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Content of Lecture 4

I In Lecture 3, Linear approximations of non-linear functions
I This Lecture:

1. Linear approximation of vector valued functions
2. Implicit function theorem
3. Comparative statics of economic models



Linear approximation of vector-valued functions
I What is a vector valued function?

I A function whose values take the form of a column vector
I Each component in the vector is a (possibly) multivariate function

f =


f1(x1, ..., xn)
f2(x1, ..., xn)

...
fn(x1, ..., xn)

 .

I What is an economic example: the vector of demands

x(p1, ...,pn, I) =


x1(p1, ...,pn, I)
x2(p1, ...,pn, I)

...
xn(p1, ...,pn, I)

 .

I The domain of this function is {(p1, ...,pn, I)|pi > 0 for all i , and I > 0}.
I The values of this function are in {(x1, ..., xn)|xi ≥ 0 for all i}.



Linear approximation of vector-valued functions

I How do we find a linear approximation?
I Vector of linear approximations to component functions

Dx f =


Dx f1(x1, ..., xn)
Dx f2(x1, ..., xn)

...
Dx fn(x1, ..., xn)

 .



Linear approximation of vector-valued functions

I Writing in full:

Dx f =


∂f1(x1,...,xn)

∂x1

∂f1(x1,...,xn)
∂x2

. . . ∂f1(x1,...,xn)
∂xn

∂f2(x1,...,xn)
∂x1

∂f2(x1,...,xn)
∂x2

. . . ∂f2(x1,...,xn)
∂xn

)
...

... . . .
...

∂fn(x1,...,xn)
∂x1

∂fn(x1,...,xn)
∂x2

. . . ∂fn(x1,...,xn)
∂xn

 .

I We get the linear approximation at x̂ by evaluating the derivative matrix at x̂ :

Dx f (x̂) =


Dx f1(x̂)
Dx f2(x̂)

...
Dx fn(x̂)

 .



Linear approximation of vector-valued functions: numerical example

I Consider the following vector-valued function:

f (x , y , z) =

(
f1(x , y , z)
f2(x , y , z)

)
=

(
x + y2 + 1

z
−x +

√
y + 2z

)
.

I To compute the derivative at (x = 1, y = 1, z = 1), compute first the matrix of
partial derivatives:

Dx ,y ,zf (x , y , z) =

(
1 +2y − 1

z2

−1 1
2
√

y 2

)
.

I Evaluating at (1,1,1) gives

Dx ,y ,zf (1,1,1) =

(
1 2 −1
−1 1

2 2

)
.



Chain rule for multivariate functions:

I Recall the chain rul: If y = f (x) and z = g(y), then for h(x) = g(f (x)):

h′(x) = g′(f (x))f ′(x).

I Consider now a similar situation where f : Rn → Rk , and g : Rk → Rm and
h : Rn → Rm given by h(x) = g(f (x)). Let y = f (x).

I By the linear approximation at x̂ to f , we get:

f (x̂ + ∆x) ≈ f (x̂) + Dx f (x̂)∆x .

I Similarly

g(f (x̂) + Dx (x̂)∆x) ≈ g(f (x̂)) + Dyg(f (x̂))Dx f (x̂)∆x .

I Hence we have:
Dxh(x̂) = Dyg(f (x̂))Dx f (x̂)∆x .



Comparative statics: motivating examples
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Figure: Exogenous variable shifting demand and supply



Comparative statics: motivating examples
I In Principles 1, we argued that at optimal consumption,

MRSx1,x2(x̂) =
p1

p2
,

where pi is the price of good i .
I We have also the budget constraint:

p1x1 + p2x2 = w ,

where w is the total budget.

p2
∂u(x1,x2)
∂x1

− p1
∂u(x1,x2)
∂x2

= 0,
p1x1 + p2x2 − w = 0.

I Again for many u, no explicit solution is possible.
I Still, how do the optimal consumptions change when some of the p1,p2,w

change?



Linear implicit function theorem

I Because of linearity, this is not really needed since the system can be solved
explicitly

I Consider the system of equations:

a11y1 + ... + a1nyn + b11x1 + ... + b1mxm = 0,
...

an1y1 + ... + annyn + bn1x1 + ... + bnmxm = 0.

I In matrix form:
f (y ; x) = Ay + Bx = 0,

where A is an n × n matrix and B is an n ×m matrix, y = (y1, ..., yn) ,
x = (x1, ..., xm) .



