

C31 = 1, C32 = −1, C33 = 4.

adj (A) =

 2 −3 1
1 1 −2
−2 3 4

 ,

Therefore

A−1 =
1

detA
·

 2 −3 1
1 1 −2
−2 3 4

 ,

which corresponds to what we computed before since detA = 5.

Dominant diagonal matrices

For many economic models, it is important that the solutions are non-
negative (for example, prices, consumptions etc. must be positive). The
rank condition is not enough to tell us when the solution is positive. In
this subsection, we see a sufficient condition for positive solutions. (In
more advanced courses, you will see more sophisticated analysis of this
using Farkas’ Lemma and Separating Hyperplane Theorem.)

A matrix B given by:

B =

 b11 · · · b1n
... . . . ...
bn1 · · · bnn

 .

is a dominant diagonal matrix if

1. bii > 0 for all i.

2. bij ≤ 0 for all j.

3. For all j:
bjj + Σi 6=jbij ≥ 0.
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Consider the row echelon form of dominant diagonal matrices. Eliminate
the first elements on other rows by using the first row. This gives:

b11 b12 · · · b1j · · · · · · b1n
0 b22 − b21

b11
b12 · · · b2j − b21

b11
b1j · · · · · · b2n − b21

b11
b1n

...
...

...
... bj2 − bj1

b11
b12 · · · bjj − bj1

b11
b1j · · · · · · bjn − bj1

b11
b1n

...
...

...
...

0 bn2 − bn1

b11
b12 bnj − bn1

b11
b1j bnn − bn1

b11
b1n


.

Consider (n− 1)× (n− 1) partial matrix B̂ :

B̂ =

 b̂22 · · · b̂2n
... . . . ...
b̂n2 · · · b̂nn

 =


b22 − b21

b11
b12 · · · b2j − b21

b11
b1j · · · · · · b2n − b21

b11
b1n

...
...

bi2 − bj1
b11
b12 · · · bjj − bj1

b11
b1j · · · · · · bin − bj1

b11
b1n

...
...

...
bn2 − bn1

b11
b12 bnj − bn1

b11
b1j bnn − bn1

b11
b1n

 .

Lemma 1. If B is a dominant diagonal matrix, then B̂ is also dominant
diagonal matrix.

Proof. We check that B̂ satisfies the requirements for a dominant diagonal
matrix.

1. b̂jj = bjj − bj1
b11
b1j > bjj + b1j > 0, since bjj > Σi 6=jbij.

2. b̂ij = bij − bi1
b11
b1j ≤ 0 for i 6= j.

3.

b̂2j + b̂3j + ...+ b̂nj = Σi 6=1

(
bij −

bi1
b11
b1j

)
= Σi 6=1bij −

Σi 6=1bi1
b11

b1j

> Σibij

> 0.
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Repeat this elimination step j − 1 times to get

b11 b12 · · · b1j · · · · · · b1n
0 b22 − b21

b11
b12 · · · b2j − b21

b11
b1j · · · · · · b2n − b21

b11
b1n

... 0 + · · · · · · · · · · · ·

... 0 · · · b̂jj · · · · · · b̂jn

...
... 0

... . . . ...
...

0 0 0 b̂nj · · · · · · b̂nn


.

The same proof as above shows inductively that after (j − 1) elimina-
tions, the matrix

B̂(j−1) =

 b̂jj · · · b̂n2
... . . . ...
b̂2n · · · b̂nn


is dominant diagonal.

With this lemma, we can prove the following proposition.

Proposition 2. If B is a dominant diagonal matrix, then

Bx = y

has a unique solution for all y. If y ≥ 0, then the solution x is non-
negative:

x ≥ 0.

Proof. For the first claim, notice that by the observation after the previous
lemma, B has full rank and therefore, the equation has a unique solution.

For the second claim, note that after (n−1) elementary row operations,
we have a matrix with the following pattern of signs: + − −

0
. . . −

0 0 +

 .

Row n yields:
λnnxn = yn ⇔ xn =

yn
λnn

.
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Since λnn > 0, xn > 0 if yn > 0.
Row n− 1 gives:

λn−1n−1xn−1 + λn−1nxn = yn−1

or
xn−1 =

yn−1 − λn−1nxn
λn−1n−1

.

Since xn ≥ 0, λn−1n ≤ 0 and λn−1n−1 > 0, we get xn−1 ≥ 0 if yn−1 ≥ 0.
By substituting backwards, we get the result.

Linear models in economics

1. Input-output -tables

Consider an economy producing n goods. All goods are final goods
and potentially intermediate goods. The production of all goods
happens simultaneously. Assume linear production in the sense that
to produce xi units of good iwe need ajixi units of good j. If the econ-
omy produces a net output (y1, ..., yn) the total output (x1, ..., xn) can
be computed as

x1 − a11x1 − a12x2 − . . .− a1nxn = y1,

x2 − a21x1 − a22x2 − . . .− a2nxn = y2,
...

xn − an1x1 − an2x2 − . . .− annxn = yn.

