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Derivative as linear approximation

Linear functions

A function f : Rn → Rm is said to be linear if the following two conditions
are satisfied:

i) (Homogeneity) For all λ ∈ R and for all x ∈ Rn, f(λx) = λf(x),
ii) (Additivity) For all x,y ∈ Rn, f(x + y) = f(x) + f(y).
By taking λ = 0 in i), we see that f(0) = 0 for all linear functions. In the

case of n = 1, this rules out functions whose graphs are straight lines that
do not go through the origin. In this simplest setting, i) actually implies
ii), and fixing f(1) determines the entire function.

For n > 1, requirement ii) has bite. Observe that we can write x =∑n
i=1 xie

i. By i), f(xie
i) = xif(ei) for all i, xi. By ii),

f(x) = f(
n∑
i=1

xie
i) =

n∑
i=1

xif(ei).

Hence a linear function is completely determined by n values f(ei). If
m = 1, then f(ei) ∈ R for all i and letting f(ei) = ai we see that all real
linear functions from Rn are given by inner products a · x =

∑n
i=1 aixi.

Ifm > 1, then each f(ei) is anm -dimensional vector. If we denote ai =
f(ei) ∈ Rm, we have as before f(x) =

∑n
i=1 xia

i. Writing A = [a1, ...,an]
for the matrix consisting of columns ai. But this means that

f(x) = Ax.

Many of the properties of linear functions also extend to affine func-
tions of the form

f(x) = Ax + b,
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for some b ∈ Rm. Actually this is not so bad because by shifting the origin
to (0, f(0)), f̂((x) := f(x)− f(0) = Ax is linear.

Why are linear functions so much simpler than non-linear? i) A change
in x has the same effect regardless of the starting point:

f(x)− f(x̂) = A(x− x̂).

ii) A function f : Rn → Rm is said to be surjective (or onto) if for all
b ∈ Rm, there is an x ∈ Rn such that f(x) = b. f is said to be injective
or one-to-one if for all x 6= x′, f(x) 6= f(x′). f is said to be bijective if
it is injective and surjective. Bijective functions f have an inverse function
f−1 : Rm → /Rn such that f−1(f(x)) = x and f(f−1(y)) = y. In matrix
algebra, we saw that if f(x) = Ax, then f is bijective if and only if A has
full rank. Gaussian elimination (or the determinant) gives an easy way of
determining when linear functions are bijective and computing the inverse
function f−1(x) = A−1x.

The derivative: Inducing a linear approximation

Motivation

Consider the graph of the following highly non-linear function f(x) =
xsin(5x) and approximate it by its tangent at x = 0.5. Not a great success:
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It is a bit less variable over the interval [0, 1]:

f(x) = xsin(5x)
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On the interval [0.48, 0.52], it looks almost linear:

f(x) = xsin(5x)
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As we zoom closer to a fixed point (here x̂ = 0.5), the original highly ir-
regular function starts resembling a linear function. The point of comput-
ing derivatives is exactly this: we want to get good linear approximations
to non-linear functions near a given point (x̂, f(x̂)) on the graph of f .

Real valued functions of a single variable

From elementary calculus, the derivative of f : R→ R at x̂ ∈ R is defined
as:

Df(x̂) = f ′(x̂) =
df(x)

dx

∣∣∣∣
x=x̂

= lim
h→0

f(x̂+ h)− f(x̂)

h
.

You may recall that this numerical value (whenever the limit exists) can be
interpreted as the slope of the tangent to f at x̂.

This is of course fine, but an alternative way to think about the deriva-
tive at x̂ is as a linear approximation through origin (x̂, f(x̂)) that best ap-
proximates f near x̂. If the limit exists, we can write:

f(x̂+ h)− f(x̂) = Df(x̂)h+ ε(h),

where limh→0
ε(h)
h

= 0. Sometimes, the reminder ε(h) is just written as
higher order terms or h.o.t.

The reason for insisting on this seemingly trivial point is that this view
of the derivative generalizes immediately to multivariate functions f :
Rn → Rm. It also tells you immediately that for small h you get a good
approximations for the change in the value f(x̂ + h) − f(x̂) = Df(x̂)h.
Notice also that for functions of a single variable, there is only a single
direction h that we need to consider.

At this point, it may be a good idea to refresh the rules for computing
derivatives (a handout on this is in the materials for week 2).

Real valued functions of a multiple variables

Consider next real valued functions defined in the x − y plane, in other
words functions f : R2 → R. Since we need a third dimension to graph
the value corresponding to the value of the function at each point of the
plane, we run into some difficulties in representing a function on a two-
dimensional screen.

We have some options available:
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1. Drawing a 3-d graph:
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Figure 1: The graph of f(x, y) = cos(x) cos(y).

