Mathematics for Economists: Lecture 2

Juuso Välimäki

Aalto University School of Business

Spring 2022

Content of Lecture 2

- In Lecture 1, a gentle introduction to a linear model of market equilibrium.
- This Lecture:

1. Gaussian elimination via an example
2. Economic application 1: input-output model (Leontieff)
3. Linear equations without full rank
4. Economic application 2: linear model of exchange (Gale)
5. Connections from applications to other models

Gaussian Elimination: General Principles

- Three elementary row operations that leave the solutions to systems of equations unchanged:

1. Multiplying a row by a real number
2. Adding rows to other rows
3. Swapping rows

- Every matrix can be transformed to its row echelon form by elementary row operations.
- The rank of a matrix is the number of non-zero rows in its row echelon form.
- A linear system of equations $\boldsymbol{A x}=\boldsymbol{b}$ has a solution if and only if the rank of the coefficient matrix \boldsymbol{A} is equal to the rank of the augmented matrix $(\boldsymbol{A} \mid \boldsymbol{b})$.
- If rank $(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A} \mid \boldsymbol{b})=n$, the solution is unique, if $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A} \mid \boldsymbol{b}) ; n$, then the system has infinitely many solutions.

Determinant

- Consider $n \times n$ square matrix \boldsymbol{A}. For $n=1$ define the determinant as $\operatorname{det} \boldsymbol{A}=a_{11}$.
- For a general $n \times n$ matrix \boldsymbol{A} and remove row i and and column j to get an $(n-1) \times(n-1)$ matrix $\boldsymbol{A}_{i j}$. Let

$$
M_{i j}=\operatorname{det} \boldsymbol{A}_{i j} .
$$

- Matrix $\boldsymbol{A}(i, j)$ has a cofactor $C_{i j}$ defined as:

$$
C_{i j} \equiv(-1)^{i+j} M_{i j}
$$

- The determinant of \boldsymbol{A} is defined recursively as:

$$
\operatorname{det} \boldsymbol{A}=\sum_{j=1}^{n}(-1)^{(i+j)} a_{i j} C_{i j} .
$$

(Where is the recursion in the previous formula?)

- The determinant can also be computed by expanding similarly along a column:

$$
\operatorname{det} \boldsymbol{A}=\sum_{j=1}^{n}(-1)^{(i+j)} a_{i j} C_{i j} .
$$

Determinant

- Example

$$
\begin{gathered}
\boldsymbol{A}=\left(\begin{array}{lll}
2 & 3 & 1 \\
0 & 2 & 1 \\
1 & 0 & 1
\end{array}\right) . \\
\operatorname{det} \boldsymbol{A}=2 \operatorname{det}\left(\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right)-0 \operatorname{det}\left(\begin{array}{ll}
3 & 1 \\
0 & 1
\end{array}\right) \\
+1 \operatorname{det}\left(\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right)=4+1=5 .
\end{gathered}
$$

- Example

$$
\operatorname{det}\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
0 & \ddots & \vdots \\
0 & 0 & a_{n n}
\end{array}\right)=a_{11} \cdot a_{22} \cdot \ldots \cdot a_{n n} .
$$

Determinant

- Rules for computing the determinant:

$$
\begin{aligned}
\operatorname{det} \boldsymbol{A}^{\top} & =\operatorname{det} \boldsymbol{A} . \\
\operatorname{det} \boldsymbol{A} \boldsymbol{B} & =\operatorname{det} \boldsymbol{A} \operatorname{det} \boldsymbol{B}, \\
\operatorname{det} \boldsymbol{A}^{-1} & =\frac{1}{\operatorname{det} \boldsymbol{A}}, \\
\operatorname{det} \boldsymbol{A}+\boldsymbol{B} & \neq \operatorname{det} \boldsymbol{A}+\operatorname{det} \boldsymbol{B} \text { in general. }
\end{aligned}
$$

Cramer's rule

- Assume that \boldsymbol{A} has full rank and therefore $\operatorname{det} A \neq 0$). The system of equations

$$
\boldsymbol{A x}=\boldsymbol{b}
$$

has then a unique solution

$$
\boldsymbol{x}_{i}=\frac{\operatorname{det} \boldsymbol{B}_{i}}{\operatorname{det} \boldsymbol{A}}
$$

where $\boldsymbol{B}_{\boldsymbol{i}}$ is the matrix obtained by replacing the $i^{\text {th }}$ column of \boldsymbol{A} by the column vector \boldsymbol{b}.

