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Content of Lecture 4

» In Lecture 3, Linear approximations of non-linear functions
» This Lecture:

1. Linear approximation of vector valued functions
2. Implicit function theorem
3. Comparative statics of economic models



Linear approximation of vector-valued functions

» What is a vector valued function?

> A function whose values take the form of a column vector
» Each component in the vector is a (possibly) multivariate function

f‘l (X17 "'7Xn)
fg(X1, ey Xn)
fa(X1,y .y Xn)

» What is an economic example: the vector of demands

X4 (p1 3o Pns /)
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» The domain of this function is {(py, ..., pn, /)|p; > 0 for all i, and / > 0}.
» The values of this function are in {(xi, ..., X»)|x; > 0 for all i}.



Linear approximation of vector-valued functions

» How do we find a linear approximation?

» Vector of linear approximations to component functions
Dxf1 (X1 y ey Xn)
Dxfg(X1, . Xn)
Dyf = .

Dxfn(X‘] g eeey Xn)



Linear approximation of vector-valued functions

» Writing in full:
Ofi (X1,.Xn)  Of (X1, Xn) O (X1,--Xn)
0X4 OXo e OXn
Ofy(X1,.sXn)  Ofa(X1,-.-,Xn) 3f2(X1,~~,Xn))
Dxf — 8X1 8)(2 P 8Xn
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0X4 OXo e OXn

» We get the linear approximation at X by evaluating the derivative matrix at x:
Dyfo(X
Dty | D%

Dy fn(X)



Linear approximation of vector-valued functions: numerical example

» Consider the following vector-valued function:

_(xy )N x+yi+g
f(x’y’z)_<f2(x,y,z) B —X+ﬁ+222 '

» To compute the derivative at (x =1,y = 1,z = 1), compute first the matrix of
partial derivatives:

1 42y —%
Dy zf(x,y,2) = < —1 —1y 222 )
2.y

» Evaluating at (1,1, 1) gives

1 2 -
Dx7y7zf(1,1,1):<_1 1 2 >
2



Chain rule for multivariate functions:
» Recall the chain rul: If y = f(x) and z = g(y), then for h(x) = g(f(x)):
H(x) = g'(f(x))f'(x).

» Consider now a similar situation where f : R” — R¥, and g : RX — R™ and
h:R" — R™ given by h(x) = g(f(x)). Let y = f(x).
» By the linear approximation at X to f, we get:

f(X + Ax) =~ f(X) + Dxf(X)Ax.
» Similarly
9(f(x) + Dx(X)Ax) ~ g(f(X)) + Dyg(f(X)) Dxf(X)Ax.

» Hence we have:
Dyxh(x) = Dyg(f(X))Dxf(X)Ax.



Comparative statics: motivating examples
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Figure: Exogenous variable shifting demand and supply



Comparative statics: motivating examples
» In Principles 1, we argued that at optimal consumption,

MRSy, (%) = P,
P2

where p; is the price of good /.
» We have also the budget constraint:

P1X1 + P2Xo = W,

where w is the total budget.

15] 5 0, 5
P2 “(5;1*2) — p1 “(g;ZXZ) = 0,
P1Xy + PaXg — W = 0.

» Again for many u, no explicit solution is possible.

> Still, how do the optimal consumptions change when some of the py, po, w
change?



Linear implicit function theorem

» Because of linearity, this is not really needed since the system can be solved
explicitly
» Consider the system of equations:

ayr +...+amnyn +bi1xg + ...+ bymxm = 0,

any1 + ...+ amyn+ bpixy + ... + bomxm = 0.

» |n matrix form:
f(y;x)=Ay +Bx =0,

where Ais an n x n matrix and B is an n x mmatrix, ¥ = (V1,..., ¥n)
X = (X1,..s,Xm) -



Linear implicit function theorem

» Assume that the system is solved at (¥, X):
f(y;x)=0o0r Ay + Bx =0,

and consider the effect of a small change
(dy; dx) = (dyy, ..., dyn; dxq, ..., dxm) on the value of f :

f(y+dy,x+dx)—f(y X)=Ady+ Bdx
= Dyf (y;X) dy + Dxf (y; X) dx,

where Dy f(y, X) consists of the partial derivatives of f w.r.t. the endogenous
variables y and Dxf(y, X) w.r.t. the exogenous variables x.



Linear implicit function theorem

> For
f(y;x)=0.
to hold at (y, x) = (¥ + dy. X + dx) , the change must be zero:
Dy f(y; X)dy + Dyf(y: X)dx = 0.
» |n other words,

dy = —Dyf(y; X) "' Dyf(y; X)dx = —A~'Bdx.

» This equation has a solution for all dx if and only if A~' exists, i.e. if
A = Dyf(y; X) has full rank.

» The generalization of this result for the non-linear case in a neighborhood of
(¥; X) is called the implicit function theorem.



Linear implicit function theorem: Example
Consider the linear system around (y1, j», X) = (2,5, —3):

2y1+y2+3x = 0,
yi—y:—x = 0.
Compute the value of the function at (y1 + dys, y» + dy X + dx):

2 1 2 + dy; 3 (0
(35 ) (51 )+ (2 )era-(3)
2 1 dy1 N -3
(2 )(8)-(7)
By Cramer’s rule:

det —3 1 ax det e =8 ax
1 —1 -2 1 1 -5

2 3 2 1 3
det<1 _1> det(1 _1>

or

dy; = dys =



Implicit function for y: f(x,y) = x + y2 = 1

Figure: What's the slope of the tangent at (%, j7)?