2. Drawing 2-d slices of the 3-d graph:
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Figure 2: Cross sections of f in the x and y direction at (x0, y0).
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3. Drawing level curves of the function in its domain:

Figure 3: Some level curves of f .

4. combining all three ways in one picture:

Figure 4: The graph of f together with some of its cross sections and level
curves.
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Overall goal: Linear approximation

For functions f : Rn → R variables, a good approximation does well in all
n directions in the domain of f . Ideally we would end up with a formula
that allows us to approximate f at x̂ ∈ Rn with a linear function. Recall
that a linear function f : Rn → R take the form of an inner product (multi-
plication by a row vector or a (1× n) matrix. So we would like to have for
some a ∈ Rn:

f(x̂ + ∆x)− f(x̂) = a ·∆x + h.o.t. ,

whenever ∆x is small.
If we can find such a a, then computing the approximation in all pos-

sible directions is simply a matter of taking inner products of vectors and
we are back to linear algebra as long as we stay close to the original point
x̂.

How to get there: Partial Derivatives

Recall that we denote unit vectors in the standard coordinate system of Rn

by ei. Moving away from x̂ in the direction of the first coordinate axis is
then denoted by moving to x̂ + ∆x with ∆x = he1 for some h ∈ R. But
this means that all the other components in x remain fixed.

When we consider changes in the direction of a coordinate axis, we
are really analyzing a function of a single real variable since all the other
components in x̂ do not change. But this means that we can compute an
approximation for f in the direction of ei by computing the derivative:

lim
h→0

f(x̂ + hei)− f(x̂)

h
,

exactly as we did before since we now have a function of a single variable
xi the xj for j 6= i are ’fixables’.

We call this limit the partial derivative of f at x̂ and denote it by:

Dxif(x̂) :=:
∂f(x̂)

∂xi
:= lim

h→0

f(x̂ + hei)− f(x̂)

h
.
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Figure 5: Partial derivatives of f at (x0, y0).

But this is all we need if a linear approximation exists! A linear ap-
proximation in the direction ∆x = ei must coincide with ∂f(x̂)

∂xi
. But each

direction ∆x can be written as:

∆x =
n∑
i=1

xie
i,

so by linearity we get for all ∆x = h(x1, ..., xn) that

f(x̂ + ∆x)− f(x̂) = Dxf(x̂) ·∆x + h.o.t. ,

where Dxf(x̂) is the row vector of partial derivatives

Dxf(x̂) = (
∂f(x̂)

∂x1
, ...,

∂f(x̂)

∂xn
).

Figure 6 shows a plane approximating a two-dimensional surface in
three-dimensional space
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Figure 6: Linear approximation to f at point P .

Extra material: Existence of linear approximation

It can be shown that such a linear approximation exists if all the partial
derivatives evaluated at x are continuous functions of x, i.e. the point at
which they are evaluated.

The mere existence of partial derivatives is not enough to guarantee
even continuity of the function. For an example, you can consider the
function around (x, y) = (0, 0):

f(x, y) =

{ xy
x2+y2

if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

The requirement of continuous partial derivatives obviously fails in
this case. We will not prove the intuitive result that with continuous partial
derivatives, you get the existence of the linear approximation. In this case,
we say that f is differentiable at x̂. The proof can be found in any book on
advanced calculus.

Vector valued functions of multiple real variables

A function f : Rn → Rm is a vector of functions fi : Rn → R:
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f(x) =

 f1(x)
...

fm(x)

 .

Since each of the component functions is a real valued function of n
variables, we have from the previous subsection that a linear approxima-
tion of fi at x̂ is given by the derivative Dxf(x̂). If all the partial deriva-
tives of all component functions exist and are continuous at x̂, then the
derivative of f at x̂ is the m× n matrix:

Dxf(x) =


∂f1(x̂)
∂x1

. . . ∂f1(x̂)
∂xn

... . . . ...
∂fm(x̂)
∂x1

. . . ∂fm(x̂)
∂xn

 .

Since partial derivatives can be viewed as standard derivatives in a
fixed direction, the rules for computing derivatives remain valid for multi-
variate functions. In particular, we have the chain rule for h(x) := f(g(x)),
where f : Rk → Rm and g : Rn → Rk Let ŷ = (ŷ1, ..., ŷk) = (g1(x̂), ..., g1(x̂)):

Dxh(x)) = Dyf(ŷ)Dxg(x̂).

Writing this matrix multiplication explicitly gives the ijth element of
Dxh(x) as:

∂hi(x̂)

∂xj
=

k∑
i=1

∂fi(ŷ)

∂yk

∂gk(x̂)

∂xj
.

To recap: the derivative of f at x̂ is the matrix of its partial derivatives
evaluated at that point. This matrix (of fixed numbers) generates the linear
function

f(x̂ + ∆x)− f(x̂) = Dxf(x̂)∆x + h.o.t.
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