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human was the music, 

natural was the static ... 
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Prologue 

THE POLICE IN THE SMALL T0WN of Los Alamos, New Mexico, 
worried briefly in 1974 about a man seen prowling in the dark, 
night after night, the red glow of his cigarette floating along the 
back streets. He would pace for hours, heading nowhere in the 
starlight that hammers down through the thin air of the mesas. 
The police were not the only ones to wonder. At the national 
laboratory some physicists had learned that their newest colleague 
was experimenting with twenty-six-hour days, which meant that 
his waking schedule would slowly roll in and out of phase with 
theirs. This bordered on strange, even for the Theoretical Division. 

In the three decades since J. Robert Oppenheimer chose this 
unworldly New Mexico landscape for the atomic bomb project, 
Los Alamos National Laboratory had spread across an expanse of 
desolate plateau, bringing particle accelerators and gas lasers and 
chemical plants, thousands of scientists and administrators and 
technicians, as well as ane of the world's greatest concentrations 
of supercomputers. Some of the older scientists remembered the 
wooden buildings rising hastily out of the rimrock in the 1940s, 
but to most of the Los Alamos staff, young men and women in 
college-style corduroys and work shirts, the first bombmakers were 
just ghosts. The laboratory's locus of purest thought was the The
oretical Division, known as T division, just as computing was C 
division and weapons was X division. More than a hundred phys
icists and mathematicians worked in T division, well paid and 
free of academic pressures to teach and publish. These scientists 
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2 Prologue 

had experience with brilliance and with eccentricity. They were 
hard to surprise. 

But Mitchell Feigenbaum was an unusual case. He had exactly 
one published article to his name, and he was working on nothing 
that seemed to have any particular promise. His hair was a ragged 
mane, sweeping back from his wide brow in the style of busts of 
German composers. His eyes were sudden and passionate. When 
he spoke, always rapidly, he tended to drop articles and pronouns 
in a vaguely middle European way, even though he was a native 
of Brooklyn. When he worked, he worked obsessively. When he 
could not work, he walked and thought, day or night, and night 
was best of all. The twenty-four-hour day seemed too constraining. 
Nevertheless, his · experiment in persona! quasiperiodicity came 
to an end when he decided he could no longer bear waking to the 
setting sun, as had to happen every few days. 

At the age of twenty-nine he had already become a savant 
among the savants, an ad hoe consultant whom scientists would 
go to see about any especially intractable problem, when they 
could find him. One evening he arrived at work just as the director 
of the laboratory, Harold Agnew, was leaving. Agnew was a pow
erful figure, one of the original Oppenheimer apprentices. He had 
flown over Hiroshima on an instrum�nt plane that accompanied 
the Enola Gay, photographing the delivery of the laboratory's fi.rst 
product. 

"I understand you're real smart," Agnew said to Feigenbaum. 
"If you're so smart, why don't you just solve laser fusion?" 

Even Feigenbaum's friends were wondering whether he was 
ever going to produce any work of his own. As willing as he was 
to do impromptu magic with their questions, he did not seem 
interested in devoting his own research to any problem that might 
pay off. He thought about turbulence in liquids and gases. He 
thought about time-did it glide smoothly forward or hop dis
cretely like a sequence of cosmic motion-picture frames? He thought 
about the eye's ability to see consistent colors and forms in a 
universe that physicists knew to he a shifting quantum kaleido
scope. He thought about clouds, watching them from airplane 
windows (until, in 1975, his scientific travel privileges were of
ficially suspended on grounds of overuse) or from the hiking trails 
above the laboratory. • 
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In the mountain towns of the West, clouds barely resemble 
the sooty indeterminate low-flying hazes that fill the Eastern air. 
At Los Alamos, in the lee of a great volcanic caldera, the clouds 
spill across the sky, in random formation, yes, but also not-random, 
standing in uniform spikes or rolling in regularly furrowed pat
terns like brain matter. On a stormy afternoon, when the sky shim
mers and trembles with the electricity to come, the clouds stand 
out from thirty miles away, filtering the light and reflecting it, 
until the whole sky starts to seem like a spectacle staged as a 
subtle reproach to physicists. Clouds represented a side of nature 
that the mainstream of physics had passed by, a side that was at 
once fuzzy and detailed, structured and unpredictable. Feigen
baum thought about such things, quietly and unproductively. 

To a physicist, creating laser fusion was a legitimate problem; 
puzzling out the spin and color and flavor of small particles was 
a legitimate problem; dating the origin of the universe was a le
gitimate problem. Understanding clouds was a problem for a me
teorologist. Like other physicists, Feigenbaum used an understated, 
tough-guy vocabulary to rate such problems. Such a thing is ob
vious, he might say, meaning that a result could he understood 
by any skilled physicist after appropriate contemplation and cal
culation. Not obvious described work that commanded respect 
and Nobel prizes. For the hardest problems, the problems that 
would not give way without long looks into the universe's bowels, 
physicists reserved words like deep. 1n 1974, though few of his 
colleagues knew it, Feigenbaum was working on a problem that 
was deep: chaos. 

WHERE CHAOS BEGINS, classical science stops. For as long as 
the world has had physicists inquiring into the laws of nature, it 
has suffered a special ignorance about disorder in the atmosphere, 
in ·the turbulent sea, in the fluctuations of wildlife populations, 
in the oscillations of the heart and the brain. The irregular side 
of nature, the discontinuous and erratic side-these have been 
puzzles to science, or worse, monstrosities. 

But in the 1970s a few scientists in the United States and 
Europe began to find a way through disorder. They were mathe
maticians, physicists, biologists, chemists, all seeking connections 
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between different kinds of irregularity. Physiologists found a sur
prising order in the chaos that develops in the human heart, the 
prime cause of sudden, unexplained death. Ecologists explored 
the rise and fall of gypsy moth populations. Economists dug out 
old stock price data and tried a new kind of analysis. The insights 
that emerged led directly into the natural world-the shapes of 
clouds, the paths of lightning, the microscopic intertwining of 
blood vessels, the galactic clustering of stars. 

When Mitchell Feigenbaum began thinking about chaos at 
Los Alamos, he was one of a handful of scattered scientists, mostly 
unknown to one another. A mathematician in Berkeley, California, 
had formed a small group dedicated to creating a new study of 
"dynamical systems." A population biologist at Princeton Uni
versity was about to publish an impassioned plea that all scientists 
should look at the surprisingly complex behavior lurking in some 
simple models. A geometer working for IBM was looking for a 
new word to describe a family of shapes-jagged, tangled, splin
tered, twisted, fractured-that he considered an organizing prin
ciple in nature. A French mathematical physicist had just made 
the disputatious claim that turbulence in fluids might have some
thing to do with a bizarre, infinitely tangled abstraction that he 
called a strange attractor. 

A decade later, chaos has become a shorthand name for a fast
growing movement that is reshaping the fabric of the scientific 
establishment. Chaos conferences and chaos journals abound. · 
Government program managers in charge of research money for 
the military, the Central Intelligence Agency, and the Department 
of Energy have put ever greater sums into chaos research and set 
up special bureaucracies to handle the financing. At every major 
university and every major corporate research center, some the
orists ally themselves first with chaos and only second with their 
nominal specialties. At Los Alamos, a Center for Nonlinear Studies 
was established to coordinate work on chaos and related problems; 
similar institutions have appeared on university campuses across 
the country. 

Chaos has created special techniques of using computers and 
special kinds of graphic images, pictures that capture a fantastic 
and delicate structure underlying complexity. The new science 
has spawned its own language, an elegant shop talk of fractals 
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and bifurcations, intermittencies and periodicities, folded-towel 
diffeomorphisms and smooth noodle maps. These are the new 
elements of motion, just as, in traditiona! physics, quarks and 
gluons are the new elements af matter. Ta some physicists chaos 
is a science af process rather than state, af becoming rather than 
being. 

Now that science is looking, chaos seems ta he everywhere. 
A rising column of cigarette smoke breaks into wild swirls. A flag 
snaps back and forth in the wind. A dripping faucet goes from a 
steady pattern to a random ane. Chaos appears in the behavior of 
the weather, the behavior af an airplane in flight, the behavior of 
cars clustering on an expressway, the behavior af oil flowing in 
underground pipes. No matter what the medium, the behavior 
obeys the same newly discovered laws. That realization has begun 
ta change the way business executives make decisions about in
surance, the way astronomers look at the solar system, the way 
political theorists talk about the stresses leading to armed conflict. 

Chaos breaks across the Iines that separate scientific disci
plines. Because it is a science of the global nature of systems, it 
has brought together thinkers from fields that had been widely 
separated. "Fifteen years ago, science was heading for a crisis of 
increasing specialization," a Navy official in charge of scientific 
financing remarked to an audience of mathematicians, biologists, 
physicists, and medical doctors. "Dramatically, that specialization 
has reversed because of chaos." Chaos poses problems that defy 
accepted ways of working in science. It makes strong claims about 
the universal behavior af complexity. The first chaos theorists, the 
scientists who set the discipline in motion, shared certain sen
sibilities. They had an eye for pattern, especially pattern that ap
peared on different scales at the same time. They had a taste for 
randomness and complexity, for jagged edges and sudden leaps. 
Believers in chaos-and they sometimes call themselves believers, 
or converts, or evangelists-speculate about determinism and free 
will, about evolution, about the nature of conscious intelligence. 
They feel that they are turning back a trend in science toward 
reductionism, the analysis af systems in terms af their constituent 
parts: quarks, chromosomes, or neurons. They believe that they 
are looking for the whole. 

The most passionate advocates of the new science go so far 
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as to say that twentieth-century science will he remembered for 
just three things: relativity, quantum mechanics, and chaos. Chaos, 
they contend, has become the century's third great revolution in 
the physical sciences. Like the first two revolutions, chaos cuts 
away at the tenets of Newton's physics. As one physicist put it: 
"Relativity eliminated the Newtonian illusion of absolute space 
and time; quantum theory eliminated the Newtonian dream of a 
controllable measurement process; and chaos eliminates the La
placian fantasy of deterministic predictability." Of the three, the 
revolution in chaos applies to the universe we see and touch, to 
objects at human scale. Everyday experience and real pictures of 
the world have become legitimate targets for inquiry. There has 
long been a feeling, not always expressed openly, that theoretical 
physics has strayed far from human intuition about the world. 
Whether this will prove to be fruitful heresy or just plain heresy, 
no one knows. But some of those who thought physics might be 
working its way into a corner now look to chaos as a way out. 

Within physics itself, the study of chaos emerged from a back
water. The mainstream for most of the twentieth century has been 
particle physics, exploring the building blocks of matter at higher 
and higher energies, smaller and smaller scales, shorter and shorter 
times. Out of particle physics have come theories about the fun
damental forces of nature and about the origin of the universe. 
Yet some young physicists have grown dissatisfied with the di
rection of the most prestigious of sciences. Progress has begun to 
seem slow, the naming of new particles futile, the body of theory 
cluttered. With the coming of chaos, younger scientists believed 
they were seeing the beginnings of a course change for ali of 
physics. The field had been dominated long enough, they felt, by 
the glittering abstractions of high-energy particles and quantum 
mechanics. 

The cosmologist Stephen Hawking, occupant of Newton's 
chair at Cambridge University, spoke for most of physics when 
he took stock of his science in a 1980 lecture titled "Is the End 
in Sight for Theoretical Physics?" 

"We already know the physical laws that govern everything 
we experience in everyday life .. . .  It is a tribute to how far we 
have come in theoretical physics that it now takes enormous ma-
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chines and a great deal of money to perform an experiment whose 
results we cannot predict." 

Yet Hawking recognized that understanding nature's laws on 
the terms of particle physics left unanswered the question of how 
to apply those laws to any but the simplest of systems. Predict
ability is one thing in a cloud chamber where two particles collide 
at the end of a race around an accelerator. It is something else 
altogether in the simplest tub of roiling tluid, or in the earth's 
weather, or in the human brain. 

Hawking's physics, efficiently gathering up Nobel Prizes and 
big money for experiments, has often been called a revolution. At 
times it seemed within reach of that grail of science, the Grand 
Unified Theory or "theory of everything." Physics had traced the 
development of energy and matter in all but the first eyeblink of 
the universe's history. But was postwar particle physics a revo
lution? Or was it just the tleshing out of the framework laid down 
by Einstein, Bohr, and the other fathers of relativity and quantum 
mechanics? Certainly, the achievements of physics, from the atomic 
bomb to the transistor, changed the twentieth-century landscape. 
Yet if anything, the scope of particle physics seemed to have 
narrowed. Two generations had passed since the field produced 
a new theoretical idea that changed the way nonspecialists un
derstand the world. 

The physics described by Hawking could complete its mission 
without answering some of the most fundamental questions about 
nature. How does life begin? What is turbulence? Above all, in a 
universe ruled by entropy, drawing inexorably toward greater and 
greater disorder, how does order arise? At the same time, objects 
of everyday experience like tluids and mechanical systems came 
to seem so basic and so ordinary that physicists had a natural 
tendency to assume they were well understood. It was not so. 

As the revolution i.n chaos runs its course, the best physicists 
find themselves returning without embarrassment to phenomena 
on a human scale. They study not just galaxies but clouds. They 
carry out profitable computer research not just on Crays but on 
Macintoshes. The premier journals print articles on the strange 
dynamics of a ball bouncing on a table side by side with articles 
on quantum physics. The simplest systems are now seen to create 
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extraordinarily diffi.cult problems of predictability. Yet order arises 
spontaneously in those systems-chaos and order together. Only 
a new kind of science could begin to cross the great gulf between 
knowledge of what one thing does-one water molecule, one cell 
of heart tissue, one neuron-and what millions of them do. 

Watch two bits of foam flowing side by side at the bottom of 
a waterfall. What can you guess about how close they were at the 
top? Nothing. As far as standard physics was concerned, God 
might just as well have taken ali those water molecules under the 
table and shuffled them personally. Traditionally, when physicists 
saw complex results, they looked for complex causes. When they 
saw a random relationship between what goes into a system and 
what comes out, they assumed that they would have to build 
randomness into any realistic theory, by artificially adding noise 
or error. The modern study of chaos began with the creeping 
realization in the 1960s that quite simple mathematical equations 
could model systems every bit as violent as a waterfall. Tiny dif
ferences in input could quickly become overwhelming differences 
in output-a phenomenon given the name "sensitive dependence 
on initial conditions." In weather, for example, this translates into 
what is only half-jokingly known as the Butterfly Effect-the na
tion that a butterfly stirring the air today in Peking can transform 
storm systems next month in New York. 

When the explorers of chaos began to think back on the ge
nealogy of their new science, they found many intellectual trails 
from the past. But one stood out clearly. For the young physicists 
and mathematicians leading the revolution, a starting point was 
the Butterfly Effect. 



The Butterfly 

Effect 

Physicists like to think that all you have to do is say, 

these are the conditions, now what happens next? 

-RICHARD P. FEYNMAN 



THE SUN BEAT DOWN through a sky that had never seen clouds. 
The winds swept across an earth as smooth as glass. Night never 
came, and autumn never gave way to winter. It never rained. The 
simulated weather in Edward Lorenz's new electronic computer 
changed slowly but certainly, drifting through a permanent dry 
midday midseason, as if the world had tumed into Camelot, or 
some particularly bland version of southem Califomia. 

Outside his window Lorenz could watch real weather, the 
early-moming fog creeping along the Massachusetts Institute of 
Technology campus or the low clouds slipping over the rooftops 
from the Atlantic. Fog and clouds never arose in the model running 
on his computer. The machine, a Royal McBee, was a thicket of 
wiring and vacuum tubes that occupied an ungainly portion of 
Lorenz's office, made a surprising and irritating noise, and broke 
down every week or so. It had neither the speed nor the memory 
to manage a realistic simulation of the earth's atmosphere and 
oceans. Yet Lorenz created a toy weather in 1960 that succeeded 
in mesmerizing his colleagues. Every minute the machine marked 
the passing of a day by printing a row of numbers across a page. 
If you knew how to read the printouts, you would see a prevailing 
westerly wind swing now to the north, now to the south, now 
back to the north. Digitized cyclones spun slowly around an ideal
ized globe. As word spread through the department, the other 
meteorologists would gather around with the graduate students, 
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making hets on what Lorenz's weather would do next. Somehow, 
nothing ever happened the same way twice. 

Lorenz enjoyed weather-hy no means a prerequisite for a 
research meteorologist. He savored its changeahility. He appre
ciated the patterns that come and go in the atmosphere, families 
of eddies and cyclones, always oheying mathematical rules, yet 
never repeating themselves. When he looked at clouds, he thought 
he saw a kind of structure in them. Once he had feared that study
ing the science of weather would he like prying a jack-in-the-hox 
apart with a screwdriver. Now he wondered whether science would 
he ahle to penetrate the magic at all. Weather had a flavor that 
could not he expressed hy talking ahout averages. The daily high 
temperature in Cambridge, Massachusetts, averages 75 degrees in 
June. The number of rainy days in Riyadh, Saudi Arabia, averages 
ten a year. Those were statistics. The essence was the way patterns 
in the atmosphere changed over time, and that was what Lorenz 
captured on the Royal McBee. 

He was the god of this machine universe, free to choose the 
laws of nature as he pleased. After a certain amount of undivine 
trial and error, he chose twelve. They were numerical rules
equations that expressed the relationships hetween temperature 
and pressure, hetween pressure and wind speed. Lorenz under
stood that he was putting into practice the laws of Newton, ap
propriate tools for a clockmaker deity who could create a world 
and set it running for eternity. Thanks to the determinism of phys-
ical law, further intervention would then he unnecessary. Those 
who made such models took for granted that, from present to 
future, the laws of motion provide a hridge of mathematical cer
tainty. Understand the laws and you understand the universe. That 
was the philosophy behind modeling weather on a computer. 

Indeed, if the eighteenth-century philosophers imagined their 
creator as a benevolent noninterventionist, content to remain be
hind the scenes, they might have imagined someone like Lorenz. 
He was an odd sort of meteorologist. He had the worn face of a 
Yankee farmer, with surprising bright eyes that made him seem 
to he laughing whether he was or not. He seldom spoke about 
himself or his work, but he listened. He often lost himself in a 
realm of calculation or dreaming that his colleagues found inac-
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cessible. His closest friends felt that Lorenz spent a good deal of 
his time off in a remote outer space. 

As a boy he had been a weather bug, at least to the extent of 
keeping close tabs on the max-min thermometer recording the 
days' highs and lows outside his parents' house in West Hartford, 
Connecticut. But he spent more time inside playing with math
ematical puzzle books than watching the thermometer. Sometimes 
he and his father would work out puzzles together. Once they 
came upon a particularly difficult problem that turned out to he 
insoluble. That was acceptable, his father told him: you can always 
try to solve a problem by proving that no solution exists. Lorenz 
liked that, as he always liked the purity of mathematics, and when 
he graduated from Dartmouth College, in 1938, he thought that 
mathematics was his calling. Circumstance interfered, however, 
in the form of World War II, which put him to work as a weather 
forecaster for the Army Air Corps. After the war Lorenz decided 
to stay with meteorology, investigating the theory of it, pushing 
the mathematics a little further forward. He made a name for 
himself by publishing work on orthodox problems, such as the 
general circulation of the atmosphere. And in the meantime he 
continued to think about forecasting. 

To most serious meteorologists, forecasting was less than sci
ence. It was a seat-of-the-pants business performed by technicians 
who needed some intuitive ability to read the next day's weather 
in the instruments and the clouds. It was guesswork. At centers 
like M.I.T., meteorology favored problems that had solutions. Lor
enz understood the messiness of weather prediction as well as 
anyone, having tried it firsthand for the benefit of military pilots, 
but he harbored an interest in the problem-a mathematical in
terest. 

Not only did meteorologists scorn forecasting, but in the 1960s 
virtually ali serious scientists mistrusted computers. These souped
up calculators hardly seemed like tools for theoretical science. So 
numerical weather modeling was something of a bastard problem. 
Yet the time was right for it. Weather forecasting had been waiting 
two centuries for a machine that could repeat thousands of cal
culations over and over again by brute force. Only a computer 
could cash in the Newtonian promise that the world unfolded 
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along a deterministic path, rule-bound like the planets, predictable 
like eclipses and tides. In theory a computer could let meteorol
ogists do what astronomers had been able to do with pencil and 
slide rule: reckon the future of their universe from its initial con
ditions and the physical laws that guide its evolution. The equa
tions describing the motion of air and water were as well known 
as those describing the motion of planets. Astronomers did not 
achieve perfection and never would, not in a solar system tugged 
by the gravities of nine planets, scores of moons and thousands 
of asteroids, but calculations of planetary motion were so accurate 
that people forgot they were forecasts. When an astronomer said, 
"Comet Halley will be back this way in seventy-six years," it 
seemed like fact, not prophecy. Deterministic numerical fore
casting figured accurate courses for spacecraft and missiles. Why 
not winds and clouds? 

Weather was vastly more complicated, but it was govemed 
by the same laws. Perhaps a powerful enough computer could be 
the supreme intelligence imagined by Laplace, the eighteenth
century philosopher-mathematician who caught the Newtonian 
fever like no one else: "Such an intelligence," Laplace wrote, 
"would embrace in the same formula the movements of the great
est bodies of the universe and those of the lightest atom; for it, 
nothing would be uncertain and the future, as the past, would be 
present to its eyes." ln these days of Einstein's relativity and Hei
senberg's uncertainty, Laplace seems almost buffoon-like in his 
optimism, but much of modem science has pursued his dream. 
Implicitly, the mission of many twentieth-century scientists-bi
ologists, neurologists, economists-has been to break their uni
verses down into the simplest atoms that will obey scientific rules. 
In all these sciences, a kind of Newtonian determinism has been 
brought to bear. The fathers of modem computing always had 
Laplace in mind, and the history of computing and the history of 
forecasting were intermingled ever since John von Neumann de
signed his first machines at the Institute for Advanced Study in 
Princeton, New Jersey, in the 1950s. Von Neumann recognized 
that weather modeling could be an ideal task for a computer. 

There was always one small compromise, so small that work
ing scientists usually forgot it was there, lurking in a comer of 
their philosophies like an unpaid bill. Measurements could never 



The Butterfly Effect 15 

he perfect. Scientists marching under Newton's hanner actually 
waved another flag that said something like this: Given an ap
proximate knowledge af a system's initial conditions and an un
derstanding af natural law, ane can calculate the approximate 
hehavior of the system. This assumption lay at the philosophical 
heart of science. As ane theoretician liked ta tel1 his students: 
"The hasic idea af Western science is that you don't have ta take 
into account the falling af a leaf on some planet in another galaxy 

when you're trying ta account for the motion af a hilliard hall on 
a pool tahle on earth. Very small influences can he neglected. 
There's a convergence in the way things work, and arhitrarily 
small influences don't hlow up ta have arhitrarily large effects." 
Classically, the helief in approximation and convergence was well 
justified. It worked. A tiny error in fixing the position of Comet 
Halley in 1910 would only cause a tiny error in predicting its 
arrival in 1986, and the error would stay small for millions af 
years ta come. Computers rely on the same assumption in guiding 
spacecraft: approximately accurate input gives approximately ac
curate output. Economic forecasters rely on this assumption, though 
their success is less apparent. So did the pioneers in glohal weather 
forecasting. 

With his primitive computer, Lorenz had hoiled weather down 
ta the harest skeleton. Yet, line hy line, the winds and temperatures 
in Lorenz's printouts seemed ta hehave in a recognizahle earthly 
way. They matched his cherished intuition ahout the weather, his 
sense that it repeated itself, displaying familiar patterns over time, 
pressure rising and falling, the airstream swinging north and south. 
He discovered that when a line went from high ta low without 
a hump, a douhle hump would come next, and he said, "That's 
the kind af rule a forecaster could use." But the repetitions were 
never quite exact. There was pattern, with disturhances. An or
derly disorder. 

Ta make the patterns plain ta see, Lorenz created a primitive 
kind af graphics. Instead af just printing out the usual Iines af 
digits, he would have the machine print a certain numher af hlank 
spaces followed hy the letter a. He would pick ane variahle
perhaps the direction af the airstream. Gradually the a's marched 
down the roll of paper, swinging hack and forth in a wavy line, 
making a long series of hills and valleys that represented the way 
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the west wind would swing north and south across the continent. 
The orderliness of it, the recognizable cycles coming around again 
and again but never twice the same way, had a hypnotic fasci
nation. The system seemed slowly to he revealing its secrets to 
the forecaster's eye. 

One day in the winter of 1961, wanting to examine ane se
quence at greater length, Lorenz took a shortcut. Instead of starting 
the whole run over, he started midway through. To give the ma
chine its jnitial conditions, he typed the numbers straight from 
the earliel printout. Then he walked down the hall to get away 
from the noise and drink a cup of coffee. When he returned an 
hour later, he saw something unexpected, something that planted 
a seed for a new science. 

THIS NEW RUN should have exactly duplicated the old. Lorenz 
had copied the numbers into the machine himself. The program 
had not changed. Yet as he stared at the new printout, Lorenz saw 
his weather diverging so rapidly from the pattern of the last run 
that, within just a few months, all resemblance had disappeared. 
He looked at ane set of numbers, then back at the other. He might 
as well have chosen two random weathers out of a hat. His first 
thought was that another vacuum tube had gone bad. 

Suddenly he realized the truth. There had been no malfunc
tion. The problem lay in the numbers he had typed. In the com-• 
puter's memory, six decimal places were stored: .506127. On the 
printout, to save space, just three appeared: .506. Lorenz had en
tered the shorter, rounded-off numbers, assuming that the differ
ence-one part in a thousand-was inconsequential. 

It was a reasonable assumption. If a weather satellite can read 
ocean-surface temperature to within ane part in a thousand, its 
operators consider themselves lucky. Lorenz's Royal McBee was 
implementing the classical program. It used a purely deterministic 
system of equations. Given a particular starting point, the weather 
would unfold exactly the same way each time. Given a slightly 
different starting point, the weather should unfold in a slightly 
different way. A small numerical error was like a small puff of 
wind-surely the small puffs faded or canceled each other out 
before they could change important, large-scale features of the 
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How TWO WEATHER PATI'ERNS DIVERGE. From nearly the same starting 
point, Edward Lorenz saw his computer weather produce patterns that 
grew farther and farther apart until all resemblance disappeared. (From 
Lorenz's 1961 printouts.) 

weather. Yet in Lorenz's particular system af equations, small 
errors proved catastrophic. 

He decided ta look more closely at the way two nearly iden
tical runs af weather fl.owed apart. He copied ane af the wavy 
Iines af output anto a transparency and laid it over the ather, ta 
inspect the way it diverged. First, two humps matched detail for 
detail. Then ane line began ta lag a hairsbreadth behind. By the 
time the two runs reached the next hump, they were distinctly 
aut af phase. By the third or fourth hump, all similarity had van
ished. 

It was anly a wobble from a clumsy computer. Lorenz cauld 
have assumed something was wrong with his particular machine 
ar his particular madel-probably should have assumed. It was 
not as though he had mixed sodium and chlorine and got gold. 
But for reasons of mathematical intuition that his colleagues would 
begin to understand anly later, Lorenz felt a joit: something was 
philasophically out of joint. The practical import could be stag
gering. Although his equations were gross parodies af the earth's 
weather, he had a faith that they captured the essence af the real 
atmosphere. That first day, he decided that long-range weather 
forecasting must be doomed. 
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"We certainly hadn't heen successful in doing that anyway 
and now we had an excuse," he said. "I think one of the reasons 
people thought it would he possihle to forecast so far ahead is that 
there are real physical phenomena for which one can do an ex
cellent joh of forecasting, such as eclipses, where the dynamics 
of the sun, moon, and earth are fairly complicated, and such as 
oceanic tides. I never used to think of tide forecasts as prediction 
at all-1 used to think of them as statements of fact-hut of course, 
you are predicting. Tides are actually just as complicated as the 
atmosphere. Both have periodic components-you can predict 
that next summer will he warmer than this winter. But with weather 
we take the attitude that we knew that already. With tides, it's 
the predictahle part that we're interested in, and the unpredictahle 
part is small, unless there's a storm. 

"The average person, seeing that we can predict tides pretty 
well a few months ahead would say, why can't we do the same 
thing with the atmosphere, it's just a different fluid system, the 
laws are ahout as complicated. But I realized that any physical 
system that hehaved nonperiodically would he unpredictahle. " 

THE FlITIES AND SIXTIES were years of unreal optimism ahout 
weather forecasting. Newspapers and magazines were filled with 
hope for weather science, not just for prediction hut for modifi
cation and control. Two technologies were maturing together, the 
digital computer and the space satellite. An international program 
was heing prepared to take advantage of them, the Glohal Atmos
phere Research Program. There was an idea that human society 
would free itself from weather's turmoil and hecome its master 
instead of its victim. Geodesic domes would cover cornfields. 
Airplanes would seed the clouds. Scientists would learn how to 
make rain and how to stop it. 

The intellectual father of this popular notion was Von Neu
mann, who huilt his first computer with the precise intention, 
among other things, of controlling the weather. He surrounded 
himself with meteorologists and gave hreathtaking talks ahout his 
plans to the general physics community. He had a specific math
ematical reason for his optimism. He recognized that a compli
cated dynamical system could have points of instahility-critical 
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points where a small push can have large consequences, as with 
a ball balanced at the top of a hill. With the computer up and 
running, Von Neumann imagined that scientists would calculate 
the equations of fluid motion for the next few days. Then a central 
committee of meteorologists would send up airplanes to lay down 
smoke screens or seed clouds to push the weather into the desired 
mode. But Von Neumann had overlooked the possibility of chaos, 
with instability at eve:ry point. 

By the 1980s a vast and expensive bureaucracy devoted itself 
to carrying out Von Neumann's mission, or at least the prediction 
part of it. America's premier forecasters operated out of an una
domed cube of a building in suburban Maryland, near the Wash
ington beltway, with a spy's nest of radar and radio antennas on 
the roof. Their supercomputer ran a model that resembled Lorenz's 
only in its fundamental spirit. Where the Royal McBee could carry 
out sixty multiplications each second, the speed of a Control Data 
Cyber 205 was measured . in megaflops, millions of floating-point 
operations per second. Where Lorenz had been happy with twelve 
equations, the modem global model calculated systems of 500,000 
equations. The model understood the way moisture moved heat 
in and out of the air when it condensed and evaporated. The digital 
winds were shaped by digital mountain ranges. Data poured in 
hourly from every nation on the globe, from airplanes, satellites, 
and ships. The National Meteorological Center produced the world's 
second best forecasts. 

The best came out of Reading, England, a small college town 
an hour's drive from London. The European Centre for Medium 
Range Weather Forecasts occupied a modest tree-shaded building 
in a generic United Nations style, modem brick-and-glass archi
tecture, decorated with gifts from many lands. It was built in the 
heyday of the all-European Common Market spirit, when most of 
the nations of westem Europe decided to pool their talent and 
resources in the cause of weather prediction. The Europeans at
tributed their success to their young, rotating staff-no civil ser
vice-and their Cray supercomputer, which always seemed to he 
one model ahead of the American counterpart. 

Weather forecasting was the beginning but hardly the end of 
the business of using computers to model complex systems. The 
same techniques served many kinds of physical scientists and 
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social scientists hoping to make predictions about everything from 
the small-scale fluid flows that concerned propeller designers to 
the vast financial flows that concerned economists. Indeed, by the 
seventies and eighties, economic forecasting by computer bore a 
real resemblance to global weather forecasting. The models would 
churn through complicated, somewhat arbitrary webs of equa
tions, meant to turn measurements of initial conditions-atmos
pheric pressure or money supply-into a simulation of future 
trends. The programmers hoped the results were not too grossly 
distorted by the many unavoidable simplifying assumptions. If a 
model did anything too obviously bizarre-flooded the Sahara or 
tripled interest rates-the programmers would revise the equa
tions to bring the output back in line with expectation. ln practice, 
econometric models proved dismally blind to what the future 
would bring, but many people who should have known better 
acted as though they believed in the results. Forecasts of economic 
growth or unemployment were put forward with an implied pre
cision of two or three decimal places. Governments and financial 
institutions paid for such predictions and acted on them, perhaps 
out of necessity or for want of anything better. Presumably they 
knew that such variables as "consumer optimism" were not as 
nicely measurable as "humidity" and that the perfect differential 
equations had not yet been written for the movement of politics 
and fashion. But few realized how fragile was the very process of 
modeling flows on computers, even when the data was reasonably 
trustworthy and the laws were purely physical, as in weather 
forecasting. 

Computer modeling had indeed succeeded in changing the 
weather business from an art to a science. The European Centre's 
assessments suggested that the world saved billions of dollars each 
year from predictions that were statistically better than nothing. 
But beyond two or three days the world's best forecasts were 
speculative, and beyond six or seven they were worthless. 

The Butterfly Effect was the reason. For small pieces of 
weather-and to a global forecaster, small can mean thunder
storms and blizzards-any prediction deteriorates rapidly. Errors 
and uncertainties multiply, cascading upward through a chain of 
turbulent features, from dust devils and squalls up to continent
size eddies that only satellites can see. 
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The modern weather models work with a grid of points on 
the order of sixty miles apart, and even so, some starting data has 
to he guessed, since ground stations and satellites cannot see 
everywhere. But suppose the earth could he covered with sensors 
spaced one foot apart, rising at one-foot intervals ali the way to 
the top of the atmosphere. Suppose every sensor gives perfectly 
accurate readings of temperature, pressure, humidity, and any 
other quantity a meteorologist would want. Precisely at noon an 
infinitely powerful computer takes all the data and calculates what 

· will happen at each point at 12 :01, then 12 :02, then 12 :03 . . .  
The computer will still he unable to predict whether Prince

ton, New Jersey, will have sun or rain on a day one month away. 
At noon the spaces between the sensors will hide fluctuations 
that the computer will not know about, tiny deviations from the 
average. By 12 :01, those fluctuations will already have created 
small errors one foot away. Soon the errors will have multiplied 
to the ten-foot scale, and so on up to the size of the globe. 

