Mathematics for Economists: Lecture 1

Juuso Välimäki

Aalto University School of Business

Spring 2022

Welcome to the course

- Course logistics
- Lectures Mon, Tue at 13:15-14:45
- Review sessions with Amin Mohazab Thu 10:15-11:45
- This week: Tue at 13:15-14:45, Thu 10:15-11:45, first review session Fri 10:15 -11:45
- Weekly Problem Sets to be returned via MyCourses on specified due date (not first week)
- 20% of the grade based on problem sets, 80% on final exam
- To succeed in the course, you should attempt all problem sets
- Exam June 1, 9:00-12:00

Contents I

- Course contents: Part I
- Lectures 1-2 Introduction and Applications of Linear Algebra Readings: Synopsis, Section 1, material for week 1, S\&B: Chapter 6-11, 13.
- Lectures 3-4: Multivariable Calculus Readings: Synopsis, Section 2, material for week 2, S\&B: Chapters 14, 15.
- Lecture 5: Unconstrained Optimization, Convexity and Concavity Readings: Synopsis, Section 3, material for week 3, S\&B: Chapters 16, 17, 21.

Contents II

- Course contents: Part II
- Lecture 7-8: Constrained Optimization Readings: Synopsis, Sections 4-5, material for week 4, S\&B Chapters 18, 19
- Lecture 9-10: Economic Applications of Constrained Optimization Readings: Synopsis, Sections 4-5: material for week 5, S\&B:Chapters 20, 22
- Lectures 11-12: Linear Dynamical Systems

Readings: Synopsis, Sections 6: material for week 6, S\&B: 23, 25.1, 25.2

Mathematics and Economic Models

- In Lionel Robbins' definition, economics studies the allocation of scarce resources amongst competing ends
- We seek a mathematical formulation for such problems
- Competing ends captured by an objective function
- Scarcity captured by feasible set
- Economic process captured by either a constrained optimization problem of an economic agent or an equilibrium problem where many agents optimize simultaneously
- Handout on Setting the Scene contains more details on this.
- Mathematical requirements for the theory
- Choices over vectors (e.g. consumption bundles in the budget set or choice of inputs for a producer) $->$ Vectors and linear algebra
- Objective functions often not linear - > Multivariable calculus
- Environment for choices may evolve over time - > Dynamical systems

Linear economic models

- The key object of study in linear algebra are linear equations
- A linear equation has the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

where

- $a_{1}, a_{2}, \ldots, a_{n}, b$ are fixed real numbers (parameters)
- $x_{1}, x_{2}, \ldots, x_{n}$ are real valued variables
- A system of linear equations is a collection of such equations that hold simultaneously

Examples of systems

A system of two linear equations in two unknowns:

$$
\begin{array}{r}
2 x_{1}+3 x_{2}=7 \\
2 x_{1}+x_{2}=4 \tag{2}
\end{array}
$$

A system of two non-linear equations in two unknowns:

$$
\begin{array}{r}
2 x_{1} x_{2}+3 x_{2}=7 \\
2 x_{1}^{2}+x_{2}=4 \tag{4}
\end{array}
$$

Market Equilibrium for Two Goods

- Goal: Determine competitive equilibrium prices and quantities for two goods $i \in\{1,2\}$.
- Demand Q_{i}^{d} depends on the prices of the two goods P_{1} and P_{2}, on disposable income Y and on other factors K_{i} as follows:

$$
\begin{aligned}
& Q_{1}^{d}=K_{1} P_{1}^{\alpha_{11}} P_{2}^{\alpha_{12}} Y^{\beta_{1}} \\
& Q_{2}^{d}=K_{1} P_{1}^{\alpha_{21}} P_{2}^{\alpha_{22}} Y^{\beta_{2}}
\end{aligned}
$$

- How would you interpret the parameters $\alpha_{i j}$ ja β_{i} ?
- Think back to Principles 1 and elasticities

Market Equilibrium for Two Goods

- Y and K_{i} are the exogenous variables (i.e. ones not determined in the model).
- Supply functions Q_{i}^{s} for the two products are assumed to take the form:

$$
\begin{aligned}
& Q_{1}^{s}=M_{1} P_{1}^{\gamma_{1}} \\
& Q_{2}^{s}=M_{2} P_{2}^{\gamma_{2}}
\end{aligned}
$$

- Again, we take the variables M_{i} to be exogenous to the model.
- In equilibrium, supply equals demand so that

$$
Q_{1}^{d}=Q_{1}^{s}
$$

and

$$
Q_{i}^{d}=Q_{i}^{s}
$$

- Six equations for six endogenous variables $\left(Q_{i}^{s}, Q_{i}^{d}, P_{i}\right)_{i=1,2}$, but not linear

