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Content of Lecture 3

▶ In Lecture 2, Gaussian elimination and linear models in economics
▶ This Lecture:

1. Linear approximation of functions of a real variable: the derivative
2. Visualizing multivariate functions
3. Linear approximations to multivariate functions
4. Linear approximations and partial derivatives
5. Directions of increase and level curves
6. Non-linear models in economics: first examples



Linear approximation of univariate functions
Approximate f (x) = xsin(5x) by its tangent at x = 0.5. Not a great success:
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Linear approximation of univariate functions
The function is a bit less variable over the interval [0,1]:
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Linear approximation of univariate functions
On the interval [0.48,0.52], it looks almost linear:
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Linear approximation of univariate functions

▶ Recall the definition of the derivative of a function f : R → R at x0:

Df (x0) =
df (x0)

dx
= f ′(x0) = lim

h→0

f (x0 + h)− f (x0)

h
.

▶ If the limit exists, we also have (from the definition of limits) that for all ε > 0,
there is a δ > 0 such that:

|f (x0 + h)− f (x0)− Df (x0)h|
|h|

< ε,

whenever |h| < δ.
▶ We say then that Df (x0)h approximates f (x)− f (x0) well near x0.
▶ Df (x0)h is a linear (in h) approximation of the changes in the value of the

function near x0.
▶ We want to generalize this idea to multivariate functions.



Graphing functions of two variables
A linear function: z = 2x + 3y .
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The graph of f (x , y) = cos(x)cos(y)
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Figure: The graph of f (x , y) = cos(x) cos(y).



2-d slices of the 3-d graph
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Figure: Cross sections of f (x , y) in the x and y direction at (x0, y0).



Level curves of a bivariate function

Figure: Some level curves of f .



All in one picture

Figure: The graph of f together with some of its cross sections and level curves.



Linear functions

▶ Recall that a function f : Rn → Rm is said to be linear if for all λ ∈ /R and for
all x ,y ∈ Rn, i) f (λx) = λf (x), ii) f (x + y) = f (x) + f (y).

▶ For f : Rn → R, let f (ei) = ai , where ei = (e1
1, ...,e

1
n) is the i th unit vector, i.e.

ei
j = 0 if i ̸= j and ei

i = 1.
▶ Then we have

f (x) =
n∑

i=1

f (xiei) =
n∑

i=1

xi f (ei) =
n∑

i=1

aixi = a · x ,

where a = (a1, ...,an).
▶ For f : Rn → Rm, let f (ei) = ai ∈ Rm. By the same reasoning as above, any

linear f takes the form:
f (x) = Ax ,

where the ij th element of A is the i th row element of aj .



Linear approximation of multivariate functions

▶ If we want to find a linear approximation to f : Rn → R near x0, we look for a
vector a such that |f (x0+h)−f (x0)−a·x |

∥x−x0∥ is small whenever ∥x − x0∥ is small.
▶ If such an a exists, we call it the derivative Dx f (x0) of f at x0 and we say that

f is differentiable at x0.
▶ When the derivative exists, we have for small ∥x − x0∥:

f (x)− f (x0) ≈ Dx f (x0)(x − x0).

▶ Our next task is to identify the components of Dx f (x0).



Partial derivatives

▶ Consider changes in the direction of a coordinate axis: x = x0 + hei .
▶ Since all the other coordinates of x remain fixed, we can compute:

lim
h→0

f (x0 + hei)− f (x0)

h
,

exactly as in the case of univariate functions,
▶ We call this limit the i th partial derivative of f at x0 and denote it by:

Dxi f (x0) :=:
∂f (x0)

∂xi
:= lim

h→0

f (x0 + hei)− f (x0)

h
.



Partial derivatives

Recall the picture from before:

Figure: Partial derivatives of f at (x0, y0).



From partial derivatives to linear approximation
▶ But this is all we need if a linear approximation exists!
▶ A linear approximation in the direction ∆x = ei must coincide with ∂f (x0)

∂xi
.