Even for experienced meteorologists, ali this runs against in
tuition. One of Lorenz's oldest friends was Robert White, a fellow 
meteorologist at M.I.T. who later became head of the National 
Oceanic and Atmospheric Administration. Lorenz told him about 
the Butterfly Effect and what he felt it meant for long-range pre
diction. White gave Von Neumann's answer. "Prediction, noth
ing," he said. "This is weather control."  His thought was that 
small modifications, well within human capability, could cause 
desired large-scale changes. 

Lorenz saw it differently. Yes, you could ,change the weather. 
You could make it do something different from what it would 
otherwise have done. But if you did, then you would never know 
what it would otherwise have done. It would he like giving an 
extra shuffle to an already well-shuffled pack of cards. You know 
it will change your luck, but you don't know whether for better 
or worse. 

LORENZ'S DISCOVERY WAS AN ACCIDENT, one more in a line 
stretching back to Archimedes and his bathtub. Lorenz never was 
the type to shout Eureka. Serendipity merely led him to a place 
he had been all along. He �as ready to explore the consequences 
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of his discovery by working out what it must mean for the way 
science understood flows in all kinds of fluids. 

Had he stopped with the Butterfly Effect, an image of pre
dictability giving way to pure randomness, then Lorenz would 
have produced no more than a piece of very bad news. But Lorenz 
saw more than randomness embedded in his weather model. He 
saw a fine geometrical structure, order masquerading as random
ness. He was a mathematician in meteorologist's clothing, after 
all, and now he began to lead a double life. He would write papers 
that were pure meteorology. But he would also write papers that 
were pure mathematics, with a slightly misleading dose of weather 
talk as preface. Eventually the prefaces would disappear alto
gether. 

He tumed his attention more and more to the mathematics of 
systems that never found a steady state, systems that almost re
peated themselves but never quite succeeded. Everyone knew that 
the weather was such a system-aperiodic. Nature is full of others: 
animal populations that rise and fall almost regularly, epidemics 
that come and go on tantalizingly near-regular schedules. If the 
weather ever did reach a state exactly like one it had reached 
before, every gust and cloud the same, then presumably it would 
repeat itself forever after and the problem of forecasting would 
become trivial. 

Lorenz saw that there must he a link between the unwilling
ness of the weather to repeat itself and the inability of forecasters 
to predict it-a link between aperiodicity and unpredictability. It 
was not easy to find simple equations that would produce the 
aperiodicity he was seeking. At first his computer tended to lock 
into repetitive cycles. But Lorenz tried different sorts of minor 
complications, and he finally succeeded when he put in an equa
tion that varied the amount of heating from east to west, corre
sponding to the real-world variation between the way the sun 
warms the east coast of North America, for example, and the way 
it warms the Atlantic Ocean. The repetition disappeared. 

The Butterfly Effect was no accident; it was necessary. Sup
pose small perturbations remained small, he reasoned, instead of 
cascading upward through the system. Then when the weather 
came arbitrarily close to a state it had passed through before, it 
would stay arbitrarily close to the patterns that followed. For 
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practical purposes, the cycles would he predictable-and even
tually uninteresting. To produce the rich repertoire of real earthly 
weather, the beautiful multiplicity of it, you could hardly wish 
for anything better than a Butterfly Effect. 

The Butterfly Effect acquired a technical name: sensitive de
pendence on initial conditions. And sensitive dependence on in
itial conditions was not an altogether new notion. It had a place 
in folklore: 

"For want of a nail, the shoe was lost; 
For want of a shoe, the horse was lost; 
For want of a horse, the rider was lost; 
For want of a rider, the battle was lost; 
For want of a battle, the kingdom was lost!" 

In science as in life, it is well known that a chain of events 
can have a point of crisis that could magnify small changes. But 
chaos meant that such points were everywhere. They were per
vasive. In systems like the weather, sensitive dependence on 
initial conditions was an inescapable consequence of the way 
small scales intertwined with large. 

His colleagues were astonished that Lorenz had mimicked 
both aperiodicity and sensitive dependence on initial conditions 
in his toy version of the weather: twelve equations, calculated 
over and over again with ruthless mechanical efficiency. How 
could such richness, such unpredictability-such chaos-arise 
from a simple deterministic system? 

LORENZ PUT THE WEATHER ASIDE and looked for even simpler 
ways to produce this complex behavior. He found one in a system 
of just three equations. They were nonlinear, meaning that they 
expressed relationships that were not strictly proportional. Linear 
relationships can he captured with a straight line on a graph. 
Linear relationships are easy to think about: the more the merrier. 
Linear equations are solvable, which makes them suitable for text
books. Linear systems have an important modular virtue: you can 
take them apart, and put them together again-the pieces add up. 

Nonlinear systems generally cannot he solved and cannot he 
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added together. 1n fluid systems and mechanical systems, the non
linear terms tend to he the features that people want to leave out 
when they try to get a good, simple understanding. Friction, for 
example. Without friction a simple linear equation expresses the 
amount of energy you need to accelerate a hockey puck. With 
friction the relationship gets complicated, because the amount of 
energy changes depending on how fast the puck is already moving. 
Nonlinearity means that the act of playing the game has a way of 
changing the rules. Y ou cannot assign a constant importance to 
friction, hecause its importance depends on speed. Speed, in turn, 
depends on friction. That twisted changeability makes nonline
arity hard to calculate, but it also creates rich kinds of hehavior 
that never occur in linear systems. In fluid dynamics, everything 
hoils down to one canonical equation, the Navier-Stokes equation. 
It is a miracle of hrevity, relating a fluid's velocity, pressure, den
sity, and viscosity, but it happens to he nonlinear. So the nature 
of those relationships often becomes impossihle to pin down. Ana
lyzing the hehavior of a nonlinear equation like the Navier-Stokes 
equation is like walking through a maze whose walls rearrange 
themselves with each step you take. As Von Neumann himself 
put it: "The character of the equation . .. changes simultaneously 
in ali relevant respects: Both order and degree change. Hence, bad 
mathematical difficulties must he expected." The world would he 
a different place-and science would not need chaos-if only the 
Navier-Stokes equation did not contain the demon of nonlinearity. 

A particular kind of fluid motion inspired Lorenz' s three equa
tions: the rising of hot gas or liquid, known as convection. ln the 
atmosphere, convection stirs air heated by the sun-haked earth, 
and shimmering convective waves rise ghost-like above hot tat 
and radiators. Lorenz was just as happy talking ahout convection 
in a cup of hot coffee. As he put it, this was just one of the 
innumerahle hydrodynamical processes in our universe whose 
future hehavior we might wish to predict. How can we calculate 
how quickly a cup of coffee will cool? If the coffee is just warm, 
its heat will dissipate without any hydrodynamic motion at ali. 
The coffee remains in a steady state. But if it is hot enough, a 
convective overturning will hring hot coffee from the hottom of 
the cup up to the cooler surface. Convection in coffee hecomes 
plainly visihle when a little cream is drihhled into the cup. The 
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swirls can he complicated. But the long-term destiny of such a 
system is ohvious. Because the heat dissipates, and hecause fric
tion slows a moving fluid, the motion must come to an inevitahle 
stop. Lorenz drily told a gathering of scientists, "We might have 
trouhle forecasting the temperature of the coffee one minute in 
advance, hut we should have little difficulty in forecasting it an 
hour ahead." The equations of motion that govem a cooling cup 
of coffee must reflect the system's destiny. They must he dissi
pative. Temperature must head for the temperature of the room, 
and velocity must head for zero. 

Lorenz took a set of equations for convection and stripped it 
to the hone, throwing out everything that could possihly he ex
traneous, making it unrealistically simple. Almost nothing re
mained of the original model, hut he did leave the nonlinearity. 
To the eye of a physicist, the equations looked easy. You would 
glance at them-many scientists did, in years to come-and say, 
I could solve that. 

"Yes," Lorenz said quietly, "there is a tendency to think that 
when you see them. There are some nonlinear terins in them, hut 

A ROLLING num. When a liquid or gas is heated from below, the fluid 
tends to organize itself into cylindrical rolls (left) . Hot fluid rises on one 
side, loses heat, and descends on the other side-the process of convec
tion. When the heat is turned up further (right) , an instability sets in, and 
the rolls develop a wobble that moves back and forth along the length of 
the cylinders. At even higher temperatures,  the flow becomes wild and 
turbulent. 
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you think there must he a way to get around them. But you just 
can't." 

The simplest kind of texthook convection takes place in a cell 
of fluid, a hox with a smooth hottom that can he heated and a 
smooth top that can he cooled. The temperature difference he
tween the hot hottom and the cool top controls the flow. If the 
difference is small, the system remains still. Heat moves toward 
the top hy conduction, as if through a har of metal, without over
coming the natural tendency of the fluid to remain at rest. Fur
thermore, the system is stahle. Any random motions that might 
occur when, say, a graduate student knocks into the apparatus 
will tend to die out, returning the system to its steady state. 

Tum up the heat, though, and a new kind of hehavior de
velops. As the fluid undemeath hecomes hot, it expands. As it 
expands, it hecomes less dense. As it hecomes less dense, it he
comes lighter, enough to overcome friction, and it pushes up to
ward the surface. In a carefully designed hox, a cylindrical roll 
develops, with the hot fluid rising around one side and cool fluid 
sinking down around the other. Viewed from the side, the motion 
makes a continuous circle. Out of the lahoratory, too, nature often 
makes its own convection cells. When the sun heats a desert floor, 
for example, the rolling air can shape shadowy patterns in the 
clouds above or the sand helow. 

Tum up the heat even more, and the hehavior grows more 
complex. The rolls hegin to wohhle. Lorenz's pared-down equa
tions were far too simple to model that sort of complexity. They 
ahstracted just one feature of real-world convection: the circular 
motion of hot fluid rising up and around like a Ferris wheel. The 
equations took into account the velocity of that motion and the 
transfer of heat. Those physical processes interacted. As any given 
hit of hot fluid rose around the circle, it would come into contact 
with cooler fluid and so begin to lose heat. If the circle was moving 
fast enough, the hall of fluid would not lose all its extra heat hy 
the time it reached the top and started swinging down the other 
side of the roll, so it would actually hegin to push hack against 
the momentum of the other hot fluid coming up hehind it. 

Although the Lorenz system did not fully model convection, 
it did tum out to have exact analogues in real systems. For ex
ample, his equations precisely descrihe an old-fashioned electri-
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THE LORENZIAN WATERWHEEL. The first, famous chaotic system discovered 
by Edward Lorenz corresponds exactly to a mechanical device: a water
wheel. This simple device proves capable of surprisingly complicated 
behavior. 

The rotation of the waterwheel shares some of the properties of the 
rotating cylinders of fluid in the process of convection. The waterwheel 
is like a slice through the cylinder. Both systems are driven steadily
by water or by heat-and both dissipate energy. The fluid loses heat; the 
buckets lose water. ln both systems, the long-term behavior depends on 
how hard the driving energy is. 

Water pours in from the top at a steady rate. If the flow of water in 
the waterwheel is slow, the top bucket never fills up enough to overcome 
friction, and the wheel never starts tuming. (Similarly, in a fluid, if the 
heat is too low to overcome viscosity, it will not set the fluid in motion.) 

If the flow is faster, the weight of the top bucket sets the wheel in 
motion (le�). The waterwheel can settle into a rotation that continues at 
a steady rate (center). 

But if the flow is faster still (right), the spin can become chaotic, 
because of nonlinear effects built into the system. As buckets pass under 
the flowing water, how much they fill depends on the speed of spin. If 
the wheel is spinning rapidly, the buckets have little time to fill up. 
(Similarly, fluid in a fast-turning convection roll has little time to absorb 
heat.) Also, if the wheel is spinning rapidly, buckets can start up the 
other side before they have time to empty. As a result, heavy buckets on 
the side moving upward can cause the spin to slow down and then 
reverse. 

In fact, Lorenz discovered, over long periods, the spin can reverse 
itself many times, never settling down to a steady rate and never repeating 
itself in any predictable pattem. 
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cal dynamo, the ancestor of modern generators, where current 
flows through a disc that rotates through a magnetic field. Under 
certain conditions the dynamo can reverse itself. And some sci
entists, after Lorenz's equations became better known, suggested 
that the behavior of such a dynamo might provide an explana
tion for another peculiar reversing phenomenon: the earth's mag
netic field. The "geodynamo " is known to have flipped many times 
during the earth's history, at intervals that seem erratic and inex
plicable. Faced with such irregularity, theorists typically look 
for explanations outside the system, proposing such causes 
as meteorite strikes. Yet perhaps the geodynamo contains its own 
chaos. 

Another system precisely described by the Lorenz equations 
is a certain kind of water wheel, a mechanical analogue of the 
rotating circle of convection. At the top, water drips steadily into 
containers hanging on the wheel's rim. Each container leaks stead
ily from a small hole. If the stream of water is slow, the top con
tainers never fill fast enough to overcome friction, but if the stream 
is faster, the weight starts to turn the wheel. The rotation might 
become continuous. Or if the stream is so fast that the heavy 
containers swing all the way around the bottom and start up the 
other side, the wheel might then slow, stop, and reverse its ro
tation, turning first one way and then the other. 

THE LORENZ ATIRACTOR (on facing page). This magical image, resembling 
an owl's mask or buttertly's wings, became an emblem for the early ex
plorers of chaos. It revealed the fine structure hidden within a disorderly 

- stream of data. Traditionally, the changing values of any one variable 
could he displayed in a so-called time series (top) .  To show the changing 
relationships among three variables required a different technique. At 
any instant in time, the three variables fix the location of a point in three
dimensional space; as the system changes, the motion of the point rep
resents the continuously changing variables. 

Because the system never exactly repeats itself, the trajectory never 
intersects itself. Instead it loops around and around forever. Motion on 
the attractor is abstract, but it conveys the flavor of the motion of the real 
system. For example, the crossover from one wing of the attractor to the 
other corresponds to a reversal in the direction of spin of the waterwheel 
or convecting fluid. 
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A physicist's intuition about such a simple mechanical sys
tem-his pre-chaos intuition-tells him that over the long term, 
if the stream of water never varied, a steady state would evolve. 
Either the wheel would rotate steadily or it would oscillate stead
ily back. and forth, turning 6.rst in one direction and then the other 
at constant intervals. Lorenz found otherwise. 

Three equations, with three variables, completely described 
the motion of this system. Lorenz's computer printed out out the 
changing values of the three variables: 0-10-0; 4-12-0; 9-20-0; 
1 6-36-2; 30-66-7; 54-1 15-24 ; 93-1 92-74. The three numbers 
rose and then fell as imaginary time intervals ticked by, 6.ve time 
steps, a hundred time steps, a thousand. 

To make a picture from the data, Lorenz used each set of three 
numbers as coordinates to specify the location of a point in three
dimensional space. Thus the sequence of numbers produced a 
sequence of points tracing a continuous path, a record of the sys
tem's behavior. Such a path might lead to• one place and stop, 
meaning that the system had settled down to a steady state, where 
the variables for speed and temperature were no longer changing. 
Or the path might form a loop, going around and around, meaning 
that the system had settled into a pattem of behavior that would 

" repeat itself periodically. 
Lorenz's system did neither. lnstead, the map displayed a kind 

of infinite complexity. It always stayed within certain bounds, 
never running off the page but never repeating itself, either. It 
traced a strange, distinctive shape, a kind of double spiral in three 
dimensions, like a butterfly with its two wings. The shape signaled 
pure disorder, since no point or pattem of points ever recurred. 
Yet it also signaled a new kind of order. 

YEARS LATER, PHYSICISTS would give wistful looks when they 
talked about Lorenz's paper on those equations-"that beautiful 
marvel of a paper." By then it was talked about as if it were an 
ancient scroll, preserving secrets of etemity-111 the thousands of 
articles that made up the technical literature of chaos, few were 
cited more often than "Deterministic Nonperiodic Flow." For years, 
no single ohjeet would inspire more illustrations, even motion 
pictures, than the mysterious curve depicted at the end, the double 
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spiral that became known as the Lorenz attractor. For the first 
time, Lorenz's pictures had shown what it meant to say, "This is 
complicated." All the richness of chaos was there. 

At the time, though, few could see it. Lorenz described it to 
Willem Malkus, a professor of applied mathematics at M.I.T., a 
gentlemanly scientist with a grand capacity for appreciating the 
work of colleagues. Malkus laughed and said, "Ed, we know-we 
know very well-that fluid convection doesn't do that at all." The 
complexity would surely he damped out, Malkus told him, and 
the system would settle down to steady, regular motion. 

"Of course, we completely missed the point," Malkus said a 
generation later-years after he had built a real Lorenzian water
wheel in his basement laboratory to show nonbelievers. "Ed wasn't 
thinking in terms of our physics at all. He was thinking in terms 
of some sort of generalized or abstracted model which exhibited 
behavior that he intuitively felt was characteristic of some aspects 
of the extemal world. He couldn't quite say that to us, though. It's 
only after the fact that we perceived that he must have held those 
views." 

Few laymen realized how tightly compartmentalized the sci
entific community had become, a battleship with bulkheads sealed 
against leaks. Biologists had enough to read without keeping up 
with the mathematics literature-for that matter, molecular bi
ologists had enough to read without keeping up with population 
biology. Physicists had better ways to spend their time than sifting 
through the meteorology joumals. Some mathematicians would 
have been excited to see Lorenz's discovery; within a decade, 
physicists, astronomers, and biologists were seeking something 
just like it, and sometimes rediscovering it for themselves. But 

- Lorenz was a meteorologist, and no one thought to look for chaos 
on page 130 of volume 20 of the Journal of the Atmospheric Sci
ences. 
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Of course, the entire effort is to put oneself 

Outside the ordinary range 

Of what are called statistics . 

-STEPHEN SPENDER 



THE HISTORIAN OF SCIENCE Thomas s. Kuhn describes a dis
turbing experiment conducted by a pair of psychologists in the 
1940s. Subjects were given glimpses of playing cards, one at a 
time, and asked to name them. There was a trick, of course. A few 
of the cards were freakish: for example, a red six of spades or a 
black queen of diamonds. 

At high speed the subjects sailed smoothly along. Nothing 
could have been simpler. They didn't see the anomalies at all. 
Shown a red six of spades, they would sing out either "six of 
hearts " or "six of spades. " But when the cards were displayed for 
longer intervals, the subjects started to hesitate. They became aware 
of a problem but were not sure quite what it was. A subject might 
say that he had seen something odd, like a red border around a 
black heart. 

Eventually, as the pace was slowed even more, most subjects 
would catch on. They would see the wrong cards and make the 
mental shift necessary to play the game without error. Not every
one, though. A few suffered a sense of disorientation that brought 
real pain. "I can't make that suit out, whatever it is," said one. 
"It didn't even look like a card that time. I don't know what color 
it is now or whether it's a spade or a heart. l'm not even sure what 
a spade looks like. My God! " 

Professional scientists, given brief, uncert�in glimpses of na
ture's workings, are no less vulnerable to anguish and confusion 
when they come face to face with incongruity. And incongruity, 

35 
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when it changes the way a scientist sees, makes possible the most 
important advances. So Kuhn argues, and so the story of chaos 
suggests. 

Kuhn's notions of how scientists work and how revolutions 
occur drew as much hostility as admiration when he first pub
lished them, in 1962, and the controversy has never ended. He 
pushed a sharp needle into the traditiona! view that science pro
gresses by the accretion of knowledge, each discovery adding to 
the last, and that new theories emerge when new experimental 
facts require them. He deflated the view of science as an orderly 
process of asking questions and finding their answers. He em
phasized a contrast between the bulk of what scientists do, work
ing on legitimate, well-understood problems within their disciplines, 
and the exceptional, unorthodox work that creates revolutions. 
Not by accident, he made scientists seem less than perfect ration
alists. 

1n Kuhn's scheme, normal science consists largely of mopping
up operations. Experimentalists carry out modified versions of 
experiments that have been carried out many times before. The
orists add a brick here, reshape a cornice there, in a wall of theory. 
It could hardly be otherwise. If all scientists had to begin from 
the beginning, questioning fundamental assumptions, they would 
be hard pressed to reach the level of technical sophistication nec
essary to do useful work. 1n Benjamin Franklin's time, the handful 
of scientists trying to understand electricity could choose their , 
own first principles-indeed, had to. One researcher might con
sider attraction to be the most important electrical effect, thinking 
of electricity as a sort of "effluvium " emanating from substances. 
Another might think of electricity as a fluid, conveyed by con
ducting materia!. These scientists could speak almost as easily to 
laymen as to each other, because they had not yet reached a stage 
where they could take for granted a common, specialized language 
for the phenomena they were studying. By contrast, a twentieth
century fluid dynamicist could hardly expect to advance knowl
edge in his field without first adopting a body of terminology and 
mathematical technique. In return, unconsciously, he would give 
up much freedom to question the foundations of his science. 

Central to Kuhn's ideas is the vision of normal science as 
solving problems, the kinds of problems that students learn the 
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first time they open their textbooks. Such probl�ms define an 
accepted style of achievement that carries most scientists through 
graduale school, through their thesis work, and through the writ
ing of joumal articles that makes up the body of academic careers. 
"Under normal conditions the research scientist is not an in
novator but a solver of puzzles, and the puzzles upon which 
he concentrates are just those which he believes can he both 
stated and solved within the existing scientifi.c tradition," Kuhn 
wrote. 

Then there are revolutions. A new science arises out of one 
that has reached a dead end. Often a revolution has an interdis
ciplinary character-its central discoveries often come from peo
ple straying outside the normal bounds of their specialties. The 
problems that obsess · these theorists are not recognized as legiti
mate Iines of inquiry. Thesis proposals are tumed down or articles 
are refused publication. The theorists themselves are not sure 
whether they would recognize an answer if they saw one. They 
accept risk to their careers. A few freethinkers working alone, 
unable to explain where they are heading, afraid even to tel1 their 
colleagues what they are doing-that romantic image lies at the 
heart of Kuhn's scheme, and it has occurred in real life, time and 
time again, in the exploration of chaos. 

Every scientist who tumed to chaos early had a story to tel1 
of discouragement or open hostility. Graduate students were warned 
that their careers could he jeopardized if they wrote theses in an 
untested discipline, in which their advisors had no expertise. A 
particle physicist, hearing about this new mathematics, might begin 
playing with it on his own, thinking it was a beautiful thing, both 
beautiful and hard-but would feel that he could never tel1 his 

- colleagues about it. Older professors felt they were suffering a 
kind of midlife crisis, gambling on a line of research that many 
colleagues were likely to misunderstand or resent. But they also 
felt an intellectual excitement that comes with the truly new. Even 
outsiders felt it, those who were attuned to it. To Freeman Dyson 
at the Institute for Advanced Study, the news of chaos came "like 
an electric shock" in the 1970s. Others felt that for the fi.rst time 
in their professional lives they were witnessing a true paradigm 
shift, a transformation in a way of thinking. 

Those who recognized chaos in the early days agonized over 
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how to shape their thoughts and findings into puhlishahle form. 
Work fell hetween disciplines-for example, too ahstract for phys
icists yet too experimental for mathematicians. To some the dif
ficulty of communicating the new ideas and the ferocious resistance 
from traditiona! quarters showed how revolutionary the new sci
ence was. Shallow ideas can he assimilated; ideas that require 
people to reorganize their picture of the world provoke hostility. 
A physicist at the Georgia Institute of Technology, Joseph Ford, 
started quoting Tolstoy: "I know that most men, including those 
at ease with prohlems of the greatest complexity, can seldom ac
cept even the simplest and most ohvious truth if it he such as 
would ohlige them to admit the falsity of conclusions which they 
have delighted in explaining to colleagues, which they have proudly 
taught to others, and which they have woven, thread hy thread, 
into the fahric of their lives."  

Many mainstream scientists remained only dimly aware of 
the emerging science. Some, particularly traditiona! fluid dyna
micists, actively resented it. At first, the claims made on hehalf 
of chaos sounded wild and unscientific. And chaos relied on math
ematics that seemed unconventional and difficult. 

As the chaos specialists spread, some departments frowned 
on these somewhat deviant scholars; others advertised for more. 
Some journals estahlished unwritten rules against suhmissions on 
chaos; other journals came forth to handle chaos exclusively. The 
chaoticists or chaologists (such coinages could he heard) turned 
up with disproportionate frequency on the yearly lists of important 
fellowships and prizes. By the middle of the eighties a process of 
academic diffusion had hrought chaos specialists into influential 
positions within university hureaucracies. Centers and institutes 
were founded to specialize in "nonlinear dynamics" and "com
plex systems." 

Chaos has hecome not just theory hut also method, not just a 
canon of heliefs hut also a way of doing science. Chaos has created 
its own technique of using computers , a technique that does not 
require the vast speed of Crays and Cyhers hut instead favors 
modest terminals that allow flexihle interaction. To chaos re
searchers , mathematics has hecome an experimental science, with 
the computer replacing lahoratories full of test tuhes and micro
scopes. Graphic images are the key. "It's masochism for a math-
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ematician to do without pictures,"  ane chaos specialist would say. 
"How can they see the relationship between that motion and this? 
How can they develop intuition?" Some carry out their work ex
plicitly denying that it is a revolution; others deliberately use 
Kuhn's language of paradigm shifts to describe the changes they 
witness. 

Stylistically, early chaos papers recalled the Benjamin Frank
lin era in the way they went back to first principles. As Kuhn 
notes, established sciences take for granted a body of knowledge 
that serves as a communal starting point for investigation. To avoid 
boring their colleagues, scientists routinely begin and end their 
papers with esoterica. By contrast, articles on chaos from the late 
1970s onward sounded evangelical, from their preambles to their 
perorations. They declared new credos, and they often ended with 
pleas for action. These results appear to us to be both exciting 
and highly provocative. A theoretical picture of the transition to 
turbulence is just beginning to emerge. The heart of chaos is math
ematically accessible. Chaos now presages the future as none will 
gainsay. But to accept the future, one must renounce much of the 
past. 

New hopes , new styles, and, most important, a new way of 
seeing. Revolutions do not come piecemeal. One account of nature 
replaces another. Old problems are seen in a new light and other 
problems are recognized for the first time. Something takes place 
that resembles a whole industry retooling for new production. In 
Kuhn's words, "It is rather as if the professional community had 
been suddenly transported to another planet where familiar ob
jects are seen in a different light and are joined by unfamiliar ones 
as well ." 

THE LABORATORY MOUSE of the new science was the pendu
lum: emblem of classical mechanics, exemplar of constrained ac
tion, epitome of clockwork regularity. A bob swings free at the 
end of a rad. What could he further removed from the wildness 
of turbulence? 

Where Archimedes had his bathtub and Newton his apple, 
so, according to the usual suspect legend, Galileo had a church 
lamp, swaying back and forth, time and again, on and on, sending 
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its message monotonously into his consciousness. Christian Huy
gens turned the predictability of the pendulum into a means of 
timekeeping, sending Westem civilization down a road from which 
there was no retum. Foucault, in the Pantheon of Paris, used a 
twenty-story-high pendulum to demonstrate the earth's rotation. 
Every clock and every wristwatch (until the era of vibrating quartz) 
relied on a pendulum of some size or shape. (For that matter, the 
oscillation of quartz is not so different.) In space, free of friction, 
periodic motion comes from the orbits of heavenly bodies, but on 
earth virtually any regular oscillation comes from some cousin of 
the pendulum. Basic electronic circuits are described by equations 
exactly the same as those describing a swinging bob. The elec
tronic oscillations are millions of times faster, but the physics is 
the same. By the twentieth century, though, classical mechanics 
was strictly a business for classrooms and routine engineering 
projects. Pendulums decorated science museums and enlivened 
airport gift shops in the form of rotating plastic "space balls." No 
research physicist bothered with pendulums. 

Yet the pendulum still had surprises in store. It became a 
touchstone, as it had for Galileo's revolution. When Aristotle looked 
at a pendulum, he saw a weight trying to head earthward but 
swinging violently back and forth because it was constrained by 
its rope. To the modern ear this sounds foolish. For someone 
hound by classical concepts of motion, inertia, and gravity, it is 
hard to appreciate the self-consistent world view that went with 
Aristotle's understanding of a pendulum. Physical motion, for 
Aristotle, was not a quantity or a force but rather a kind of change, 
just as a person's growth is a kind of change. A falling weight is 
simply seeking its most natural state, the state it will reach if left 
to itself. ln context, Aristotle's view made sense. When Galileo 
looked at a pendulum, on the other hand, he saw a regularity that 
could he measured. To explain it required a revolutionary way of 
understanding objects in motion. Galileo's advantage over the an
·cient Greeks was not that he had better data. On the contrary, his 
idea of timing a pendulum precisely was to get some friends to
gether to count the oscillations over a twenty-four-hour period
a labor-intensive experiment. Galileo saw the regularity because 
he already had a theory that predicted it. He understood what 
Aristotle could not: that a moving ohjeet tends to keep moving, 
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that a change in speed or direction could only he explained hy 
some external force, like friction. 

1n fact, so powerful was his theory that he saw a regularity 
that did not exist. He contended that a pendulum of a given length 
not only keeps precise time hut keeps the same time no matter 
how wide or narrow the angle of its swing. A wide-swinging pen
dulum has farther to travel, hut it happens to travel just that much 
faster. In other words, its period remains independent of its am
plitude. "If two friends shall set themselves to count the oscil
lations, one counting the wide ones and the other the narrow, they 
will see that they may count not just tens, hut even hundreds, 
without disagreeing hy even one, or part of one." Galileo phrased 
his claim in terms of experimentation, hut the theory made it 
convincing-so much so that it is still taught as gospel in most 
high school physics courses. But it is wrong. The regularity Galileo 
saw is only an approximation. The changing angle of the hoh's 
motion creates a slight nonlinearity in the equations. At low am
plitudes, the error is almost nonexistent. But it is there, and it is 
measurahle even in an experiment as crude as the one Galileo 
descrihes. 

Small nonlinearities were easy to disregard. People who con
duct experiments learn quickly that they live in an imperfect world. 
1n the centuries since Galileo and Newton, the search for regularity 
in experiment has heen fundamental. Any experimentalist looks 
for quantities that remain the same, or quantities that are zero. 
But that means disregarding hits of messiness that interfere with 
a neat picture. If a chemist finds two suhstances in a constant 
proportion of 2.001 one day, and 2 .003 the next day, and 1.998 
the day after, he would he a fool not to look for a theory that would 
explain a perfect two-to-one ratio. 

To get his neat results, Galileo also had to disregard nonlin
earities that he knew of: friction and air resistance. Air resistance 
is a notorious experimental nuisance, a complication that had to 
he stripped away to reach the essence of the new science of me
chanics. Does a feather fall as rapidly as a stone7 All experience 
with falling ohjects says no. The story of Galileo dropping halls 
off the tower of Pisa, as a piece of myth, is a story ahout changing 
intuitions hy inventing an ideal scientific world where regularities 
can he separated from the disorder of experience. 
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To separate the effects of gravity on a given mass from the 
effects of air resistance was a brilliant intellectual achievement. 
It allowed Galileo to close in on the essence of inertia and mo
mentum. Still, in the real world, pendulums eventually do exactly 
what Aristotle's quaint paradigm predicted. They stop. 

1n laying the groundwork for the next paradigm shift, phys
icists began to face up to what many believed was a deficiency in 
their education about simple systems like the pendulum. By our 
century, dissipative processes like friction were recognized, and 
students learned to include them in equations. Students also learned 
that nonlinear systems were usually unsolvable, which was true, 
and that they tended to be exceptions-which was not true. Clas
sical mechanics described the behavior of whole classes of moving 
objects, pendulums and double pendulums, coiled springs and 
bent rods, plucked strings and bowed strings. The mathematics 
applied to fluid systems and to electrical systems. But almost no 
ane in the classical era suspected the chaos that could lurk in 
dynamical systems if nonlinearity was given its due. 

A physicist could not truly understand turbulence or com
plexity unless he understood pendulums-and understood them 
in a way that was impossible in the first half of the twentieth 
century. As chaos began to unite the study of different systems, 
pendulum dynamics broadened to cover high technologies from 
lasers to superconducting Josephson junctions. Some chemical 
reactions displayed pendulum-like behavior, as did the beating 
heart. The unexpected possibilities extended, ane physicist wrote, 
to "physiological and psychiatric medicine, economic forecasting, 
and perhaps the evolution of society." 

Consider a playground swing. The swing accelerates on its 
way down, decelerates on its way up, all the while losing a bit of 
speed to friction. It gets a regular push-say, from some clockwork 
machine. All our intuition tells us that, no matter where the swing 
might start, the motion will eventually settle down to a regular 
back and forth pattern, with the swing coming to the same height 
each time. That can happen. Yet, odd as it seems, the motion can 
also turn erratic, first high, then low, never settling down to a 
steady state and never exactly repeating a pattern of swings that 
came before. 