Market Equilibrium for Two Goods

- But a change of variables helps: define the following new variables for $i \in\{1,2\}$:

$$
q_{i}^{d}=\ln Q_{i}^{d}, q_{i}^{s}=\ln Q_{i}^{s} p_{i}=\ln P_{i}, y=\ln Y, m_{i}=\ln M_{i}, k_{i}=\ln K_{i}
$$

- By taking logarithms on both sides of each equation, we can write the six equations for $i \in\{1,2\}$:

$$
\begin{gathered}
q_{i}^{d}=k_{i}+\alpha_{i i} p_{i}+\alpha_{i j} p_{j}+\beta_{i} y \\
q_{i}^{s}=m_{i}+\gamma_{i} p_{i} \\
q_{i}^{s}=q_{i}^{d}
\end{gathered}
$$

Market Equilibrium for Two Goods

- By the third equation, $q_{i}^{d}=q_{i}^{s}$ for $i \in\{1,2\}$, and therefore the right hand sides in the first and the second equations are equalized:

$$
k_{i}+\alpha_{i i} p_{i}+\alpha_{i j} p_{j}+\beta_{i} y=m_{i}+\gamma_{i} p_{i}, i \in\{1,2\}
$$

- The only remaining endogenous variables are: p_{1} ja p_{2}.
- Let's write the exogenous variables on the right-hand side and the endogenous variables on the left-hand side:

$$
\begin{array}{ccl}
\left(\alpha_{11}-\gamma_{1}\right) p_{1} & +\alpha_{12} p_{2} & =m_{1}-k_{1}-\beta_{1} y \\
\alpha_{21} p_{1} & \left(\alpha_{22}-\gamma_{2}\right) p_{2} & =m_{2}-k_{2}-\beta_{2} y
\end{array}
$$

Market Equilibrium for Two Goods

- Let's solve for p_{1} from the top equation:

$$
p_{1}=\frac{m_{1}-k_{1}-\beta_{1} y-\alpha_{12} p_{2}}{\left(\alpha_{11}-\gamma_{1}\right)}
$$

- Substituting into the second equation gives:

$$
\begin{aligned}
p_{2} & =\frac{m_{2}-k_{2}-\beta_{2} y-\alpha_{21} p_{1}}{\left(\alpha_{22}-\gamma_{2}\right)} \\
& =\frac{m_{2}-k_{2}-\beta_{2} y-\alpha_{21} \frac{m_{1}-k_{1}-\beta_{1} y-\alpha_{12} p_{2}}{\left(\alpha_{11}-\gamma_{1}\right)}}{\left(\alpha_{22}-\gamma_{2}\right)} .
\end{aligned}
$$

- Multiplying both sides by $\left(\alpha_{22}-\gamma_{2}\right)\left(\alpha_{11}-\gamma_{1}\right)$ gives:

$$
\begin{gathered}
\left(\alpha_{22}-\gamma_{2}\right)\left(\alpha_{11}-\gamma_{1}\right) p_{2}=\left(\alpha_{11}-\gamma_{1}\right)\left(m_{2}-k_{2}-\beta_{2} y\right) \\
-\alpha_{21}\left(m_{1}-k_{1}-\beta_{1} y\right)+\alpha_{12} \alpha_{21} p_{2}
\end{gathered}
$$

Market Equilibrium for Two Goods

- Solving for p_{2},

$$
p_{2}=\frac{\left(\alpha_{11}-\gamma_{1}\right)\left(m_{2}-k_{2}-\beta_{2} y\right)-\alpha_{21}\left(m_{1}-k_{1}-\beta_{1} y\right)}{\left(\alpha_{22}-\gamma_{2}\right)\left(\alpha_{11}-\gamma_{1}\right)-\alpha_{12} \alpha_{21}}
$$

- And substituting back gives:

$$
\begin{aligned}
p_{1} & =\frac{m_{1}-k_{1}-\beta_{1} y-\alpha_{12} \frac{\left(\alpha_{11}-\gamma_{1}\right)\left(m_{2}-k_{2}-\beta_{2} y\right)-\alpha_{21}\left(m_{1}-k_{1}-\beta_{1} y\right)}{\left(\alpha_{22}-\gamma_{2}\right)\left(\alpha_{11}-\gamma_{1}\right)-\alpha_{12} \alpha_{21}}}{\left(\alpha_{11}-\gamma_{1}\right)} \\
& =\frac{\left(\alpha_{22}-\gamma_{2}\right)\left(m_{1}-k_{1}-\beta_{1} y\right)-\alpha_{12}\left(m_{2}-k_{2}-\beta_{2} y\right)}{\left(\left(\alpha_{22}-\gamma_{2}\right)\left(\alpha_{11}-\gamma_{1}\right)-\alpha_{12} \alpha_{21}\right)} .
\end{aligned}
$$

Market Equilibrium for Two Goods

- The (logarithmic) equilibrium quantities are solved most easily from the supply curves.
- Finally P_{i}, Q_{i} are solved by exponentiating p_{i}, q_{i}.
- Exercise: Can you see how an improvement in the production technology for good 2 changes the equilibrium?
- Lessons from the example
- A nonlinear model can sometimes be transformed to a linear model (logarithmic transforms are particularly useful)
- Solving by substitution is clumsy and prone to errors.
- Gaussian elimination (familiar from Matrix Algebra) is a systematic representation of this process .