▶ But each direction ∆x can be written as:

∆x =
n∑

i=1

xiei ,

so by linearity we get for all ∆x that

f (x0 +∆x)− f (x0) = Dx f (x0) ·∆x + h.o.t. ,

where Dx f (x0) is the row vector of partial derivatives

Dx f (x) = (
∂f (x0)

∂x1
, ...,

∂f (x0)

∂xn
).

▶ A linear approximation exists and f is differentiable at x0 if all of its partial
derivatives exist at x0 and are continuous in x .



Planar approximation to a non-linear surface

Figure: Linear approximation to f at point P.



Computing the derivative: an example
▶ Compute at (x1, x2, x3) = (1,2,1) the derivative of the following function:

f (x1, x2, x3) = x1 ln x2 +
√

x2x3.

▶ Since we have a real-valued function f , its derivative is the row vector of its
partial derivatives evaluated x = (x1, x2, x3):

Dx f (x) =
(
∂f (x1, x2, x3)

∂x1
,
∂f (x1, x2, x3)

∂x2
,
∂f (x1, x2, x3)

∂x3

)

=

(
ln x2,

x1

x2
+

1
2

x
− 1

2
2 x

1
2

3 ,
1
2

x
1
2

2 x
− 1

2
3

)
.

Evaluating at (1,2,1)

Dx f (1,2,1) =

(
ln2,

1
2
+

1
2
√

2
,

√
2

2

)
.



Utility functions: marginal utilities

▶ Utility function u : Rn
+ → R assigns a numerical value u(x) for each possible

(positive) consumption vector x ∈ Rn
+ := {x ∈ Rn|x ≥ 0}.

▶ u(x) ≥ u(y) if and only if the consumer considers x at least as good as y
▶ Consider first the case with two goods, i.e. n = 2.
▶ Partial derivatives of the utility function are called the marginal utilities

denoted by MUxi .

MUxi (x̂1, x̂2) :=
∂u(x̂1, x̂2)

∂xi
.

▶ If ∂u(x̂1,x̂2)
∂x1

> 0, then u(x̂1 + h, x̂2) > u(x̂1, x̂2) for small h > 0, and we say that
utility is strictly increasing in good 1 at (x̂1, x̂2).

▶ If this holds at all (x1, x2), we say simply that utility is strictly increasing.
Typically it is assumed that utility is strictly increasing in all goods.



Utility functions: marginal utilities
▶ For small consumption changes (∆x1,∆x2), we can approximate the change

in utility by using the derivative Dxu(x̂1, x̂2):

u(x̂1 +∆x1, x̂2 +∆x2)− u(x̂1, x̂2) = Dxu(x̂1, x̂2)(∆x1,∆x2)

=
∂u(x̂1, x̂2)

∂x1
∆x1 +

∂u(x̂1, x̂2)

∂x2
∆x2.

▶ Recall from Principles 1 that (x̂1 +∆x1, x̂2 +∆x2) and (x̂1, x̂2) are on the
same indifference curve if they are equally good to the consumer:
u(x̂1 +∆x1, x̂2 +∆x2) = u(x̂1, x̂2).

▶ But then we have:

∂u(x̂1, x̂2)

∂x1
∆x1 +

∂u(x̂1, x̂2)

∂x2
∆x2 = 0,

or

∆x2 = −
∂u(x̂1,x̂2)

∂x1
∂u(x̂1,x̂2)

∂x2

∆x1.



Utility functions: MRS

▶ The consumer is willing to give up
∂u(x̂1,x̂2)

∂x1
∂u(x̂1,x̂2)

∂x2

units of good 2 to get an additional

unit of good 1 at (x̂1, x̂2).
▶ Hence marginal rate of substitution at (x̂1, x̂2) is captured in the ratio of

marginal utilities:

MRSx1,x2(x̂1, x̂2) =

∂u(x̂1,x̂2)
∂x1

∂u(x̂1,x̂2)
∂x2

=
MUx1(x̂1, x̂2)

MUx2(x̂1, x̂2)
.



