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Content of Lecture 2

I In Lecture 1, a gentle introduction to a linear model of market equilibrium.
I This Lecture:

1. Gaussian elimination via an example
2. Economic application 1: input-output model (Leontieff)
3. Linear equations without full rank
4. Economic application 2: linear model of exchange (Gale)
5. Connections from applications to other models



Gaussian Elimination: General Principles

I Three elementary row operations that leave the solutions to systems of
equations unchanged:

1. Multiplying a row by a real number
2. Adding rows to other rows
3. Swapping rows

I Every matrix can be transformed to its row echelon form by elementary row
operations.

I The rank of a matrix is the number of non-zero rows in its row echelon form.
I A linear system of equations Ax = b has a solution if and only if the rank of

the coefficient matrix A is equal to the rank of the augmented matrix (A|b).
I If rank (A) = rank (A|b) = n, the solution is unique, if rank (A) = rank (A|b) ¡ n,

then the system has infinitely many solutions.



Determinant
I Consider n × n square matrix A. For n = 1 define the determinant as

det A = a11.
I For a general n × n matrix A and remove row i and and column j to get an

(n − 1)× (n − 1) matrix Aij . Let

Mij = det Aij .

I Matrix A (i , j) has a cofactor Cij defined as:

Cij ≡ (−1)i+j Mij .

I The determinant of A is defined recursively as:

det A = Σn
j=1 (−1)(i+j) aijCij .

(Where is the recursion in the previous formula?)
I The determinant can also be computed by expanding similarly along a

column:
det A = Σn

j=1 (−1)(i+j) aijCij .



Determinant
I Example

A =

 2 3 1
0 2 1
1 0 1

 .

det A = 2 det
(

2 1
0 1

)
− 0 det

(
3 1
0 1

)
+1 det

(
3 1
2 1

)
= 4 + 1 = 5.

I Example

det

 a11 · · · a1n

0
. . .

...
0 0 ann

 = a11 · a22 · . . . · ann.

Proposition
i) The determinant is zero if and only if the matrix does not have full rank.
ii) Swapping rows changes the sign of the determinant.
iii) Adding (scalar multiples) of rows does not change the determinant.



Determinant

I Rules for computing the determinant:

det A> = det A.

det AB = det A det B,

det A−1 =
1

det A
,

det A + B 6= det A + det B in general.



Cramer’s rule

I Assume that A has full rank and therefore det A 6= 0). The system of
equations

Ax = b

has then a unique solution

x i =
det Bi

det A
,

where Bi is the matrix obtained by replacing the i th column of A by the column
vector b.



Cramer’s rule
Example  2 3 1

0 2 1
1 0 1

 x1
x2
x3

 =

 2
1
0

 .

x1 =

det

 2 3 1
1 2 1
0 0 1


det

 2 3 1
0 2 1
1 0 1

 =
1
5
,

x2 =

det

 2 2 1
0 1 1
1 0 1


5

=
3
5
,

x3 =

det

 2 3 2
0 2 1
1 0 0


5

=
−1
5

,



Economic Application 1: Linear Input-Output Model

I Suppose (as Leontieff in the 1950’s did) that an economy consists of s few
aggregated sectors, for simplicity: Manufacturing, Agriculture and Services.

I If you have access to national accounts, you can compute the following: how
much (say in monetary terms) each sector produces final consumer product
denoted by b = (bA,bM ,bS).

I You can also compute how much each sector uses the products of the three
sectors as intermediate goods or inputs in the production of the output:

I For i , j ∈ {A,M,S} denote by aij the amount of sector i product needed to
produce one unit in sector j .

I Let’s assume that production is linear:
I To produce xj units in sector j , you need aijxj units of sector i product.

I Can you describe this economy via a system of linear equations?



Linear Input-Output Model

I Let x = (xA, xM , xS) denote the total production vector for all sectors.
I We have the basic accounting identities (e.g. here for agriculture):

xA = aAAxA + aAMxM + aASxS + bA.

I On the left-hand side is the total agricultural production and on the right
hand-side, we have the uses of those products as intermediate products
needed in the other sectors and as final consumption.

I We have three simultaneous linear equations:

xA = aAAxA + aAMxM + aASxS + bA,

xM = aMAxA + aMMxM + aMSxS + bM ,

xS = aSAxA + aSMxM + aMSxS + bS.



Linear Input-Output Model

I Write in matrix form: 1− aAA −aAM −aAS
−aMA 1− aMM −aMS
−aSA −aSM 1− aSS

 xA
xM
xS

 =

 bA
bM
bS

 .

I Or more concisely as:
(I − A)x = b,

where I is the n × n identity matrix, and A is the matrix of coefficients aij .
I The system has a unique solution for all b if rank (I − A) = n. But is this good

enough? Shouldn’t we also have

x ≥ 0?



Linear Input-Output Model: Bad Numerical Example

I Suppose that to produce aii = 0 and aij = 1 for i 6= j .
I Then we have the augmented matrix (I − A|b): 1 −1 −1 | bA

−1 1 −1 | bM
−1 −1 1 | bS


I Elimination using the first pivot gives: 1 −1 −1 | bA

0 0 −2 | bM + bA
0 −2 0 | bS + bA


I You see immediately from the last two lines above that in any solution to the

system, xM , xS < 0 for positive final consumptions and we conclude that I − A
is not a valid input-output matrix.