In vector notation:
1− a11 −a12 · · · −a1n
−a21 1− a22 −a2n

... . . . ...
−an1 −an2 · · · 1− ann




x1
x2
...
xn

 =


y1
y2
...
yn

 .

What are the feasible net productions y = (y1, ..., yn)?

By the previous section, we see that if (I −A) is a dominant diagonal
matrix, i.e. if for all i ∑

j

aji < 1,
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then all net outputs are possible In other words, for all y ≥ 0 there
exists a x ≥ 0 such that

(I −A)x = y.

2. Equilibrium in oligopoly models

In intermediate microeconomics you will see the Cournot model of
oligopolistic competition with constant marginal costs. In the model,
n firms choose optimal level of production qi taking into account
their own impact on the price.

P (q1, ..., qn) = α− β
n∑
i=1

qi.

The optimal output depends on own marginal costs ci, and the out-
put of others:

qi =
a− βΣj 6=iqj − ci

2β
.

Since the quantities should be positive, we see immediately that the
model makes sense only if

ci ≤ a for all i,

and if the ci are relatively close to each other.

In matrix form:
2β β · · · β
β 2β β
... . . . ...
β β · · · 2β




q1
q2
...
qn

 =


a− c1
a− c2

...
a− cn

 .

Perform elementary row operations on the augmented matrix
2β β · · · β
β 2β β
... . . . ...
β β · · · 2β

∣∣∣∣∣∣∣∣∣
a− c1
a− c2

...
a− cn

 .
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Subtracting the first row from all other rows we get:
2β β · · · β
−β β 0

... . . . ...
−β 0 · · · β

∣∣∣∣∣∣∣∣∣
a− c1
c1 − c2

...
c1 − cn

 .

We get
βqj = βq1 + c1 − cj. (2)

The first equation gives:

2βq1 + βΣj 6=iqj = a− c1.

Substituting from the first to the second,

2βq1 + (n− 1) βq1 + (n− 1) c1 − Σj 6=icj = a− c1.

Solving for q1, we get:

(n+ 1) βq1 = a+ Σj 6=icj − nc1,

q1 =
a− c1 + Σj 6=i (cj − c1)

(n+ 1) β
.

The other outputs are computed from (2).

3. Market Equilibrium

We start by an analysis of the equilibrium determination of prices
and quantities for two products. The demand Qd

i for each good i
depends on the prices of the two goods P1 and P2, on disposable
income Y and on other factors Ki.

Assume that the demands take the following form:

Qd
1 = K1P

α11
1 Pα12

2 Y β1 ,

Qd
2 = K1P

α21
1 Pα22

2 Y β2 .

Exercise: How would you interpret the parameters αij ja βi? How
large is the percentage change in the demand for i if we have a small
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percentage change in Pi, Pj or Y ? What do the signs of the parame-
ters tell us?

Since we are writing the model to analyze price formation, we would
take the Qd

i and the Pi to be endogenous variables to be determined
by the model and Ki would summarize the exogenous variables (i.e.
ones not determined in the model).

The supplies Qs
i for the two products are assumed to take the form:

Qs
1 = M1P

γ1
1 ,

Qs
2 = M2P

γ2
2 .

Again, we take the variables Mi to be exogenous to the model.

Exercise: What is the interpretation for γi and what do you think
about their sign? Comment on the implicit assumption that Qs

i does
not depend on Pj .

In equilibrium, supply equals demand so that

Qd
1 = Qs

1,

and
Qd
i = Qs

i .

So we have six equations for six endogenous variables (Qs
i , Q

d
i , Pi)i=1,2.

Unfortunately this system seems rather complicated since the equa-
tions contain products and powers of endogenous variables.

A simple change of variables reduces the complexity. Define the fol-
lowing new variables:

qdi = lnQd
i , q

s
i = lnQs

i pi = lnPi, yi = lnYi, mi = lnMi, ki = lnKi, i ∈ {1, 2}

By taking logarithms on both sides of each equation, we can write
the six equations for i ∈ {1, 2}:

qdi = ki + αiipi + αijpj + βiy,
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qsi = mi + γipi,

qsi = qdi .

By the third equation, qdi = qsi for i ∈ {1, 2}, and therefore the right
hand sides in the first and the second equations are equalized:

ki + αiipi + αijpj + βiy = mi + γipi, i ∈ {1, 2}.

In a partial equilibrium model, the income of the consumers is as-
sumed to be determined outside the model, i.e. it is an exogenous
variable. Therefore the only endogenous variables in this model are
p1 ja p2.