The surprising, erratic behavior comes from a nonlinear twist 
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in the flow of energy in and out of this simple oscillator. The 
swing is damped and it is driven: damped because friction is trying 
to bring it to a hait, driven because it is getting a periodic push. 
Even when a damped, driven system is at equilibrium, it is not 
at equilibrium, and the world is full of such systems, beginning 
with the weather, damped by the friction of moving air and water 
and by the dissipation of heat to outer space, and driven by the 
constant push of the sun's energy. 

But unpredictability was not the reason physicists and math
ematicians began taking pendulums seriously again in the sixties 
and seventies. Unpredictability was only the attention-grabber. 
Those studying chaotic dynamics discovered that the disorderly 
behavior of simple systems acted as a creative process. It generated 
complexity: richly organized patterns, sometimes stable and some
times unstable, sometimes finite and sometimes infinite, but al
ways with the fascination of living things. That was why scientists 
played with toys. 

One toy, sold under the name "Space Balls" or "Space Tra
peze," is a pair of balls at opposite ends of a rod, sitting like the 
crossbar of a T atop a pendulum with a third, heavier ball at its 
foot. The lower ball swings back and fortli. while the upper rod 
rotates freely. Ali three balls have little magnets inside, and once 
set in motion the device keeps going because it has a battery
powered electromagnet embedded in the base. The device senses 
the approach of the lowest ball and gives it a small magnetic kick 
each time it passes. Sometimes the apparatus settles into a steady, 
rhythmic swinging. But other times, its motion seems to remain 
chaotic, always changing and endlessly surprising. 

Another common pendulum toy is no more than a so-called 
spherical pendulum-a pendulum free to swing not just back and 
forth but in any direction. A few small magnets are placed around 
its base. The magnets attract the metal bob, and when tht pen
dulum stops, it will have been captured by one of them. The idea 
is to set the pendulum swinging and guess which magnet will 
win. Even with just three magnets placed in a triangle, the pen
dulum's motion cannot he predicted. It will swing back and forth 
between A and B for a while, then switch to B and C, and then, 
just as it seems to be settling on C, jump back to A. Suppose a 
scientist systematically explores the behavior of this toy by making 
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a map, as follows: Pick a starting point; hold the hoh there and 
let go; color the point red, hlue, or green, depending on which 
magnet ends up with the hoh. What will the map look like? It will 
have regions of solid red, hlue, or green, as one might expect
regions where the hoh will swing reliahly to a particular magnet. 
But it can also have regions where the colors are woven together 
with infinite complexity. Adjacent to a red point, no matter how 
close one chooses to look, no matter how much one magnifies the 
map, there will he green points and hlue points. For ali practical 
purposes, then, the hoh's destiny will he impossihle to guess. 

Traditionally, a dynamicist would helieve that to write down 
a system's equations is to understand the system. How hetter to 
capture the essential features? For a playground swing or a toy, 
the equations tie together the pendulum's angle, its velocity, its 
friction, and the force driving it. But hecause of the little hits of 
nonlinearity in these equations, a dynamicist would find himself 
helpless to answer the easiest practical questions ahout the future 
of the system. A computer can address the prohlem hy simulating 
it, rapidly calculating each cycle. But simulation hrings its own 
prohlem: the tiny imprecision huilt into each calculation rapidly 
takes over, hecause this is a system with sensitive dependence on 
initial conditions. Before long, the signal disappears and all that 
remains is noise. 

Or is it? Lorenz had found unpredictahility, hut he had also 
found pattem. Others, too, discovered suggestions of structure 
amid seemingly random hehavior. The example of the pendulum 
was simple enough to disregard, hut those who chose not to dis
regard it found a provocative message. 1n some sense, they real
ized, physics understood perfectly the fundamental mechanisms 
of pendulum motion hut could not extend that understanding to 
the long term. The microscopic pieces were perfectly clear; the 
macroscopic hehavior remained a mystery. The tradition of look
ing at systems locally-isolating the mechanisms and then adding 
them together-was heginning to hreak down. For pendulums, for 
fluids, for electronic circuits, for lasers, knowledge of the funda
mental equations no longer seemed to he the right kind of knowl
edge at all. 

As the 1960s went on, individual scientists made discoveries 
that paralleled Lorenz's: a French astronomer studying galactic 
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orbits, for example, and a Japanese electrical engineer modeling 
electronic circuits. But the first deliberate, coordinated attempt to 
understand how global behavior might differ from local behavior 
came from mathematicians. Among them was Stephen Smale of 
the University of Califomia at Berkeley, already famous for un
raveling the most esoteric problems of many-dimensional topol
ogy. A young physicist, making small talk, asked what Smale was 
working on. The answer stunned him: "Oscillators." It was absurd. 
Oscillators-pendulums, springs, or electrical circuits-were the 
sort of problem that a physicist finished off early in his training. 
They were easy. Why would a great mathematician he studying 
elementary physics? Not until years later did the young man re
alize that Smale was looking at nonlinear oscillators, chaotic os
cillators, and seeing things that physicists had learned not to see. 

SMALE MADE A BAD CONJECTURE. In the most rigorous math
ematical terms, he proposed that practically all dynamical systems 
tended to settle, most of the time, into behavior that was not too 
strange. As he soon learned, things were not so simple. 

Smale was a mathematician who did not just solve problems 
but also built programs of problems for others to solve. He parlayed 
his understanding of history and his intuition about nature into 
an ability to announce, quietly, that a whole untried area of re
search was now worth a mathematician's time. Lika a successful 
businessman, he evaluated risks and coolly planned his strategy, 
and he had a Pied Piper quality. Where Smale led, many followed. 
His reputation was not confined to mathematics, though. Early in 
the Vietnam war, he and Jerry Rubin organized "International Days 
of Protest" and sponsored efforts to stop the trains carrying troops 
through Califomia. In 1966, while the House Un-American Ac
tivities Committee was trying to subpoena him, he was heading 
for Moscow to attend the International Congress of Mathemati
cians. There he received the Fields Medal, the highest honor of 
his profession. 

The scene in Moscow that summer became an indelible part 
of the Smale legend. Five thousand agitated and agitating math
ematicians had gathered. Political tensions were high. Petitions 
were circulating. As the conference dreWlltoward its close, Smale 
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responded to a request from a North Vietnamese reporter by giving 
a press conference on the broad steps af Moscow University. He 
began by condemning the American intervention in Vietnam, and 
then, just as his hosts began to smile, added a condemnation of 
the Soviet invasion af Hungary and the absence of political free
dom in the Soviet Union. When he was done, he was quickly 
hustled away in a car for questioning by Soviet officials. When he 
returned ta California, the National Science Foundation canceled 
his grant. 

Smale's Fields Medal honored a famous piece af work in 
topology, a branch of mathematics that flourished in the twentieth 
century and had a particular heyday in the fifties. Topology studies 
the properties that remain unchanged when shapes are deformed 
by twisting or stretching or squeezing. Whether a shape is square 
or round, large or small, is irrelevant in topology, because stretch
ing can change those properties. Topologists ask whether a shape 
is connected, whether it has holes, whether it is knotted. They 
imagine surfaces not just in the ane-, two-, and three-dimensional 
universes af Euclid, but in spaces of many dimensions, impossible 
ta visualize. Topology is geometry on rubber sheets. It concerns 
the qualitative rather than the quantitative. It asks, if you don't 
know the measurements, what can you say about overall structure. 
Smale had solved ane of the historic, outstanding problems af 
topology, the Poincare conjecture, for spaces of five dimensions 
and higher, and in so doing established a secure standing as ane 
af the great men of the field. ln the 1960s, though, he left topology 
for untried territory. He began studying dynamical systems. 

Both subjects, topology and dynamical systems, went back ta 
Henri Poincare, who saw them as two sides af ane coin. Poincare, 
at the turn af the century, had been the last great m.athematician 
ta bring a geometric imagination to bear on the laws of motion in 
the physical world. He was the first ta understand the possibility 
af chaos; his writings hinted at a sort af unpredictability almost 
as severe as the sort Lorenz discovered. But after Poincare's death, 
while topology flourished, dynamical systems atrophied. Even the 
name fell into disuse; the subject to which Smale nominally turned 
was differential equations. Differential equations describe the way 
systems change continuously over time. The tradition was ta look 
at such things locally, meaning that engineers or physicists would 
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consider ane set of  possibilities at  a time. Like Poincare, Smale 
wanted to understand them glohally, meaning that he wanted to 
understand the entire realm of possihilities at once. 

Any set of equations descrihing a dynamical system-Lor
enz's, for example-allows certain parameters to he set at the start. 
ln the case of thermal convection, ane parameter concerns the 
viscosity of the fluid. Large changes in parameters can make large 
differences in a system-for example, the difference hetween ar
riving at a steady state and oscillating periodically. But physicists 
assumed that very small changes would cause only very small 
differences in the numhers, not qualitative changes in hehavior. 

Linking topology and dynamical systems is the possihility of 
using a shape to help visualize the whole range of hehaviors of a 
system. For a simple system, the shape might he some kind of 
curved surface; for a complicated system, a manifold of many 
dimensions. A single point on such a surface represents the state 
of a system at an instant frozen in time. As a system progresses 
through time, the point moves, tracing an orhit across this surface. 
Bending the shape a little corresponds to changing the system's 
parameters, making a fluid more viscous or driving a pendulum 
a little harder. Shapes that look roughly the same give roughly the 
same kinds of hehavior. If you can visualize the shape, you can 
understand the system. 

When Smale turned to dynamical systems, topology, like most 
pure mathematics, was carried out with an explicit disdain for 
real-world applications. Topology's origins had heen close to 
physics, hut for mathematicians the physical origins were forgot
ten and shapes were studied for their own sake. Smale fully he
lieved in that ethos-he was the purest of the pure-yet he had 
an idea that the ahstract, esoteric development of topology might 
now have something to contrihute to physics, just as Poincare had 
intended at the turn of the century. 

One of Smale's first contributions, as it happened, was his 
faulty conjecture. 1n physical terms, he was proposing a law of 
nature something like this: A system can hehave erratically, hut 
the erratic hehavior cannot he stable. Stahility-"stahility in the 
sense of Smale," as mathematicians would sometimes say-was 
a crucial property. Stable hehavior in a system was hehavior that 
would not disappear just hecause some numher was changed a 
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tiny hit. Any system could have hoth stahle and unstahle hehaviors 
within it. The equations goveming a pencil standing on its point 
have a good mathematical solution with the center of gravity di
rectly ahove the point-but you cannot stand a pencil on its point 
hecause the solution is unstahle. The slightest perturhation draws 
the system away from that solution. On the other hand, a marhle 
lying at the hottom of a howl stays there, hecause if the marhle is 
perturhed slightly it rolls hack. Physicists assumed that any he
havior they could actually ohserve regularly would have to he 
stahle, since in real systems tiny disturhances and uncertainties 
are unavoidahle. You never know the parameters exactly. If you 
want a model that will he hoth physically realistic and rohust in 
the face of small perturhations, physicists reasoned that you must 
surely want a stahle model. 

The bad news arrived in the mail soon after Chtistmas 1959, 
when Smale was living temporarily in an apartment in Rio de 
Janeiro with his wife, two infant children, and a mass of diapers. 
His conjecture had defined a class of differential equations, all 
structurally stahle. Any chaotic system, he claimed, could he ap
proximated as closely as you liked hy a system in his class. It was 
not so. A letter from a colleague informed him that many systems 
were not so well-hehaved as he had imagined, and it descrihed a 
counterexample, a system with chaos and stahility, together. This 
system was rohust. If you perturhed it slightly, a.s any natural 
system is constantly perturhed hy noise, the strangeness would 
not go away. Rohust and strange-Smale studied the letter with 
a dishelief that melted away slowly. 

Chaos and instahility, concepts only heginning to acquire for
mal definitions, were not the same at all. A chaotic system could 
he stahle if its particular hrand of irregularity persisted in the face 
of small disturhances. Lorenz's system was an example, although 
years would pass hefore Smale heard ahout Lorenz. The chaos 
Lorenz discovered, with all its unpredictahility, was as stahle as 
a marhle in a howl. You could add noise to this system, jiggle it, 
stir it up, interfere with its motion, and then when everything 
settled down, the transients dying away like echoes in a canyon, 
the system would retum to the same peculiar pattem of irregu
larity as before. It was locally unpredictahle, glohally stahle. Real 
dynamical systems played hy a more complicated set of rules than 
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anyone had imagined. The example described in the letter from 
Smale's colleague was another simple system, discovered more 
than a generation earlier and all but forgotten. As it happened, it 
was a pendulum in disguise: an oscillating electronic circuit. It 
was nonlinear and it was periodically forced, just like a child on 
a swing. 

It was just a vacuum tube, really, investigated in the twenties 
by a Dutch electrical engineer named Balthasar van der Pol. A 
modern physics student would explore the behavior of such an 
oscillator by looking at the line traced on the screen of an oscil
loscope. Van der Pol did not have an oscilloscope, so he had to 
monitor his circuit by listening to changing tones in a telephone 
handset. He was pleased to discover regularities in the behavior 
as he changed the current that fed it. The tone would leap from 
frequency to frequency as if climbing a staircase, leaving one fre
quency and then locking solidly onto the next. Yet once in a while 
van der Pol noted something strange. The behavior sounded ir
regular, in a way that he could not explain. Under the circum
stances he was not worried. "Often an irregular noise is heard in 
the telephone receivers before the frequency jumps to the next 
lower value, " he wrote in a letter to Nature. "However, this is a 
subsidiary phenomenon. " He was one of many scientists who got 
a glimpse of chaos but had no language to understand it. For people 
trying to build vacuum tubes, the frequency-locking was impor
tant. But for people trying to understand the nature of complexity, 
the truly interesting behavior would turn out to he the "irregular 
noise " created by the conflicting pulls of a higher and lower fre
quency. 

Wrong though it was, Smale's conjecture put him directly on 
the track of a new way of conceiving the full complexity of dy
namical systems. Several mathematicians had taken another look 
at the possibilities of the van der Pol oscillator, and Smale now 
took their work into a new realm. His only oscilloscope screen 
was his mind, but it was a mind shaped by his years of exploring 
the topological universe. Smale conceived of the entire range of 
possibilities in the oscillator, the entire phase space, as physicists 
called it. Any state of the system at a moment frozen in time was 
represented as a point in phase space; all the information about 
its position or velocity was contained in the coordinates of that 
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point. As the system changed in some way, the point would move 
ta a new position in phase space. As the system changed contin
uously, the point would trace a trajectory. 

For a simple system like a pendulum, the phase space might m 
just he a rectangle: the pendulum's angle at a given instant would f 
determine the east-west position af a point and the pendulum's 
speed would determine the north-south position. For a pendulum 
swinging regularly hack and forth, the trajectory through phase 
space would he a loop, around and around as the system lived 
through the same sequence af positions over and over again. 

Smale, instead af looking at any ane trajectory, concentrated 
on the hehavior af the entire space as the system changed-as 
more driving energy was added, for example. His intuition leapt 
from the physical essence af the system ta a new kind af geo
metrical essence. His tools were topological transformations af 
shapes in phase space-transformations like stretching and 
squeezing. Sometimes these transformations had clear physical 
meaning. Dissipation in a system, the loss af energy ta friction, 
meant that the system's shape in phase space would contract like 

'- ' 

MAKING PORTRAITS IN PHASE SPACE. Traditiona! time series (above) and 
trajectories in phase space (below) are two ways of displaying the same 
data and gaining a picture of a system's long-term behavior. The first 
system (left) converges on a steady state-a point in phase space. The 
second repeats itself periodically, forming a cyclical orbit. The third re
peats itself in a more complex waltz rhythm, a cycle with "period three." 
The fourth is chaotic. 
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a balloon losing air-finally shrinking to a point at the moment 
the system comes to a complete hait. To represent the full com
plexity of the van der Pol oscillator, he realized that the phase 
space would have to suffer a complex new kind of combination 
of transformations. He quickly turned his idea about visualizing 
global behavior into a new kind of model. His innovation-an 
enduring image of chaos in the years that followed-was a struc
ture that became known as the horseshoe. 

To make a simple version of Smale's horseshoe, you take a 
rectangle and squeeze it top and bottom into a horizontal bar. Take 
one end of the bar and fold it and stretch it around the other, 
making a C-shape, like a horseshoe. Then imagine the horseshoe 
embedded in a new rectangle and repeat the same transformation, 
shrinking and folding and stretching. 

The process mimics the work of a mechanical taffy-maker, 
with rotating arms that stretch the taffy, double it up, stretch it 
again, and so on until the taffy's surface has become very long, 
very thin, and intricately self-embedded. Smale put his horseshoe 
through an assortment of topological paces, and, the mathematics 
aside, the horseshoe provided a neat visual analogue of the sen-

- -

SMALE's HORSESHOE. This topological transformation provided a hasis for 
understanding the chaotic properties of dynamical systems. The basics 
are simple: A space is stretched in one direction, squeezed in another, 
and then folded. When the process is repeated, it produces a kind of 
structured mixing familiar to anyone who has rolled many-layered pastry 
dough. A pair of points that end up close together may have begun far 
apart. 
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sitive dependence on initial conditions that Lorenz would dis
cover in the atmosphere a few years later. Pick two nearby points 
in the original space, and you cannot guess where they will end 
up. They will he driven arbitrarily far apart by all the folding and 
stretching. Afterward, two points that happen to lie nearby will 
have begun arbitrarily far apart. 

Originally, Smale had hoped to explain all dynamical systems 
in terms of stretching and squeezing-with no folding, at least no 
folding that would drastically undermine a system's stability. But 
folding turned out to he necessary, and folding allowed sharp 
changes in dynamical behavior. Smale's horseshoe stood as the 
first of many new geometrical shapes that gave mathematicians 
and physicists a new intuition about the possibilities of motion. 
In some ways it was too artificial to he useful, still too much a 
creature of mathematical topology to appeal to physicists. But it 
served as a starting point. As the sixties went on, Smale assembled 
around him at Berkeley a group of young mathematicians who 
shared his excitement about this new work in dynamical systems. 
Another decade would pass before their work fully engaged the 
attention of less pure sciences, but when it did, physicists would 
realize that Smale had turned a whole branch of mathematics back 
toward the real world. It was a golden age, they said. 

"It's the paradigm shift of paradigm shifts," said Ralph Abra
ham, a Smale colleague who became a professor of mathematics 
at the University of California at Santa Cruz. 

"When I started my professional work in mathematics in 1960, 
which is not so long ago, modern mathematics in its entirety-in 
its entirety-was rejected by physicists, including the most avant
garde mathematical physicists. So differentiable dynamics, global 
analysis, manifolds of mappings, differential geometry-every
thing just a year or two beyond what Einstein had used-was all 
rejected. The romance between mathematicians and physicists 
had ended in divorce in the 1930s. These people were no longer 
speaking. They simply despised each other. Mathematical phys
icists refused their graduate students permission to take math 
courses from mathematicians: Take mathematics from us. We will 
teach you what you need to know. The mathematicians are on 
some kind of terrible ego trip and they will destroy your mind. 
That was 1960. By 1968 this had completely turned around." 
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Eventually physicists, astronomers, and biologists all knew they 
had to have the news. 

A MODEST COSMIC MYSTERY: the Great Red Spot of Jupiter, a 
vast, swirling oval, like a giant storm that never moves and never 
runs down. Anyone who saw the pictures beamed across space 
from Voyager 2 in 1978 recognized the familiar look of turbulence 
on a hugely unfamiliar scale. lt was one of the solar system's most 
venerable landmarks-' 'the red spot roaring like an anguished eye/ 
amid a turbulence of boiling eyebrows," as John Updike described 
it. But what was it? Twenty years after Lorenz, Smale, and other 
scientists set in motion a new way of understanding nature's flows, 
the other-worldly weather of Jupiter proved to be one of the many 
problems awaiting the altered sense of nature's possibilities that 
came with the science of chaos. 

For three centuries it had been a case of the more you know, 
the less you know. Astronomers noticed a blemish on the great 
planet not long after Galileo first pointed his telescopes at Jupiter. 
Robert Hooke saw it in the 1600s. Donati Creti painted it in the 
Vatican's picture gallery. As a piece of coloration, the spot called 
for little explaining. But telescopes got better, and knowledge bred 
ignora�ce. The last century produced a steady march of theories, 
one on the heels of another. For example: 

The Lava Flow Theory. Scientists in the late nineteenth cen
tury imagined a huge oval lake of molten lava flowing out of a 
volcano. Or perhaps the lava had flowed out of a hole created by 
a planetoid striking a thin solid crust. 

The New Moon Theory. A German scientist suggested, by 
contrast, that the spot was a new moon on the point of emerging 
from the planet's surface. 

The Egg Theory. An awkward new fact: the spot was seen to 
be drifting slightly against the planet's background. So a notion 
put forward in 1939 viewed the spot as a more or less solid body 
floating in the atmosphere the way an egg floats in water. Varia
tions of this theory-including the notion of a drifting bubble of 
hydrogen or helium-remained current for decades. 

The Column-of-Gas Theory. Another new fact: even though 
the spot drifted, somehow it never drifted far. So scientists pro-
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posed in the sixties that the spot was the top of a rising column 
of gas, possibly coming through a crater. 

Then came Voyager. Most astronomers thought the mystery 
would give way as soon as they could look closely enough, and 
indeed, the Voyager fly-by provided a splendid album of new data, 
but the data, in the end, was not enough. The spacecraft pictures 
in 1978 revealed powerful winds and colorful eddies. In spectac
ular detail, astronomers saw the spot itself as a hurricane-like 
system of swirling flow, shoving aside the clouds, embedded in 
zones of east-west wind that made horizontal stripes around the 
planet. Hurricane was the best description anyone could think of, 
but for several reasons it was inadequate. Earthly hurricanes are 
powered by the heat released when moisture condenses to rain; 
no moist processes drive the Red Spot. Hurricanes rotate in a 
cyclonic direction, counterclockwise above the Equator and clock
wise below, like all earthly storms; the Red Spot's rotation is 
anticyclonic. And most important, hurricanes die out within days. 

Also, as astronomers studied the Voyager pictures, they 
realized that the planet was virtually all fluid in motion. They had 
been conditioned to look for a solid planet surrounded by a paper
thin atmosphere like earth's, but if Jupiter had a solid core any
where, it was far from the surface. The planet suddenly looked 
like one big fluid dynamics experiment, and there sat the Red 
Spot, tuming steadily around and around, thoroughly unper
turbed by the chaos around it. 

The spot became a gestalt test. Scientists saw what their in
tuitions allowed them to see. A fluid dynamicist who thought of 
turbulence as random and noisy had no context for understanding 
an island of stability in its midst. Voyager had made the mystery 
doubly maddening by showing small-scale features of the flow, 
too small to he seen by the most powerful earthbound telescopes. 
The small scales displayed rapid disorganization, eddies appear
ing and disappearing within a day or less. Yet the spot was im
mune. What kept it going? What kept it in place? 

The National Aeronautics and Space Administration keeps 
its pictures in archives, a half-dozen or so around the country. 
One archive is at Comell University. Nearby, in the early 1980s, 
Philip Marcus, a young astronomer and applied mathematician, 
had an office. After Voyager, Marcus was one of a half-dozen 
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scientists in the United States and Britain who looked for ways 
to model the Red Spot. Freed from the ersatz hurricane theory, 
they found more appropriate analogues elsewhere. The Gulf Stream, 
for example, winding through the western Atlantic Ocean, twists 
and branches in subtly reminiscent ways. It develops little waves, 
which turn into kinks, which turn into rings and spin off from 
the main current-forming slow, long-lasting, anticyclonic vor
tices. Another parallel came from a peculiar phenomenon in me
teorology known as blocking. Sometimes a system of high pressure 
sits offshore, slowly turning, for weeks or months, in defiance of 
the usual east-west flow. Blocking disrupted the global forecasting 
models, but it also gave the forecasters some hope, since it pro
duced orderly features with unusual longevity. 

Marcus studied those NASA pictures for hours, the gorgeous 
Hasselblad pictures of men on the moon and the pictures of Ju
piter's turbulence. Since Newton's laws apply everywhere, Mar
cus programmed a computer with a system of fluid equations. To 
capture Jovian weather meant writing rules for a mass of dense 
hydrogen and helium, resembling an unlit star. The planet spins 
fast, each day flashing by in ten earth hours. The spin produces 
a strong Coriolis force, the sidelong force that shoves against a 
person walking across a merry-go-round, and the Coriolis force 
drives the spot. 

Where Lorenz used his tiny model of the earth's weather to 
print crude Iines on rolled paper, Marcus used far greater com
puter power to assemble striking color images. First he made con
tour plots. He could barely see what was going on. Then he made 
slides, and then he assembled the images into an animated movie. 
It was a revelation. In brilliant blues, reds, and yellows, a check
erboard pattern of rotating vortices coalesces into an oval with an 
uncanny resemblance to the Great Red Spot in NASA's animated 
film of the real thing. "You see this large-scale spot, happy as a 
clam amid the small-scale chaotic flow, and the chaotic flow is 
soaking up energy like a sponge," he said. "You see these little 
tiny filamentary structures in a background sea of chaos." 

The spot is a self-organizing system, created and regulated by 
the same nonlinear twists that create the unpredictable turmoil 
around it. It is stable chaos. 

As a graduate student, Marcus had learned standard physics, 
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solving linear equations, perfonning experiments designed to match 
linear analysis. It was a sheltered existence, hut after all, nonlinear 
equations defy solution, so why waste a graduate student's time? 
Gratification was programmed into his training. As long as he kept 
the experiments within certain hounds, the linear approximations 
would suffice and he would he rewarded with the expected an
swer. Once in a while, inevitahly, the real world would intrude, 
and Marcus would see what he realized years later had heen the 
signs of chaos. He would stop and say, "Gee, what ahout this little 
fluff here." And he would he told, "Oh, it's experimental error, 
don't worry ahout it." 

But unlike most physicists, Marcus eventually learned Lor
enz's lesson, that a deterministic system can produce much more 
than just periodic hehavior. He knew to look for wild disorder, 
and he knew that islands of structure could appear within the 
disorder. So he hrought to the prohlem of the Great Red Spot an 
understanding that a complex system can give rise to turhulence 
and coherence at the same time. He could work within an emerging 
discipline that was creating its own tradition of using the com
puter as an experimental tool. And he was willing to think of 
himself as a new kind of scientist: not primarily an astronomer, 
not a fluid dynamicist, not an applied mathematician, hut a spe
cialist in chaos. 



Life's Ups 

and Downs 

The result of a mathematical development should be 

continuously checked against one's own intuition 

about what constitutes reasonable biological 

behavior. When such a check reveals disagreement, 

then the following possibilities must be considered: 

a. A mistake has been made in the formal 

mathematical development; 

b. The starting assumptions are incorrect and/or 

constitute a too drastic oversimplification; 

c. One's own intuition about the biological fi.eld is 

inadequately developed; 

d. A penetrating new principle has been discovered. 

-HARVEY J. GOLD, 

Mathematical Modeling 
of Biological Systems 



RAVENOUS FISH AND TASTY plankton. Rain forests dripping 
with nameless reptiles, birds gliding under canopies of leaves, 
insects buzzing like electrons in an accelerator. Frost belts where 
voles and lemmings tlourish and diminish with tidy four-year 
periodicity in the face of nature's bloody combat. The world makes 
a messy laboratory for ecologists, a cauldron of five million in
teracting species. Or is it fifty million? Ecologists do not actually 
know. 

Mathematically inclined biologists of the twentieth century 
built a discipline, ecology, that stripped away the noise and color 
of real life and treated populations as dynamical systems. Ecol
ogists used the elementary tools of mathematical physics to de
scribe life's ebbs and tlows. Single species multiplying in a place 
where food is limited, several species competing for existence, 
epidemics spreading through host populations-all could he iso
lated, if not in laboratories then certainly in the minds of biological 
theorists. 

1n the emergence of chaos as a new science in the 1970s, 
ecologists were destined to play a special role. They used math
ematical models, but they always knew that the models were thin 
approximations of the seething real world. 1n a perverse way, their 
awareness of the limitations allowed them to see the importance 
of some ideas that mathematicians had considered interesting odd
ities. If regular equations could produce irregular behavior-to an 
ecologist, that rang certain bells. The equations applied to pop-

59 
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ulation hiology were elementary counterparts of the models used 
hy physicists for their pieces of the universe. Yet the complexity 
of the real phenomena studied in the life sciences outstripped 
anything to he found in a physicist's lahoratory. Biologists' math
ematical models tended to he caricatures of reality, as did the 
models of economists, demographers, psychologists, and urhan 
planners, when those soft sciences tried to hring rigor to their 
study of systems changing over time. The standards were different. 
To a physicist, a system of equations like Lorenz's was so simple 
it seemed virtually transparent. To a hiologist, even Lorenz's equa
tions seemed forhiddingly complex-three-dimensional, contin
uously variahle, and analytically intractahle. 

Necessity created a different style of working for hiologists. 
The matching of mathematical descriptions to real systems had 
to proceed in a different direction. A physicist, looking at a par
ticular system (say, two pendulums coupled hy a spring) , hegins 
hy choosing the appropriate equations. Preferahly, he looks them 
up in a handhook; failing that, he finds the right equations from 
first principles. He knows how pendulums work, and he knows 
ahout springs. Then he solves the equations, if he can. A hiologist, 
hy contrast, could never simply deduce the proper equations hy 
just thinking ahout a particular animal population. He would have 
to gather data and try to find equations that produced similar 
output. What happens if you put ane thousand fish in a pond with 
a limited food supply? What happens if you add fifty sharks that 
like to eat two fish per day? What happens to a virus that kills at 
a certain rate and spreads at a certain rate depending on population 
density? Scientists idealized these questions so that they could 
apply crisp formulas. 

Often it worked. Population hiology learned quite a hit ahout 
the history of life, how predators interact with their prey, how a 
change in a country's population density affects the spread of 
disease. If a certain mathematical model surged ahead, or reached 
equilihrium, or died out, ecologists could guess something ahout 
the circumstances in which a real population or epidemic would 
do the same. 

One helpful simplification was to model the world in terms 
of discrete time intervals, like a watch hand that jerks forward 
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second hy second instead af gliding continuously. Differential 
equations descrihe processes that change smoothly over time, hut 
differential equations are hard ta compute. Simpler equations
"difference equations" -can he used for processes that jump from 
state ta state. Fortunately, many animal populations do what they 
do in neat one-year intervals. Changes year ta year are often more 
important than changes on a continuum. Unlike people, many 
insects, for example, stick ta a single hreeding season, so their 
generations do not overlap. Ta guess next spring's gypsy moth 
population or next winter's measles epidemic, an ecologist might 
only need ta know the corresponding figure for this year. A year
hy-year facsimile produces no more than a shadow af a system's 
intricacies, hut in many real applications the shadow gives all the 
information a scientist needs. 

The mathematics af ecology is ta the mathematics af Steve 
Smale what the Ten Commandments are ta the Talmud: a good 
set af working rules, hut nothing tao complicated. Ta descrihe a 
population changing each year, a hiologist uses a formalism that 
a high school student can follow easily. Suppose next year's pop
ulation af gypsy moths will depend entirely on this year's pop
ulation. You could imagine a tahle listing ali the specific 
possihilities-3 1,000 gypsy moths this year means 35,000 next 
year, and so forth. Or you could capture the relationship hetween 
ali the numhers for this year and ali the numhers for next year as 
a rule-a function. The population (x) next year is a function (F) 
af the population this year: Xnext = F(x). Any particular function 
can he drawn on a graph, instantly giving a sense af its overall 
shape. 

1n a simple model like this ane, following a population through 
time is a matter af taking a starting figure and applying the same 
function again and again. Ta get the population for a third year, 
you just apply the function ta the result for the second year, and 
so on. The whole history af the population hecomes availahle 
through this process af functional iteration-a feedhack loop, each 
year's output serving as the next year's input. Feedhack can get 
out af hand, as it does when sound from a loudspeaker feeds hack 
through a microphone and is rapidly amplified ta an unhearahle 
shriek. Or feedhack can produce stahility, as a thermostat does in 
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regulating the temperature of a house: any temperature ahove a 
fixed point leads to cooling, and any temperature helow it leads 
to heating. 

Many different types of functions are possihle. A nai:ve ap
proach to population hiology might suggest a function that in
creases the population hy a certain percentage each year. That 
would he a linear function-Xnext = rx-and it would he the classic 
Malthusian scheme for population growth, unlimited hy food sup
ply or moral restraint. The parameter r represents the rate of pop
ulation growth. Say it is 1.1 ;  then if this year's population is 10, 
next year's is 11. If the input is 20,000, the output is 22,000. The 
population rises higher and higher, like money left forever in a 
compound-interest savings account. 

Ecologists realized generations ago that they would have to 
do hetter. An ecologist imagining real fish in a real pond had to 
find a function that matched the crude realities of life-for ex
ample, the reality of hunger, or competition. When the fish pro
liferate, they start to run out of food. A small fish population will 
grow rapidly. An overly large fish population will dwindle. Or 
take Japanese heetles. Every August 1 you go out to your garden 
and count the heetles. For simplicity's sake, you ignore hirds, 
ignore heetle diseases, and consider only the fixed food supply. 
A few heetles will multiply; many will eat the whole garden and 
starve themselves. 