Cramer's rule

Example

$$
\begin{aligned}
& \left(\begin{array}{lll}
2 & 3 & 1 \\
0 & 2 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) . \\
& x_{1}=\frac{\operatorname{det}\left(\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)}{\operatorname{det}\left(\begin{array}{lll}
2 & 3 & 1 \\
0 & 2 & 1 \\
1 & 0 & 1
\end{array}\right)}=\frac{1}{5}, \\
& x_{2}=\frac{\operatorname{det}\left(\begin{array}{lll}
2 & 2 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)}{5}=\frac{3}{5},
\end{aligned}
$$

Economic Application 1: Linear Input-Output Model

- Suppose (as Leontieff in the 1950's did) that an economy consists of s few aggregated sectors, for simplicity: Manufacturing, Agriculture and Services.
- If you have access to national accounts, you can compute the following: how much (say in monetary terms) each sector produces final consumer product denoted by $\boldsymbol{b}=\left(b_{A}, b_{M}, b_{S}\right)$.
- You can also compute how much each sector uses the products of the three sectors as intermediate goods or inputs in the production of the output:
- For $i, j \in\{A, M, S\}$ denote by $a_{i j}$ the amount of sector i product needed to produce one unit in sector j.
- Let's assume that production is linear:
- To produce x_{j} units in sector j, you need $a_{i j} x_{j}$ units of sector i product.
- Can you describe this economy via a system of linear equations?

Linear Input-Output Model

- Let $\boldsymbol{x}=\left(x_{A}, x_{M}, x_{S}\right)$ denote the total production vector for all sectors.
- We have the basic accounting identities (e.g. here for agriculture):

$$
x_{A}=a_{A A} x_{A}+a_{A M} x_{M}+a_{A S} x_{S}+b_{A} .
$$

- On the left-hand side is the total agricultural production and on the right hand-side, we have the uses of those products as intermediate products needed in the other sectors and as final consumption.
- We have three simultaneous linear equations:

$$
\begin{aligned}
x_{A} & =a_{A A} x_{A}+a_{A M} x_{M}+a_{A S} x_{S}+b_{A} \\
x_{M} & =a_{M A} x_{A}+a_{M M} x_{M}+a_{M S} x_{S}+b_{M} \\
x_{S} & =a_{S A} x_{A}+a_{S M} x_{M}+a_{M S} x_{S}+b_{S}
\end{aligned}
$$

Linear Input-Output Model

- Write in matrix form:

$$
\left(\begin{array}{rrr}
1-a_{A A} & -a_{A M} & -a_{A S} \\
-a_{M A} & 1-a_{M M} & -a_{M S} \\
-a_{S A} & -a_{S M} & 1-a_{S S}
\end{array}\right)\left(\begin{array}{c}
x_{A} \\
x_{M} \\
x_{S}
\end{array}\right)=\left(\begin{array}{c}
b_{A} \\
b_{M} \\
b_{S}
\end{array}\right)
$$

- Or more concisely as:

$$
(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{x}=\boldsymbol{b}
$$

where \boldsymbol{I} is the $n \times n$ identity matrix, and \boldsymbol{A} is the matrix of coefficients $a_{i j}$.

- The system has a unique solution for all \boldsymbol{b} if $\operatorname{rank}(\boldsymbol{I}-\boldsymbol{A})=n$. But is this good enough? Shouldn't we also have

$$
x \geq 0 ?
$$

Linear Input-Output Model: Bad Numerical Example

- Suppose that to produce $a_{i i}=0$ and $a_{i j}=1$ for $i \neq j$.
- Then we have the augmented matrix $(\boldsymbol{I}-\boldsymbol{A} \mid \boldsymbol{b})$:

$$
\left(\begin{array}{rrr|r}
1 & -1 & -1 & b_{A} \\
-1 & 1 & -1 & b_{M} \\
-1 & -1 & 1 & b_{S}
\end{array}\right)
$$

- Elimination using the first pivot gives:

$$
\left(\begin{array}{rrr:r}
1 & -1 & -1 & b_{A} \\
0 & 0 & -2 & b_{M}+b_{A} \\
0 & -2 & 0 & b_{S}+b_{A}
\end{array}\right)
$$

- You see immediately from the last two lines above that in any solution to the system, $x_{M}, x_{S}<0$ for positive final consumptions and we conclude that $\boldsymbol{I}-\boldsymbol{A}$ is not a valid input-output matrix.