Linear Input-Output Model: Positive solutions

I Is there a reasonable condition that would guarantee the existence of positive
solutions?

I We say that a matrix D is a dominant diagonal matrix if
1. dii > 0 for all i ∈ {1, ...,n},
2. dij ≤ 0 for all i 6= j ,
3.
∑n

i=1 dij > 0 for all j ∈ {1, ...,n}.
I The first condition just says that the production of any sector needs less of its

own product as input than it gets as output.
I The second says that each sector produces a single output.
I The third condition means that each sector produces a positive value added

(since we use the dollar values for inputs and outputs from the national
accounts).



Linear Input-Output Model: Positive solutions

Proposition
If D is an n × n dominant diagonal matrix, then the equation system

Dx = b

has a unique solution x ≥ 0 for all b ≥ 0.

A proof is provided at the end of these lecture notes for those interested in seeing
how these models work.



Linear Input-Output Model: Good Numerical Example

Suppose we have the the following input-output matrix: xA
xM
xS

 =

 0 .2 .6
.3 0 .1
.5 .4 0

 xA
xM
xS

+

 bA
bM
bS

 .

Is it possible to produce (bA,bm,bS) = (1,1,1)? The augmented matrix (I − A|b)
for this input-output system is: 1 −.2 −.6 | 1

−.3 1 −.1 | 1
−.5 −.4 1 | 1





Linear Input-Output Model: Good Numerical Example

Eliminating the first column gives: 1 −.2 −.6 | 1
0 .94 .28 | 1.3
0 −.5 .7 | 1.5


For numerical ease, eliminate the middle element in the third column with the last
equation to get:  1 −.2 −.6 | 1

0 1.14 0 | .7
0 −.5 .7 | 1.5


Now you can solve: xM = .7

1.14 = .61, by substituting, you get xS = 2.58, and
xA = 2.67



Input-Output Model: How to use it?

I So far we have talked about the quantities side of production.
I What about prices and value added?
I Let vi be the value added per unit of production in sector i and v = (v1, ..., vn).
I Then vi is the i th element in the row vector p>(I − A), where

p = (p1, ...,pn) > 0 is the price vector for the goods. (Exercise: Can you show
that for each v ≥ 0, such a price vector exists?)

I One fundamental identity for national accounts is that the total value added in
the economy equals the value of final consumption or v>x = p>b.

I This follows from the fact that they both equal p>(I − A)x .



Economic Application 2: A Linear Model of Exchange

I Economics: What is the simplest imaginable model of international trade?
I Mathematics: Should we ever be interested in matrices without full rank?
I Imagine n countries.
I Country j spends fraction aij of its income on goods from country i .
I Let xi(t) be the income of country i in trading round t .
I No income enters the system from the outside and all income from round t is

spent on goods from the n countries in round t + 1.



A Linear Model of Exchange

I If all income is spent, this means that
∑n

i=1 aij = 1 for all j .
I Let x(t) = (x1(t), ..., xn(t)). Then we have:

x(t + 1) = Ax(t),

where A is the exchange matrix with ij th element aij .
I Does a stable distribution of income exist?
I With this we ask if an x 6= 0 exists such that:

x = Ax .



A Linear Model of Exchange

I by writing the left hand side as Ix , we see that this is the same having:

(I − A)x = 0.

I Non-zero solutions to a homogenous equation exist if and only if the matrix on
the left hand side does not have full rank.

I Consider the following exchange matrix:

A =

 .2 .2 .6
.2 .4 .1
.6 .4 .3

 .

I For the sake of some variety, let’s check the rank of this matrix by computing
its determinant

I det A = .2(.12− .04)− .2(.06− .24) + .6(.02− .24) = .016 + .036− .132 6= 0
so it has full rank.



A Linear Model of Exchange

I What about (I − A)?

(I − A) =

 .8 −.2 −.6
−.2 .6 −.1
−.6 −.4 .7

 .

I You can see that the third row is the sum of the first two rows multiplied by
minus 1 and the rank is not full.

I You may recall from Matrix Algebra that we say that 1 is an eigenvalue of A.
I If you eliminate the first column with the first pivot, you get: .8 −.2 −.6

0 .55 −.25
0 −.55 .25

 .



A Linear Model of Exchange

I Eliminating using the second pivot gives the row echelon form: .8 −.2 −.6
0 .55 −.25
0 0 0

 .

I This shows that any vector of the form x3( 5
44 + .75, 5

11 ,1) satisfies the
homogenous equation.

I We say that ( 5
44 + .75, 5

11 ,1) is en eigenvector of A.
I Since x3 is arbitrary, it is often nice to normalize the incomes to sum to 1:

x = (
38

102
,

20
102

,
44

102
)

solves the equation.



Connections etc. for your information

I In week 6, we shall analyze the dynamics of x(t + 1) = Ax(t).
I By repeated substitution, you see that x(k) = Akx(0) so we see again that

the key is to understand what happens to matrices when you raise them to
powers.

I In Problem Set 1, you can relate this mathematical structure to popularity
rankings.

I The most important real world application of this is Google Pagerank for
ranking web sites.

I In that case, aij is the fraction of outward links from site j linking to i .
I There x solving (I − A)x = 0 is the vector of site ranks.



Next Lecture

I Non-linear economic models: utility functions and production functions
I Partial derivatives and total derivatives
I Derivative as a linear approximation of a non-linear function