In the Malthusian scenario of unrestrained growth, the linear 
growth function rises forever upward. For a more realistic sce
nario, an ecologist needs an equation with some extra term that 
restrains growth when the population hecomes large. The most 
natural function to choose would rise steeply when the population 
is small, reduce growth to near zero at intermediate values, and 
crash downward when the population is very large. By repeating 
the process, an ecologist can watch a population settle into its 
long-term hehavior-presumahly reaching some steady state. A 
successful foray into mathematics for an ecologist would let him 
say something like this: Here's an equation; here's a variahle rep
resenting reproductive rate; here's a var1ahle representing the nat
ural death rate; here's a variahle representing the additional death 
rate from starvation or predation; and look-the population will 
rise at this speed until it reaches that level of equilihrium. 
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How do you find such a function? Many different equations 
might work, and possibly the simplest is a modification of the 
linear, Malthusian version: Xnext = rx(1 - x). Again, the parameter 
r represents a rate of growth that can be set higher or lower. The 
new term, 1 - x, keeps the growth within bounds, since as x rises, 
1 - x falls. * Anyone with a calculator could pick some starting 
value, pick some growth rate, and carry out the arithmetic to derive 
next year's population. 

By the 1950s several ecologists were looking at variations of 
that particular equation, known as the logistic difference equation. 
In Australia, for example, W. E. Ricker applied it to real fisheries. 
Ecologists understood that the growth-rate parameter r repre
sented an important feature of the model. In the physical systems 
from which these equations were borrowed, that parameter cor
responded to the amount of heating, or the amount of friction, or 
the amount of some other messy quantity. In short, the amount of 
nonlinearity. In a pond, it might correspond to the fecundity of 
the fish, the propensity of the population not just to boom but also 
to bust ("biotic potential" was the dignified term). The question 
was, how did these different parameters affect the ultimate destiny 
of a changing population? The obvious answer is that a lower 
parameter will cause this idealized population to end up at a lower 
level. A higher parameter will lead to a higher steady state. This 
turns out to be correct for many parameters-but not all. Occa
sionally, researchers like Ricker surely tried parameters that were 

• For convenience, in this highly abstract model, "population" is expressed as 
a fraction between zero and ane, zero representing extinction, ane representing 
the greatest conceivable population of the pond. 

So begin: Choose an arbitrary value for r, say, 2 .7 ,  and a starting population 
of .02. One minus .02 is .98. Multiply by 0.02 and you get .01 96. Multiply that by 
2.7 and you get .0529. The very small starting population has more than doubled. 
Repeat the process, using the new population as the seed, and you get . 1353. With 
a cheap programmable calculator, this iteration is just a matter of pushing ane 
button over and over again. The population rises to .3159, then .5835, then .6562-
the rate of increase is slowing. Then, as starvation overtakes reproduction, .6092. 
Then .6428, then .61 99, then .6362, then .6249. The numbers seem to he bouncing 
back and forth, but closing in on a fixed number: .6328, .6273, .63 12,  .6285, .6304, 
.6291 ,  .6300, .6294, .6299, .6295, .6297, .6296, .6297, .6296, .6296, .6296, .6296, 
.6296, .6296, .6296. Success ! 

In the days of pencil-and-paper arithmetic, and in the days of mechanical add
ing machines with hand cranks, numerical exploration never went much further. 
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A population reaches equilibrium after rising, overshooting, and falling 
back. 

even higher, and when they did, they must have seen chaos. 
Oddly, the flow of numbers begins to misbehave, quite a nuis

ance for anyone calculating with a hand crank. The numbers still 
do not grow without limit, of course, but they do not converge to 
a steady level, either. Apparently, though, none of these early 
ecologists had the inclination or the strength to keep churning out 
numbers that refused to settle down. Anyway, if the population 
kept bouncing back and forth, ecologists assumed that it was os
cillating around some underlying equilibrium. The equilibrium 
was the important thing. It did not occur to the ecologists that 
there might be no equilibrium. 

Reference books and textbooks that dealt with the logistic 
equation and its more complicated cousins generally did not even 
acknowledge that chaotic behavior could be expected. J. Maynard 
Smith, in the classic 1968 Mathematical Ideas in Biology, gave a 
standard sense of the possibilities: populations often remain ap
proximately constant or else fluctuate "with a rather regular pe
riodicity" around a presumed equilibrium point. It wasn't that he 
was so naive as to imagine that real populations could never be
have erratically. He simply assumed that erratic behavior had 
nothing to do with the sort of mathematical models he was de
scribing. In any case, biologists had to keep these models at arm's 
length. If the models started to betray their makers' knowledge of 
the real population's behavior, some missing feature could always 
explain the discrepancy: the distribution �f ages in the population, 
some consideration of territory or geography, or the complication 
of having to count two sexes. 
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Most important, in the back of ecologists' minds was always 
the assumption that an erratic string of numbers probably meant 
that the calculator was acting up, or just lacked accuracy. The 
stable solutions were the interesting ones. Order was its own re
ward. This business of finding appropriate equations and working 
out the computation was hard, after all. No one wanted to waste 
time on a line of work that was going awry, producing no stability. 
And no good ecologist ever forgot that his equations were vastly 
oversimplified versions of the real phenomena. The whole point 
of oversimplifying was to model regularity. Why go to all that 
trouble just to see chaos? 

LATER, PE0PLE wou10 SAY that James Yorke had discovered 
Lorenz and given the science of chaos its name. The second part 
was actually true. 

Yorke was a mathematician who liked to think of himself as 
a philosopher, though this was professionally dangerous to admit. 
He was brilliant and soft-spoken, a mildly disheveled admirer of 
the mildly disheveled Steve Smale. Like everyone else, he found 
Smale hard to fathom. But unlike most people, he understood why 
Smale was hard to fathom. When he was just twenty-two years 
old, Yorke joined an interdisciplinary institute at the University 
of Maryland called the Institute for Physical Science and Tech
nology, which he later headed. He was the kind of mathematician 
who felt compelled to put his ideas of reality to some use. He 
produced a report on how gonorrhea spreads that persuaded the 
federal government to alter its national strategies for controlling 
the disease. He gave official testimony to the State of Maryland 
during the 1970s gasoline crisis, arguing correctly (but unper
suasively) that the even-odd system of limiting gasoline sales would 
only make Iines longer. In the era of antiwar demonstrations, when 
the government released a spy-plane photograph purporting to 
show sparse crowds around the Washington Monument at the 
height of a rally, he analyzed the monument's shadow to prove 
that the photograph had actually been taken a half-hour later, 
when the rally was breaking up. 

At the institute, Yorke enjoyed an unusual freedom to work 
on problems outside traditiona! domains, and he enjoyed frequent 
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contact with experts in a wide range of disciplines. One of these 
experts, a fluid dynamicist, had come across Lorenz's 1963 paper 
"Deterministic Nonperiodic Flow" in 1972 and had fallen in love 
with it, handing out copies to anyone who would take one. He 
handed one to Yorke. 

Lorenz's paper was a piece of magic that Yorke had heen 
looking for without even knowing it. It was a mathematical shock, 
to hegin with-a chaotic system that violated Smale's original 
optimistic classification scheme. But it was not just mathematics; 
it was a vivid physical model, a picture of a fluid in motion, and 
Yorke knew instantly that it was a thing he wanted physicists to 
see. Smale had steered mathematics in the direction of such phys
ical prohlems, hut, as Yorke well understood, the language of 
mathematics remained a serious harrier to communication. If only 
the academic world had room for hyhrid mathematician/physi
cists-hut it did not. Even though Smale 's work on dynamical 
systems had hegun to close the gap, mathematicians continued to 
speak one language, physicists another. As the physicist Murray 
Gell-Mann once remarked: "Faculty memhers are familiar with a 
certain kind of person who looks to the mathematicians like a 
good physicist and looks to the physicists like a good mathema
tician. Very properly, they do not want that kind of person around." 
The standards of the two professions were different. Physicists 
had theorems, mathematicians had conjectures. The ohjects that 
made up their worlds were different. Their examples were dif
ferent. 

Smale could he happy with an example like this: take a num
her, a fraction hetween zero and one, and douhle it. Then drop 
the integer part, the part to the left of the decimal point. Then 
repeat the process. Since most numhers are irrational and unpre
dictahle in their fine detail, the process will just produce an un
predictahle sequence of numhers. A physicist would see nothing 
there hut a trite mathematical oddity, utterly meaningless, too 
simple and too ahstract to he of use. Smale, though, knew intui
tively that this mathematical trick would appear in the essence of 
many physical systems. 

To a physicist, a legitimate example was a differential equa
tion that could he written down in simple form. When Yorke saw 
Lorenz's paper, even though it was huried in a meteorology jour-
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nal, he knew it was an example that physicists would understand. 
He gave a copy to Smale, with his address label pasted on so that 
Smale would return it. Smale was amazed to see that this mete
orologist-ten years earlier-had discovered a kind of chaos that 
Smale himself had once considered mathematically impossible. 
He made many photocopies of "Deterministic Nonperiodic Flow," 
and thus arose the legend that Yorke had discovered Lorenz. Every 
copy of the paper that ever appeared in Berkeley had Yorke's 
address label on it. 

Yorke felt that physicists had learned not to see chaos. In 
daily life, the Lorenzian quality of sensitive dependence on initial 
conditions lurks everywhere. A man leaves the house in the morn
ing thirty seconds late, a flowerpot misses his head by a few mil
limeters, and then he is run over by a truck. Or, less dramatically, 
he misses a hus that runs every ten minutes-his connection to 
a train that runs every hour. Small perturbations in one's daily 
trajectory can have large consequences. A batter facing a pitched 
ball knows that approximately the same swing will not give ap
proximately the same result, baseball being a game of inches. 
Science, though-science was different. 

Pedagogically speaking, a good share of physics and mathe
matics was-and is-writing differential equations on a black
board and showing students how to solve them. Differential 
equations represent reality as a continuum, changing smoothly 
from place to place and from time to time, not broken in discrete 
grid points or time steps. As every science student knows, solving 
differential equations is hard. But in two and a half centuries, 
scientists have built up a tremendous body of knowledge about 
them: handbooks and catalogues of differential equations, along 
with various methods for solving them, or "finding a closed-form 
integral," as a scientist will say. It is no exaggeration to say that 
the vast business of calculus made possible most of the practical 
triumphs of post-medieval science; nor to say that it stands as one 
of the most ingenious creations of humans trying to model the 
changeable world around them. So by the time a scientist masters 
this way of thinking about nature, becoming comfortable with the 
theory and the hard, hard practice, he is likely to have lost sight 
of one fact. Most differential equations cannot he solved at all. 

"If you could write down the solution to a differential equa-
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tion," Yorke said, "then necessarily it's not chaotic, because to 
write it down, you must find regular invariants, things that are 
conserved, like angular momentum. You find enough of these 
things, and that lets you write down a solution. But this is exactly 
the way to eliminate the possibility of chaos. " 

The solvable systems are the ones shown in textbooks. They 
behave. Confronted with a nonlinear system, scientists would have 
to substitute linear approximations or find some other uncertain 
backdoor approach. Textbooks showed students only the rare non
linear systems that would give way to such techniques. They did 
not display sensitive dependence on initial conditions. Nonlinear 
systems with real chaos were rarely taught and rarely learned. 
When people stumbled across such things-and people did-all 
their training argued for dismissing them as aberrations. Only a 
few were able to remember that the solvable, orderly, linear sys
tems were the aberrations. Only a few, that is, understood how 
nonlinear nature is in its soul. Enrico Fermi once exclaimed, "lt 
does not say in the Bible that all laws of nature are expressible 
linearly! "  The mathematician Stanislaw Ulam remarked that to 
call the study of chaos "nonlinear science" was like calling zo
ology "the study of nonelephant animals. "  

Yorke understood. "The first message i s  that there is disorder. 
Physicists and mathematicians want to discover regularities. Peo
ple say, what use is disorder. But people have to know about 
disorder if they are going to deal with it. The auto mechanic who 
doesn't know about sludge in valves is not a good mechanic." 
Scientists and nonscientists alike, Yorke believed, can easily mis
lead themselves about complexity if they are not properly attuned 
to it. Why do investors insist on the existence of cycles in gold 
and silver prices? Because periodicity is the most complicated 
orderly behavior they can imagine. When they see a complicated 
pattern of prices, they look for some periodicity wrapped in a little 
random noise. And scientific experimenters, in physics or chem
istry or biology, are no different. "In the past, people have seen 
chaotic behavior in innumerable circumstances," Yorke said. 
"They're running a physical experiment, and the experiment be
haves in an erratic manner. They try to fix it or they give up. They 
explain the erratic behavior by saying there's noise, or just that 
the experiment is bad ."  
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Y orke decided there was a message in the work of Lorenz and 
Smale that physicists were not hearing. So he wrote a paper for 
the most broadly distributed joumal he thought he could publish 
in, the American Mathematical Monthly. (As a mathematician, he 
found himself helpless to phrase ideas in a form that physics 
joumals would find acceptable; it was only years later that he hit 
upon the trick of collaborating with physicists.) Yorke's paper was 
important on its merits, but in the end its most influential feature 
was its mysterious and mischievous title: "Period Three Implies 
Chaos." His colleagues advised him to choose something more 
sober, but Yorke stuck with a word that came to stand for the 
whole growing business of deterministic disorder. He also talked 
to his friend Robert May, a biologist. 

MAY CAME TO BIOLOGY through the back door, as it happened. 
He started as a theoretical physicist in his native Sydney, Aus
tralia, the son of a brilliant barrister, and he did postdoctoral work 
in applied mathematics at Harvard. In 1971, he went for a year to 
the Institute for Advanced Study in Princeton; instead of doing 
the work he was supposed to he doing, he found himself drifting 
over to Princeton University to talk to the biologists there. 

Even now, biologists tend not to have much mathematics 
beyond calculus. People who like mathematics and have an ap
titude for it tend more toward mathematics or physics than the 
life sciences. May was an exception. His interests at first tended 
toward the abstract problems of stability and complexity, math
ematical explanations of what enables competitors to coexist. But 
he soon began to focus on the simplest ecological questions of 
how single populations behave over time. The inevitably simple 
models seemed less of a compromise. By the time he joined the 
Princeton faculty for good-eventually he would become the uni
versity's dean for research-he had already spent many hours 
studying a version of the logistic difference equation, using math
ematical analysis and also a primitive hand calculator. 

Once, in fact, on a corridor blackboard back in Sydney, he 
wrote the equation out as a problem for the graduate students. It 
was starting to annoy him. "What the Christ happens when lambda 

gets bigger than the point of accumulation?" What happened, that 
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is, when a population's rate of growth, its tendency toward boom 
and bust, passed a critical point. By trying different values of this 
nonlinear parameter, May found that he could dramatically change 
the system's character. Raising the parameter meant raising the 
degree of nonlinearity, and that changed not just the quantity of 
the outcome, but also its quality. It affected not just the final 
population at equilibrium, but also whether the population would 
reach equilibrium at all. 

When the parameter was low, May's simple model settled on 
a steady state. When the parameter was high, the steady state 
would break apart, and the population would oscillate between 
two alternating values. When the parameter was very high, the 
system-the very same system-seemed to behave unpredictably. 
Why? What exactly happened at the boundaries between the dif
ferent kinds of behavior? May couldn't figure it out. (Nor could 
the graduate students.)  

May carried out a program of intense numerical exploration 
into the behavior of this simplest of equations. His program was 
analogous to Smale 's: he was trying to understand this one simple 
equation all at once, not locally but globally. The equation was 
far simpler than anything Smale had studied. It seemed incredible 
that its possibilities for creating order and disorder had not been 
exhausted long since. But they had not. Indeed, May's program 
was just a beginning. He investigated hundreds of different values 
of the parameter, setting the feedback loop in motion and watching 
to see where-and whether-the string of numbers would settle 
down to a fixed point. He focused more and more closely on the 
critical boundary between steadiness and oscillation. It was as if 
he had his own fish pond, where he could wield fine mastery over 
the "boom-and-bustiness" of the fish. Still using the logistic equa
tion, Xnext = rx(l -x), May increased the parameter as slowly as he 
could. If the parameter was 2 . 7 ,  then the population would he 
.6292. As the parameter rose, the final population rose slightly, 
too, making a line that rose slightly as it moved from left to right 
on the graph. 

Suddenly, though, as the parameter passed 3, the line broke 
in two. May's imaginary fish population refused to settle down to 
a single value, but oscillated between two points in alternating 
years. Starting at a low number, the population would rise and 
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PERIOD-DOUBLINGS AND CHAOS. lnstead of using individual diagrams to 
show the behavior of populations with different degrees of fertility, Robert 
May and other scientists used a "bifurcation diagram" to assemble ali 
the information into a single picture. 

The diagram shows how changes in one parameter-in this case, a 
wildlife population's "boom-and-bustiness"-would change the ultimate 
behavior of this simple system. Values of the parameter are represented 
from left to right; the final population is plotted on the vertical axis. 1n 
a sense, tuming up the parameter value means driving a system harder, 
increasing its nonlinearity. 

Where the parameter is low (left) , the population becomes extinct. 
As the parameter rises (center), so does the equilibrium level of the pop
ulation. Then, as the parameter rises further,. the equilibrium splits in 
two, just as tuming up the heat in a convecting fluid causes an instability 
to set in; the population begins to altemate between two different levels. 
The splittings, or bifurcations, come faster and faster. Then the system 
tums chaotic (right) , and the population visits infinitely many different 
values. (For a blowup of the chaotic region, see pages 74-75.) 
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then fluctuate until it was steadily flipping back and forth. Turning 
up the knob a bit more-raising the parameter a bit more-would 
split the oscillation again, producing a string of numbers that 
settled down to four different values, each returning every fourth 
year. * Now the population rose and fell on a regular four-year 
schedule. The cycle had doubled again-first from yearly to every 
two years, and now to four. Once again, the resulting cyclical 
behavior was stable; different starting values for the population 
would converge on the same four-year cycle. 

As Lorenz had discovered a decade before, the only way to 
make sense of such numbers and preserve one's eyesight is to 
create a graph. May drew a sketchy outline meant to sum up all 
the knowledge about the behavior of such a system at different 
parameters. The level of the parameter was plotted horizontally, 
increasing from left to right. The population was represented ver
tically. For each parameter, May plotted a point representing the 
final outcome, after the system reached equilibrium. At the left, 
where the parameter was low, this outcome would just he a point, 
so different parameters produced a line rising slightly from left to 
right. When the parameter passed the first critical point, May 
would have to plot two populations: the line would split in two, 
making a sideways Y or a pitchfork. This split corresponded to a 
population going from a one-year cycle to a two-year cycle. 

As the parameter rose further, the number of points doubled 
again, then again, then again. It was dumbfounding-such com
plex behavior, and yet so tantalizingly regular. "The snake in the 
mathematical grass" was how May put it. The doublings them
selves were bifurcations, and each bifurcation meant that the pat
tern of repetition was breaking down a step further. A populatiori 
that had been stable would alternate between different levels every 
other year. A population that had been alternating on a two-year 

* With a parameter of 3 .5 ,  say, and a starting value of .4, he would see a 
string of numbers like this: .4000, .8400, .4704, .8719, 

.3908, .8332 ,  .4862,  .8743, 

.3846, .8284, .4976, .8750, 

.3829, .8270, .4976, .8750, 

.3829, .8270, .5008, .8750, 

.3828, .8269, .5009, .8750, 

.382&, .8269, .5009, .8750, etc. 
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cycle would now vary on the third and fourth years, thus switching 
to period four. 

These bifurcations would come faster and faster-4, 8, 16, 
32 . . .  -and suddenly break off. Beyond a certain point, the "point 
of accumulation," periodicity gives way to chaos, fluctuations that 
never settle down at all. Whole regions of the graph are completely 

"lblacked in. If you were following an animal population governed 
by this simplest of nonlinear equations, you would think the changes 
from year to year were absolutely random, as though blown about 
by environmental noise. Yet in the middle of this complexity, 
stable cycles suddenly return. Even though the parameter is rising, 
meaning that the nonlinearity is driving the system harder and 
harder, a window will suddenly appear with a regular period: an 
odd period, like 3 or 7. The pattern of changing population repeats 
itself on a three-year or seven-year cycle. Then the period-doubling 
bifurcations begin all over at a faster rate, rapidly passing through 
cycles of 3, 6, 12 . . .  or 7 ,  14, 28 . . . , and then breaking off once 
again to renewed chaos. 

At first, May could not see this whole picture. But the frag
ments he could calculate were unsettling enough. ln a real-world 
system, an observer would see just the vertical slice corresponding 
to one parameter at a time. He would see only one kind of be
havior-possibly a steady state, possibly a seven-year cycle, pos
sibly apparent randomness.  He would have no way of knowing 
that the same system, with some slight change in some parameter, 
could display patterns of a completely different kind. 

James Y orke analyzed this behavior with mathematical rigor 
in his "Period Three Implies Chaos" paper. He proved that in any 
one-dimensional system, if a regular cycle of period three ever 
appears, then the same system will also display regular cycles of 
every other length, as well as completely chaotic cycles. This was 
the discovery that came as an "electric shock" to physicists like 
Freeman Dyson. It was so contrary to intuition. You would think 
it would be trivial to set up a system that would repeat itself in 
a period-three oscillation without ever producing chaos. Yorke 
showed that it was impossible. 

Startling though it was, Yorke believed that the public rela
tions value of his paper outweighed the mathematical substance. 
That was partly true. A few years later, attending an international 



WINDOWS OF ORDER INSIDE CHAOS. Even with the simplest equation, the 
region of chaos in a bifurcation diagram proves to have an intricate struc
ture-far more orderly than Robert May could guess at first. First, the 
bifurcations produce periods of 2, 4 ,  8, 16 . . . .  Then chaos begins, with 
no regular periods. But then, as the system is driven harder, windows 
appear with odd periods. A stable period 3 appears (blowup, top right), 
and then the period-doubling begins again: 6, 12 ,  24 . . . .  The structure 
is infinitely deep. When portions are magnified (such as the middle piece 
of the period 3 window, bottom right), they turn out to resemble the 
whole diagram. 
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conference in East Berlin, he took some time out for sightseeing 
and went for a boat ride on the Spree. Suddenly he was approached 
by a Russian trying urgently to communicate something. With the 
help of a Polish friend, Yorke finally understood that the Russian 
was claiming to have proved the same result. The Russian refused 
to give details, saying only that he would send his paper. Four 
months later it arrived. A. N. Sarkovskii had indeed been there 
first, in a paper titled "Coexistence of Cycles of a Continuous Map 
of a Line into Itself." But Yorke had offered more than a mathe
matical result. He had sent a message to physicists: Chaos is ubiq
uitous; it is stable; it is structured. He also gave reason to believe 
that complicated systems, traditionally modeled by hard contin
uous differential equations, could he understood in terms of easy 
discrete maps. 

The sightseeing encounter between these frustrated, gesti
culating mathematicians was a symptom of a continuing com
munications gap between Soviet and Westem science. Partly because 
of language, partly because of restricted travel on the Soviet side, 
sophisticated Western scientists have often repeated work that 
already existed in the Soviet literature. The blossoming of chaos 
in the United States and Europe has inspired a huge body of 
parallel work in the Soviet Union; on the other hand, it also in
spired considerable bewilderment, because much of the new sci
ence was not so new in Moscow. Soviet mathematicians and 
physicists had a strong tradition in chaos research, dating back to 
the work of A. N. Kolmogorov in the fifties. Furthermore, they had 
a tradition of working together that had survived the divergence 
of mathematics and physics elsewhere. 

Thus Soviet scientists were receptive to Smale-his horse
shoe created a considerable stir in the sixties. A brilliant mathe
matical physicist, Yasha Sinai, quickly translated similar systems 
into thermodynamic terms. Similarly, when Lorenz's work finally 
reached Western physics in the seventies, it simultaneously spread 
in the Soviet Union. And in 1975, as Yorke and May struggled to 
capture the attention of their colleagues, Sinai and others rapidly 
assem.bled a powerful working group of physicists centered in 
Gorki. In recent years, some Westem chaos experts have made a 
point of traveling regularly to the Soviet Union to stay current; 
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most, however, have had to content themselves with the Westem 
version of their science. 

In the West, Y orke and May were the first to feel the full shock 
of period-doubling and to pass the shock along to the community 
of scientists. The few mathematicians who had noted the phe
nomenon treated it as a technical matter, a numerical oddity: 
almost a kind of game playing. Not that they considered it trivial. 
But they considered it a thing of their special universe. 

Biologists had overlooked bifurcations on the way to chaos 
because they lacked mathematical sophistication and because they 
lacked the motivation to explore disorderly behavior. Mathema
ticians had seen bifurcations but had moved on. May, a man with 
one foot in each world, understood that he was entering a domain 
that was astonishing and profound. 

To SEE DEEPER INTO this simplest of systems, scientists needed 
greater computing power. Frank Hoppensteadt, at New York Uni
versity's Courant Institute of Mathematical Sciences, had so pow
erful a computer that he decided to make a movie. 

Hoppensteadt, a mathematician who later developed a strong 
interest in biological problems, fed the logistic nonlinear equation 
through his Control Data 6600 hundreds of millions of times. He 
took pictures from the computer's display screen at each of a 
thousand different values of the parameter, a thousand different 
tunings. The bifurcations appeared, then chaos-and then, within 
the chaos, the little spikes of order, ephemeral in their instability. 
Fleeting bits of periodic behavior. Staring at his own film, Hop
pensteadt felt as if he were fl.ying through an alien landscape. One 
instant it wouldn't look chaotic at all. The next instant it would 
he filled with unpredictable tumult. The feeling of astonishment 
was something Hoppensteadt never got over. 

May saw Hoppensteadt's movie. He also began collecting 
analogues from other fields, such as genetics, economics, and fluid 
dynamics. As a town crier for chaos, he had two advantages over 
the pure mathematicians. One was that, for him, the simple equa
tions could not represent reality perfectly. He knew they were just 
metaphors-so he began to wonder how widely the metaphors 
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The outline of the bifurcation diagram as May first saw it, before more 
powerful computation revealed its rich structure. 

could apply. The other was that the revelations of chaos fed di
rectly into a vehement controversy in his chosen field. 

Population biology had long been a magnet for controversy 
anyway. There was tension in biology departments, for example, 
between molecular biologists and ecologists. The molecular 
biologists thought that they did real science, crisp, hard problems, 
whereas the work of ecologists was vr.gue. Ecologists believed that 
the technical masterpieces of molecular biology were just clever 
elaborations of well-defined problems. 

Within ecology itself, as May saw it, a central controversy in 
the early 1970s dealt with the nature of population change. Ecol
ogists were divided almost along Iines of personality. Some read 
the message of the world to be orderly: populations are regulated 
and steady-with exceptions. Others read the opposite message: 
populations fluctuate erratically-with exceptions. By no coin
cidence, these opposing camps also divided over the application 
of hard mathematics to messy biological questions. Those who 
believed that populations were steady argued that they must be 
regulated by some deterministic mechanisms. Those who believed 
that populations were erratic argued that they must be bounced 
around by unpredictable environmental factors, wiping out what
ever deterministic signal might exist. Either deterministic math-

1 



Life's Ups and Downs 79 

ematics produced steady behavior, or random external noise pro
duced random behavior. That was the choice. 

In the context of that debate, chaos brought an astonishing 
message: simple deterministic models could produce what looked 
like random behavior. The behavior actually had an exquisite fine 
structure, yet any piece of it seemed indistinguishable from noise. 
The discofery cut through the heart of the controversy. 

As May looked at more and more biological systems through 
the prism of simple chaotic models, he continued to see results 
that violated the standard intuition of practitioners. In epide
miology, for example, it was well known that epidemics tenM to 
come in cycles, regular or irregular. Measles, polio, rubella-all 
rise and fall in frequency. May realized that the oscillations could 
be reproduced by a nonlinear model and he wondered what would 
happen if such a system received a sudden kick-a perturbation 
of the kind that might correspond to a program of inoculation. 
Naive intuition suggests that the system will change smoothly in 
the desired direction. But actually, May found, huge oscillations 
are likely to begin. Even if the long-term trend was turned solidly 
downward, the path to a new equilibrium would be interrupted 
by surprising peaks. In fact, in data from real programs, such as 
a campaign to wipe out rubella in Britain, doctors had seen os
cillations just like those predicted by May's model. Yet any health 
official, seeing a sharp short-term rise in rubella or gonorrhea, 
would assume that the inoculation program had failed. 

Within a few years, the study of chaos gave a strong impetus 
to theoretical biology, bringing biologists and physicists into 
scholarly partnerships that were inconceivable a few years before. 
Ecologists and epidemiologists dug out old data that earlier sci
entists had discarded as too unwieldy to handle. Deterministic 
chaos was found in records of New York City measles epidemics 
and in two hundred years of fluctuations of the Canadian lynx 
population, as recorded by the trappers of the Hudson's Bay Com
pany. Molecular biologists began to see proteins as systems in 
motion. Physiologists looked at organs not as static structures but 
as complexes of oscillations, some regular and some irregular. 

All through science, May knew, specialists had seen and ar
gued about the complex behavior of systems. Each discipline con-
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sidered its particular brand of chaos to be special unto itself. The 
thought inspired despair. Yet what if apparent randomness could 
come from simple models? And what if the same simple models 
applied to complexity in different fields? May realized that the 
astonishing structures he had barely begun to explore had no 
intrinsic connection to biology. He wondered how many other 
sorts of scientists would be as astonished as he. He set to work 
on what he eventually thought of as his "messianic" paper, a 
review article in 1976 for Nature. 

The world would be a better place, May argued, if every young 
student were given a pocket calculator and encouraged to play 
with the logistic difference equation. That simple calculation, which 
he laid out in fine detail in the Nature article, could counter the 
distorted sense of the world's possibilities that comes from a stan
dard scientific education. It would change the way people thought 
about everything from the theory of business cycles to the prop
agation of rumors. 

Chaos should be taught, he argued. It was time to recognize 
that the standard education of a scientist gave the wrong impres
sion. No matter how elaborate linear mathematics could get, with 
its Fourier transforms, its orthogonal functions, its regression tech
niques, May argued that it inevitably misled scientists about their 
overwhelmingly nonlinear world. "The mathematical intuition so 
developed ill equips the student to confront the bizarre behaviour 
exhibited by the simplest of discrete nonlinear systems,"  he 
wrote. 

"Not only in research, but also in the everyday world of pol
itics and economics, we would all be better off if more people 
realized that simple nonlinear systems do not necessarily possess 
simple dynamical properties. " 



A Geometry 
af Nature 

And yet relation appears, 

A small relation expanding like the shade 

Of a cloud on sand, a shape on the side of a hill . 

-WALLACE STEVENS, 
"Connoisseur of Chaos" 
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A PICTURE OF REALITY built up over the years in Benoit Man
delbrot's mind. In 1960, it was a ghost of an idea, a faint, unfocused 
image. But Mandelbrot recognized it when he saw it, and there it 
was on the blackboard in Hendrik Houthakker's office .. 

Mandelbrot was a mathematical jack-of-all-trades who had 
been adopted and sheltered by the pure research wing of the In
ternational Business Machines Corporation . He had been dabbling 
in economics, studying the distribution of large and small incomes 
in an economy. Houthakker, a Harvard economics professor, had 
invited Mandelbrot to give a talk, and when the young mathe
matician arrived at Littauer Center, the stately economics building 
just north of Harvard Yard, he was startled to see his findings 
already charted on the older man's blackboard. Mandelbrot made 
a querulous joke-how should my diagram have materialized 
ahead of my Iecture?-but Houthakker didn't know what Man
delbrot was talking about . The diagram had nothing to do with 
income distribution; it represented eight years of cotton prices. 

From Houthakker's point of view, tao, there was something 
strange about this chart. Economists generally assumed that the 
price of a commodity like cotton danced to two different beats, 
ane orderly and ane random. Over the long term, prices would 
he driven steadily by real forces in the economy-the rise and fall 
of the New England textile industry, or. the opening of interna
tional trade routes. Over the short term, p:rices would bounce 
around more or less randomly. Unfortunately, Houthakker's data 
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failed to match his expectations. There were too many large jumps. 
Most price changes were small, of course, but the ratio of small 
changes to large was not as high as he had expected. The distri
bution did not fall off quickly enough. It had a long tail. 

The standard model for plotting variation was and is the bell
shaped curve. In the middle, where the hump of the bell rises, 
most data cluster around the average. On the sides, the low and 
high extremes fall off rapidly. A statistician uses a bell-shaped 
curve the way an intemist uses a stethoscope, as the instrument 
of first resort. It represents the standard, so-called Gaussian dis
tribution of things-or, simply, the normal distribution. It makes 
a statement about the nature of randomness. The point is that 
when things vary, they try to stay near an average point and they 
manage to scatter around the average in a reasonably smooth way. 
But as a means of finding paths through the economic wildemess, 
the standard notions left something to he desired. As the Nobel 
laureate Wassily Leontief put it, "In no field of empirical inquiry 
has so massive and sophisticated a statistical machinery been used 
with such indifferent results." 