Gaussian Elimination

- Consider the following system of linear equations:

$$
\begin{aligned}
2 x_{1}-x_{2} & =0 \\
-x_{1}+2 x_{2}-x_{3} & =0 \\
-x_{2}+2 x_{3}-x_{4} & =0 \\
-x_{3}+2 x_{4} & =5
\end{aligned}
$$

- Write this in matrix form:

$$
\left(\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
5
\end{array}\right)
$$

Gaussian Elimination

- The augmented matrix corresponding to this system is:

$$
\left(\begin{array}{rrrr:r}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & 5
\end{array}\right)
$$

- Step 1: Eliminate all terms $a_{j 1}$ below the first pivot a_{11} (i.e. first non-zero element in column 1). In this case, just multiply the first row by $\frac{1}{2}$ and add to second row.

$$
\left(\begin{array}{rrrr:r}
2 & -1 & 0 & 0 & 0 \\
0 & \frac{3}{2} & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & 5
\end{array}\right)
$$

Gaussian Elimination

- Step 2: Eliminate all terms blow the second pivot: add the second row multiplied by $\frac{2}{3}$ to the third row.

$$
\left(\begin{array}{rrrr:r}
2 & -1 & 0 & 0 & 0 \\
0 & \frac{3}{2} & -1 & 0 & 0 \\
0 & 0 & \frac{4}{3} & -1 & 0 \\
0 & 0 & -1 & 2 & 5
\end{array}\right)
$$

Gaussian Elimination

- Step 3: Eliminate the term below the third pivot: add row 3 multiplied by $\frac{3}{4}$ to row 4.

$$
\left(\begin{array}{rrrr:r}
2 & -1 & 0 & 0 & 0 \\
0 & \frac{3}{2} & -1 & 0 & 0 \\
0 & 0 & \frac{4}{3} & -1 & 0 \\
0 & 0 & 0 & \frac{5}{4} & 5
\end{array}\right)
$$

- Step 4: At this point, the matrix is in row echelon form, i.e. each row starts with more zeros than the previous row.
- Last row reads: $\frac{5}{4} x_{4}=5$ or $x_{4}=4$. You can substitute this back to row 3 that says $\frac{4}{3} x_{3}-x_{4}=0$ to get $x_{3}=3$. From row $2, x_{2}=2$ and from row $1, x_{1}=1$.
- In Gauss-Jordan elimination, one eliminates all elements above and below the pivot in these steps.
- This requires more eliminations, but avoids the substitutions in the last step

Gaussian Elimination: Second Example

- Consider another example:

$$
\begin{aligned}
x_{1}+x_{2} & =1 \\
x_{1}+x_{2}+x_{3} & =2 \\
x_{2}+x_{3} & =1
\end{aligned}
$$

- In matrix form:

$$
\left(\begin{array}{lll|l}
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 2 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

Gaussian Elimination: Second Example

- Step 1:

$$
\left(\begin{array}{lll|l}
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

- Notice that now the second pivot is in row 3 . Swapping rows 2 and 3 does not change the solution to an equation. So Step 2: Swap rows 2 \& 3:

$$
\left(\begin{array}{lll|l}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

- Now you can read $x_{3}=1, x_{2}=0$, and $x_{1}=1$.

Gaussian Elimination: General Principles

- Three elementary row operations that leave the solutions to systems of equations unchanged:

1. Multiplying a row by a real number
2. Adding rows to other rows
3. Swapping rows

- Every matrix can be transformed to its row echelon form by elementary row operations.
- The rank of a matrix is the number of non-zero rows in its row echelon form.
- A linear system of equations $\boldsymbol{A x}=\boldsymbol{b}$ has a solution if and only if the rank of the coefficient matrix \boldsymbol{A} is equal to the rank of the augmented matrix $(\boldsymbol{A} \mid \boldsymbol{b})$.
- If rank $(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A} \mid \boldsymbol{b})=n$, the solution is unique, if rank $(\boldsymbol{A})=$ rank $(\boldsymbol{A} \mid \boldsymbol{b})<n$, then the system has infinitely many solutions.

Next Lecture

- A brief review of some of the main concepts of Matrix Algebra or Linear Algebra
- Input-output models of economic production
- Linear models of exchange