Linear implicit function theorem

I Assume that the system is solved at (ŷ , x̂):

f
(
ŷ ; x̂

)
= 0 or Aŷ + Bx̂ = 0,

and consider the effect of a small change
(dy ; dx) = (dy1, ...,dyn; dx1, ...,dxm) on the value of f :

f
(
ŷ + dy , x̂ + dx

)
− f

(
ŷ , x̂

)
= Ady + Bdx

= Dy f
(
ŷ ; x̂

)
dy + Dx f

(
ŷ ; x̂

)
dx ,

where Dy f (ŷ , x̂) consists of the partial derivatives of f w.r.t. the endogenous
variables y and Dx f (ŷ , x̂) w.r.t. the exogenous variables x .



Linear implicit function theorem

I For
f (y ; x) = 0.

to hold at (y ,x) =
(
ŷ + dy , x̂ + dx

)
, the change must be zero:

Dy f (ŷ ; x̂)dy + Dx f (ŷ ; x̂)dx = 0.

I In other words,

dy = −Dy f (ŷ ; x̂)−1Dx f (ŷ ; x̂)dx = −A−1Bdx .

I This equation has a solution for all dx if and only if A−1 exists, i.e. if
A = Dy f (ŷ ; x̂) has full rank.

I The generalization of this result for the non-linear case in a neighborhood of(
ŷ ; x̂

)
is called the implicit function theorem.



Linear implicit function theorem: Example
Consider the linear system around (ŷ1, ŷ2, x̂) = (2,5,−3):

2y1 + y2 + 3x = 0,
y1 − y2 − x = 0.

Compute the value of the function at (ŷ1 + dy1, ŷ2 + dy,x̂ + dx):(
2 1
1 −1

)(
2 + dy1
5 + dy2

)
+

(
3
−1

)
(3 + dx) =

(
0
0

)
,

or (
2 1
1 −1

)(
dy1
dy2

)
=

(
−3
1

)
dx .

By Cramer’s rule:

dy1 =

det

(
−3 1
1 −1

)
dx

det

(
2 1
1 −1

) =
−2
3

dx , dy2 =

det

(
2 −3
1 1

)
dx

det

(
2 1
1 −1

) =
−5
3

dx .



Implicit function for y : f (x , y) = x2 + y2 = 1

x

y

x̂

ŷ
f (x , y) = 1

Figure: What’s the slope of the tangent at (x̂ , ŷ)?



Implicit function theorem for n = m = 1

We start this section with an example of a univariate function.

f (y , x) = xy + ln (xy + x) = 0. (1)

I Note that
(
ŷ , x̂

)
= (0,1) satisfies equation 2.

I What is the impact of a small change dx in x̂ on the value of y satisfying the
equation.

I We are interested in all points (y , x) near (0,1) satisfying equation 2.
I Let’s assume that such a y(x) exists for all x near x̂ .
I Assume also that y(x) has a derivative at x̂ . We can then write:

g (x) = f (y (x) , x) = xy (x) + ln (xy (x) + x) = 0

for all x near x̂ = 1.



I We see that the original equation has been reduced to an equation in a single
variable x .

I Since the composite function is constant in x (=0), the composite function g
must have a zero derivative in x near x̂ = 1.

I By the chain rule:

g′ (x) =
∂f (y ; x)

∂y
y ′ (x) +

∂f (y ; x)

∂x

=

(
x +

x
xy + x

)
y ′ (x) + y +

y + 1
xy + x

.

I By requiring g′(1) = 0, we get:

y ′ (1) = −
∂f (0,1)
∂x

∂f (0,1)
∂y

= −1
2
.

I Notice that this is a valid computation only if ∂f (0,1)
∂y 6= 0.



One-dimensional implicit function theorem

Theorem
Let f (y , x) be a continuously differentiable in a neighborhood of (ŷ , x̂) and
f (ŷ , x̂) = 0. If ∂f (ŷ ,x̂)

∂y 6= 0, then there exists a continuously differentiable function
y(x) in a neighborhood Bx̂ of x̂ such that:

1. f (y (x) , x) = 0 for all x ∈ Bx̂ ,

2. y (x̂) = ŷ ,
3. The derivative of y at x̂ satisfies:

y ′ (x̂) = −
∂f (ŷ ,x̂)
∂x

∂f (ŷ ,x̂)
∂y

The textbook has a proof of this theorem.



The Implicit function theorem
I Consider now a continuously differentiable non-linear function

f : Rn+m → Rn

in a neighborhood of the point (ŷ , x̂) ∈ Rn+m, where

f
(
ŷ , x̂

)
= 0.

