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Implicit functions: a single endogenous variable

Let’s start with the most classic example of implicit functions. Recall from
high school analytic geometry the equation defining the unit circle with
center at the origin:

x2 + y2 = 1.

How does the y coordinate change if we change the x coordinate? A more
careful phrasing of the question might ask ’How does y behave as a func-
tion of x around a point (x0, y0) on the unit circle?’

In this simple case, we could solve for y as a function of x:

y(x) = ±
√

1− x2.

Two things stand out: fist of all y(x) is not defined (at least as a real valued
function) for |x| > 1. For |x| ≤ 1 y(x) is not a function since for each such
x, there are two values for y that satisfy the equation of the circle.

If we resort to analyzing the behavior near an initial point (x0, y0), the
sign of y0 pick the ’branch’ of y(x) that we analyze. Let’s compute then
the derivative on the positive branch y(x) =

√
1− x2 at x0 = 1

2
. Using the

chain rule, we get:

y′(x0) =
1

2

1√
1− x2

0

−2x0 = − 1√
3
.

Consider next an alternative approach. Assume that we have a func-
tion y(x) with y(x0) = y0 such that for x ∈ (x0 − ε, x0 + ε), we have:

x2 + y(x)2 = 1.

In this case, we say that y(x) is implicitly defined by the equation of the
circle.

Since x2 + y(x)2 = 1 for all x ∈ (x0 − ε, x0 + ε), we can take derivatives
with respect to x on both sides of the equality:

2x + 2y(x)y′(x) = 0.
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Evaluating at x0, we have

y′(x0) = − 2x0

2y(x0)
= − 1√

3
.

Notice the differences in the two approaches. In the first, we got an
explicit function y(x) near x0. Of course this is great on principle, but try
solving explicitly for y from:

x2y3 − 2xy2 + 6y − 5x = 0.

The problem with the second comes in the sentence: ’Assume that we
have a function y(x0) such that...’. Apart from that, the second approach
is quite straightforward. Near x0, y0 we can compute the (small)(∆x,∆y)
such that f(y0, x0) = f(y0 + ∆y, x0 + ∆x) from the linear approximation:

∂f(y0, x0)

∂x
∆x +

∂f(y0, x0)

∂y
∆y = 0.

Solving for ∆y from this gives:

∆y = −
∂f(y0,x0)

∂x
∂f(y0,x0)

∂y

∆x.

Therefore we have:

y′(x0) =
y(x0 + ∆x)− y(x0)

∆x
=

∆y

∆x
= −

∂f(y0,x0)
∂x

∂f(y0,x0)
∂y

.

As an example, let’s consider the equation above:

f(y, x) = x2y3 − 2xy2 + 6y − 5x = 0.

Observe that (y0, x0) = (1, 1) solves the equation. Let’s compute:

∂f(y, x)

∂x
= 2xy3 − 2y2 − 5,

∂f(y, x)

∂y
= 3x2y2 − 4xy + 6.

Evaluating at (1, 1), we have ∂f(1,1)
∂x

= −5, and ∂f(1,1)
∂y

= 5. Therefore y′(1) =

−−5
5

. In words, if we move x from x0 = 1 to 1 + dx, then y must also
increase to 1 +dx for the equation x2y3−2xy2 + 6y−5x = 0 to remain true.
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Let’s see how the implicit function looks like when evaluated numeri-
cally:

Figure 1: Implicit solution to x2y3 − 2xy2 + 6y − 5x = 0.

This is of course quite easy in comparison to trying to find an explicit
(local) solution to the equation around x0. The remaining issue is that
we need to determine when the implicit function y(x0) exists around x0.
Looking at the formula

y′(x0) = −
∂f(y0,x0)

∂x
∂f(y0,x0)

∂y

,

we see that at least we must have the denominator ∂f(y0,x0)
∂y

=6= 0 for the
right-hand side to make sense (to avoid dividing by zero). For the circle,
the denominator vanishes at y = 0. It makes sense that we cannot have an
implicit function y(x) around x0 = 1. There is no value of y to make satisfy
the equation for 1 + h for h > 0. Implicit function theorem guarantees that
this necessary condition for having an implicit function is also sufficient.

Theorem 1. Let f (y, x) be a continuously differentiable in a neighborhood
of (y0, x0) and f (y0, x0) = 0. If ∂f(y0,x0)

∂y
6= 0, then there exists a continuously

differentiable function y(x) in a neighborhood Bx0 of x0 such that:

1. f (y (x) , x) = 0 for all x ∈ Bx0 ,

2. y (x0) = y0,
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3. The derivative of y at x0 satisfies:

y′ (x0) = −
∂f(y0,x0)

∂x
∂f(y0,x0)

∂y

The textbook has a proof of this theorem.

Implicit function theorem for many endogenous
variables

Let’s start with something that we already know from matrix algebra.
Consider the system of equations:

a11y1 + ... + a1nyn + b11x1 + ... + b1mxm = 0,
...

an1y1 + ... + annyn + bn1x1 + ... + bnmxm = 0.

In matrix form:
Ay + Bx = 0,

where A on n× n matrix and B on n×m matrix, y = (y1, ..., yn) , is a vec-
tor of endogenous variables and x = (x1, ..., xm) is a vector of exogenous
variables.

Write this as:
f (y;x) = 0.