Linear Input-Output Model: Positive solutions

- Is there a reasonable condition that would guarantee the existence of positive solutions?
- We say that a matrix \boldsymbol{D} is a dominant diagonal matrix if

1. $d_{i i}>0$ for all $i \in\{1, \ldots, n\}$,
2. $d_{i j} \leq 0$ for all $i \neq j$,
3. $\sum_{i=1}^{n} d_{i j}>0$ for all $j \in\{1, \ldots, n\}$.

- The first condition just says that the production of any sector needs less of its own product as input than it gets as output.
- The second says that each sector produces a single output.
- The third condition means that each sector produces a positive value added (since we use the dollar values for inputs and outputs from the national accounts).

Linear Input-Output Model: Positive solutions

Proposition

If \boldsymbol{D} is an $n \times n$ dominant diagonal matrix, then the equation system

$$
D x=b
$$

has a unique solution $\boldsymbol{x} \geq 0$ for all $\boldsymbol{b} \geq 0$.
A proof is provided at the end of these lecture notes for those interested in seeing how these models work.

Linear Input-Output Model: Good Numerical Example

Suppose we have the the following input-output matrix:

$$
\left(\begin{array}{c}
x_{A} \\
x_{M} \\
x_{S}
\end{array}\right)=\left(\begin{array}{rrr}
0 & .2 & .6 \\
.3 & 0 & .1 \\
.5 & .4 & 0
\end{array}\right)\left(\begin{array}{c}
x_{A} \\
x_{M} \\
x_{S}
\end{array}\right)+\left(\begin{array}{c}
b_{A} \\
b_{M} \\
b_{S}
\end{array}\right)
$$

Is it possible to produce $\left(b_{A}, b_{m}, b_{S}\right)=(1,1,1)$? The augmented matrix $(\boldsymbol{I}-\boldsymbol{A} \mid \boldsymbol{b})$ for this input-output system is:

$$
\left(\begin{array}{rrr|r}
1 & -.2 & -.6 & 1 \\
-.3 & 1 & -.1 & 1 \\
-.5 & -.4 & 1 & 1
\end{array}\right)
$$

Linear Input-Output Model: Good Numerical Example

Eliminating the first column gives:

$$
\left(\begin{array}{rrr|r}
1 & -.2 & -.6 & 1 \\
0 & .94 & .28 & 1.3 \\
0 & -.5 & .7 & 1.5
\end{array}\right)
$$

For numerical ease, eliminate the middle element in the third column with the last equation to get:

$$
\left(\begin{array}{rrr|r}
1 & -.2 & -.6 & 1 \\
0 & 1.14 & 0 & .7 \\
0 & -.5 & .7 & 1.5
\end{array}\right)
$$

Now you can solve: $x_{M}=\frac{.7}{1.14}=.61$, by substituting, you get $x_{S}=2.58$, and $x_{A}=2.67$

Input-Output Model: How to use it?

- So far we have talked about the quantities side of production.
- What about prices and value added?
- Let v_{i} be the value added per unit of production in sector i and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$.
- Then v_{i} is the $i^{\text {th }}$ element in the row vector $\boldsymbol{p}^{\top}(\boldsymbol{I}-\boldsymbol{A})$, where $\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right)>0$ is the price vector for the goods. (Exercise: Can you show that for each $v \geq 0$, such a price vector exists?)
- One fundamental identity for national accounts is that the total value added in the economy equals the value of final consumption or $\boldsymbol{v}^{\top} \boldsymbol{x}=\boldsymbol{p}^{\top} \boldsymbol{b}$.
- This follows from the fact that they both equal $\boldsymbol{p}^{\top}(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{x}$.