Let’s write the exogenous variables on the right-hand side and the
endogenous variables on the left-hand side:

(α11 − γ1) p1 +α12p2
α21p1 (α22 − γ2) p2

= m1 − k1 − β1y,
= m2 − k2 − β2y.

Or in matrix form:(
a11 a12
a21 a22

)(
p1
p2

)
=

(
b1
b2

)
,

where aii = αii − γi, aij = αij, ja bi = mi − ki − βiy.
It is now straightforward to compute the equilibrium p = (p1, p2). I
leave it as an exercise to use Cramer’s rule to get the result:

p1 =
(α22 − γ2) (m1 − k1 − β1y)− α12 (m2 − k2 − β2y)

(α22 − γ2) (α11 − γ1)− α12α21

,

p2 =
(α11 − γ1) (m2 − k2 − β2y)− α21 (m1 − k1 − β1y)

(α22 − γ2) (α11 − γ1)− α12α21

.

The (logarithmic) equilibrium quantities are solved most easily from
the supply curves. Finally Pi, Qi are solved by exponentiating pi, qi.

What conditions do you need on the parameters of the model for
positive solutions?
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Norm and inner product (dot product)

There are two ways to think of the product of x,y ∈ Rn if we treat vectors
as special matrices. The first, called inner product or dot product is defined
as:

x · y := x>x =
n∑
i=1

xiyi,

and the result is a real number.
The second, called the cross product results in an n×n matrix xx>. We

will use only the first in this course (and it is by far the more important).
With the help the inner product, we can define the length or the norm

of a vector:

‖x‖ :=
√
x · x.

This is essentially just the equivalent of the Pythagorean Theorem in
higher dimensions. The distance between vectors x,y is just the norm of
(x− y).

The projection of a vector y on x is defined as the point t∗x on the line
tx for t ∈ R such that

(y − t∗x) · x = 0.

This gives an explicit formula for t∗:

t∗ =
x · y
‖x‖

.

Hence the projection Px(y) is given by:

Px(y) = x
x · y
‖x‖

.

By basic trigonometry, the angle θ between x and y satisfies:

cos(θ) =
‖Px(y)‖
‖y‖

=
x · y
‖x‖‖y‖

.

Since −1 ≤ cos(θ) ≤ 1 for all θ, we get Cauchy’s inequality for all
vectors x,y:

|x · y| ≤ ‖x‖‖y‖.
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Linear functions

A function f : Rn → Rm is said to be linear if the following two conditions
are satisfied:

i) (Homogeneity) For all λ ∈ R and for all x ∈ Rn, f(λx) = λf(x),
ii) (Additivity) For all x,y ∈ Rn, f(x + y) = f(x) + f(y).
By taking λ = 0 in i), we see that f(0) = 0 for all linear functions. In the

case of n = 1, this rules out functions whose graphs are straight lines that
do not go through the origin. In this simplest setting, i) actually implies
ii), and fixing f(1) determines the entire function.

For n > 1, requirement ii) has bite. Observe that we can write x =∑n
i=1 xie

i. By i), f(xie
i) = xif(ei) for all i, xi. By ii),

f(x) = f(
n∑
i=1

xie
i) =

n∑
i=1

xif(ei).

Hence a linear function is completely determined by n values f(ei). If
m = 1, then f(ei) ∈ R for all i and letting f(ei) = ai we see that all real
linear functions from Rn are given by inner products a · x =

∑n
i=1 aixi.

Ifm > 1, then each f(ei) is anm -dimensional vector. If we denote ai =
f(ei) ∈ Rm, we have as before f(x) =

∑n
i=1 xia

i. Writing A = [a1, ...,an]
for the matrix consisting of columns ai. But this means that

f(x) = Ax.

Many of the properties of linear functions also extend to affine func-
tions of the form

f(x) = Ax + b,

for some b ∈ Rm. Actually this is not so bad because by a linear change of
origin, f̂((x) := f(x)− f(0) = Ax is linear.

Why are linear functions so much simpler than non-linear?
i) A change in x has the same effect regardless of the starting point:

f(x)− f(x̂) = A(x− x̂).

ii) A function f : Rn → Rm is said to be surjective (or onto) if for all
b ∈ Rm, there is an x ∈ Rn such that f(x) = b. f is said to be injective
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or one-to-one if for all x 6= x′, f(x) 6= f(x′). f is said to be bijective if
it is injective and surjective. Bijective functions f have an inverse function
f−1 : Rm → Rn such that f−1(f(x)) = x and f(f−1(y)) = y.

In matrix algebra, we saw that if f(x) = Ax, then f is bijective if and
only if A has full rank. Gaussian elimination (or the determinant) gives an
easy way of determining when linear functions are bijective and comput-
ing the inverse function f−1(x) = A−1x.
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