Mathematics for Economists

ECON-C1000
Spring 2022
Juuso Välimäki
juuso.valimaki@aalto.fi

Problem Set 1 : Due April 28, 2022

1. Solve the following linear systems by Gaussian Elimination and by Cramer's Rule.
(a)

$$
\begin{array}{r}
3 x_{1}-x_{3}=0 \\
-x_{1}+2 x_{3}=0 \\
-x_{1}+4 x_{2}=2
\end{array}
$$

(b)

$$
\begin{aligned}
x_{1}-x_{3}-x_{4} & =0 \\
-x_{1}+x_{2}+2 x_{3} & =0 \\
-x_{1}+4 x_{2} & =2 \\
x_{2}+x_{3}-x_{4} & =1
\end{aligned}
$$

2. Prove or disprove the following claims:
(a) For an arbitrary matrix \boldsymbol{A}, the matrix $\boldsymbol{B}=\boldsymbol{A}^{\top} \boldsymbol{A}$ (where \boldsymbol{A}^{\top} is the transpose of $\boldsymbol{A})$ is symmetric, i.e. that for all elements of $\boldsymbol{B}, b_{i j}=b_{j i}$.
(b) If the $n \times n$ matrix \boldsymbol{A} does not have full rank and \boldsymbol{B} is another $n \times n$ matrix, then the $n \times n$ matrix $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$ does not have full rank.
(c) If \boldsymbol{x} solves $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, then \boldsymbol{x}^{\top} solves $\boldsymbol{x}^{\top} \boldsymbol{A}=\boldsymbol{b}^{\top}$.
3. Show that the following system has a unique solution when $\beta \neq \alpha$ and that the solution is positive when $\beta>\alpha>0$ and $\gamma>0$.

$$
\left(\begin{array}{lll}
\beta & \alpha & \alpha \\
\alpha & \beta & \alpha \\
\alpha & \alpha & \beta
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
\gamma \\
\gamma \\
\gamma
\end{array}\right)
$$

4. A stochastic matrix is a square matrix whose the elements in each column sum up to 1 . In other words, if \boldsymbol{A} is a stochastic $n \times n$-matrix, then $\sum_{i=1}^{n} a_{i j}=1$ for all j.
(a) Show that the matrix

$$
\boldsymbol{A}=\left(\begin{array}{lll}
0.3 & 0.5 & 0.4 \\
0.4 & 0.1 & 0.5 \\
0.3 & 0.4 & 0.1
\end{array}\right)
$$

has full rank, but the matrix

$$
(\boldsymbol{I}-\boldsymbol{A})=\left(\begin{array}{ccc}
0.7 & -0.5 & -0.4 \\
-0.4 & 0.9 & -0.5 \\
-0.3 & -0.4 & 0.9
\end{array}\right)
$$

where \boldsymbol{I} is the $n \times n$ identity matrix, does not have full rank.
(b) Find a vector $\boldsymbol{x} \neq 0$ such that $(\boldsymbol{A}-\boldsymbol{I}) \boldsymbol{x}=0$.
(c) Show that if \boldsymbol{A} is any stochastic matrix, then $(\boldsymbol{I}-\boldsymbol{A})$ and $(\boldsymbol{A}-\boldsymbol{I})$ do not have full rank.
5. Consider a class of 30 students. A sociologist wants to understand the social hierarchy in the class and asks each student to endorse at least one other student in the class. Based on the responses she designs a popularity ranking for the students. We want to see how this can be done using the tools of linear models.
(a) Form a matrix of endorsements as follows: Identify each row and each column in a 30×30-matrix \boldsymbol{A} with a student. The students endorsed by student j form the $j^{\text {th }}$ column of the matrix as follows. If j endorses n_{j} other students, set $a_{i j}=\frac{1}{n_{j}}$ if j endorsed i and 0 otherwise (no self-endorsements). What can you say about $\sum_{i=1}^{30} a_{i j}$?
(b) What is the interpretation of $y_{i}:=\sum_{j=1}^{30} a_{i j}$? Is y_{i} a good measure for the popularity of the students?
(c) Maybe endorsements from popular students are more important for the ranking. To capture this idea, consider a ranking vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{3} 0\right)$ for the students. Require that the ranking of each student i is the weighted sum endorsements $a_{i j}$ wighted by the popularity ranking of the endorsing student j. Write the linear model capturing this idea as:

$$
\boldsymbol{A x}=\boldsymbol{x}
$$

Show that $(\boldsymbol{A}-\boldsymbol{I})$ does not have full rank. This means that there is a non-zero solution to the linear system.
(d) You can take it on faith (or find a proof using either Brouwer's fixed-point theorem or Farkas' lemma) that a strictly positive solution exists. Normalize the solution \boldsymbol{x} so that $\sum_{i=1} 30 x_{i}=1$. Show by an example that there can be many such non-zero solutions if the students can be divided into cliques that do not endorse students in other cliques.