No matter how he plotted them, Houthakker could not make 
the changes in cotton prices fit the bell-shaped model. But they 
made a picture whose silhouette Mandelbrot was beginning to see 
in surprisingly disparate places. Unlike most mathematicians, he 
confronted problems by depending on his intuition about patterns 
and shapes. He mistrusted analysis, but he trusted his mental 
pictures. And he already had the idea that other laws, with dif
ferent behavior, could govem random, stochastic phenomena. When 
he went back to the giant IBM research center in Yorktown Heights, 

THS 

N O R M A L  

LAW 0 1"  SRROR 

8TAND8 OUT I N  THE 

1:JC .. &1111:NCI: 01" M A N K I N D  

A■ ONI: 0 1"  T H E  BROADreT 

01:N &RALIZATION■ 0 1'  NATURAL 

P H I LOeOPHY • IT eERVI:■ A■ TMI: 

GUIDINQ I N■TRUM l:NT IN REel:ARC H E■ 

IN TH& PHY■ICAL AND 90CIAL ■Cl&Nca• A N D  

IN MIDICI NI: AQIIIC U LTURI: AND 1: NG I N H R I NQ ♦ 

IT I■ AN I NDIIPl:N■A•L& TOOL 1"011 TH S  ANALY■le AND THS 

I NTl:R .. Rl:TATI O N  o ,  THE ■A81C DATA o•TAI Nl:D •v o•■ &IIVATION AND l:JCNRIIHNT 

THE BELL-SHAPED CURVE. 



A Geomet:ry of Nature 85 

New York, in the hills of northern Westchester County, he carried 
Houthakker's cotton data in a box of computer cards. Then he 
sent to the Department of Agriculture in Washington for more, 
dating back to 1900. 

Like scientists in other fields, economists were crossing the 
threshold into the..computer era, slowly realizing that they would 
have the power to collect and organize and manipulate informa
tion on a scale that had been unimaginable before. Not all kinds 
of information were available, though, and information that could 
be rounded up still had to he turned into some usable form. The 
keypunch era was just beginning, too. 1n the hard sciences, in
vestigators found it easier to amass their thousands or millions of 
data points. Economists, like biologists, dealt with a world of 
willful living beings. Economists studied the most elusive crea
tures of all. 

But at least the economists' environment produced a constant 
supply of numbers. From Mandelbrot's point of view, cotton prices 
made an ideal data source. The records were complete and they 
were old, dating back continuously a century or more. Cotton was 
a piece of the buying-and-selling universe with a centralized mar
ket-and therefore centralized record-keeping-because at the turn 
of the century all the South's cotton fl.owed through the New York 
exchange on route to New England, and Liverpool's prices were 
linked to New York's as well. 

Although economists had little to go on when it came to 
analyzing commodity prices or stock prices, that did not mean 
they lacked a fundamental viewpoint about how price changes 
worked. On the contrary, they shared certain articles of faith. One 
was a conviction that small, transient changes had nothing in 
common with large, long-term changes. Fast fl.uctuations come 
randomly. The small-scale ups and downs during a day's trans
actions are just noise, unpredictable and uninteresting. Long-term 
changes, however, are a different species entirely. The broad swings 
of prices over months or years or decades are determined by deep 
macroeconomic forces, the trends of war or recession, forces that 
should in theory give way to understanding. On the one hand, the 
buzz of short-term fl.uctuation; on the other, the sigµal of long-
term change. , 

As it happened, that dichotomy had no place in the picture 
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of reality that Mandelbrot was developing. lnstead of separating 
tiny changes from grand ones, his picture bound them together. 
He was looking for patterns not at one scale or another, but across 
every scale. It was far from obvious how to draw the picture he 
had in mind, but he knew there would have to be a kind of sym
metry, not a symmetry of right and left or top and bottom but 
rather a symmetry of large scales and small. 

Indeed, when Mandelbrot sifted the cotton-price data through 
IBM's computers, he found the astonishing results he was seeking. 
The numbers that produced aberrations from the point of view of 
normal distribution produced symmetry from the point of view 
of scaling. Each particular price change was random and unpre
dictable. But the sequence of changes was independent of scale: 
curves for daily price changes and monthly price changes matched 
perfectly. Incredibly, analyzed Mandelbrot's way, the degree of 
variation had remained constant over a tumultuous sixty-year pe
riod that saw two World Wars and a depression. 

Within the most disorderly reams of data lived an unexpected 
kind of order. Given the arbitrariness of the numbers he was ex
amining, why, Mandelbrot asked himself, should any law hold at 
all? And why should it apply equally well to personal incomes 
and cotton prices? 

In truth, Mandelbrot's background in economics was as mea
ger as his ability to communicate with economists. When he pub
lished an article on his findings, it was preceded by an explanatory 
article by one of his students, who repeated Mandelbrot's material 
in economists' English. Mandelbrot moved on to other interests. 
But he took with him a growing determination to explore the 
phenomenon of scaling. It seemed to be a quality with a life of its 
own-a signature. 

INTR0DUCED F0R A LECTURE years later (" . . .  taught economics 
at Harvard, engineering at Yale , physiology at the Einstein School 
of Medicine . . .  ") ,  he remarked proudly: "Very often when I listen 
to the list of my previous jobs I wonder if I exist. The intersection 
of such sets is surely empty. " Indeed, since his early days at IBM, 
Mandelbrot has failed to exist in a long list of different fields. He 
was always an outsider, taking an unorthodox approach to an 
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unfashionable comer of  mathematics, exploring disciplines in which 
he was rarely welcomed, hiding his grandest ideas in efforts to 
get his papers published, surviving mainly on the confidence of 
his employers in Yorktown Heights. He made forays into fields 
like economics and then withdrew, leaving behind tantalizing 
ideas but rarely well-founded bodies of work. 

In the history of chaos, Mandelbrot made his own way. Yet 
the picture of reality that was forming in his mind in 1960 evolved 
from an oddity into a full-fl.edged geometry. To the physicists 
expanding on the work of people like Lorenz, Smale, Yorke, and 
May, this prickly mathematician remained a sideshow-but his 
techniques and his language became an inseparable part of their 
new science. 

The description would not have seemed apt to anyone who 
knew him in his later years, with his high imposing brow and his 
list of titles and honors, but Benoit Mandelbrot is best understood 
as a refugee. He was born in Warsaw in 1924 to a Lithuanian 
Jewish family, his father a clothing wholesaler, his mother a den
tist. Alert to geopolitical reality, the family moved to Paris in 1936, 
drawn in part by the presence of Mandelbrot's uncle, Szolem 
Mandelbrojt, a mathematician. When the war came, the family 
stayed just ahead of the Nazis once again, abandoning everything 
but a few suitcases and joining the stream of refugees who clogged 
the roads south from Paris. They finally reached the town of Tulle. 

For a while Benoit went around as an apprentice toolmaker, 
dangerously conspicuous by his height and his educated back
ground. It was a time of unforgettable sights and fears, yet later 
he recalled little personal hardship, remembering instead the times 
he was befriended in Tulle and elsewhere by schoolteachers, some 
of them distinguished scholars, themselves stranded by the war. 
In all, his schooling was irregular and discontinuous. He claimed 
never to have learned the alphabet or, more significantly, multi
plication tables past the fives. Still, he had a gift. 

When Paris was liberated, he took and passed the month-long 
oral and written admissions examination for Ecole Normale and 
Ecole Polytechnique, despite his lack of preparation. Åmong other 
elements, the test had a vestigial examination in drawing, and 
Mandelbrot discovered a latent facility for copying the Venus de 
Milo. On the mathematical sections of the test-exercises in for-
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mal algehra and integrated analysis-he managed to hide his lack 
of training with the help of his geometrical intuition. He had 
realized that, given an analytic prohlem, he could almost always 
think of it in terms of some shape in his mind. Given a shape, he 
could find ways of transforming it, altering its symmetries, making 
it more harmonious. Often his transformations led directly to a 
solution of the analogous prohlem. 1n physics and chemistry, where 
he could not apply geometry, he got poor grades. But in mathe
matics, questions he could never have answered using proper 
techniques melted away in the face of his manipulations of shapes. 

The Ecole Normale and Ecole Polytechnique were elite schools 
with no parallel in American education. Together they prepared 
fewer than 300 students in each class for careers in the French 
universities and civil service. Mandelhrot hegan in Normale, the 
smaller and more prestigious of the two, hut left within days for 
Polytechnique. He was already a refugee from Bourhaki. 

Perhaps nowhere hut in France, with its love of authoritarian 
academies and received rules for learning, could Bourhaki have 
arisen. It hegan as a cluh, founded in the unsettled wake of World 
War I hy Szolem Mandelhrot and a handful of other insouciant 
young mathematicians looking for a way to rehuild French 
mathematics. The vicious demographics of war had left an age 
gap hetween university professors and students, disrupting the 
tradition of academic continuity, and these hrilliant young men 
set out to estahlish new foundations for the practice of mathe
matics. The name of their group was itself an inside joke, horrowed 
for its strange and attractive sound-so it was later guessed-from 
a nineteenth-century French general of Greek origin. Bourhaki was 
hom with a playfulness that soon disappeared. 

Its memhers met in secrecy. Indeed, not all their names are 
known. Their numher was fixed. When one memher left, as was 
required at age 50, another would he elected hy the remaining 
group. They were the hest and the hrightest of mathematicians, 
and their influence soon spread across the continent. 

In part, Bourhaki hegan in reaction to Poincare, the great man 
of the late nineteenth century, a phenomenally prolific thinker 
and writer who cared less than some for rigor. Poincare would 
say, I know it must he right, so why should I prove it? Bourhaki 
helieved that Poincare had left a shaky hasis for mathematics, and 
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the group began to write an enormous treatise, more and more 
fanatical in style, meant to set the discipline straight. Logical analysis 
was central. A mathematician had to begin with solid first prin
ciples and deduce all the rest from them. The group stressed the 
primacy of mathematics among sciences, and also insisted upon 
a detachment from other sciences. Mathematics was mathemat
ics-it could not be valued in terms of its application to real 
physical phenomena. And above all, Bourbaki rejected the use of 
pictures. A mathematician could always be fooled by his visual 
apparatus. Geometry was untrustworthy. Mathematics should be 
pure, formal, and austere. 

Nor was this strictly a French development. In the United 
States, too, mathematicians were pulling away from the demands 
of the physical sciences as firmly as artists and writers were pull
ing away from the demands of popular taste. A hermetic sensibility 
prevailed. Mathematicians' subjects became self-contained; their 
method became formally axiomatic. A mathematician could take 
pride in saying that his work explained nothing in the world or 
in science. Much good came of this attitude, and mathematicians 
treasured it. Steve Smale, even while he was working to reunite 
mathematics and natural science, believed, as deeply as he be
lieved anything, that mathematics should be something all by 
itself. With self-containment came clarity. And clarity, too, went 
hand in hand with the rigor of the axiomatic method. Every serious 
mathematician understands that rigor is the defining strength of 
the discipline, the steel skeleton without which all would col
lapse. Rigor is what allows mathematicians to pick up a line of 
thought that extends over centuries and continue it, with a firm 
guarantee. 

Even so, the demands of rigor had unintended consequences 
for mathematics in the twentieth century. The field develops through 
a special kind of evolution. A researcher picks up a problem and 
begins by making a decision about which way to continue. lt 
happened that often that decision involved a choice between a 
path that was mathematically feasible and a path that was inter
esting from the point of view of understanding nature. For a math
ematician, the choice was clear: he would abandon any obvious 
connection with nature for a while. Eventually his students would 
face a similar choice and make a similar decision. 
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Nowhere were these values as severely codified as in France, 
and there Bourbaki succeeded as its founders could not have imag
ined. Its precepts, style, and notation became mandatory. It achieved 
the unassailable rightness that comes from controlling all the best 
students and producing a steady flow of successful mathematics. 
lts dominance over Ecole Normale was total and, to Mandelbrot, 
unbearable. He fled Normale because of Bourbaki, and a decade 
later he fled France for the same reason, taking up residence in 
the United States. Within a few decades, the relentless abstrac
tion of Bourbaki would begin to die of a shock brought on by 
the computer, with its power to feed a new mathematics of the 
eye. But that was too late for Mandelbrot, unable to live by Bour
baki's formalisms and unwilling to abandon his geometrical in
tuition. 

ALWAYS A BELIEVER in creating his own mythology, Mandel
brot appended this statement to his entry in Who's Who: "Science 
would he ruined if (like sports) it were to put competition above 
everything else, and if it were to clarify the rules of competition 
by withdrawing entirely into narrowly defined specialties. The 
rare scholars who are nomads-by-choice are essential to the in
tellectual welfare of the settled disciplines." This nomad-by-choice, 
who also called himself a pioneer-by-necessity, withdrew from 
academe when he withdrew from France, accepting the shelter of 
IBM's Thomas J. Watson Research Center. In a thirty-year journey 
from obscurity to eminence, he never saw his work embraced by 
the many disciplines toward which he directed it. Even mathe
maticians would say, without apparent malice, that whatever 
Mandelbrot was, he was not one of them. 

He found his way slowly, always abetted by an extravagant 
knowledge of the forgotten byways of scientific history. He ven
tured into mathematical linguistics, explaining a law of the dis
tribution of words. (Apologizing for the symbolism, he insisted 
that the problem came to his attention from a book review that 
he retrieved from a pure mathematician's wastebasket so he would 
have something to read on the Paris subway.) He investigated game 
theory. He worked hi� way in and out of economics. He wrote 
about scaling regularities in the distribution of large and small 
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cities. The general framework that tied his work together remained 
in the background, incompletely formed. 

Early in his time at IBM, soon after his study of commodity 
prices, he came upon a practical problem of intense concern to 
his corporate patron. Engineers were perplexed by the problem of 
noise in telephone Iines used to transmit information from com
puter to computer. Electric current carries the information in dis
crete packets, and engineers knew that the stronger they made the 
current the better it would be at drowning out noise. But they 
found that some spontaneous noise could never he eliminated. 

, Once in a while it would wipe out a piece of signal, creating an 
error. 

Although by its nature the transmission noise was random, 
it was well known to come in clusters. Periods of errorless com
munication would be followed by periods of errors. By talking to 
the engineers, Mandelbrot soon learned that there was a piece of 
folklore about the errors that had never been written down, be
cause it matched none of the standard ways of thinking: the more 
closely they looked at the clusters, the more complicated the pat
terns of errors seemed. Mandelbrot provided a way of describing 
the distribution of errors that predicted exactly the observed pat
terns. Yet it was exceedingly peculiar. For ane thing, it made it 
impossible to calculate an average rate of errors-an average num
ber of errors per hour, or per minute, or per second. On average, 

in Mandelbrot's scheme, errors approached infinite sparseness. 
His description worked by making deeper and deeper sepa

rations between periods of clean transmission and periods of er
rors. Suppose you divided a day into hours. An hour might pass 
with no errors at all. Then an hour might contain errors. Then an 
hour might pass with no errors. 

But suppose you then divided the hour with errors into smaller 
periods of twenty minutes. You would find that here, tao, some 
periods would be completely clean, while some would contain a 
burst of errors. In fact, Mandelbrot argued-conJrary to intuition
that you could never find a time during which errors werp scat
tered continuously. Within any burst of errors, no matter how 
short, there would always · be periods of completely error-free 
transmission. Furthermore, he discovered a consistent geometric 
relationship between the bursts of errors and the spaces of clean 
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transmission. On scales of an hour or a second, the proportion of 
error-free periods to error-ridden periods remained constant. (Once, 
to Mandelbrot's horror, a batch of data seemed to contradict his 
scheme-but it tumed out that the engineers had failed to record 
the most extreme cases, on the assumption that they were irrel
evant.) 

Engineers had no framework for understanding Mandelbrot's 
description, but mathematicians did. In effect, Mandelbrot was 
duplicating an abstract construction known as the Cantor set, after 
the nineteenth-century mathematician Georg Cantor. To make a 
Cantor set, you start with the interval of numbers from zero to 
one, represented by a line segment. Then you remove the middle 
third. That leaves two segments, and you remove the middle third 
of each (from one-ninth to two-ninths and from seven-ninths to 
eight-ninths) . That leaves four segments, and you remove the mid
dle third of each-and so on to infinity. What remains? A strange 
"dust" of points, arranged in clusters, infinitely many yet infinitely 
sparse. Mandelbrot was thinking of transmission errors as a Cantor 
set arranged in time. 

This highly abstract description had practical weight for sci
entists trying to decide between different strategies of controlling 
error. In particular, it meant that, instead of trying to increase 
signal strength to drown out more and more noise, engineers should 
settle for a modest signal, accept the inevitability of errors and 
use a strategy of redundancy to catch and correct them. Mandel
brot also changed the way IBM's engineers thought about the cause 
of noise. Bursts of errors had always sent the engineers looking 
for a man sticking a screwdriver somewhere. But Mandelbrot's 
scaling pattems suggested that the noise would never be explained 
on the hasis of specific local events. 

Mandelbrot tumed to other data, drawn from the world's riv
ers. Egyptians have kept records of the height of the Niie for mil
lennia. It is a matter of more than passing concern. The Nile suffers 
unusually great variation, flooding heavily in some years and sub
siding in others. Mandelbrot classified the variation in terms of 
two kinds of effects, common in economics as well, which he 
called the Noah and Joseph Effects. 

The Noah Effect means discontinuity: when a quantity changes, 
it can change almost arbit�arily fast. Economists traditionally 
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THE CANTOR DUST. Begin with a line; remove the middle third; then 
remove the middle third of the remaining segments; and so on. The Cantor 
set is the dust of points that remains. They are infinitely many, but their 
total length is 0.  

The paradoxical qualities of such constructions disturbed nine
teenth-century mathematicians, but Mandelbrot saw the Cantor set as a 
model for the occurrence of errors in an electronic transmission line. 
Engineers saw periods of error-free transmission, mixed with periods 
when errors would come in bursts. Looked at more closely, the bursts, 
too, contained error-free periods within them. And so on-it was an 
example of fractal time. At every time scale, from hours to seconds, 
Mandelbrot discovered that the relationship of errors to clean transmis
sion remained constant. Such dusts, he contended, are indispensable in 
modeling intermittency. 

imagined that prices change smoothly-rapidly or slowly, as the 
case may be, but smoothly in the sense that they pass through all 
the intervening levels on their way from one point to another. 
That image of motion was borrowed from physics, like much of 
the mathematics applied to economics. But it was wrong. Prices 
can change in instantaneous jumps, as swiftly as a piece of news 
can flash across a teletype wire and a thousand brokers can change 
their minds. A stock market strategy was doomed to fail, Man
delbrot argued, if it assumed that a stock would have to sell for 
$50 at some point on its way down from $60 to $10. 

The Joseph Effect means persistence. There came seven years 
of great plenty throughout the land of Egypt. And there shall arise 
after them seven years of famine. If the Biblical legend nieant to 



94 C H A O S  

imply periodicity, it was oversimplified, of course. But floods and 
droughts do persist. Despite an underlying randomness, the longer 
a place has suffered drought, the likelier it is to suffer more. Fur
thermore, mathematical analysis of the Nile's height showed that 
persistence applied over centuries as well as over decades. The 
Noah and Joseph Effects push in different directions, but they add 
up to this: trends in nature are real, but they can vanish as quickly 
as they come. 

Discontinuity, bursts of noise, Cantor dusts-phenomena like 
these had no place in the geometries of the past two thousand 
years. The shapes of classical geometry are Iines and planes, cir
cles and spheres, triangles and cones. They represent a powerful 
abstraction of reality, and they inspired a powerful philosophy of 
Platonic harmony. Euclid made of them a geometry that lasted 
two millennia, the only geometry still that most people ever learn. 
Artists found an ideal beauty in them, Ptolemaic astronomers built 
a theory of the universe out of them. But for understanding com
plexity, they turn out to he the wrong kind of abstraction. 

Clouds are not spheres, Mandelbrot is fond of saying. Moun
tains are not cones. Lightning does not travel in a straight line. 
The new geometry mirrors a universe that is rough, not rounded, 
scabrous, not smooth. It is a geometry of the pitted, pocked, and 
broken up, the twisted, tangled, and intertwined. The understand
ing of nature's complexity awaited a suspicion that the complexity 
was not just random, not just accident. It required a faith that the 
interesting feature of a lightning bolt's path, for example, was not 
its direction, but rather the distribution of zigs and zags. Man
delbrot' s work made a claim about the world, and the claim was 
that such odd shapes carry meaning. The pits and tangles are more 
than blemishes distorting the classic shapes of Euclidian geom
etry. They are often the keys to the essence of a thing. 

What is the essence of a coastline, for example? Mandelbrot 
asked this question in a paper that became a turning point for his 
thinking: "How Long Is the Coast of Britain?" 

Mandelbrot had come across the coastline question in an ob
scure posthumous article by an Eng1ish scientist, Lewis F. Rich
ardson, who groped with a surprising number of the issues that 
later became part of chaos. He wrote about numerical weather 
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prediction in the 1920s, studied fluid turbulence by throwing a 
sack of white parsnips into the Cape Cod Canal, and asked in a 
1926 paper, "Does the Wind Possess a Velocity?" ("The question, 
at first sight foolish, improves on acquaintance," he wrote.) Won
dering about coastlines and wiggly national borders, Richardson 
checked encyclopedias in Spain and Portugal, Belgium and the 
Netherlands and discovered discrepancies of twenty percent in 
the estimated lengths of their common frontiers. 

Mandelbrot's analysis of this question struck listeners as either 
painfully obvious or absurdly false. He found that most people 
answered the question in ane of two ways: "I don't know, it's not 
my field," or "I don't know, but I'll look it up in the encyclopedia." 

In fact, he argued, any coastline is-in a sense-infinitely 

A FRACTAL SHORE. A computer-generated coastline: the details are ran
dom, but the fractal dimension is constant, so the degree of roughness or 
irregularity looks the same no matter how much the image is magnified. 
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long. In another sense, the answer depends on the length of your 
ruler. Consider one plausible method of measuring. A surveyor 
takes a set of dividers, opens them to a length of one yard, and 
walks them along the coastline. The resulting number of yards is 
just an approximation of the true length, because the dividers skip 
over twists and turns smaller than one yard, but the surveyor 
writes the number down anyway. Then he sets the dividers to a 
smaller length-say, one foot-and repeats the process. He arrives 
at a somewhat greater length, because the dividers will capture 
more of the detail and it will take more than three one-foot steps 
to cover the distance previously covered by a one-yard step. He 
writes this new number down, sets the dividers at four inches, 
and starts again. This mental experiment, using imaginary divid
ers, is a way of quantifying the effect of observing an ohjeet from 
different distances, at different scales. An observer trying to es
timate the length of England's coastline from a satellite will make 
a smaller guess than an observer trying to walk its coves and 
beaches, who will make a smaller guess in turn than a snail ne
gotiating every pebble. 

Common sense suggests that, although these estimates will 
continue to get larger, they will approach some particular final 
value, the true length of the coastline. The measurements should 
converge, in other words. And in fact, if a coastline were some 
Euclidean shape, such as a circle, this method of summing finer 
and finer straight-line distances would indeed converge. But Man
delbrot found that as the scale of measurement becomes smaller, 
the measured length of a coastline rises without limit, bays and 
peninsulas revealing ever-smaller subbays and subpeninsulas
at least down to atomic scales, where the process does finally 
come to an end. Perhaps. 

SINCE EucLIDEAN MEASUREMENTs-length, depth, thick
ness-failed to capture the essence of irregular shapes, Mandel
brot turned to a different idea, the idea of dimension. Dimension 
is a quality with a much richer life for scientists than for non
scientists. We live in a three-dimensional world, meaning that we 
need three numbers to specify a point: for example, longitude, 
latitude, and altitude. The three dimensions are imagined as di-
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reetions at right angles to one another. This is still the legaey of 
Euclidean geometry, where spaee has three dimensions, a plane 
has two, a line has one, and a point has zero. 

The proeess of ahstraetion that allowed Euelid to eoneeive of 
one- or two-dimensional ohjeets spills over easily into our use 
of everyday ohjeets. A road map, for all praetieal purposes, is 
a quintessentially two-dimensional thing, a pieee of a plane. 
lt uses its two dimensions to earry information of a preeisely 
two-dimensional kind. In reality, of eourse, road maps are as 
three-dimensional as everything else, hut their thiekness is so 
slight (and so irrelevant to their purpose) that it ean he forgot
ten. Effeetively, a road map remains two-dimensional, even when 
it is folded up. In the same way, a thread is effeetively one
dimensional and a particle has effeetively no dimension at all. 

Then what is the dimension of a hall of twine? Mandelhrot 
answered, It depends on your point of view. From a great distanee, 
the hall is no more than a point, with zero dimensions. From 
closer, the hall is seen to fill spherieal spaee, taking up three 
dimensions. From closer still, the twine eomes into view, and the 
ohjeet heeomes effeetively one-dimensional, though the one di
mension is eertainly tangled up around itself in a way that makes 
use of three-dimensional spaee. The notion of how many numhers 
it takes to specify a point remains useful. From far away, it takes 
none-the point is all there is. From closer, it takes three. From 
closer still, one is enough-any given position along the length 
of twine is unique, whether the twine is stretehed out or tangled 
up in a hall. 

And on toward mieroseopie perspeetives: twine turns to 
three-dimensional eolumns, the eolumns resolve themselves into 
one-dimensional fihers, the solid material dissolves into zero
dimensional points. Mandelhrot appealed, unmathematieally, to 
relativity: "The notion that a numerieal result should depend on 
the relation of ohjeet to ohserver is in the spirit of physies in this 
eentury and is even an exemplary illustration of it. " 

But philosophy aside, the effeetive dimension of an ohjeet 
does turn out to he different from its mundane three dimensions. 
A weakness in Mandelhrot's verhal argument seemed to he its 
relianee on vague notions, "from far away" and "a little closer." 
What ahout in hetween? Surely there was no clear houndary at 



98 C H A O  S 

which a hall of twine changes from a three-dimensional to a one
dimensional ohjeet. Yet, far from heing a weakness, the ill-defined 
nature of these transitions led to a new idea ahout the prohlem of 
dimensions. 

Mandelhrot moved heyond dimensions 0, 1 ,  2, 3 . . .  to a seem
ing impossihility: fractional dimensions. The notion is a concep
tual high-wire act. For nonmathematicians it requires a willing 
suspension of dishelief. Yet it proves extraordinarily powerful. 

Fractional dimension hecomes a way of measuring qualities 
that otherwise have no clear definition: the degree of roughness 
or hrokenness or irregularity in an ohjeet. A twisting coastline, for 
example, despite its immeasurahility in terms of length, never
theless has a certain characteristic degree of roughness. Mandel
hrot specified ways of calculating the fractional dimension of real 
ohjects, given some technique of constructing a shape or given 
some data, and he allowed his geometry to make a claim ahout 
the irregular patterns· he had studied in nature. The claim was 
that the degree of irregularity remains constant over different scales. 
Surprisingly often, the claim turns out to he true. Over and over 
again, the world displays a regular irregularity. 

One wintry afternoon in 1975 ,  aware of the parallel currents 
emerging in physics, preparing his first major work for puhlication 
in hook form, Mandelhrot decided he needed a name for his shapes, 
his dimensions, and his geometry. His son was home from school, 
and Mandelhrot found himself thumhing through the hoy's Latin 
dictionary. He came across the adjective fractus, from the verh 
frangere, to hreak. The resonance of the main English cognates
fracture and fraction-seemed appropriate. Mandelhrot created 
the word (noun and adjective, English and French) fractal . 

IN THE MINo's EYE, a fractal is a way of seeing infinity. 
Imagine a triangle, each of its sides one foot long. Now imagine 

a certain transformation-a particular, well-defined, easily re
peated set of rules. Take the middle one-third of each side and 
attach a new triangle, identical in shape hut one-third the size. 

The result is a star of David. Instead of three one-foot seg
ments, the outline of this shape is now twelve four-inch segments. 
Instead of three points, there are six. 



A Geometry of Nature 99 

THE KocH SNOWFLAKE. "A rough but vigorous model of a coastline," in 
Mandelbrot's words. To construct a Koch curve, begin with a triangle 
with sides of length 1. At the middle of each side, add a new triangle 
one-third the size; and so on. The length of the boundary is 3 x 4/3 x 
4/3 x 4/3 . . .  -infinity. Yet the area remains less than the area of a circle 
drawn around the original triangle. Thus an infinitely long line surrounds 
a finite area. 

Now take each of the twelve sides and repeat the transfor
mation, attaching a smaller triangle onto the middle third. Now 
again, and so on to infinity. The outline becomes more and more 
detailed, just as a Cantor set becomes more and more sparse. It 
resembles a sort of ideal snowflake. It is known as a Koch curve
a curve being any connected line, whether straight or round
after Helge von Koch, the Swedish mathematician who first de
scribed it in 1904. 

On reflection, it becomes apparent that the Koch curve has 
some interesting features. For one thing, it is a continuous loop, 
never intersecting itself, because the new triangles on each side 
are always small enough to avoid bumping into each other. Each 
transformation adds a little area to the inside of the curve, but the 
total area remains finite, not much bigger than the original triangle, 
in fact. If you drew a circle around the original triangle, the Koch 
curve would never extend beyond it. 
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Yet the curve itself is infinitely long, as long as a Euclidean 
straight line extending to the edges of an unbounded universe. 
Just as the first transformation replaces a one-foot segment with 
four four-inch segments, every transformation multiplies the total 
length by four-thirds. This paradoxical result, infinite length in a 
finite space, disturbed many of the turn-of-the-century mathe
maticians who thought about it. The Koch curve was monstrous, 
disrespectful to all reasonable intuition about shapes and-it al
most went without saying-pathologically unlike anything to be 
found in nature. 

Under the circumstances, their work made little impact at the 
time, but a few equally perverse mathematicians imagined other 
shapes with some of the bizarre qualities of the Koch curve. There 
were Peano curves. There were Sierpinski carpets and Sierpinski 
gaskets. To make a carpet, start with a square, divide it three-by
three into nine equal squares, and remove the central one. Then 
repeat the operation on the eight remaining squares, putting a 
square hole in the center of each. The gasket is the same but with 
equilateral triangles instead of squares; it has the hard-to-imagine 
property that any arbitrary point is a branching point, a fork in 
the structure. Hard to imagine, that is, until you have thought 
about the Eiffel Tower, a good three-dimensional approximation, 
its beams and trusses and girders branching into a lattice of ever
thinner members, a shimmering network of fine detail. Eiffel, of 
course, could not carry the scheme to infinity, but he appreciated 
the subtle engineering point that allowed him to remove weight 
without also removing structural strength. 

The mind cannot visualize the whole infinite self-embedding 
of complexity. But to someone with a geometer's way of thinking 
about form, this kind of repetition of structure on finer and finer 
scales can open a whole world. Exploring these shapes, pressing 
one's mental fingers into the rubbery edges of their possibilities, 
was a kind of playing, and Mandelbrot took a childlike delight in 
seeing variations that no one had seen or understood before. When 
they had no names, he named them: ropes and sheets, sponges 
and foams, curds and gaskets. ' 

Fractional dimension proved to be precisely the right yard-
stick. In a sense, the degree of irregularity corresponded to the 
efficiency of the ohjeet in taking up space. A simple, Euclidean, 
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CONSTRUCTING WITH HOLES. A few mathematicians in the early twentieth 
century conceived monstrous-seeming objects made by the technique of 
adding or removing infinitely many parts. One such shape is the Sier
pinski carpet, constructed by cutting the center one-ninth of a square; 
then cutting out the centers of the eight smaller squares that remain; and 
so on. The three-dimensional analogue is the Menger sponge, a solid
looking lattice that has an infinite surface area, yet zero volume. 
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one-dimensional line fills no space at all. But the outline of the 
Koch curve, with infinite length crowding into llnite area, does 
fill space. It is more than a line, yet less than a plane. It is greater 
than one-dimensional, yet less than a two-dimensional form. Using 
techniques originated by mathematicians early in the century and 
then all but forgotten, Mandelbrot could characterize the fractional 
dimension precisely. For the Koch curve, the infinitely extended 
multiplication by four-thirds gives a dimension of 1.2618. 

In pursuing this path, Mandelbrot had two great advantages 
over the few other mathematicians who had thought about such 
shapes. One was his access to the computing resources that go 
with the name of IBM. Here was another task ideally suited to the 
computer's particular form of high-speed idiocy. Just as meteor
ologists needed to perform the same few calculations at millions 
of neighboring points in the atmosphere, Mandelbrot needed to 
perform an easily programmed transformation again and again and 
again and again. Ingenuity could conceive of transformations. 
Computers could draw them-sometimes with unexpected re
sults. The early twentieth-century mathematicians quickly reached 
a barrier of hard calculation, like the barrier faced by early pro
tobiologists without microscopes. In looking into a universe of 
finer and finer detail, the imagination can carry one only so far. 

In Mandelbrot's words: "There was a long hiatus of a hundred 
years where drawing did not play any role in mathematics because 
hand and pencil and ruler were exhausted. They were well under
stood and no longer in the forefront. And the computer did not 
exist. 

"When I came in this game, there was a total absence of 
intuition. One had to create an intuition from scratch. Intuition 
as it was trained by the usual tools-the hand, the pencil, and the 
ruler-found these shapes quite monstrous and pathological. The 
old intuition was misleading. The first pictures were to me quite 
a surprise; then I would recognize some pictures from previous 
pictures, and so on. 

"Intuition is not something that is given. I've trained my in
tuition to accept as obvious shapes which were initially rejected 
as absurd, and I find everyone els!3 can do the same." 

Mandelbrot's other advantage was the picture of reality he 
had begun forming in his encounters with cotton prices, with 
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electronic transmission noise, and with river tloods. The picture 
was beginning to come into focus now. His studies of irregular 
pattems in natural processes and his exploration of infinitely com
plex shapes had an intellectual intersection: a quality of self
similarity. Above all, fractal meant self-similar. 