Implicit function theorem for n=m =1

We start this section with an example of a univariate function.

f(y,x)=xy+In(xy+ x)=0. (1)
> Note that (¥,X) = (0, 1) satisfies equation 2.
» What is the impact of a small change dx in X on the value of y satisfying the

equation.
» We are interested in all points (y, x) near (0, 1) satisfying equation 2.
> Let’'s assume that such a y(x) exists for all x near X.
Assume also that y(x) has a derivative at X. We can then write:

v

g(x) =1y (x),x) =xy (x) +In(xy (x) + x) =0

for all x near X = 1.



We see that the original equation has been reduced to an equation in a single
variable x.

Since the composite function is constant in x (=0), the composite function g
must have a zero derivative in x near X = 1.

By the chain rule:

of (y; x fly: x
(0 = 2y )+ S
- <X+xy+x>y/(x)+y+)g/tr1x'
By requiring g’(1) = 0, we get:
9(0,1) ]
Y00y =g
ay

, o : , .« 9(0,1
Notice that this is a valid computation only if Ty) #0.



One-dimensional implicit function theorem

Theorem

f(y,%X)=0.If o g};’?) # 0, then there exists a continuously differentiable function
y(x) in a neighborhood By, of X such that:

1. f(y(x),x) =0 forall x € B,

2. y(X) =7,

3. The derivative of y at X satisfies:

Letf(y, x) be a continuously differentiable in a neighborhood of (y, X) and

The textbook has a proof of this theorem.



The Implicit function theorem
» Consider now a continuously differentiable non-linear function
f:R™M o R"
in a neighborhood of the point (¥, X) € R™™, where
F(7,%) =

> Use the derivative of Df(X, X) to approximate f at (y + dy, X + dx):

f(y+dy,x+dx)—f(y,x) = Df (y,X))dx,dy) = Dyf (y;X) dy+Dxf (¥,X) dx,
» Suppose we have a solution to the system at (¥, X):

Dyf (y.X) dy + Dxf (y,X) dx = 0.

> Since Dyf (y:; X) ja Dxf (¥; X) are matrices, we continue here exactly as in the
linear case.

» With differential calculus, we have reduced the really complicated non-linear
problem to the much simpler linear case locally, i.e. in a neighborhood of the
solution point (¥, X).



The Implicit function theorem: An example

» Consider the following system:
f (V1,2 X1, %) = YiVe —XiXo+Xo+1=0,
X
fbo(y1,Ye: X1,X2) = yi+ y—; +x—-5=0.

» Analyze the system of equations in a neighborhood of the point

(V1,¥2: X1, %2) = (1,1,2,2).



The Implicit function theorem: An example

» Check first that the equation is satisfied at (1, 1,2, 2) and form the appropriate
matrices of partial derivatives:

n(5%) 1GR \ 32 29,5

Dyf (V:X) = | 705 onf? Yo e _ (12

y 8f2(y;X) Bfg(y ) 1 721 1 -2 3
0y»

FIZ 2

L ot (y:x) oh(y:x) % 1-% 2 _1
Dxf(y;x) = ( afgfz)f();?) 8)‘:2}’)() ) - < ;)2(2 1X1 ) :< 1 1 >

X4 OXo




The Implicit function theorem: An example

> We see that det (Dyf (¥; X)) # 0, and therefore the matrix Dy f(y, X) has full
rank and an inverse matrix [Dy f(y, X)]

» Exercise: Show that

[Dyf(y,%)] " =

1/ -2 2\ (-2 —1
dy_4<—1 1)(1 1>d"'

NN
7~
(.
- N
- |
N
~

and therefore:



Implicit function theorem
Y2

f(y1,y2; X + Ax) =0

fily1, yo: X + Ax)
f1(y17.} )

b4

O

Figure: Implicit function theorem: exogenous changes in x. Red curves after change.



Failure of implicit function theorem
Y2

O 17

Figure: Dy f(y1, §»; X) does not have full rank. Solid curves drawn for X.



The Implicit function theorem: Main theorem

We are now ready for the main theorem in this section.

Theorem

Let f : R™™ — R" be continuously differentiable in a neighborhood B° (¥, X) , of
(y,X) and

f(y.%) =0.

If det (Dy (¥: X)) # 0, then there exists a continuously differentiable function y (x)
defined in a ne/ghborhood B° (X) of X such that :

. f(y(x),x)=0forallx € B’ (X),
2. y(x)=v.
3. The derivative of the function y satisfies:

Dy (%) = - (Dyf (7 %)) " Duf (7:%)



The Implicit function theorem: Main theorem

» Proving this theorem is beyond the scope of this course.

> Assuming points 1. and 2. above, point 3. is an application of the chain rule in
the vector-valued multivariate case.

» It is nothing more than a local version of the linear implicit function theorem.

» Parts 1. and 2. require some more sophisticated mathematics. Proving the
existence of the implicit function y(x) near X requires the use of a fixed point
theorem (similar to the case of showing the existence of local solutions to
differential equations).

» We will see more examples once we have more tools from optimization
available.



Next lecture:

» Higher order Taylor approximations

» Quadratic forms

» Minima and maxima of non-linear functions

» Applications: Least squares estimators, Cost minimization