Economic Application 2: A Linear Model of Exchange

- Economics: What is the simplest imaginable model of international trade?
- Mathematics: Should we ever be interested in matrices without full rank?
- Imagine n countries.
- Country j spends fraction $a_{i j}$ of its income on goods from country i.
- Let $x_{i}(t)$ be the income of country i in trading round t.
- No income enters the system from the outside and all income from round t is spent on goods from the n countries in round $t+1$.

A Linear Model of Exchange

- If all income is spent, this means that $\sum_{i=1}^{n} a_{i j}=1$ for all j.
- Let $\boldsymbol{x}(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$. Then we have:

$$
\boldsymbol{x}(t+1)=\boldsymbol{A} \boldsymbol{x}(t)
$$

where \boldsymbol{A} is the exchange matrix with $i j^{t h}$ element $a_{i j}$.

- Does a stable distribution of income exist?
- With this we ask if an $\boldsymbol{x} \neq 0$ exists such that:

$$
\boldsymbol{x}=\boldsymbol{A} \boldsymbol{x}
$$

A Linear Model of Exchange

- by writing the left hand side as $I x$, we see that this is the same having:

$$
(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{x}=0
$$

- Non-zero solutions to a homogenous equation exist if and only if the matrix on the left hand side does not have full rank.
- Consider the following exchange matrix:

$$
\boldsymbol{A}=\left(\begin{array}{lll}
.2 & .2 & .6 \\
.2 & .4 & .1 \\
.6 & .4 & .3
\end{array}\right)
$$

- For the sake of some variety, let's check the rank of this matrix by computing its determinant
$-\operatorname{det} \boldsymbol{A}=.2(.12-.04)-.2(.06-.24)+.6(.02-.24)=.016+.036-.132 \neq 0$ so it has full rank.

A Linear Model of Exchange

- What about $(\boldsymbol{I}-\boldsymbol{A})$?

$$
(I-A)=\left(\begin{array}{rrr}
.8 & -.2 & -.6 \\
-.2 & .6 & -.1 \\
-.6 & -.4 & .7
\end{array}\right)
$$

- You can see that the third row is the sum of the first two rows multiplied by minus 1 and the rank is not full.
- You may recall from Matrix Algebra that we say that 1 is an eigenvalue of \boldsymbol{A}.
- If you eliminate the first column with the first pivot, you get:

$$
\left(\begin{array}{rrr}
.8 & -.2 & -.6 \\
0 & .55 & -.25 \\
0 & -.55 & .25
\end{array}\right)
$$

A Linear Model of Exchange

- Eliminating using the second pivot gives the row echelon form:

$$
\left(\begin{array}{rrr}
.8 & -.2 & -.6 \\
0 & .55 & -.25 \\
0 & 0 & 0
\end{array}\right)
$$

- This shows that any vector of the form $x_{3}\left(\frac{5}{44}+.75, \frac{5}{11}, 1\right)$ satisfies the homogenous equation.
- We say that $\left(\frac{5}{44}+.75, \frac{5}{11}, 1\right)$ is en eigenvector of \boldsymbol{A}.
- Since x_{3} is arbitrary, it is often nice to normalize the incomes to sum to 1 :

$$
x=\left(\frac{38}{102}, \frac{20}{102}, \frac{44}{102}\right)
$$

solves the equation.

Connections etc. for your information

- In week 6, we shall analyze the dynamics of $\boldsymbol{x}(t+1)=\boldsymbol{A} \boldsymbol{x}(t)$.
- By repeated substitution, you see that $\boldsymbol{x}(k)=\boldsymbol{A}^{k} \boldsymbol{x}(0)$ so we see again that the key is to understand what happens to matrices when you raise them to powers.
- In Problem Set 1, you can relate this mathematical structure to popularity rankings.
- The most important real world application of this is Google Pagerank for ranking web sites.
- In that case, $a_{i j}$ is the fraction of outward links from site j linking to i.
- There \boldsymbol{x} solving $(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{x}=0$ is the vector of site ranks.

Next Lecture

- Non-linear economic models: utility functions and production functions
- Partial derivatives and total derivatives
- Derivative as a linear approximation of a non-linear function