Self-similarity is symmetry across scale. It implies recursion, 
pattem inside of pattem. Mandelbrot's price charts and river charts 
displayed self-similarity, because not only did they produce detail 
at finer and finer scales, they also produced detail with certain 
constant measurements. Monstrous shapes like the Koch curve 
display self-similarity because they look exactly the same even 
under high magnification. The self-similarity is built into the tech
nique of constructing the curves-the same transformation is re
peated at smaller and smaller scales. Self-similarity is an easily 
recognizable quality. lts images are everywhere in the culture: in 
the infinitely deep retlection of a person standing between two 
mirrors, or in the cartoon notion of a fish eating a smaller fish 
eating a smaller fish eating a smaller fish. Mandelbrot likes to 
quote Jonathan Swift: "So, Nat'ralists observe, a Flea/Hath smaller 
Fleas that on him prey, /And these have smaller Fleas to bite 'em, / 
And so proceed ad infinitum." 

IN THE NORTHEASTERN United States, the best place to study 
earthquakes is the Lamont-Doherty Geophysical Observatory, a 
group of unprepossessing buildings hidden in the woods of south
em New York State, just west of the Hudson River. Lamont
Doherty is where Christopher Scholz, a Columbia University pro
fessor specializing in the form and structure of the solid earth, 
first started thinking about fractals. 

While mathematicians and theoretical physicists disregarded 
Mandelbrot's work, Scholz was precisely the kind of pragmatic,  
working scientist most ready to pick up the tools of fractal geometry. 
He had stumbled across Benoit Mandelbrot's name in the 1960s, 
when Mandelbrot was working in economics and Scholz was an 
M.I.T. graduale student spending a great deal of time on a stubbom 
question about earthquakes. It had been well known for twenty 
years that the distribution of large and. small earthquakes fol
lowed a particular mathematical pattem, precisely the same scal-
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ing pattern that seemed to govern the distribution of persona! 
incomes in a free-market economy. This distribution was observed 
everywhere on earth, wherever earthquakes were counted and 
measured. Considering how irregular and unpredictable earth
quakes were otherwise, it was worthwhile to ask what sort of 
physical processes might explain this regularity. Or so it seemed 
to Scholz. Most seismologists had been content to note the fact 
and move on. 

Scholz remembered Mandelbrot's name, and in 1978 he bought 
a profusely illustrated, bizarrely erudite, equation-studded book 
called Fractals :  Form, Chance and Dimension. It was as if Man
delbrot had collected in one rambling volume everything he knew 
or suspected"about the universe. Within a few years this book and 
its expanded · and refined replacement, The Fractal Geometry of 
Nature, had sold more copies than any other book of high math
ematics. lts style was abstruse and exasperating, by turns witty, 
literary, and opaque. Mandelbrot himself called it "a manifesto 
and a casebook. " 

Like a few counterparts in a handful of other fields, partic
ularly scientists who worked on the materia! parts of nature, Scholz 
spent several years trying to figure out what to do with this book. 
lt was far from obvious. Fractals was, as Scholz put it, "not a how
to book but a gee-whiz book. " Scholz, however, happened to care 
deeply about surfaces, and surfaces were everywhere in this book. 
He found that he could not stop thinking about the promise of 
Mandelbrot's ideas. He began to work out a way of using fractals 
to describe, classify, and measure the pieces of his scientific world. 

He soon realized that he was not alone, although it was several 
more years before fractals conferences and seminars began mul
tiplying. The unifying ideas of fractal geometry brought together 
scientists who thought their own observations were idiosyncratic 
and who had no systematic way of understanding them. The in
sights of fractal geometry helped scientists who study the way 
things meld together, the way they branch apart, or the way they 
shatter. It is a method of looking at materials-the microscopically 
jagged surfaces of metals, the tiny holes and channels of porous 
oil-bearing rock, the fragmented landscapes of an earthquake zone. 

As Scholz saw it, it was the business of geophysicists to de
scribe the surface of the earth, the supace whose intersection with 
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the flat oceans makes coastlines. Within the top of the solid earth 
are surfaces of another kind, surfaces of cracks. Faults and frac
tures so dominate the structure of the earth's surface that they 
become the key to any good description, more important on bal
ance than the materia! they run through. The fractures crisscross 
the earth's surface in three dimensions, creating what Scholz 
whimsically called the "schizosphere." They control the flow of 
fluid through the ground-the flow of water, the flow of oil, and 
the flow of natural gas. They control the behavior of earthquakes. 
Understanding surfaces was paramount, yet Scholz helieved that 
his profession was in a quandary. ln truth, no framework existed. 

Geophysicists looked at surfaces the way anyone would, as 
shapes. A surface might he flat. Or it might have a particular shape. 
You could look at the outline of a Volkswagen Beetle, for example, 
and draw that surface as a curve. The curve would he measurahle 
in familiar Euclidean ways. You could fit an equation to it. But 
in Scholz's description, you would only he looking at that surface 
through a narrow spectral band. It would he like looking at the 
universe through a red filter-you see what is happening at that 
particular wavelength of light, hut you miss everything happening 
at the wavelengths of other colors, not to mention that vast range 
of activity at parts of the spectrum corresponding to infrared ra
diation or radio waves. The spectrum, in this analogy, corresponds 
to scale. To think of the surface of a Volkswagen in terms of its 
Euclidean shape is to see it only on the scale of an observer ten 
meters or one hundred meters away. What about an observer one 
kilometer away, or one hundred kilometers? What about an ob
server one millimeter away, or one micron? 

lmagine tracing the surface of the earth as it would look from 
a distance of one hundred kilometers out in space. The line goes 
up and down over trees and hillocks, buildings and-in a parking 
lot somewhere-a Volkswagen. On that scale, the surface is just 
a bump among many other bumps, a bit of randomness. 

Or imagine looking at the Volkswagen from closer and closer, 
zooming in with magnifying glass and microscope. At first the 
surface seems to get smoother, as the roundness of bumpers and 
hood passes out of view. But then the microscopic surface of the 
steel turns out to he humpy itself, in an apparently random way. 
lt seems chaotic. 
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Scholz found that fractal geometry provided a powerful way 
of describing the particular bumpiness of the earth's surface, and 
metallurgists found the same for the surfaces of different kinds of 
steel. The fractal dimension of a metal's surface, for example, often 
provides information that corresponds to the metal's strength. And 
the fractal dimension of the earth's surface provides clues to its 
important qualities as well. Scholz thought about a classic geo
logical formation, a talus slope on a mountainside. From a distance 
it is a Euclidean shape, dimension two. As a geologist approaches, 
though, he finds himself walking not so much on it as in it-the 
talus has resolved itself into boulders the size of cars. Its effective 
dimension has become about 2 .7, because the rock surfaces hook 
over and wrap around and nearly fill three-dimensional space, 
like the surface of a sponge. 

Fractal descriptions found immediate application in a series 
of problems connected to the properties of surfaces in contact with 
one another. The contact between tire treads and concrete is such 
a problem. So is contact in machine joints, or electrical contact. 
Contacts between surfaces have properties quite independent of 
the materials involved. They are properties that tum out to depend 
on the fractal quality of the bumps upon bumps upon bumps. One 
simple but powerful consequence of the fractal geometry of sur
faces is that surfaces in contact do not touch everywhere. The 
bumpiness at all scales prevents that. Even in rock under enor
mous pressure, at some sufficiently small scale it becomes clear 
that gaps remain, allowing fluid to flow. To Scholz, it is the Humpty
Dumpty Effect. It is why two pieces of a broken teacup can never 
be rejoined, even though they appear to fit together at some gross 
scale. At a smaller scale, irregular bumps are failing to coincide. 

Scholz became known in his field as one of a few people 
taking up fractal techniques. He knew that some of his colleagues 
viewed this small group as freaks. If he used the word fractal in 
the title of a paper, he felt that he was regarded either as being 
admirably current or not-so-admirably on a bandwagon. Even the 
writii1g of papers forced difficult decisions, between writing for a 
small audience of fractal aficionados or writing for a broader geo
physical audience that would neJd explanations of the basic con
cepts. Still, Scholz considere}i the tools of fractal geometry 
indispensable. 
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"It's a single model that allows us to cope with the range 
of changing dimensions of the earth," he said. "It gives you 
mathematical and geometrical tools to descrihe and make predic
tions. Once you get over the hump, and you understand the para
digm, you can start actually measuring things and thinking ahout 
things in a new way. You see them differently. You have a new vi
sion. lt's not the same as the old vision at all-it's much hroader." 

How BIG 1s 111 How long does it last? These are the most 
hasic questions a scientist can ask ahout a thing. They are so basic 
to the way people conceptualize the world that it is not easy to 
see that they imply a certain hias. They suggest that size and 
duration, qualities that depend on scale, are qualities with mean
ing, qualities that can help descrihe an ohjeet or classify it. When 
a hiologist descrihes a human being, or a physicist descrihes a 
quark, how hig and how long are indeed appropriate questions. 
ln their gross physical structure, animals are very much tied to a 
particular scale. Imagine a human heing scaled up to twice its 
size, keeping all proportions the same, and you imagine a structure 
whose hones will collapse under its weight. Scale is important. 

The physics of earthquake hehavior is mostly independent of 
scale. A large earthquake is just a scaled-up version of a small 
earthquake. That distinguishes earthquakes from animals, for ex
ample-a ten-inch animal must he structured quite differently 
from a one-inch animal, and a hundred-inch animal needs a dif
ferent architecture still, if its hones are riot to snap under the 
increased mass. Clouds, on the other hand, are scaling phenomena 
like earthquakes. Their characteristic irregularity-descrihahle in 
terms of fractal dimension-changes not at all as they are ohserved 
on different scales. That is why air travelers lose all perspective 
on how far away a cloud is. Without help from cues such as 
haziness, a cloud twenty feet away can he indistinguishahle from 
two thousand feet away. Indeed, analysis of satellite pictures has 
shown an invariant fractal dimension in clouds ohserved from 
hundreds of miles away. 

It is hard to hreak the hahit of thinking of things in terms of 
how hig they are and how long they last. But the claim of fractal 
geometry is that, for some elements of nature, looking for a char-



108 C H A O  S 

acteristic scale becomes a distraction. Hurricane. By definition, it 
is a storm of a certain size. But the definition is imposed by people 
on nature. In reality, atmospheric scientists are realizing that tu
mult in the air forms a continuum, from the gusty swirling of litter 
on a city street corner to the vast cyclonic systems visible from 
space. Categories mislead. The ends of the continuum are of a 
piece with the middle. 

It happens that the equations of fluid flow are in many con
texts dimensionless, meaning that they apply without regard to 
scale. Scaled-down airplane wings and ship propellers can be 
tested in wind tunnels and laboratory basins. And, with some 
limitations, small storms act like large storms. 

Blood vessels, from aorta to capillaries, form another kind of 
continuum. They branch and divide and branch again until they 
become so narrow that blood cells are forced to slide through 
single file. The nature of their branching is fractal. Their structure 
resembles one of the monstrous imaginary objects conceived by 
Mandelbrot's turn-of-the-century mathematicians. As a matter of 
physiological necessity, blood vessels must perform a bit of di
mensional magic. Just as the Koch curve, for example, squeezes 
a line of infinite length into a small area, the circulatory system 
must squeeze a huge surface area into a limited volume. In terms 
of the body's resources, blood is expensive and space is at a pre
mium. The fractal structure nature has devised works so efficiently 
that, in most tissue, no cell is ever more than three or four cells 
away from a blood vessel. Yet the vessels and blood take up little 
space, no more than about five percent of the body. It is, as Man
delbrot put it, the Merchant of Venice Syndrome-not only can't 
you take a pound of flesh without spilling blood, you can't take 
a milligram. 

This exquisite structure-actually, two interwining trees of 
veins and arteries-is far from exceptional. The body is filled with 
such complexity. In the digestive tract, tissue reveals undulations 
within undulations. The lungs, too, need to pack the greatest pos
sible surface into the smallest space. An animal's ability to absorb 
oxygen is roughly proportional to the surface area of its lungs. 
Typical human lungs pack in a surface bigger than a tennis court. 
As an added complication, the labyrinth of windpipes must merge 
efficiently with the arteries and veins . 

.... 
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Every medical student knows that lungs are designed to ac
commodate a huge surface area. But anatomists are trained to look 
at one scale at a time-for example, at the millions of alveoli, 
microscopic sacs, that end the sequence of branching pipes. The 
language of anatomy tends to obscure the unity across scales. The 
fractal approach, by contrast, embraces the whole structure in 
terms of the branching that produces it, branching that behaves 
consistently from large scales to small. Anatomists study the vas
culatory system by classifying blood vessels into categories based 
on size-arteries and arterioles, veins and venules. For some pur
poses, those categories prove useful. But for others they mislead. 
Sometimes the textbook approach seems to dance around the truth: 
"In the gradual transition from one type of artery to another it is 
sometimes difficult to classify the intermediate region. Some ar
teries of intermediate caliber have walls that suggest larger arteries, 
while some large arteries have walls like those of medium-sized 
arteries. The transitional regions . . .  are often designated arteries 
of mixed type." 

Not immediately, but a decade after Mandelbrot published 
his physiological speculations, some theoretical biologists began 
to find fractal organization controlling structures all through the 
body. The standard "exponential" description of bronchial 
branching proved to be quite wrong; a fractal description turned 
out to fit the data. The urinary collecting system proved fractal. 
The biliary duct in the liver. The network of special fibers in the 
heart that carry pulses of electric current to the contracting 
muscles. The last structure, known to heart specialists as the 
His-Purkinje network, inspired a particularly important line of 
research. Considerable work on healthy and abnormal hearts turned 
out to hinge on the details of how the muscle cells of the left and 
right pUI\lping chambers all manage to coordinate their timing. 
Several chaos-minded cardiologists found that the frequency spec
trum of heartbeat timing, like earthquakes and economic phenom
ena, followed fractal laws, and they argued that one key to 
understanding heartbeat timing was the fractal organization of the 
His-Purkinje network, a labyrinth of branching pathways orga
nized to he self-similar on smaller and smaller scales. 

How did nature manage to evolve such complicated archi
tecture? Mandelbrot's point is that the complications exist only 
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in the context of traditiona! Euclidean geometry. As fractals, 
branching structures can be described with transparent simplicity, 
with just a few bits of information. Perhaps the simple transfor
mations that gave rise to the shapes devised by Koch, Peano, and 
Sierpinski have their analogue in the coded instructions of an 
organism's genes. DNA surely cannot specify the vast number of 
bronchi, bronchioles, and alveoli or the particular spatial structure 
of the resulting tree, but it can specify a repeating process of 
bifurcation and development. Such processes suit nature's pur
poses. When E. I. DuPont de Nemours & Company and the United 
States Army finally began to produce a synthetic match for goose 
down, it was by finally realizing that the phenomenal air-trapping 
ability of the natural product came from the fractal nodes and 
branches of down's key protein, keratin. Mandelbrot glided mat
ter-of-factly from pulmonary and vascular trees to real botanical 
trees, trees that need to capture sun and resist wind, with fractal 
branches and fractal leaves. And theoretical biologists began to 
speculate that fractal scaling was not just common but universal 
in morphogenesis. They argued that understanding how such pat
terns were encoded and processed had become a major challenge 
to biology. 

"I STARTED LOOI<ING in the trash cans of science for such 
phenomena, because I suspected that what I was observing was 
not an exception but perhaps very widespread. I attended lectures 
and looked in unfashionable periodicals, most of them of little or 
no yield, but once in a while finding some interesting things. ln 
a way it was a naturalist's approach, not a theoretician's approach. 
But my gamble paid off." 

Having consolidated a life's collection of ideas about nature 
and mathematical history into one book, Mandelbrot found an 
unaccustomed measure of academic success. He became a fixture 
of the scientific lecture circuit, with his indispensable trays of 
color slides and his wispy white hair. He began to win prizes and 
other professional honors, and his name became as well known 
to the nonscientific public as any mathematician's. 1n part that 
was because of the aesthetic appeal of his fractal pictures; in part 
because the many thousands of hobbyists with microcomputers 

✓ 
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could begin exploring his world themselves. In part it was because 
he put himself forward. His name appeared on a little list compiled 
by the Harvard historian of science I. Bernard Cohen. Cohen had 
scoured the annals of discovery for years, looking for scientists 
who had declared their own work to be "revolutions."  All told, 
he found just sixteen. Robert Symmer, a Scots contemporary of 
Benjamin Franklin whose ideas about electricity were indeed rad
ical, but wrong. Jean-Paul Marat, known today only for his bloody 
contribution to the French Revolution. Von Liebig. Hamilton. 
Charles Darwin, of course. Virchow. Cantor. Einstein. Minkowski. 
Von Laue. Alfred Wegener-continental drift. Compton. Just. James 
Watson-the structure of DNA. And Benoit Mandelbrot. 

To pure mathematicians, however, Mandelbrot remained an 
outsider, contending as bitterly as ever with the politics of science. 
At the height of his success, he was reviled by some colleagues, 
who thought he was unnaturally obsessed with his place in his
tory. They said he hectored them about giving due credit. Un
questionably, in his years as a professional heretic he honed an 
appreciation for the tactics as well as the substance of scientific 
achievement. Sometimes when articles appeared using ideas from 
fractal geometry he would call or write the authors to complain 
that no reference was made to him or his book. 

His admirers found his ego easy to forgive, considering the 
difficulties he had overcome in getting recognition for his work. 
"Of course, he is a bit of a megalomaniac, he has this incredible 
ego, but it's beautiful stuff he does, so most people let him get 
away with it, "  ane said. In the words of another: "He had so many 
difficulties with his fellow mathematicians that simply in order 
to survive he had to develop this strategy of boosting his own ego. 
If he hadn't done that, if he hadn't been so convinced that he had 
the right visions, then he would never have succeeded."  

The business of  taking and giving credit can become obsessive 
in science. Mandelbrot did plenty of both. His book rings with 
the first person: I claim . . .  I conceived and developed . . .  and 
implemented . . .  I have confi.rmed . . .  I show . . .  I coined . . .  In 
my travels through newly opened or newly settled territory, I was 
often moved to exert the right of naming its landmarks. 

Many scientists failed to appreciate this kind of style. Nor 
were they mollified that Mandelbrot was equally copious with his 
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references to predecessors, some thoroughly obscure. (And all, as 
his detractors noted, quite safely deceased.) They thought it was 
just his way of trying to position himself squarely in the center, 
setting himself up like the Pope, casting his benedictions from 
one side of the field to the other. They fought back. Scientists 
could hardly avoid the word fractal, but if they wanted to avoid 
Mandelbrot's name they could speak of fractional dimension 
as Hausdorff-Besicovitch dimension. They also-particularly 
mathematicians-resented the way he moved in and out of dif
ferent disciplines, making his claims and conjectures and leaving 
the real work of proving them to others. 

It was a legitimate question. lf one scientist announces that 
a thing is probably true, and another demonstrates it with rigor, 
which one has done more to advance science? Is the making of a 
conjecture an act of discovery? Or is it just a cold-blooded staking 
of a claim? Mathematicians have always faced such issues, but 
the debate became more intense as computers began to play their 
new role. Those who used computers to conduct experiments 
became more like laboratory scientists, playing by rules that al
lowed discovery without the usual theorem-proof, theorem-proof 
of the standard mathematics paper. 

Mandelbrot's book was wide-ranging and stuffed with the 
minutiae of mathematical history. Wherever chaos led, Mandel
brot had some hasis to claim that he had been there first. Little 
did it matter that most readers found his references obscure or 
even useless. They had to acknowledge his extraordinary intuition 
for the direction of advances in fields he had never actually stud
ied, from seismology to physiology. It was sometimes uncanny, 
and sometimes irritating. Even an admirer would cry with exas
peration, "Mandelbrot didn't have everybody's thoughts before 
they did." 

It hardly matters. The face of genius need not always wear an 
Einstein's saintlike mien. Yet for decades, Mandelbrot believes, 
he had to play games with his work. He had to couch original 
ideas in terms that would not give offense. He had to delete his 
visionary-sounding prefaces to get his articles published. When 
he wrote the first version of his book, published in French in 1975, 
he felt he was forced to pretend it contained nothing too startling. 



A Geometry of Nature 113 

That was why he wrote the latest version explicitly as "a manifesto 
and a casebook." He was coping with the politics of science. 

"The politics affected the style in a sense which I later came 
to regret. I was saying, 'It's natural to . . .  , It's an interesting ob
servation that . . .  . '  Now, in fact, it was anything but natural, and 
the interesting observation was in fact the result of very long 
investigations and search for proof and self-criticism. It had a 
philosophical and removed attitude which I felt was necessary to 
get it accepted. The politics was that, if I said I was proposing a 
radical departure, that would have been the end of the readers' 
interest. 

"Later on, I got back some such statements, people saying, 'It 
is natural to observe . .  .' That was not what I had bargained for. " 

Looking back, Mandelbrot saw that scientists in various dis
ciplines responded to his approach in sadly predictable stages. 
The first stage was always the same: Who are you and why are 
you interested in our field? Second: How does it relate to what 
we have been doing, and why don't you explain it on the hasis 
of what we know? Third: Are you sure it's standard mathematics? 
(Yes, l'm sure.) Then why don't we know it? (Because it's standard 
but very obscure.) 

Mathematics differs from physics and other applied sciences 
in this respect. A branch of physics, once it becomes obsolete or 
unproductive, tends to he forever part of the past. It may he a 
historical curiosity, perhaps the source of some inspiration to a 
modern scientist, but dead physics is usually dead for good reason. 
Mathematics, by contrast, is full of channels and byways that seem 
to lead nowhere in one era and become major areas of study in 
another. The potential application of a piece of pure thought can 
never he predicted. That is why mathematicians value work in an 
aesthetic way, seeking elegance and beauty as artists do. It is also 
why Mandelbrot, in his antiquarian mode, came across so much 
good mathematics that was ready to he dusted off. 

So the fourth stage was this: What do people in these branches 
of mathematics think about your work? (They don't care, because 
it doesn't add to the mathematics. In fact, they are surprised that 
their ideas represent nature.) 

ln the end, the word fractal came to stand for a way of de-
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scribing, calculating, and thinking about shapes that are irregular 
and_ fragmented, jagged and broken-up-shapes from the crystal
line curves of snowflakes to the discontinuous dusts of galaxies. 
A fractal curve implies an organizing structure that lies hidden 
among the hideous complication of such shapes. High school stu
dents could understand fractals and play with them; they were as 
primary as the elements of Euclid. Simple computer programs to 
draw fractal pictures made the rounds of persona! computer hob
byists. 

Mandelbrot found his most enthusiastic acceptance among 
applied scientists working with oil or rock or metals, particularly 
in corporate research centers. By the middle of the 1980s, vast 
numbers of scientists at Exxon's huge research facility, for ex
ample, worked on fractal problems. At General Electric, fractals 
became an organizing principle in the study of polymers and also
though this work was conducted secretly-in problems of nuclear 
reactor safety. In Hollywood, fractals found their most whimsical 
application in the creation of phenomenally realistic landscapes, 
earthly and extraterrestrial, in special effects for movies. 

The patterns that people like Robert May and James Yorke 
discovered in the early 1970s, with their complex boundaries be
tween orderly and chaotic behavior, had unsuspected regularities 
that could only he described in terms of the relation of large scales 
to small. The structures that provided the key to nonlinear dy
namics proved to he fractal. And on the most immediate practical 
level, fractal geometry also provided a set of tools that were taken 
up �y physicists, chemists, seismologists, metallurgists, proba
bility theorists and physiologists. These researchers were con
vinced, and they tried to convince others, that Mandelbrot's new 
geometry was nature's own. 

They made an irrefutable impact on orthodox mathematics 
and physics as well, but Mandelbrot himself never gained the full 
respect of those communities. Even so, they had to acknowledge 
him. One mathematician told friends that he had awakened one 
night still shaking from a nightmare. In this dream, the mathe
matician was dead, and suddenly heard the unmistakable voice 
of God. "You know," He remarked, "there really was something 
to that Mandelbrot." 



















A Geometzy of Nature 115 

THE NOTION OF SELF-SIMILARITY strikes ancient chords in our 
culture. An old strain in Western thought honors the idea. Leibniz 
imagined that a drop of water contained a whole teeming universe, 
containing, in turn, water drops and new universes within. "To 
see the world in a grain of sand," Blake wrote, and often scientists 
were predisposed to see it. When sperm were first discovered, 
each was thought to he a homunculus, a human, tiny but fully 
formed. 

But self-similarity withered as a scientific principle, for a good 
reason. It did not fit the facts. Sperm are not merely scaled-down 
humans-they are far more interesting than that-and the process 
of ontogenetic development is far more interesting than mere en
largement. The early sense of self-similarity as an organizing prin
ciple came from the limitations on the human experience of scale. 
How else to imagine the very great and very small, the very fast 
and very slow, but as extensions of the known? 

The myth died hard as the human vision was extended by 
telescopes and microscopes. The first discoveries were realiza
tions that each change of scale brought new phenomena and new 
kinds of behavior. For modern particle physicists, the process has 
never ended. Every new accelerator, with its increase in energy 
and speed, extends science's field of view to tinier particles and 
briefer time scales, and every extension seems to bring new in
formation. 

At first blush, the idea of consistency on new scales seems to 
provide less information. In part, that is because a parallel trend 
in science has been toward reductionism. Scientists break things 
apart and look at them one at a time. If they want to examine the 
interaction of subatomic particles, they put two or three together. 
There is complication enough. The power of self-similarity, though, 
begins at much greater levels of complexity. It is a matter of looking 
at the whole. 

Although Mandelbrot made the most comprehensive geo
metric use of it, the return of scaling ideas to science in the 1960s 
and 1970s became an intellectual current that made itself felt 
simultaneously in many places. Self-similarity was implicit in 

, ' 
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Edward Lorenz's work. It was part of his intuitive understanding 
of the fine structure of the maps made by his system of equations, 
a structure he could sense but not see on the computers available 
in 1963. Scaling also became part of a movement in physics that 
led, more directly than Mandelbrot's own work, to the discipline 
known as chaos. Even in distant fields, scientists were beginning 
to think in terms of theories that used hierarchies of scales, as in 
evolutionary biology, where it became clear that a full theory 
would have to recognize patterns of development in genes, in indi
vidual organisms, in species, and in families of species, all at once. 

Paradoxically, perhaps, the appreciation of scaling phenom
ena must have come from the same kind of expansion of human 
vision that had killed the earlier naive ideas of self-similarity. By 
the late twentieth century, in ways never before conceivable, im
ages of the incomprehensibly small and the unimaginably large 
became part of everyone's experience. The culture saw photo
graphs of galaxies and of atoms. No one had to imagine, with 
Leibniz, what the universe might he like on microscopic or tele
scopic scales-microscopes and telescopes made those images 
part of everyday experience. Given the eagerness of the mind to 
find analogies in experience, new kinds of comparison between 
large and small were inevitable-and some of them were pro
ductive. 

Often the scientists drawn to fractal geometry felt emotional 
parallels between their new mathematical aesthetic and changes 
in the arts in the second half of the century. They felt that they 
were drawing some inner enthusiasm from the culture at large. 
To Mandelbrot the epitome of the Euclidean sensibility outside 
mathematics was the architecture of the Bauhaus. It might just as 
well have been the style of painting best exemplified by the color 
squares of Josef Albers: spare, orderly, linear, reductionist, geo
metrical. Geometrical-the word means what it has meant for 
thousands of years. Buildings that are called geometrical are com
posed of simple shapes, straight Iines and circles, describable with 
just a few numbers. The vogue for geometrical architecture and 
painting came and went. Architects no longer care to build block
ish skyscrapers like the Seagram Building in New York, once much 
hailed and copied. To Mandelbrot and his followers the reason is 
clear. Simple shapes are inhuman. They fail to resonate with the 
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way nature organizes itself or with the way human perception 
sees the world. In the words of Gert Eilenberger, a German 
physicist who took up nonlinear science after specializing in su
perconductivity: "Why is it that the silhouette of a storm-bent 
leafless tree against an evening sky in winter is perceived as beau
tiful, but the corresponding silhouette of any multi-purpose uni
versity building is not, in spite of all efforts of the architect? The 
answer seems to me, even if somewhat speculative, to follow from 
the new insights into dynamical systems. Our feeling for beauty 
is inspired by the harmonious arrangement of order and disorder 
as it occurs in natural objects-in clouds, trees, mountain ranges, 
or snow crystals. The shapes of all these are dynamical processes 
jelled into physical forms, and particular combinations of order 
and disorder are typical for them." 

A geometrical shape has a scale, a characteristic size. To Man
delbrot, art that satisfies lacks scale, in the sense that it contains 
important elements at all sizes. Against the Seagram Building, he 
offers the architecture of the Beaux-Arts, with its sculptures and 
gargoyles, its quoins and jamb stones, its cartouches decorated 
with scrollwork, its cornices topped with cheneaux and lined with 
dentils. A Beaux-Arts paragon like the Paris Opera has no scale 
because it has every scale. An observer seeing the building from 
any distance finds some detail that draws the eye. The composition 
changes as one approaches and new elements of the structure 
come into play. 

Appreciating the harmonious structure of any architecture is 
one thing; admiring the wildness of nature is quite another. In 
terms of aesthetic values, the new mathematics of fractal geometry 
brought hard science in tune with the peculiarly modern feeling 
for untamed, uncivilized, undomesticated nature. At one time rain 
forests, deserts, bush, and badlands represented all that society 
was striving to subdue. If people wanted aesthetic satisfaction 
from vegetation, they looked at gardens. As John Fowles put it, 
writing of eighteenth-century England: "The period had no sym
pathy with unregulated · or primordial nature. It was aggressive 
wilderness, an ugly and all-invasive reminder of the Fall, of man's 
eternal exile from the Garden of Eden . . . .  Even its natural sci
ences . . .  remained essentially hostile to wild nature, seeing it 
only as something to he tamed, classified, utilised, exploited." By 
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the end of the twentieth century, the culture had changed, and 
now science was changing with it. 

So science found a use after all for the obscure and fanciful 
cousins of the Cantor set and the Koch curve. At first, these shapes 
could have served as items of evidence in the divorce proceedings 
between mathematics and the physical sciences at the turn of the 
century, the end of a marriage that had been the dominating theme 
of science since Newton. Mathematicians like Cantor and Koch 
had delighted in their originality. They thought they were out
smarting nature-when actually they had not yet caught up with 
nature's creation. The prestigious mainstream of physics, tao, turned 
away from the world of everyday experience. Only later, after 
Steve Smale brought mathematicians back to dynamical systems, 
could a physicist say, "We have the astronomers and mathema
ticians to thank for passing the field on to us, physicists, in a much 
better shape than we left it to them, 70 years ago." 

Yet, despite Smale and despite Mandelbrot, it was to he the 
physicists after all who made a new science of chaos. Mandelbrot 
provided an indispensable language and a catalogue of surprising 
pictures of nature. As Mandelbrot himself acknowledged, his pro
gram described better than it explained. He could list elements of 
nature along with their fractal dimensions-seacoasts, river net
works, tree bark, galaxies-and scientists could use those numbers 
to make predictions. But physicists wanted to know more. They 
wanted to know why. There were forms in nature-not visible 
forms, but shapes embedded in the fabric of motion-waiting to 
be revealed. 
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Strange Attractors 

Big whorls have little whorls 

Which feed on their velocity, 

And little whorls have lesser whorls 

And so on to viscosity. 

-LEWIS F. RICHARDSON 



TURBULENCE w AS A PR0BLEM with pedigree. The great 
physicists all thought about it, formally or informally. A smooth 
flow breaks up into whorls and eddies. Wild patterns disrupt the 
boundary between fluid and solid. Energy drains rapidly from 
large-scale motions to small. Why? The best ideas came from 
mathematicians; for most physicists, turbulence was too danger
ous to waste time on. It seemed almost unknowable. There was a 
story about the quantum theorist Werner Heisenberg, on his death
bed, declaring that he will have two questions for God: why rel
ativity, and why turbulence. Heisenberg says, "I really think He 
may have an answer to the first question." 

Theoretical physics had reached a kind of standoff with the 
phenomenon of turbulence. In effect, science had drawn a line on 
the ground and said, Beyond this we cannot go. On the near side 
of the line, where fluids behave in orderly ways, there was plenty 
to work with. Fortunately, a smooth-flowing fluid does not act as 
though it has a nearly infinite number of independent molecules, 
each capable of independent motion. Instead, bits of fluid that 
start nearby tend to remain nearby, like horses in harness. Engi
neers have workable techniques for calculating flow, as long as it 
remains calm. They use a body of knowledge dating back to the 
nineteenth century, when understanding the motions of liquids 
and gases was a problem on the front Iines of physics. 

By the modern era, however, it was on the front Iines no 
longer. To the deep theorists, fluid dynamics seemed to retain no 
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mystery hut the one that was unapproachahle even in heaven. The 
practical side was so well understood that it could he left to the 
technicians. Fluid dynamics was no longer really part of physics, 
the physicists would say. It was mere engineering. Bright young 
physicists had hetter things to do. Fluid dynamicists were gen
erally found in university engineering departments. A practical 
interest in turhulence has always heen in the foreground, and the 
practical interest is usually one-sided: make the turhulence go 
away. In some applications, turhulence is desirahle-inside a jet 
engine, for example, where efficient hurning depends on rapid 
mixing. But in most, turbulence means disaster. Turhulent airflow 
over a wing destroys lift. Turbulent flow in an oil pipe creates 
stupefying drag. Vast amounts of govemment and corporate money 
are staked on the design of aircraft, turbine engines, propellers, 
submarine hulls, and other shapes that move through fluids. Re
searchers must worry about flow in hlood vessels and heart valves. 
They worry about the shape and evolution of explosions. They 
worry ahout vortices and eddies, flames and shock waves. ln the
ory the World W ar II atomic bomb project was a prohlem in nuclear 
physics. In reality the nuclear physics had heen mostly solved 
before the project began, and the business that occupied the sci
entists assembled at Los Alamos was a problem in fluid dynamics. 