Utility functions: MRS

▶ If n > 2 we can ask how many (small) units of good j the consumer would be
willing to give up in order to get an additional (small) unit of good i .

▶ If all the other goods remain fixed at x̂ and

u(x̂ +∆xiei +∆xjej) = u(x̂),

then

∂u(x̂1, x̂2)

∂xi
∆xi +

∂u(x̂1, x̂2)

∂xj
∆xj = 0,

and we have:

MRSxi ,xj (x̂) =
∂u(x̂)
∂xi

∂u(x̂)
∂xj

=
MUxi (x̂)
MUxj (x̂)

.



The gradient

▶ The gradient of the utility function denoted by ∇u(x) is the transpose of its
derivative:

∇u(x) = (
∂u(x)
∂x1

, ...,
∂u(x)
∂xn

).

▶ Does the gradient have any particular interpretation?
▶ A first observation is that when n = 2, the gradient is orthogonal to the

indifference curve:

(1,−
∂u(x̂1,x̂2)

∂x1
∂u(x̂1,x̂2)

∂x2

) · (∂u(x̂1, x̂2)

∂x1
,
∂u(x̂1, x̂2)

∂x2
) =

∂u(x̂1, x̂2)

∂x1
−

∂u(x̂1,x̂2)
∂x1

∂u(x̂1,x̂2)
∂x2

∂u(x̂1, x̂2)

∂x2
= 0.



The gradient

▶ The gradient at x gives the direction in which the utility function increases the
fastest near x .

▶ To see this, consider the change in the utilityusing the linear approximation:

u(x̂ +∆x)− u(x̂) = Dx(x̂)∆x + h.o.t .

▶ For a unit length (or norm) of ∆x , the change in utility is maximized at

∆x =
1

∥∇u(x̂)∥
∇u(x̂)

by Cauchy’s inequality.



Computing marginal utilities and the MRS
▶ Linear utility:

u(x) = a · x =
n∑

i=1

aixi .

Then MUxi (x) = ai for all i and all x , and MRSxi ,xj =
ai
aj

for all i ̸= j and all x .

▶ Quasilinear utility:
u(x1, x2) = v(x1) + x2,

for some increasing function v .

MUx2 = 1,MUx1 = MRSx1,x2 = v ′(x1).

For example if v(x1) = ln(x1), then

MUx1 = MRSx1,x2 =
1
x1

.



Computing marginal utilities and the MRS

▶ Cobb-Douglas utility:

u(x1, x2) = xα
1 x1−α

2 for α ∈ (0,1).

In this case,

MUx1(x1, x2) = α(
x2

x1
)1−α, MUx2(x1, x2) = (1 − α)(

x1

x2
)α,

and therefore:

MRSx1,x2 =
α(x2

x1
)1−α

(1 − α)(x1
x2
)α

=
αx2

(1 − α)x1
.



Computing marginal utilities and the MRS

▶ For n > 2, we have:

u(x) =
n∏

i=1

xαi
i for αi ≥ 0,

n∑
i=1

αi = 1.

Denote y =
∏n

i=1 xαi
i . Then

MUxi = αi
y
xi
,

and therefore
MRSxi ,xj (x) =

αixj

αjxi
.

Exercise: Compute the marginal utilities for u(x) =
∑n

i=1 αi ln xi .



Computing marginal utilities and the MRS

▶ Constant elasticity of substitution utility (CES utility function): for ρ < 1 and
ρ ̸= 0,

u(x1, x2) = (a1xρ
1 + a2xρ

2 )
1
ρ .

Denote y(x1, x2) = (a1xρ
1 + a2xρ

2 ) and we have u(x1, x2) = y(x1, x2)
1
ρ . We get

by chain rule that

MUxi (x1, x2) =
1
ρ

y(x1, x2)
1−ρ
ρ ρaix

ρ−1
i .

Therefore the marginal rates of substitution are quite simple:

MRSx1,x2(x1, x2) =
a1

a2
(
x1

x2
)ρ−1.



Next Lecture

▶ Vector valued multivariate functions
▶ Implicit function theorem
▶ Comparative statics in economic models