I Use the derivative of Df (x̂ , x̂) to approximate f at (ŷ + dy , x̂ + dx):

f
(
ŷ + dy , x̂ + dx

)
−f
(
ŷ , x̂

)
= Df

(
ŷ , x̂

)
)dx ,dy) = Dy f

(
ŷ ; x̂

)
dy+Dx f

(
ŷ , x̂

)
dx ,

I Suppose we have a solution to the system at (ŷ , x̂):

Dy f
(
ŷ , x̂

)
dy + Dx f

(
ŷ , x̂

)
dx = 0.

I Since Dy f
(
ŷ ; x̂

)
ja Dx f

(
ŷ ; x̂

)
are matrices, we continue here exactly as in the

linear case.
I With differential calculus, we have reduced the really complicated non-linear

problem to the much simpler linear case locally, i.e. in a neighborhood of the
solution point (ŷ , x̂).



The Implicit function theorem: An example

I Consider the following system:

f1 (y1, y2; x1, x2) = y1y2
2 − x1x2 + x2 + 1 = 0,

f2 (y1, y2; x1, x2) = y1 +
x1

y2
+ x2 − 5 = 0.

I Analyze the system of equations in a neighborhood of the point(
ŷ1, ŷ2; x̂1, x̂2

)
= (1,1,2,2) .



The Implicit function theorem: An example

I Check first that the equation is satisfied at (1,1,2,2) and form the appropriate
matrices of partial derivatives:

Dy f
(
ŷ ; x̂

)
=

 ∂f1(ŷ ;x̂)
∂y1

∂f1(ŷ ;x̂)
∂y2

∂f2(ŷ ;x̂)
∂y1

∂f2(ŷ ;x̂)
∂y2

 =

(
ŷ2

2 2ŷ1ŷ2

1 −x̂1
ŷ2

2

)
=

(
1 2
1 −2

)
,

Dx f
(
ŷ ; x̂

)
=

 ∂f1(ŷ ;x̂)
∂x1

∂f1(ŷ ;x̂)
∂x2

∂f2(ŷ ;x̂)
∂x1

∂f2(ŷ ;x̂)
∂x2

 =

(
−x̂2 1− x̂1

1
ŷ2

1

)
=

(
−2 −1
1 1

)
.



The Implicit function theorem: An example

I We see that det
(
Dy f

(
ŷ ; x̂

))
6= 0, and therefore the matrix Dy f (ŷ , x̂) has full

rank and an inverse matrix [Dy f (ŷ , x̂)]−1

I Exercise: Show that

[Dy f (ŷ , x̂)]−1 =
−1
4

(
−2 −2
−1 1

)
,

and therefore:

dy =
1
4

(
−2 −2
−1 1

)(
−2 −1
1 1

)
dx .



Implicit function theorem

O
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y2

f1(y1, y2; x̂) = 0

f1(y1, y2; x̂ + ∆x)

f2(y1, y2; x̂) = 0

f2(y1, y2; x̂ + ∆x) = 0

Figure: Implicit function theorem: exogenous changes in x . Red curves after change.



Failure of implicit function theorem

O
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Figure: Dy f (ŷ1, ŷ2; x̂) does not have full rank. Solid curves drawn for x̂ .



The Implicit function theorem: Main theorem

We are now ready for the main theorem in this section.

Theorem
Let f : Rn+m → Rn be continuously differentiable in a neighborhood Bε

(
ŷ , x̂

)
, of

(ŷ , x̂) and
f
(
ŷ , x̂

)
= 0.

If det
(
Dy f

(
ŷ ; x̂

))
6= 0, then there exists a continuously differentiable function y (x)

defined in a neighborhood Bδ
(
x̂
)

of x̂ such that :

1. f (y (x) ,x) = 0 for all x ∈ Bδ
(
x̂
)
,

2. y
(
x̂
)

= ŷ ,
3. The derivative of the function y satisfies:

Dy
(
x̂
)

= −
(
Dy f

(
ŷ ; x̂

))−1 Dx f
(
ŷ ; x̂

)



The Implicit function theorem: Main theorem

I Proving this theorem is beyond the scope of this course.
I Assuming points 1. and 2. above, point 3. is an application of the chain rule in

the vector-valued multivariate case.
I It is nothing more than a local version of the linear implicit function theorem.
I Parts 1. and 2. require some more sophisticated mathematics. Proving the

existence of the implicit function y(x) near x̂ requires the use of a fixed point
theorem (similar to the case of showing the existence of local solutions to
differential equations).

I We will see more examples once we have more tools from optimization
available.



Next lecture:

I Higher order Taylor approximations
I Quadratic forms
I Minima and maxima of non-linear functions
I Applications: Least squares estimators, Cost minimization