What is turhulence then? It is a mess of disorder at all scales, 
small eddies within large ones. It is unstable. It is highly dissi
pative, meaning that turbulence drains energy and creates drag. 
It is motion tumed random. But how does flow change from smooth 
to turbulent? Suppose you have a perfectly smooth pipe, with a 
perfectly even source of water, perfectly shielded from vihra
tions-how can such a flow create something random? 

All the rules seem to hreak down. When flow is smooth, or 
laminar, small disturbances die out. But past the onset of turhu
lence, disturhances grow catastrophically. This onset-this tran
sition-hecame a critical mystery in science. The channel below 
a rock in a stream hecomes a whirling vortex that grows, splits off 
and spins downstream. A plume of cigarette smoke rises smoothly 
from an ashtray, accelerating until it passes a critical velocity and 
splinters into wild eddies. The onset of turbulence can he seen 
and measured in laboratory experiments; it can be tested for any 
new wing or propeller by experimental work in a wind tunnel; 
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but its nature remains elusive. Traditionally, knowledge gained 
has always been special, not universal. Research by trial and error 
on the wing af a Boeing 707 aircraft contributes nothing ta research 
by trial and error on the wing af an F-16 fighter. Even supercom
puters are close ta helpless in the face af irregular fluid motion. 

Something shakes a fluid, exciting it. The fluid is viscous
sticky, so that energy drains out af it, and if you stopped shaking, 
the fluid would naturally come ta rest. When you shake it, you 
add energy at low frequencies, or large wavelengths, and the first 
thing ta notice is that the large wavelengths decompose into small 
ones. Eddies form, and smaller eddies within them, each dissi
pating the fluid's energy and each producing a characteristic rhythm. 
In the 1930s A. N. Kolmogorov put forward a mathematical de
scription that gave some feeling for how these eddies work. He 
imagined the whole cascade af energy down through smaller and 
smaller scales until finally a limit is reached, when the eddies 
become so tiny that the relatively larger effects af viscosity take 
over. 

For the sake af a clean description, Kolmogorov imagined that 
these eddies fill the whole space af the fluid, making the fluid 
everywhere the same. This assumption, the assumption af hom
ogeneity, tums out not ta he true, and even Poincare knew it forty 
years earlier, having seen at the rough surface af a river that the 
eddies always mix with regions af smooth flow. The vorticity is 
localized. Energy actually dissipates only in part af the space. At 
each scale, as you look closer at a turbulent eddy, new regions af 
calm come into view. Thus the assumption af homogeneity gives 
way ta the assumption af intermittency. The intermittent picture, 
when idealized somewhat, looks highly fractal, with intermixed 
regions af roughness and smoothness on scales running down from 
the large ta the small. This picture, tao, tums out ta fall somewhat 
short af the reality. 

Closely related, but quite distinct, was the question af what 
happens when turbulence begins. How does a flow cross the 
boundary from smooth ta turbulent? Before turbulence becomes 
fully developed, what intermediate stages might exist? For these 
questions, a slightly stronger theory existed. This orthodox par
adigm came from Lev D. Landau, the great Russian scientist whose 
text on fluid dynamics remains a standard. The Landau picture is 
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a piling up of competing rhythms. When more energy comes into 
a system, he conjectured, new frequencies begin one at a time, 
each incompatible with the last, as if a violin string responds to 
harder bowing by vibrating with a second, dissonant tone, and 
then a third, and a fourth, until the sound becomes an incompre
hensible cacophony. 

Any liquid or gas is a collection of individual bits, so many 
that they may as well be infinite. If each piece moved independ
ently, then the fluid would have infinitely many possibilities, 
infinitely many "degrees of freedom" in the jargon, and the equa
tions describing the motion would have to deal with infinitely 
many variables. But each particle does not move independently
its motion depends very much on the motion of its neighbors
and in a smooth flow, the degrees of freedom can be few. Poten
tially complex movements remain coupled together. Nearby bits 
remain nearby or drift apart in a smooth, linear way that produces 
neat Iines in wind-tunnel pictures. The particles in a column of 
cigarette smoke rise as one, for a while. 

Then confusion appears, a menagerie of mysterious wild mo
tions. Sometimes these motions received names: the oscillatory, 
the skewed varicose, the cross-roll, the knot, the zigzag. In Lan
dau's view, these unstable new motions simply accumulated, one 
on top of another, creating rhythms with overlapping speeds and 
sizes. Conceptually, this orthodox idea of turbulence seemed to 
fit the facts, and if the theory was mathematically useless-which 
it was-well, so be it. Landau's paradigm was a way of retaining 
dignity while throwing up the hands. 

Water courses through a pipe, or around a cylinder, making 
a faint smooth hiss. In your mind, you turn up the pressure. A 
back-and-forth rhythm begins. Like a wave, it knocks slowly against 
the pipe. Turn the knob again. From somewhere, a second fre
quency enters, out of synchronization with the first. The rhythms 
overlap, compete, jar against one another. Already they create such 
a complicated motion, waves banging against the walls, interfering 
with one another, that you almost cannot follow it. Now turn up 
the knob again. A third frequency enters, then a fourth, a fifth, a 
sixth, all incommensurate. The flow has become extremely com
plicated. Perhaps this is turbulence. Physicists accepted this pic
ture, but no one had any idea how to predict when an increase 
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in energy would create a new frequency, or what the new fre
quency would he. No one had seen these mysteriously arriving 
frequencies in an experiment hecause, in fact, no one had ever 
tested Landau's theory for the onset of turbulence. 

Tm:ORISTS CONDUCT EXPERIMENTS with their hrains. Experi
menters have to use their hands, too. Theorists are thinkers, ex
perimenters are craftsmen. The theorist needs no accomplice. The 
experimenter has to muster graduate students, cajole machinists, 
tlatter lah assistants. The theorist operates in a pristine place free 
of noise, of vihration, of dirt. The experimenter develops an in
timacy with matter as a sculptor does with clay, hattling it, shaping 
it, and engaging it. The theorist invents his companions, as a naive 
Romeo imagined his ideal Juliet. The experimenter's lovers sweat, 
complain, and fart. 

They need each other, hut theorists and experimenters have 
allowed certain inequities to enter their relationships since the 
ancient days when every scientist was hoth. Though the hest ex
perimenters still have some of the theorist in them, the converse 
does not hold. Ultimately, prestige accumulates on the theorist's 
side of the tahle. In high energy physics, especially, glory goes to 
the theorists, while experimenters have hecome highly specialized 
technicians, managing expensive and complicated equipment. 1n 
the decades since World War Il, as physics came to he defined hy 
the study of fundamental particles, the hest puhlicized experi
ments were those carried out with particle accelerators. Spin, sym
metry, color, tlavor-these were the glamorous ahstractions. To 
most laymen following science, and to more than a few scientists, 
the study of atomic particles was physics. But studying smaller 
particles, on shorter time scales, meant higher levels of energy. 
So the machinery needed for good experiments grew with the 
years, and the nature of experimentation changed for good in 
particle physics. The field was crowded, and the hig experiment 
encouraged teams. The particle physics papers often stood out in 
Physical Review Letters: a typical authors list could take up nearly 
one-quarter of a paper's length. 

Some experimenters, however, 
1

preferred to work alene or in 
pairs. They worked with substances closer to hand. While such 
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fields as hydrodynamics had lost status, solid-state physics had 
gained, eventually expanding its territory enough to require a more 
comprehensive name, "condensed matter physics'' : the physics 
of stuff. In condensed matter physics, the machinery was simpler. 
The gap between theorist and experimenter remained narrower. 
Theorists expressed a little less snobbery, experimenters a little 
less defensiveness. 

Even so, perspectives differed. It was fully in character for a 
theorist to interrupt an experimenter's lecture to ask: Wouldn't 
more data points he more convincing? Isn't that graph a little 
messy? Shouldn't those numbers extend up and down the scale 
for a few more orders of magnitude? 

And in retum, it was fully in character for Harry Swinney to 
draw himself up to his maximum height, something around five 
and a half feet, and say, "That's true," with a mixture of innate 
Louisiana charm and acquired New York irascibility. "That's true 
if you have an infinite amount of noise-free data. " And wheel 
dismissively back toward the blackboard, adding, "In reality, of 
course, you have a limited amount of noisy data." 

Swinney was experimenting with stuff. For him the tuming 
point had come when he was a graduate student at Johns Hopkins. 
The excitement of particle physics was palpable. The inspiring 
Murray Gell-Mann came to talk once, and Swinney was captivated. 
But when he looked into what graduate students did, he discov
ered that they were all writing computer programs or soldering 
spark chambers. It was then that he began talking to an older 
physicist starting to work on phase transitions-changes from 
solid to liquid, from nonmagnet to magnet, from conductor to 
superconductor. Before long Swinney had an empty room-not 
much bigger than a closet, but it was his alone. He had an equip
ment catalogue, and he began ordering. Soon he had a table and 
a laser and some refrigerating equipment and some probes. He 
designed an apparatus to measure how well carbon dioxide con
ducted heat around the critical point where it tumed from vapor 
to liquid. Most people thought that the thermal conductivity would 
change slightly. Swinney found that it changed by a factor of 1 ,000. 

That was exciting-alone in a tiny room, discovering something 
that no one else knew. He saw the other-worldly light that shines 
from a vapor, any vapor, near the critical point, the light called 
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"opalescence" hecause the soft scattering of rays gives the white 
glow of an opal. 

Like so much of chaos itself, phase transitions involve a kind 
of macroscopic hehavior that seems hard to predict hy looking at 
the microscopic details. When a solid is heated, its molecules 
vihrate with the added energy. They push outward against their 
honds and force the suhstance to expand. The more heat, the more 
expansion. Yet at a certain temperature and pressure, the change 
hecomes sudden and discontinuous. A rope has heen stretching; 
now it hreaks. Crystalline form dissolves, and the molecules slide 
away from one another. They ohey fluid laws that could not have 
heen inferred from any aspect of the solid. The average atomic 
energy has harely changed, hut the material-now a liquid, or a 
magnet, or a superconductor-has entered a new realm. 

Gunter Ahlers, at AT&T Bell Lahoratories in New Jersey, had 
examined the so-called superfluid transition in liquid helium, in 
which, as temperature falls, the material hecomes a sort of magical 
flowing liquid with no perceptihle viscosity or friction. Others 
had studied superconductivity. Swinney had studied the critical 
point where matter changes hetween liquid and vapor; Swinney, 
Ahlers, Pierre Berge, Jerry Golluh, Marzio Giglio-hy the middle 
1970s these experimenters and others in the United States, France, 
and Italy, all from the young tradition of exploring phase transi
tions, were looking for new prohlems. As intimately as a mail 
carrier leams the stoops and alleys of his neighhorhood, they had 
learned the peculiar signposts of suhstances changing their fun
damental state. They had studied a hrink upon which matter stands 
poised. 

The march of phase transition research had proceeded along 
stepping stones of analogy: a nonmagnet-magnet phase transition 
proved to he like a liquid-vapor phase transition. The fluid
superfluid phase transition proved to he like the conductor
superconductor phase transition. The mathematics of one 
experiment applied to many other experiments. By the 1970s 
the prohlem had heen largely sdlved. A question, though, was 
how far the theory could he extended. What other changes in 
the world, when examined closely, would prove to he phase tran
sitions? 

It was neither the most original idea nor the most ohvious to 
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apply phase transition techniques to flow in fluids. Not the most 
original because the great hydrodynamic pioneers, Reynolds and 
Rayleigh and their followers in the early twentieth century, had 
already noted that a carefully controlled fluid experiment pro
duces a change in the quality of motion-in mathematical terms 
a bifurcation. In a fluid cell, for example, liquid heated from the 
bottom suddenly goes from motionlessness to motion. Physicists 
were tempted to suppose that the physical character of that bi
furcation resembled the changes in a substance that fell under the 
rubric of phase transitions. 

It was not the most obvious sort of experiment because, unlike 
real phase transitions, these fluid bifurcations entailed no change 
in the substance itself. lnstead they added a new element: motion. 
A still liquid becomes a flowing liquid. Why should the mathe
matics of such a change correspond to the mathematics of a con
densing vapor? 

IN 1973 SWINNEY was teaching at the City College of New 
York. Jerry Gollub, a serious and boyish graduate of Harvard, was 
teaching at Haverford. Haverford, a mildly bucolic liberal arts 
college near Philadelphia, seemed less than an ideal place for a 
physicist to end up. It had no graduate students to help with 
laboratory work and otherwise fi.11 in the bottom half of the all
important mentor-protege partnership.  Gollub, though, loved 
teaching undergraduates and began building up the college's phys
ics department into a center widely known for the quality of its 
experimental work. That year, he took a sabbatical semester and 
came to New York to collaborate with Swinney. 

With the analogy in mind between phase transitions and fluid 
instabilities, the two men decided to examine a classic system of 
liquid confined between two vertical cylinders. One cylinder ro
tated inside the other, pulling the liquid around with it. The sys
tem enclosed its flow between surfaces. Thus it restricted the 
possible motion of the liquid in space, unlike jets and wakes in 
open water. The rotating cylinders produced what was known as 
Couette-Taylor flow. Typically, the inner cylinder spins inside a 
stationary shell, as a matter of convenience. As the rotation begins 
and picks up speed, the first instability occurs: the liquid forms 



FLOW BETWEEN ROTATING CYLINDERS. The patterned flow of water be
tween two cylinders gave Harry Swinney and Jerry Gollub a way to look 
at the onset of turbulence. As the rate of spin is increased, the structure 
grows more complex. First the water forms a characteristic pattern of flow 
resembling stacked doughnuts. Then the doughnuts begin to ripple. The 
physicists used a laser to measure the water's changing velocity as each 
new instability appeared. 
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an elegant pattem resembling a stack of inner tubes at a service 
station. Doughnut-shaped bands appear around the cylinder, stacked 
one atop another. A speck in the fluid rotates not just east to west 
but also up and in and down and out around the doughnuts. This 
much was already understood. G. I. Taylor had seen it and mea
sured it in 1923. 

To study Couette flow, Swinney and Gollub built an apparatus 
that fit on a desktop, an outer glass cylinder the size of a skinny 
can of tennis balls, about a foot high and two inches across. An 
inner cylinder of steel slid neatly inside, leaving just one-eighth 
of an inch between for water. "It was a string-and-sealing-wax 
affair," said Freeman Dyson, one of an unexpected series of prom
inent sightseers in the months that followed. "You had these two 
gentlemen in a poky little lab with essentially no money doing an 
absolutely beautiful experiment. It was the beginning of good 
quantitative work on turbulence." 

The two had in mind a legitimate scientific task that would 
have brought them a standard bit of recognition for their work and 
would then have been forgotten. Swinney and Gollub intended to 
confirm Landau's idea for the onset of turbulence. The experi
menters had no reason to doubt it. They knew that fluid dyna
micists believed the Landau picture. As physicists they liked it 
because it fit the general picture of phase transitions, and Landau 
himself had provided the most workable early framework for 
studying phase transitions, based on his insight that such phe
nomena might obey universal laws, with regularities that overrode 
differences in particular substances. When Harry Swinney studied 
the liquid-vapor critical point in carbon dioxide, he did so with 
Landau's conviction that his findings would carry over to the 
liquid-vapor critical point in xenon-and indeed they did. Why 
shouldn't turbulence prove to be a steady accumulation of con
flicting rhythms in a moving fluid? 

Swinney and Gollub prepared to combat the messiness of 
moving fluids with an arsenal of neat experimental techniques 
built up over years of studying phase transitions in the most del- · 
icate of circumstances. They had laboratory styles and measuring 
equipment that a fluid dynamicist would never have imagined. 
To probe the rolling currents, they used laser light. A beam shining 
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through the water would produce a deflection, or scattering, that 
could he measured in a technique called laser doppler interfero
metry. And the stream af data could he stored and processed hy 
a computer-a device that in 1975 was rarely seen in a tahletop 
lahoratory experiment. 

Landau had said new frequencies would appear, ane at a time, 
as a flow increased. "So we read that," Swinney recalled, "and 
we said, fine, we will look at the transitions where these frequen
cies come in. So we looked, and sure enough there was a very 
well-defined transition. We went hack and forth through the tran
sition, hringing the rotation speed af the cylinder up and down. 
It was very well defined." 

When they hegan reporting results, Swinney and Golluh con
fronted a sociological houndary in science, hetween the domain 
af physics and the domain af fluid dynamics. The houndary had 
certain vivid characteristics. In particular, it determined which 
hureaucracy within the National Science Foundation controlled 
their financing. By the 1980s a Couette-Taylor experiment was 
physics again, hut in 1973 it was just plain fluid dynamics, and 
for people who were accustomed ta fluid dynamics, the first num
hers coming out af this small City College lahoratory were sus
piciously clean. Fluid dynamicists just did not helieve them. They 
were not accustomed ta experiments in the precise style af phase
transition physics. Furthermore, in the perspective af fluid dy
namics, the theoretical point af such an experiment was hard ta 
see. The next time Swinney and Golluh tried ta get National Sci
ence Foundation money, they were turned down. Some referees 
did not credit their results, and some said there was nothing new. 

But the experiment had never stopped. "There was the tran
sition, very well defined," Swinney said. "So that was great. Then 
we went on, ta look for the next ane." 

There the expected Landau sequence hroke down. Experiment 
failed ta confirm theory. At the next transition the flow jumped 
all the way ta a confused state with no distinguishahle cycles at 
all. No new frequencies, no gradua! huildup af complexity. "What 
we found was, it hecame chaotic." A few months later, a lean, 
intensely charming Belgian appear�'d at the door ta their lahora
tory. 
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DAVID RUELLE S0METIMES SAID there were two kinds of phys
icists, the kind that grew up taking apart radios-this being an 
era before solid-state, when you could still look at wires and orange
glowing vacuum tubes and imagine something about the flow of 
electrons-and the kind that played with chemistry sets. Ruelle 
played with chemistry sets, or not quite sets in Llie later American 
sense, but chemicals, explosive or poisonous, cheerfully dis
pensed in his native northern Belgium by the local pharmacist 
and then mixed, stirred, heated, crystallized, and sometimes blown 
up by Ruelle himself. He was born in Ghent in 1935, the son of 
a gymnastics teacher and a university professor of linguistics, and 
though he made his career in an abstract realm of science he always 
had a taste for a dangerous side of nature that hid its surprises in 
cryptogamous fungoid mushrooms or saltpeter, sulfur, and char
coal. 

lt was in mathematical physics, though, that Ruelle made his 
lasting contribution to the exploration of chaos. By 1970 he had 
joined the Institut des Hautes Etudes Scientifiques, an institute 
outside Paris modeled on the Institute for Advanced Study in 
Princeton. He had already developed what became a lifelong habit 
of leaving the institute and his family periodically to take solitary 
walks, weeks long, carrying only a backpack through empty wil
dernesses in Iceland or rural Mexico. Often he saw no one. When 
he came across humans and accepted their hospitality-perhaps 
a meal of maize tortillas , with no fat, animal or vegetable-he felt 
that he was seeing the world as it existed two millennia before. 
When he returned to the institute he would begin his scientific 
existence again, his face just a little more gaunt, the skin stretched 
a little more tightly over his round brow and sharp chin. Ruelle 
had heard talks by Steve Smale about the horseshoe map and the 
chaotic possibilities of dynamical systems. He had also thought 
about fluid turbulence and the classic Landau picture. He sus
pected that these ideas were related-and contradictory. 

Ruelle had no experience with fluid flows, but that did not 
discourage him any more than it had discouraged his many un
successful predecessors. "Always nonspecialists find the new 
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things," he said. "There is not a natural deep theory of turbulence. 
All the questions you can ask about turbulence are of a more 
general nature, and therefore accessible to nonspecialists." It was 
easy to see why turbulence resisted analysis. The equations of 
fluid flow are nonlinear partial differential equations, unsolvable 
except in special cases. Yet Ruelle worked out an abstract alter
native to Landau's picture, couched in the language of Smale, with 
images of space as a pliable materia! to he squeezed, stretched, 
and folded into shapes like horseshoes. He wrote a paper at his 
institute with a visiting Dutch mathematician, Floris Takens, and 
they published it in 1971. The style was unmistakably mathe
matics-physicists, beware!-meaning that paragraphs would begin 
with Definition or Proposition or Proof, followed by the inevitable 
thrust: Let . . . . 

"Proposition (5.2). Let Xµ. be a one-parameter family of 
Ck vectorfields on a Hilbert space H such that . . .  " 

Yet the title claimed a connection with the real world: "On 
the Nature of Turbulence," a deliberate echo of Landau's famous 
title, "On the Problem of Turbulence." The clear purpose of Ruelle 
and Takens's argument went beyond mathematics; they meant to 
offer a substitute for the traditional•view of the onset of turbulence. 
lnstead of a piling up of frequencies, leading to an infinitude of 
independent overlapping motions, they proposed that just three 
independent motions would produce the full complexity of tur
bulence. Mathematically speaking, some of their logic turned out 
to he obscure, wrong, borrowed, or all three-opinions still varied 
fifteen years later. 

But the insight, the commentary, the marginalia, and the phys
ics woven into the paper made it a lasting gift. Most seductive of 
all was an image that the authors called a strange attractor. This 
phrase was psychoanalytically "suggestive," Ruelle felt later. Its 
status in the study of chaos was such that he and Takens jousted 
below a polite surface for the honor of having chosen the words. 
The truth was that neither quite remembered, but Takens, a tall, 
ruddy, fiercely Nordic man, might say, "Did you ever ask God 
whether he created this damned universe? . . .  I don't remember 
anything . . . .  I often create without remembering it," while Ruelle, 
the paper's senior author, would remark softly, "Takens happened 
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to he visiting IHES. Different people work differently. Some people 
would try to write a paper all hy themselves so they keep all the 
credit. " 

The strange attractor lives in phase space, one of the most 
powerful inventions of modem science. Phase space gives a way 
of turning numhers into pictures, ahstracting every hit of essential 
information from a system of moving parts, mechanical or fluid, 
and making a flexihle road map to all its possihilities. Physicists 
already worked with two simpler kinds of "attractors": fixed points 
and limit cycles, representing hehavior that reached a steady state 
or repeated itself contiriuously. 

In phase space the complete state of knowledge ahout a dy
namical system at a single instant in time collapses to a point. 
That point is the dynamical system-at that instant. At the next 
instant, though, the system will have changed, ever so slightly, 
and so the point moves. The history of the system time can he 
charted hy the moving point, tracing its orhit through phase space 
with the passage of time. 

How can all the information ahout a complicated system he 
stored in a point? If the system has only two variahles, the answer 
is simple. It is straight from the Cartesian geometry taught in high 
school-one variahle on the horizontal axis, the other on the ver
tical. If the system is a swinging, frictionless pendulum, one var
iahle is position and the other velocity, and they change 
continuously, making a line of points that traces a loop, repeating 
itself forever, around and around. The same system with a higher 
energy level-swinging faster and farther-forms a loop in phase 
space similar to the first, hut larger. 

A little realism, in the form of friction, changes the picture. 
We do not need the equations of motion to know the destiny of 
a pendulum suhject to friction. Every orhit must eventually end 
up at the same place, the center: position 0, velocity 0. This central 
fixed point "attracts" the orhits. Instead of looping around forever, 
they spiral inward. The friction dissipates the system's energy, 
and in phase space the dissipation shows itself as a pull toward 
the center, from the outer regions of high energy to the inner 
regions of low energy. The attractor-the simplest kind possihle
is like a pinpoint magnet emhedded in a ruhher sheet. 

One advantage of thinking of states as points in space is that 
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it makes change easier to watch. A system whose variables change 
continuously up or down becomes a moving point, like a fly mov
ing around a room. lf some combinations of variables never occur, 
then a scientist can simply imagine that part of the room as out 
of bounds. The fly never goes there. If a system behaves period
ically, coming around to the same state again and again, then the 
fly moves in a loop, passing through the same position in phase 
space again and again. Phase-space portraits of physical systems 
exposed patterns of motion that were invisible otherwise, as an 
infrared landscape photograph can reveal patterns and details that 
exist just beyond the reach of perception. When a scientist looked 
at a phase portrait, he could use his imagination to think back to 
the system itself. This loop corresponds to that periodicity. This 
twist corresponds to that change. This empty void corresponds to 
that physical impossibility. 

Even in two dimensions, phase�space portraits had many sur
prises in store, and even desktop computers could easily dem
onstrate some of them, turning equations into colorful moving 
trajectories. Some physicists began making movies and videotapes 
to show their colleagues, and some mathematicians in Ca.lifornia 
published books with a series of green, blue, and red cartoon-style 
drawings-"chaos comics," some of their colleagues said, with 
just a touch of malice. Two dimensions did not begin to cover 
the kinds of systems that physicists needed to study. They had to 
show more variables than two, and that meant more dimensions. 
Every piece of a dynamical system that can move independently 
is another variable, another degree of freedom. Every degree of 
freedom requires another dimension in phase space, to make sure 
that a single point contains enough information to determine the 
state of the system uniquely. The simple equations Robert May 
studied were one-dimensional-a single number was enough, a 
number that might stand for temperature or population, and that 
number defined the position of a point on a one-dimensional line. 
Lorenz's stripped-down system of fl.uid convection was three
dimensional, not because the fluid moved through three dimen
sions, but because it took three distinct numbers to nail down the 
state of the fluid at any instant. 

Spaces of four, five, or more dimensions tax the visual imag
ination of even the most agile topologist. But complex systems 
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Velocity is zero as the pen
dulum starts its swing. Po
sition is a negative number, 
the distance to the left of 
the center. 

The two numbers specify 
a single point in two--di
mensional phase space. 

Velocity reaches its max
imum as the pendulum's 
position passes through 
zero. 

Velocity declines again to 
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negative to represent left
ward motion. 

ANOTHER WAY TO SEE A PENDULUM. One point in phase space (right) 
contains ali the information about the state of a dynamical system at any 
instant (le�). For a simple pendulum, two numbers-velocity and po
sition-are ali you need to know. 

The points trace a trajectory that 
provides a way of visualizing the 
continuous long-term behavior of a 
dynamical system. A repeating 
loop represents a system that re
peats itself at regular intervals for
ever. 

If the repeating behavior is 
stable, as in a pendulum clock, 
then the system returns to this 
orbit after small perturbations. In 
phase space, trajectories near the 
orbit are drawn into it; the orbit 
is an attractor. 
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have many independent variahles. Mathematicians had ta accept 
the fact that systems with infinitely many degrees af freedom
untrammeled nature expressing itself in a turhulent waterfall or 
an unpredictahle hrain-required a phase space af infinite di
mensions. But who could handle such a thing? It was a hydra, 
merciless and uncontrollahle, and it was Landau's image for tur
hulence: infinite modes, infinite degrees af freedom, infinite di
mensions. 

A PHYSICIST HAD GOOD REASON ta dislike a model that found 
so little clarity in nature. Using the nonlinear equations af fluid 
motion, the world's fastest supercomputers were incapahle af ac
curately tracking a turhulent flow af even a cuhic centimeter for 
more than a few seconds. The hlame for this was certainly nature's 
more than Landau's, hut even so the Landau picture went against 
the grain. Ahsent any knowledge, a physicist might he permitted 
ta suspect that some principle was evading discovery. The great 
quantum theorist Richard P. Feynman expressed this feeling. "It 

always hothers me that, according ta the laws as we understand 
them today, it takes a computing machine an infinite numher af 
logical operations ta figure out what goes on in no matter how 
tiny a region af space, and no matter how tiny a region af time. 
How can all that he going on in that tiny space? Why should it 
take an infinite amount af logic ta figure out what ane tiny piece 
af space/time is going ta do?" 

An attractor can he a single point. 
For a pendulum steadily losing 
energy to friction, all trajectories 
spiral inward toward a point that 
represents a steady state-in this 
case, the steady state of no motion 
at all. 
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Like so many of those who hegan studying chaos, David 
Ruelle suspected that the visihle patterns in turhulent flow
self-entangled stream Iines, spiral vortices, whorls that rise hefore 
the eye and vanish again-must reflect patterns explained hy laws 
not yet discovered. In his mind, the dissipation of energy in a 
turhulent flow must still lead to a kind of contraction of the phase 
space, a pull toward an attractor. Certainly the attractor would not 
he a fixed point, hecause the flow would never come to rest. Energy 
was pouring into the system as well as draining out. What other 
kind of attractor could it he? According to dogma, only ane other 
kind existed, a periodic attractor, or limit cycle-an orhit that 
attracted ali other nearhy orhits. If a pendulum gains energy from 
a spring while it loses it through friction-that is, if the pendulum 
is driven as well as damped-a stahle orhit may he the closed 
loop in phase space that represents the regular swinging motion 
of a grandfather clock. No matter where the pendulum starts, it 
will settle into that one orhit. Or will it? For some initial condi
tions-those with the lowest energy-the pendulum will still set
tle to a stop, so the system actually has two attractors, one a closed 
loop and the other a fixed point. Each attractor has its "hasin," 
just as two nearhy rivers have their own watershed regions. 

In the short term any point in phase space can stand for a 
possihle hehavior of the dynamical system. In the long term the 
only possihle hehaviors are the attractors themselves. Other kinds 
of motion are transient. By definition, attractors had the important 
property of stahility-in a real system, where moving parts are 
suhject to humps and jiggles from real-world noise, motion tends 
to return to the attractor. A hump may shove a trajectory away for 
a hrief time, hut the resulting transient motions die out. Even if 
the cat knocks into it, a pendulum clock does not switch to a sixty
two-second minute. Turhulence in a fluid was a hehavior of a 
different order, never producing any single rhythm to the exclu
sion of others. A well-known characteristic of turhulence was that 
the whole hroad spectrum of possihle cycles was present at once. 
Turhulence is like white noise, or static. Gould such a thing arise 
from a simple, deterministic system of equations? 

Ruelle and Takens wondered whether some other kind of 
attractor could have the right set of properties. Stahle-repre
senting the final state of a dynamical system in a noisy world. 
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Low-dimensional-an orbit in a phase space that might be a rec
tangle or a box, with just a few degrees of freedom. Nonperiodic
never repeating itself, and never falling into a steady grandfather
clock rhythm. Geometrically the question was a puzzle: What kind 
of orbit could be drawn in a limited space so that it would never 
repeat itself and never cross itself-because once a system returns 
to a state it has been in before, it thereafter must follow the same 
path. To produce evezy rhythm, the orbit would have to be an 
infinitely long line in a finite area. 1n other words-but the word 
had not been invented-it would have to be fractal. 

By mathematical reasoning, Ruelle and Takens claimed that 
such a thing must exist. They had never seen one, and they did 
not draw one. But the claim was enough. Later, delivering a plen
ary address to the International Congress of Mathematicians in 
Warsaw, with the comfortable advantage of hindsight, Ruelle de
clared: "The reaction of the scientific public to our proposal was 
quite cold. In particular, the notion that continuous spectrum 
would be associated with a few degrees of freedom was viewed 
as heretical by many physicists." But it was physicists-a handful, 
to be sure-who recognized the importance of the 1971 paper and 
went to work on its implications. 

AcTUALLY, BY 1971 the scientific literature already contained 
one small line drawing of the unimaginable beast that Ruelle and 
Takens were trying to bring alive. Edward Lorenz had attached it 
to his 1963 paper on deterministic chaos, a picture with just two 
curves on the right, one inside the other, and five on the left. To 
plot just these seven loops required 500 successive calculations 
on the computer. A point moving along this trajectory in phase 
space, around the loops, illustrated the slow, chaotic rotation of 
a fluid as modeled by Lorenz's three equations for convection. 
Because the system had three independent variables, this attractor 
lay in a three-dimensional phase space. Although Lorenz drew 
only a fragment of it, he could see more than he drew: a sort of 
double spiral, like a pair of butterfly wings interwoven with in
finite dexterity. When the rising heat of his system pushed the 
fluid around in one direction, the trajectozy stayed on the right 
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wing; when the rolling motion stopped and reversed itself, the 
trajectory would swing across to the other wing. 

The attractor was stable, low-dimensional, and nonperiodic. 
It could never intersect itself, because if it did, returning to a point 
already visited, from then on the motion would repeat itself in a 
periodic loop. That never happened-that was the beauty of the 
attractor. Those loops and spirals were infinitely deep, never quite 
joining, never intersecting. Yet they stayed inside a finite space, 
confined by a box. How could that be? How could infinitely many 
paths lie in a finite space? 

