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Content of Lecture 3

» In Lecture 2, Gaussian elimination and linear models in economics
» This Lecture:

o rwD -

Linear approximation of functions of a real variable: the derivative
Visualizing multivariate functions

Linear approximations to multivariate functions

Linear approximations and partial derivatives

Directions of increase and level curves

Non-linear models in economics: first examples



Linear approximation of univariate functions

Approximate f(x) = xsin(5x) by its tangent at x = 0.5. Not a great success:




Linear approximation of univariate functions
The function is a bit less variable over the interval [0, 1]:
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Linear approximation of univariate functions
On the interval [0.48,0.52], it looks almost linear:
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Linear approximation of univariate functions
» Recall the definition of the derivative of a function f : R — R at xp:

. f(xo+ h) — f(x0)
— f —
dx Fix) = flyino h
» If the limit exists, we also have (from the definition of limits) that for all ¢ > 0,
there is a § > 0 such that:

(X0 + h) = F(x0) — Df(x0)h _ _
L ’

whenever |h| < 6.
» We say then that Df(xo)h approximates f(x) — f(xp) well near xp.

» Df(xp)his a linear (in h) approximation of the changes in the value of the
function near xp.

» We want to generalize this idea to multivariate functions.



Graphing functions of two variables
A linear function: z = 2x + 3y.




The graph of f(x, y) = cos(x)cos(y)
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2-d slices of the 3-d graph

slope in x direction | Z
I f(X, Y ) x=x0.=10

slope in y direction
Iy (X, ¥) | x=x0.y=10

(X0, ¥0)

Figure: Cross sections of f(x, y) in the x and y direction at (xo, yo).
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Level curves of a bivariate function
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Figure: Some level curves of f.

DA



All'in one picture
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Linear functions

| 2

>

Recall that a function f : R” — R" is said to be linear if for all A € /R and for
all x,y € R, i) f(Ax) = M(x), i) f(x + y) = f(x) + f(y).
For f: R" — R, let f(€') = a;, where & = (e], ..., &) is the i unit vector, i.e.
e/’-:Olf/;é/ande;: .
Then we have
n ) n ) n
f(x)=> f(xe)=>Y xf(e)=> ax=a-x

i=1 i=1 i=1
where a = (ay, ..., an).
For f : R" — R™, let f(e') = @ € R™. By the same reasoning as above, any

linear f takes the form:
f(x) = Ax,

where the jj" element of A is the i row element of &'.



Linear approximation of multivariate functions

» If we want to find a linear approximation to f : R” — R near X, we look for a

vector a such that ‘f("(’*ﬁz{:';({:ﬁ)_a"“ is small whenever || x — xg|| is small.

» If such an a exists, we call it the derivative Dxf(xg) of f at xo and we say that
f is differentiable at xgq.

» When the derivative exists, we have for small || x — xo||:

f(x) — f(xo) = Dxf(X0)(X — Xo).

» Our next task is to identify the components of Dxf(xo).



Partial derivatives

» Consider changes in the direction of a coordinate axis: X = xq + he'.
» Since all the other coordinates of x remain fixed, we can compute:

i _
im [(Xo+ he') f(Xo)7
h—0 h

exactly as in the case of univariate functions,
» We call this limit the i partial derivative of f at xo and denote it by:

Of(x0) _ . f(xo+he) — f(xo)

Dyf(xo) :=: X h—0 h



Partial derivatives

Recall the picture from before:
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Figure: Partial derivatives of f at (xo, yo).




From partial derivatives to linear approximation
» But this is all we need if a linear approximation exists!
> A linear approximation in the direction Ax = e’ must coincide with %)’20).
» But each direction Ax can be written as:

n
Ax =) xe,
i—1

so by linearity we get for all Ax that

f(xo + AX) — f(xo) = Dxf(X0) - Ax + h.ot.,

where Dxf(Xp) is the row vector of partial derivatives
8f(X0) 3f(X0))
oxy 77 Oxp T

» A linear approximation exists and f is differentiable at x if all of its partial
derivatives exist at Xy and are continuous in x.

Dxf(x) = (




Planar approximation to a non-linear surface
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Figure: Linear approximation to f at point P.



Computing the derivative: an example
» Compute at (x1, X2, X3) = (1,2, 1) the derivative of the following function:

f(X1,X2,X3) = X1 In X2 + /X2 X3.

» Since we have a real-valued function f, its derivative is the row vector of its
partial derivatives evaluated x = (xy, X2, X3):

Of (X1, X2,X3) Of (X1,X2,X3) Of (X1, Xa, X3)
Dy f =
x (X) < 8x1 ’ 8x2 ’ 8X3
T 53135 3
= [ Inxo, +§x2 x3,§x2x3

Evaluating at (1,2, 1)

Dyf(1,2,1) = (In2,1 L ﬁ) .
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Utility functions: marginal utilities

» Utility function u : R! — R assigns a numerical value u(x) for each possible
(positive) consumption vector x € R := {x € R"|x > 0}.

» u(x) > u(y) if and only if the consumer considers x at least as good as y

Consider first the case with two goods, i.e. n = 2.