Assume that
f (y0;x0) = 0 or Ay0 + Bx0 = 0,

and consider the effect of a small change (dy; dx) = (dy1, ..., dyn; dx1, ..., dxm)
on the value of :

f (y0 + dy,x0 + dx)− f (y0,x0) = Ady + Bdx

= Dyf (y0;x0) dy + Dxf (y0;x0) dx,

where Dy(y0;x0) consists of the partial derivatives of w.r.t. the endoge-
nous variables y and Dxf(y0;x0) w.r.t. the exogenous variables x.
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For
f (y;x) = 0.

to hold at (y,x) = (y0 + dy,x0 + dx) , the change must be zero:

Dyf (y0 + dy,x0 + dx) dy + Dxf (y0 + dy,x0 + dx) dx = 0.

In other words,

dy = −Dyf(y0;x0)
−1Dx(y0;x0)dx = −A−1Bdx.

If a single exogenous variable changes, then Bdx is a row vector and
dy can be solved using Cramer’s rule. This equation has a solution for all
dx only if A−1 exists, i.e. if A = Dy(y0;x0) has full rank. Let’s see an
example:

Example

2y1 + y2 + 3x = 0,

y1 − y2 − x = 0.

In matrix form: (
2 1
1 −1

)(
y1
y2

)
+

(
3
−1

)
x =

(
0
0

)
,

or (
2 1
1 −1

)(
y1
y2

)
=

(
−3
1

)
x.

By Cramer’s rule:

y1 =

det

(
−3 1
1 −1

)
x

det

(
2 1
1 −1

) =
2

−3
x, y2 =

det

(
2 −3
1 1

)
x

det

(
2 1
1 −1

) =
5

−3
x.

In other words, if dx is the change in the exogenous variable, then

dy1 =
−2

3
dx, dy2 =

−5

3
dx.

This result can be generalized for the non-linear case in a neighborhood
of (y0;x0) and it is the main result of this section of the course: implicit
function theorem for n endogenous and m exogenous variables.
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Theorem 2. Let f (y,x) be a continuously differentiable in a neighbor-
hood of (y0,x0) such that f (y0;x0) = 0. If the matrix of partial deriva-
tives with respect to the endogenous variables Dfy(y0;y0) at (y0;x0) has
full rank, then there exists a continuously differentiable function y(x) in a
neighborhood Bx0 of x0 such that:

1. f (y (x) ;x) = 0 for all x ∈ Bx0 ,

2. y (x0) = y0,

3. The derivative of y at x0 satisfies:

Dx0y (x0) = −Dyf (y0;x0)
−1Dxf (y0;x0) .

Proving this theorem is beyond the scope of this course. Let me just
make some comments. Assuming properties 1. and 2. above, point 3. is
an application of the chain rule in the vector-valued multivariate case. It is
nothing more than a local version of the linear implicit function theorem.
Parts 1. and 2. require some more sophisticated mathematics. Proving
the existence of the implicit function y(x) near x̂ requires the use of a fixed
point theorem (similar to the case of showing the existence of local solu-
tions to differential equations). This is beyond the scope of this course.

Here is a computational example:

Example 1.

f (y;x) =

(
f1 (y1, y2;x1, x2)
f2 (y1, y2;x1, x2)

)
.

f1 (y1, y2;x1, x2) = y1y
2
2 − x1x2 + x2 + 1 = 0,

f2 (y1, y2;x1, x2) = y1 +
x1

y2
+ x2 − 5 = 0.

Consider the system of equations in a neighborhood of the point

(ŷ1, ŷ2; x̂1, x̂2) = (1, 1, 2, 2) .

Check first that the equation is satisfied at (1, 1, 2, 2) and form the appro-
priate matrices of partial derivatives:

Dyf (ŷ; x̂) =

(
∂f1(ŷ;x̂)

∂y1

∂f1(ŷ;x̂)
∂y2

∂f2(ŷ;x̂)
∂y1

∂f2(ŷ;x̂)
∂y2

)
=

(
ŷ22 2ŷ1ŷ2
1 −x̂1

ŷ22

)
=

(
1 2
1 −2

)
,
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Dxf (ŷ; x̂) =

(
∂f1(ŷ;x̂)

∂x1

∂f1(ŷ;x̂)
∂x2

∂f2(ŷ;x̂)
∂x1

∂f2(ŷ;x̂)
∂x2

)
=

(
−x̂2 1− x̂1

1
ŷ2

1

)
=

(
−2 −1
1 1

)
.

We see that det (Dyf (ŷ; x̂)) 6= 0, and therefore the matrix Dyf(ŷ; x̂) has
full rank and an inverse matrix [Dyf(ŷ; x̂)]−1

Exercise: Show that

[Dyf(ŷ; x̂)]−1 =
−1

4

(
−2 −2
−1 1

)
,

and therefore:

dy =
1

4

(
−2 −2
−1 1

)(
−2 −1
1 1

)
dx.

We could single out e.g. the effect of a change in x1 on the endogenous
variables near (ŷ1, ŷ2, x̂1x̂2) = (1, 1, 2, 2):(

∂f1(ŷ;x̂)
∂y1

∂f1(ŷ;x̂)
∂y2

∂f2(ŷ;x̂)
∂y1

∂f2(ŷ;x̂)
∂y2

)(
dy1
dy2

)
+

(
∂f1((ŷ,x̂))

∂x1
∂f2((ŷ,x̂))

∂x1

)
dx1 = 0

Plugging in (1, 1, 2, 2), we get:(
1 2
1 −2

)(
dy1
dy2

)
+

(
−2
1

)
dx1 = 0

Solving by Cramer’s rule gives:

dy1 =

det

(
2 2
−1 −2

)
dx1

det

(
1 2
1 −2

) =
1

2
dx1, dy2 =

det

(
1 2
1 −1

)
det

(
1 2
1 −2

) =
3

4
dx1.

We will return to more applications of the implicit function theorem in
the part on constrained optimization.
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