» Partial derivatives of the utility function are called the marginal utilities
denoted by MU,.

v

5‘u(&1 s ),\(2)
oX;

MUX/()A(‘] 5 )/\(2) =

> If %}4’“‘2) > 0, then u(Xy + h, X2) > u(Xq, X2) for small h > 0, and we say that
utility is strictly increasing in good 1 at (X1, X2).

» If this holds at all (x1, x2), we say simply that utility is strictly increasing.
Typically it is assumed that utility is strictly increasing in all goods.



Utility functions: marginal utilities
» For small consumption changes (Axq, Ax2), we can approximate the change
in utility by using the derivative Dyu(Xq, X2):
U(Xt + Axqy, X2 + Axz) — u(Xy, X2) = Dxu(Xy, X2)(Axq, Ax2)
aU()Aﬁ s )’\(2) 8u()“(1 R ),\(2)
— N A VA 2e)
0Xq S 0X2
» Recall from Principles 1 that (X; + Axq, X2 + Ax2) and (X4, X2) are on the
same indifference curve if they are equally good to the consumer:
U()A(1 + AXq, )’\(2 + AXQ) = U()A(1 , ),\(2)
» But then we have:

AXo.

8U()A(1,)A(2)AX1 n 8U()A(1,)A(2)

Axo =0
0Xq 0Xo 2 ’
or
Du(31,%2)
_ o
AXe = =G 3 A1

8X2



Utility functions: MRS

u(Xy %)
» The consumer is willing to give up 8,,(6;:{;2) units of good 2 to get an additional

OXo
unit of good 1 at (X1, X2).

» Hence marginal rate of substitution at (X1, X2) is captured in the ratio of
marginal utilities:

Ou(%1,%) o
A~ A I vo— MU ,
MRSX1 \Xo (X1 , X2) = x4 — X4 (X1 X2)

ou(xike) MUXZ()A(1 s )/\(2) .
OXo




Utility functions: MRS

» If n > 2 we can ask how many (small) units of good j the consumer would be
willing to give up in order to get an additional (small) unit of good /.

» |f all the other goods remain fixed at X and

u(X + Axe' + Axel) = u(x),

then
8U(5\(1 ) )’\(2) AX + aU()Aﬁ ! ),\(2) Axi =0
8X,' I an ! 7
and we have: du(x)
uix S
o\ Oxp MUXf(X)
MRS, x,(X) = ou(x) MU, (%)

o%;



The gradient

» The gradient of the utility function denoted by Vu(x) is the transpose of its

derivative:
ou(x) ou(x)

oxy 77 Oxp

Vu(x) = ( ).

» Does the gradient have any particular interpretation?

> A first observation is that when n = 2, the gradient is orthogonal to the
indifference curve:

ou(X1,%3) u(%1,%)

(1 T ox ) ) (8U()A(1 s )A(g) 8U(5\(1 s )/\(2)) _ au()?1 R ),\(2) _ x4 8U()A(1 s 5\(2)
) au(fq ,)A(g) 8)(1 ’ aXQ 8)(1 8U()A(1 7)A(g) 8X2
OXo Xz

=0.




The gradient

» The gradient at x gives the direction in which the utility function increases the
fastest near x.

» To see this, consider the change in the utilityusing the linear approximation:

u(Xx + Ax) — u(x) = Dx(X)Ax + h.o.t.
» For a unit length (or norm) of Ax, the change in utility is maximized at

1

AX = ————
IVu(x)]

Vu(x)

by Cauchy’s inequality.



Computing marginal utilities and the MRS
» Linear utility:
n
U(X) =a-X= Za,-x,-.
i=1
Then MUy, (x) = a; for all i and all x, and MRSy, x, = %’ for all i # j and all x.

» Quasilinear utility:
u(xi, X2) = v(x1) + Xz,

for some increasing function v.
MUX2 = 1,/\4Ux1 = MRSX1’X2 - V/(X1).
For example if v(xq) = In(xy), then

1
I\”U)(1 - MRSX1 , X2 = 71



Computing marginal utilities and the MRS

» Cobb-Douglas utility:
u(x1, x2) = x{'xy~* for a € (0, 1).

In this case,

X X-
Nwdmxazagé“% Mudmwazm—axéw,

and therefore: v )1
a(3Z) ¢ aXo
MR = il = .
o =1 a)@)e T (- am




Computing marginal utilities and the MRS

» For n> 2, we have:

n n
:HX,-OC" fOI’OziEO,ZOﬁ: 1.
i=1 i=1

Denote y = [, x{". Then

MU, = i,

Xj
and therefore X
QjXj
MRS, x,(X) i

Exercise: Compute the marginal utilities for u(x) = >°7_; ajIn x;.



Computing marginal utilities and the MRS

» Constant elasticity of substitution utility (CES utility function): for p < 1 and

p#0,

b\—‘

u(xy, x2) = (a1 X} + apx3) 7.

Denote y(x1,X2) = (a1x{ + a»x5) and we have u(xy, x2) = y(x1,x2)%.

by chain rule that

1 1-p _
MUy, (X1, X2) = ;}’(thz) v paixt 1.

Therefore the marginal rates of substitution are quite simple:

Iy,

MHSX1 X0 (X1 X2) a X2

We get



Next Lecture

» Vector valued multivariate functions
» Implicit function theorem
» Comparative statics in economic models