In an era before Mandelbrot's pictures of fractals had flooded 
the scientific marketplace, the details of constructing such a shape 
were hard to imagine, and Lorenz acknowledged an "apparent 
contradiction" in his tentative description. "It is difficult to rec
oncile the merging of two surfaces, ane containing each spiral, 
with the inability of two trajectories to merge," he wrote. But he 
saw an answer tao delicate to appear in the few calculations within 
range of his computer. Where the spirals appear to join, the sur-

THE FIRST STRANGE ATTRACTOR. 
1n 1963 Edward Lorenz could 
compute only the first few 
strands of the attractor for his 

-----�,.......------➔, simple system of equations. But 
he could see that the interleav
ing of the two spiral wings 
must have an extraordinary 
structure on invisibly small 
scales. 
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faces must divide, he realized, forming separate layers in the man
ner of a flaky mille-feuille. "We see that each surface is really a 
pair of surfaces, so that, where they appear to merge, there are 
really four surfaces. Continuing this process for another circuit, 
we see that there are really eight surfaces, etc., and we finally 
conclude that there is an infinite complex of surfaces, each ex
tremely close to ane or the other of two merging surfaces." It was 
no wonder that meteorologists in 1963 left such speculation alone, 
nor that Ruelle a decade later felt astonishment and excitement 
when he finally leamed of Lorenz's work. He went to visit Lorenz 
once, in the years that followed, and left with a small sense of 
disappointment that they had not talked more of their common 
territory in science. With characteristic diffidence, Lorenz made 
the occasion a social ane, and they went with their wives to an 
art museum. 

The effort to pursue the hints put forward by Ruelle and 
Takens took two paths. One was the theoretical struggle to visu
alize strange attractors. Was the Lorenz attractor typical? What 
other sorts of shapes were possible? The other was a line of ex
perimental work meant to confirm or refute the highly unmath
ematical leap of faith that suggested the applicability of strange 
attractors to chaos in nature. 

In Japan the study of electrical circuits that imitated the be
havior of mechanical springs-but much faster-led Yoshisuke 
Ueda to discover an extraordinarily beautiful set of strange at
tractors. (He met an Eastem version of the coolness that ,•greeted 
Ruelle: "Your result is no more than an almost periodic oscillation. 
Don't fonn a selfish concept of steady states. ") In Gennany Otto 
Rössler, a nonpracticing medical doctor who came to chaos by 
way of chemistry and theoretical biology, began with an odd abil
ity to see strange attractors as philosophical objects, letting the 
mathematics follow along behind. Rössler's name became attached 
to a particularly simple attractor in the shape of a band of ribbon 
with a fold in it, much studied because it was easy to draw, but 
he aisa visualized attractors in higher dimensions-"a sausage in 
a sausage in a sausage in a sausage," he would say, "take it out, 
fold it, squeeze it, put it back." Indeed, the folding and squeezing 
of space was a key to constructing strange attractors, and perhaps 
a key to the dynamics of the real systems that gave rise to them. 
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Rössler felt that these shapes embodied a self-organizing princi
ple in the world. He would imagine something like a wind sock 
on an airfield, "an open hose with a hole in the end, and the 
wind forces its way in," he said. "Then the wind is trapped. 
Against its will, energy is doing something productive, like the 
devil in medieval history. The principle is that nature does some
thing against its own will and, by self-entanglement, produces 
beauty. " 

Making pictures of strange attractors was not a trivial matter. 
Typically, orbits would wind their ever-more-complicated paths 
through three dimensions or more, creating a dark scribble in 
space with an internal structure that could not be seen from the 
outside. To convert these three-dimensional skeins into flat pic
tures, scientists first used the technique of projection, in which a 
drawing represented the shadow that an attractor would east on 
a surface. But with complicated strange attractors, projection just 
smears the detail into an indecipherable mess. A more revelatory 
technique was to make a return map, or a Poincare map, in effect, 
taking a slice from the tangled heart of the attractor, removing a 
two-dimensional section just as a pathologist prepares a section 
of tissue for a microscope slide. 

The Poincare map removes a dimension from an attractor and 
turns a continuous line into a collection of points. In reducing an 
attractor to its Poincare map, a scientist implicitly assumes that 
he can preserve much of the essential movement. He can imagine, 
for example, a strange attractor buzzing around before his eyes, 
its orbits carrying up and down, left and right, and to and fro 
through his computer screen. Each time the orbit passes through 
the screen, it leaves a glowing point at the place of intersection, 
and the points either form a random blotch or begin to trace some 
shape in phosphorus. 

The process corresponds to sampling the state of a system 
every so often, instead of continuously. When to sample-where 
to take the slice from a strange attractor-is a question that gives 
an investigator some flexibility. The most informative interval 
might correspond to some physical feature of the dynamical sys
tem: for example, a Poincare map could sample the velocity of a 
pendulum bob each time it passed through its lowest point. Or 
the investigator could choose some regular time interval, freezing 



ExPoSING AN ATTRACTOR'S STRUCTURE. The strange attractor above-first 
one orbit, then ten, then one hundred-depicts the chaotic behavior of 
a rotor, a pendulum swinging through a full circle, driven by an energetic 
kick at regular intervals. By the time 1 ,000 orbits have been drawn (below), 
the attractor has become an impenetrably tangled skein. 

To see the structure within, a computer can take a slice through an 
attractor, a so-called Poincare section. The technique reduces a three
dimensional picture to two dimensions. Each time the trajectory passes 
through a plane, it marks a point, and gradually a minutely detailed 
pattern emerges. This example has more than 8 ,000 points, each standing 
for a full orbit around the attractor. 1n effect, the system is "sampled" at 
regular intervals. One kind of information is lost; another is brought out 
in high relief. 
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successive states in the flash of an imaginary strobe light. Either 
way, such pictures finally began to reveal the fine fractal structure 
guessed at by Edward Lorenz. 

THE MOST ILLUMINATING STRANGE ATTRACT0R, because it was 
the simplest, came from a man far removed from the mysteries of 
turbulence and fluid dynamics. He was an astronomer, Michel 
Hanon of the Nice Observatory on the southern coast of France. 
In one way, of course, astronomy gave dynamical systems its start, 
the clockwork motions of planets providing Newton with his 
triumph and Laplace with his inspiration. But celestial mechanics 
differed from most earthly systems in a crucial respect. Systems 
that lose energy to friction are dissipative. Astronomical systems 
are not: they are conservative, or Hamiltonian. Actually, on a 
nearly infinitesimal scale, even astronomical systems suffer a kind 
of drag, with stars radiating away energy and tidal friction draining 
some momentum from orbiting bodies, but for practical purposes, 
astronomers' calculations could ignore dissipation. And without 
dissipation, the phase space would not fold and contract in the 
way needed to produce an infinite fractal layering. A strange at
tractor could never arise. Gould chaos? 

Many astronomers have long and happy careers without giv
ing dynamical systems a thought, but Henon was different. He 
was born in Paris in 193 1, a few years younger than Lorenz but, 
like him, a scientist with a certain unfulfilled attraction to math
ematics. Hanon liked small, concrete problems that could be at
tached to physical situations-"not like the kind of mathematics 
people do today," he would say. When computers reached a size 
suitable for hobbyists, Henon got one, a Heathkit that he soldered 
together and played with at home. Long before that, though, he 
took on a particularly baffling problem in dynamics. It concerned 
globular clusters-crowded balls of stars, sometimes a million in 
one place, that form the oldest and possibly the most breathtaking 
objects in the night sky. Globular clusters are amazingly dense 
with stars. The problem of how they stay together and how they 
evolve over time has perplexed astronomers throughout the twen
tieth century. 

Dynamically speaking, a globular cluster is a big many-body 
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problem. The two-body problem is easy. Newton solved it com
pletely. Each body-the earth and the moon, for example-travels 
in a perfect ellipse around the system's joint center of gravity. 
Add just one more gravitational ohjeet, however, and everything 
changes. The three-body problem is hard, and worse than hard. 
As Poincare discovered, it is most often impossible. The orbits 
can be calculated numerically for a while, and with powerful 
computers they can be tracked for a long while before uncertainties 
begin to take over. But the equations cannot be solved analytically, 
which means that long-term questions about a three-body system 
cannot be answered. Is the solar system stable? It certainly appears 
to be, in the short term, but even today no one knows for sure 
that some planetary orbits could not become more and more ec
centric until the planets fly off from the system forever. 

A system like a globular cluster is far too complex to be treated 
directly as a many-body problem, but its dynamics can be studied 
with the help of certain compromises. It is reasonable, for example, 
to think of individual stars winging their way through an average 
gravitational field with a particular gravitational center. Every so 
often, however, two stars will approach each other closely enough 
that their interaction must be treated separately. And astronomers 
realized that globular clusters generally must not be stable. Binary 
star systems tend to form inside them, stars pairing off in tight 
little orbits, and when a third star encounters a binary, one of the 
three tends to get a sharp kick. Every so often, a star will gain 
enough energy from such an interaction to reach escape velocity 
and depart the cluster forever; the rest of the cluster will then 
contract slightly. When Henon took on this problem for his doc
toral thesis in Paris in 1960, he made a rather arbitrary assumption: 
that as the cluster changed scale, it would remain self-similar. 
Working out the calculations, he reached an astonishing result. 
The core of a cluster would collapse, gaining kinetic energy and 
seeking a state of infinite density. This was hard to imagine, and 
furthermore it was not supported by the evidence of clusters so 
far observed. But slowly Henon's theory-later given the name 
"gravothermal collapse" -took hold. 

Thus fortified, willing to try mathematics on old problems 
and willing to pursue unexpected results to their unlikely out
comes, he began work on a much easier problem in star dynamics. 
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This time, in 1962, visiting Princeton University, he had access 
for the first time to computers, just as Lorenz at M.I.T. was starting 
to use computers in meteorology. Henon began modeling the orbits 
of stars around their galactic center. In reasonably simple form, 
galactic orbits can be treated like the orbits of planets around a 
sun, with one exception: the central gravity source is not a point, 
but a disk with thickness in three dimensions. 

He made a compromise with the differential equations. "To 
have more freedom of experimentation," as he put it, "we forget 
momentarily about the astronomical origin of the problem." Al
though he did not say so at the time, "freedom of experimentation" 
meant, in part, freedom to play with the problem on a primitive 
computer. His machine had less than a thousandth of the memory 
on a single chip of a personal computer twenty-five years later, 
and it was slow, too. But like later experimenters in the phenom
ena of chaos, Henon found that the oversimplification paid off. 
By abstracting only the essence of his system, he made discoveries 
that applied to other systems as well, and more important systems. 
Years later, galactic orbits were still a theoretical game, but the 
dynamics of such systems were under intense, expensive inves
tigation by those interested in the orbits of particles in high-energy 
accelerators and those interested in the confinement of magnetic 
plasmas for the creation of nuclear fusion. 

Stellar orbits in galaxies, on a time scale of some 200 million 
years, take on a three-dimensional character instead of making 
perfect ellipses. Three-dimensional orbits are as hard to visualize 
when the orbits are real as when they are imaginary constructions 
in phase space. So Henon used a technique comparable to the 
making of Poincare maps. He imagined a flat sheet placed upright 
on one side of the galaxy so that every orbit would sweep through 
it, as horses on a race track sweep across the finish line. Then he 
would mark the point where the orbit crossed this plane and trace 
the movement of the point from orbit to orbit. 

Henon had to plot these points by hand, but eventually the 
many scientists using this technique would watch them appear 
on a computer screen, like distant street lamps coming on one by 
one at nightfall. A typical orbit might begin with a point toward 
the lower left of the page. Then, on the next go-round, a point 
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would appear a few inches to the right. Then another, more to the 
right and up a little-and so on. At first no pattern would be 
obvious, but after ten or twenty points an egg-shaped curve would 
take shape. The successive points actually make a circuit around 
the curve, but since they do not come around to exactly the same 
place, eventually, after hundreds or thousands of points, the curve 
is solidly outlined. 

Such orbits are not completely regular, since they never ex
actly repeat themselves , but they are certainly predictable, and 
they are far from chaotic. Points never arrive inside the curve or 
outside it. Translated 'back to the full three-dimensional picture, 
the orbits were outlining a torus, or doughnut shape, and Henon's 
mapping was a cross-section of the torus. So far, he was merely 
illustrating what all his predecessors had taken for granted. Orbits 
were periodic. At the observatory in Copenhagen, from 1910 to 
1930, a generation of astronomers painstakingly observed and cal
culated hundreds of such orbits-but they were only interested 
in the ones that proved periodic. "I, too, was convinced, like 
everyone else at that time, that all orbits should be regular like 
this,"  Henon said. But he and his gradua te student at Princeton, 
Carl Heiles, continued computing different orbits, steadily in
creasing the level of energy in their abstract system. Soon they 
saw something utterly new. 

First the egg-shaped curve twisted into something more com
plicated, crossing itself in figure eights and splitting apart into 
separate loops. Still, every orbit fell on some loop. Then, at even 
higher levels, another change occurred, quite abruptly. "Here comes 
the surprise," Henon and Heiles wrote. Some orbits became so 
unstable that the points would scatter randomly across the paper. 
1n some places, curves could still be drawn; in others, no curve 
fit the points. The picture became quite dramatic: evidence of 
complete disorder mixed with the clear remnants of order, forming 
shapes that suggested "islands" and "chains of islands" to these 
astronomers. They tried two different computers and two different 
methods of integration, but the results were the same. They could 
only explore and speculate. Based solely on their numerical ex
perimentation, they made a guess about the deep structure of such 
pictures. With greater magnification, they suggested, more islands 
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would appear on smaller and smaller scales, perhaps all the way 
to infinity. Mathematical proof was needed-"hut the mathemat
ical approach to the prohlem does not seem tao easy." 

Henon went on to other prohlems, hut fourteen years later, 
when finally he heard ahout the strange attractors of David Ruelle 
and Edward Lorenz, he was prepared to listen. By 1976 he had 
moved to the Ohservatory of Nice, perched high ahove the Med
iterranean Sea on the Grande Comiche, and he heard a talk hy a 
visiting physicist ahout the Lorenz attractor. The physicist had 
heen trying different techniques to illuminate the fine "micro
structure" of the attractor, with little success. Henon, though dis
sipative systems were not his field ("sometimes astronomers are 
fearful of dissipative systems-they're untidy"), thought he had 
an idea. 

Once again, he decided to throw out all reference to the phys
ical origins of the system and concentrate only on the geometrical 
essence he wanted to explore. Where Lorenz and others had stuck 
to differential equations-flows, with continuous changes in space 
and time-he tumed to difference equations, discrete in time. The 
key, he helieved, was the repeated stretching and folding of phase 
space in the manner of a pastry chef who rolls the dough, folds 
it, rolls it out again, folds it, creating a structure that will even
tually he a sheaf of thin layers. Henon drew a flat oval on a piece 
of paper. To stretch it, he picked a short numerical function that 
would move any point in the oval to a new point in a shape that 
was stretched upward in the center, an arch. This was a mapping
point hy point, the entire oval was "mapped" anto the arch. Then 
he chose a second mapping, this time a contraction that would 
shrink the arch inward to make it narrower. And then a third 
mapping turned the narrow arch on its side, so that it would line 
up neatly with the original oval. The three mappings could he 
comhined into a single function for purposes of calculation. 

ln spirit he was following Smale's horseshoe idea. Numeri
cally, the whole process was so simple that it could easily he 
tracked on a calculator. Any point has an x coordinate and a y  
coordinate to fix its horizontal and vertical position. To find the 
new x, the rule was to take the old y, add 1 and suhtract 1.4 times 
the old x squared. To find the new y, multiply 0.3 hy the old x. 
That is: Xnew = y + 1 - 1.4x2 and Ynew = 0.3x. Henon picked a starting 
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point more or less at random, took his calculator and started plot
ting new points, one after another, until he had plotted thousands. 
Then he used a real computer, an IBM 7040, and quickly plotted 
five million. Anyone with a persona! computer and a graphics 
display could easily do the same. 

At first the points appear to jump randomly around the screen. 
The effect is that of a Poincare section of a three-dimensional 
attractor, weaving erratically hack and forth across the display. 
But quickly a shape hegins to emerge, an outline curved like a 
hanana. The longer the program runs, the more detail appears. 
Parts of the outline seem to have some thickness, hut then the 
thickness resolves itself into two distinct Iines, then the two into 
four, one pair close together and one pair farther apart. On greater 
magnification, each of the four Iines turns out to he composed of 
two more lines-and so on, ad infinitum. Like Lorenz's attractor, 
Henon's displays infinite regress, like an unending sequence of 
Russian dolls one inside the other. 

The nested detail, Iines within Iines, can he seen in final form 
in a series of pictures with progressively greater magnification. 
But the eerie effect of the strange attractor can he appreciated 
another way when the shape emerges in time, point hy point. It 
appears like a ghost out of the mist. New points scatter so randomly 
across the screen that it seems incredihle that any structure is 
there, let alone a structure so intricate and fine. Any two consec
utive points are arhitrarily far apart, just like any two points in
itially nearhy in a turhulent tlow. Given any numher of points, it 
is impossihle to guess where the next will appear-except, of 
course, that it will he somewhere on the attractor. 

The points wander so randomly, the pattern appears so ethe
really, that it is hard to rememher that the shape is an attroctor. 
It is not just any trajectory of a dynamical system. It is the trajectory 
toward which ali other trajectories converge. That is why the choice 
of starting conditions does not matter. As long as the starting point 
lies somewhere near the attractor, the next few points will con
verge to the attractor with great rapidity. 

YEARS BEF0RE, WHEN DAVID RUELLE arrived at the City College 
lahoratory of Golluh and Swinney in 1974, the three physicists 



THE A1TRACTOR OF H:tNON. A simple combination of folding and stretch
ing produced an attractor that is easy to compute yet still poorly under
stood by mathematicians. As thousands, then millions of points appear, 
more and more detail emerges. What appear to be single Iines prove, on 
magnification, to be pairs, then pairs of pairs. Yet whether any two suc
cessive points appear nearby or far apart is unpredictable. 
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found themselves with a slender link between theory and exper
iment. One piece of mathematics, philosophically bold but tech
nically uncertain. One cylinder of turbulent fluid, not much to 
look at, but clearly out of harmony with the old theory. The men 
spent the aftemoon talking, and then Swinney and Gollub left for 
a vacation with their wives in Gollub's cabin in the Adirondack 
mountains. They had not seen a strange attractor, and they had 
not measured much of what might actually happen at the onset 
of turbulence. But they knew that Landau was wrong, and they 
suspected that Ruelle was right. 

As an element in the world revealed by computer exploration, 
the strange attractor began as a mere possibility, marking a place 
where many great imaginations in the twentieth century had failed 
to go. Soon, when scientists saw what computers had to show, it 
seemed like a face they had been seeing everywhere, in the music 
of turbulent flows or in clouds scattered like veils across the sky. 
Nature was constrained. Disorder was channeled, it seemed, into 
pattems with some common underlying theme. 

Later, the recognition of strange attractors fed the revolution 
in chaos by giving numerical explorers a clear program to carry 
out. They looked for strange attractors everywhere, wherever na
ture seemed to he behaving randomly. Many argued that the earth's 
weather might lie on a strange attractor. Others assembled millions 
of pieces of stock market data and began searching for a strange 
attractor there, peering at randomness through the adjustable lens 
of a computer. 

ln the middle 1970s these discoveries lay in the future. No 
one had actually seen a strange attractor in an experiment, and it 
was far from clear how to go about looking for one. 1n theory the 
strange attractor could give mathematical substance to fundamen
tal new properties of chaos. Sensitive dependence on initial con
ditions was one. "Mixing" was another, in a sense that would be 
meaningful to a jet engine designer, for example, concemed about 
the effi.cient combination of fuel and oxygen. But no one knew 
how to measure these properties, how to attach numbers to them. 
Strange attractors seemed fractal, implying that their true dimen
sion was fractional, but no one knew how to measure the dimen
sion or how to apply such a measurement in the context of 
engineering problems. 
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Most important, no one knew whether strange attractors would 
say anything about the deepest problem with nonlinear systems. 
Unlike linear systems, easily calculated and easily classified, non
linear systems still seemed, in their essence, beyond classifica
tion-each different from every other. Scientists might begin to 
suspect that they shared common properties, but when it came 
time to make measurements and perform calculations, each non
linear system was a world unto itself. Understanding one seemed 
to offer no help in understanding the next. An attractor like Lor
enz's illustrated the stability and the hidden structure of a system 
that otherwise seemed patternless, but how did this peculiar dou
ble spiral help researchers exploring unrelated systems? No one 
knew. 

For now, the excitement went beyond pure science. Scientists 
who saw these shapes allowed themselves to forget momentarily 
the rules of scientific discourse. Ruelle, for example: "I have not 
spoken of the esthetic appeal of strange attractors. These systems 
of curves, these clouds of points suggest sometimes fireworks or 
galaxies, sometimes strange and disquieting vegetal proliferations. 
A realm lies there of forms to explore, and harmonies to discover." 



Universality 

The iterating of these Iines brings gold; 

The framing of this circle on the ground 

Brings whirlwinds, tempests, thunder and lightning. 

-MARLOWE, Dr. Faustus 



A FEW DOZEN YARDS upstream from a waterfall, a smooth 
flowing stream seems to intuit the coming drop. The water begins 
to speed and shudder. Individual rivulets stand out like coarse, 
throbbing veins. Mitchell Feigenbaum stands at streamside. He is 
sweating slightly in sports coat and corduroys and puffing on a 
cigarette. He has been walking with friends, but they have gone 
on ahead to the quieter pools upstream. Suddenly, in what might 
he a demented high-speed parody of a tennis spectator, he starts 
tuming his head from side to side. "You can focus on something, 
a bit of foam or something. If you move your head fast enough, 
you can all of a sudden discem the whole structure of the surface, 
and you can feel it in your stomach." He draws in more smoke 
from his cigarette. "But for anyone with a mathematical back
ground, if you look at this stuff, or you see clouds with ali their 
puffs on top of puffs, or you stand at a sea wall in a storm, you 
know that you really don't know anything." 

Order in chaos. It was science's oldest cliche. The idea of 
hidden unity and common underlying form in nature had an in
trinsic appeal, and it had an unfortunate history of inspiring pseu
doscientists and cranks. When Feigenbaum came to Los Alamos 
National Laboratory in 1974, a year shy of his thirtieth birthday, 
he knew that if physicists were to make something of the idea 
now, they would need a practical framework, a way to tum ideas 
into calculations. It was far from obvious how to make a first 
approach to the problem. 

157 
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Feigenbaum was hired by Peter Carruthers, a calm, decep
tively genial physicist who came from Comell in 1973 to take over 
the Theoretical Division. His first act was to dismiss a half-dozen 
senior scientists-Los Alamos provides its staff with no equivalent 
of university tenure-and to replace them with some bright young 
researchers of his own choosing. As a scientific manager, he had 
strong ambition, but he knew from experience that good science 
cannot always be planned. 

"If you had set up a committee in the laboratory or in Wash
ington and said, 'Turbulence is really in our way, we've got to 
understand it, the lack of understanding really destroys our chance 
of making progress in a lot of fields,' then, of course, you would 
hire a team. You'd get a giant computer. You'd start running big 
programs. And you would never get anywhere. Instead we have 
this smart guy, sitting quietly-talking to people, to be sure, but 
mostly working all by himself." They had talked about turbulence, 
but time passed, and even Carruthers was no longer sure where 
Feigenbaum was headed. "I thought he had quit and found a 
different problem. Little did I know that this other problem was 
the same problem. lt seems to have been the issue on which many 
different fields of science were stuck-they were stuck on this 
aspect of the nonlinear behavior of systems. Now, nobody would 
have thought that the right background for this problem was to 
know particle physics, to know something about quantum field 
theory, and to know that in quantum field theory you have these 
structures known as the renormalization group. Nobody knew that 
you would need to understand the general theory of stochastic 
processes, and also fractal structures. 

"Mitchell had the right background. He did the right thing at 
the right time, and he did it very well. Nothing partial. He cleaned 
out the whole problem." 

Feigenbaum brought to Los Alamos a conviction that his sci
ence had failed to understand hard problems-nonlinear prob
lems. Although he had produced almost nothing as a physicist, 
he had accumulated an unusual intellectual background. He had 
a sharp working knowledge of the most challenging mathematical 
analysis, new kinds of computational technique that pushed most 
scientists to their limits. He had managed not to purge himself of 
some seemingly unscientific ideas from eighteenth-century Ro-
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manticism. He wanted to do science that would he new. He hegan 
hy putting aside any thought of understanding real complexity 
and instead turned to the simplest nonlinear equations he could 
fi.nd. 

THE MYSTERY OF THE UNIVERSE first announced itself to the 
four-year-old Mitchell Feigenhaum through a Silvertone radio sit
ting in his parents' living room in the Flathush section of Brooklyn 
soon after the war. He was dizzy with the thought of music arriving 
from no tangihle cause. The phonograph, on the other hand, he 
felt he understood. His grandmother had given him a special dis
pensation to put on the 78s. 

His father was a chemist who worked for the Port of New 
York Authority and later for Clairol. His mother taught in the city's 
puhlic schools. Mitchell first decided to hecome an electrical en
gineer, a sort of professional known in Brooklyn to make a good 
living. Later he realized that what he wanted to know ahout a 
radio was more likely to he found in physics. He was one of a 
generation of scientists raised in the outer horoughs of New York 
who made their way to hrilliant careers via the great puhlic high 
schools-in his case, Samuel J. Tilden-and then City College. 

Growing up smart in Brooklyn was in some measure a matter 
of steering an uneven course hetween the world of mind and the 
world of other people. He was immensely gregarious when very 
young, which he regarded as a key to not heing heaten up. But 
something clicked when he realized he could learn things. He 
hecame more and more detached from his friends. Ordinary con
versation could not hold his interest. Sometime in his last year of 
college, it struck him that he had missed his adolescence, and he 
made a deliherate project out of regaining touch with humanity. 
He would sit silently in the cafeteria, listening to students chatting 
ahout shaving or food, and gradually he relearned much of the 
science of talking to people. 

He graduated in 1964 and went on to the Massachusetts In
stitute of Technology, where he got his doctorate in elementary 
particle physics in 1970. Then he spent a fruitless four years at 
Cornell and at the Virginia Polytechnic Institute-fruitless, that 
is, in terms of the steady puhlication of work on manageahle proh-
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lems that is essential for a young university scientist. Postdocs 
were supposed to produce papers. Occasionally an advisor would 
ask Feigenbaum what had happened to some problem, and he 
would say, "Oh, I understood it." 

Newly installed at Los Alamos, Carruthers, a formidable sci
entist in his own right, prided himself on his ability to spot talent. 
He looked not for intelligence but for a sort of creativity that 
seemed to flow from some magic gland. He always remembered 
the case of Kenneth Wilson, another soft-spoken Comell physicist 
who seemed to he producing absolutely nothing. Anyone who 
talked to Wilson for long realized that he had a deep capacity for 
seeing into physics. So the question of Wilson's tenure became a 
subject of serious debate. The physicists willing to gamble on his 
unproven potential prevailed-and it was as if a dam burst. Not 
one but a flood of papers came forth from Wilson's desk drawers, 
including work that won him the Nobel Prize in 1982. 

Wilson's great contribution to physics, along with work by 
two other physicists, Leo Kadanoff and Michael Fisher, was an 
important ancestor of chaos theory. These men, working inde
pendently, were all thinking in different ways about what hap
pened in phase transitions. They were studying the behavior of 
matter near the point where it changes from one state to another
from liquid to gas, or from unmagnetized to m�gnetized. As sin
gular boundaries between two' realms of existence, phase transi
tions tend to he highly nonlinear in their mathematics. The smooth 
and predictable behavior of matter in any one phase tends to he 
little help in understanding the transitions. A pot of water on the 
stove heats up in a regular way until it reaches the boiling point. 
But then the change in temperature pauses while something quite 
interesting happens at the molecular interface between liquid and 
gas. 

As Kadanoff viewed the problem in the 1960s, phase transi
tions pose an intellectual puzzle. Think of a block of metal being 
magnetized. As it goes into an ordered state, it must make a de
cision. The magnet can he oriented one way or the other. It is free 
to choose. But each tiny piece of the metal must make the same 
choice. How? 

Somehow, in the process of choosing, the atoms of the metal 
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must communicate information to one another. Kadanoff's insight 
was that the communication can he most simply described in 
terms of scaling. In effect, he imagined dividing the metal into 
boxes. Each box communicates with its immediate neighbors. The 
way to describe that communication is the same as the way to 
describe the communication of any atom with its neighbors. Hence 
the usefulness of scaling: the best way to think of the metal is in 
terms of a fractal-like model, with boxes of all different sizes. 

Much mathematical analysis, and much experience with real 
systems, was needed to establish the power of the scaling idea. 
Kadanoff felt that he had taken an unwieldy business and created 
a world of extreme beauty and self-containedness. Part of the 
beauty lay in its universality. Kadanoff's idea gave a backbone to 
the most striking fact about critical phenomena, namely that these 
seemingly unrelated transitions-the boiling of liquids, the mag
netizing of metals-all follow the same rules. 

Then Wilson did the work that brought the whole theory 
together under the rubric of renormalization group theory, pro
viding a powerful way of carrying out real calculations about real 
systems. Renormalization had entered physics in the 1940s as a 
part of quantum theory that made it possible to calculate inter
actions of electrons and photons. A problem with such calcula
tions, as with the calculations Kadanoff and Wilson worried about, 
was that some items seemed to require treatment as infinite quan
tities, a messy and unpleasant business. Renormalizing the system, 
in ways devised by Richard Feymnan, Julian Schwinger, Freeman 
Dyson, and other physicists, got rid of the infinities. 

Only much later, in the 1960s, did Wilson dig down to the 
underlying hasis for renormalization's success. Like Kadanoff, he 
thought about scaling principles. Certain quantities, such as the 
mass of a particle, had always been considered fixed-as the mass 
of any ohjeet in everyday experience is fixed. The renormalization 
shortcut succeeded by acting as though a quantity like mass were 
not fixed at all. Such quantities seemed to float up or down de
pending on the scale from which they were viewed. It seemed 
absurd. Yet it was an exact analogue of what Benoit Mandelbrot 
was realizing about geometrical shapes and the coastline of 
England. Their length could not he measured independent of 
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scale. There was a kind of relativity in which the position of the 
observer, near or far, on the beach or in a satellite, affected the 
measurement. As Mandelbrot, too, had seen, the variation across 
scales was not arbitrary; it followed rules. Variability in the stan
dard measures of mass or length meant that a different sort of 
quantity was remaining fixed. In the case of fractals, it was the 
fractional dimension-a constant that could be calculated and 
used as a tool for further calculations. Allowing mass to vary 
depending on scale meant that mathematicians could recognize 
similarity across scales. 

So for the hard work of calculation, Wilson's renormalization 
group theory provided a different route into infinitely dense prob
lems. Until then the only way to approach highly nonlinear prob
lems was with a device called perturbation theory. For purposes 
of calculation, you assume that the nonlinear problem is reason
ably close to some solvable, linear problem-just a small pertur
bation away. You solve the linear problem and perform a 
complicated bit of trickery with the leftover part, expanding it 
into what are called Feynman diagrams. The more accuracy you 
need, the more of these agonizing diagrams you must produce. 
With luck, your calculations converge toward a solution. Luck has 
a way of vanishing, however, whenever a problem is especially 
interesting. Feigenbaum, like every other young particle physicist 
in the 1960s, found himself doing endless Feynman diagrams. He 
was left with the conviction that perturbation theory was tedious, 
nonilluminating, and stupid. So he loved Wilson's new renor
malization group theory. By acknowledging self-similarity, it gave 
a way of collapsing the complexity, one layer at a time. 

In practice the renormalization group was far from foolproof. 
It required a good deal of ingenuity to choose just the right cal
culations to capture the self-similarity. However, it worked well 
enough and often enough to inspire some physicists, Feigenbaum 
included, to try it on the problem of turbulence. After all, self
similarity seemed to be the signature of turbulence, fluctuations 
upon fluctuations, whorls upon whorls. But what about the onset 
of turbulence-the mysterious moment when an orderly system 
turned chaotic. There was no evidence that the renormalization 
group had anything to say about this transition. There was no 
evidence, for example, that the transition obeyed laws of scaling. 
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As A GRADUATE STUDENT at M.I.T., Feigenbaum had an ex
perience that stayed with him for many years. He was walking 
with friends around the Lincoln Reservoir in Boston. He was de
veloping a habit of taking four- and five-hour walks, attuning him
self to the panoply of impressions and ideas that would flow 
through his mind. On this day he became detached from the group 
and walked alone. He passed some picnickers and, as he moved 
away, he glanced back every so often, hearing the sounds of their 
voices, watching the motions of hands gesticulating or reaching 
for food. Suddenly he felt that the tableau had crossed some 
threshold into incomprehensibility. The figures were tao small to 
be made out. The actions seemed disconnected, arbitrary, random. 
What faint sounds reached him had lost meaning. 

The ceaseless motion and incomprehensible bustle of life. 
Feigenbaum recalled the words of Gustav Mahler, describing a 
sensation that he tried to capture in the third movement of his 
Second Symphony. Like the motions of dancing figures in a bril
liantly lit ballroom into which you look from the dark night out
side and from such a distance that the music is inaudible . . . .  Life 
may appear senseless to you. Feigenbaum was listening to Mahler 
and reading Goethe, immersing himself in their high Romantic 
attitudes. Inevitably it was Goethe's Faust he most reveled in, 
soaking up its combination of the most passionate ideas about the 
world with the most intellectual. Without some Romantic incli
nations, he surely would have dismissed a sensation like his con
fusion at the reservoir. After all, why shouldn't phenomena lose 
meaning as they are seen from greater distances? Physical laws 
provided a trivial explanation for their shrinking. On second thought 
the connection between shrinking and loss of meaning was not 
so obvious. Why should it be that as things become small they 
also become incomprehensible? 

He tried quite seriously to analyze this experience in terms 
of the tools of theoretical physics, wondering what he could say 
about the brain's machinery of perception. You see some human 
transactions and you make deductions about them. Given the vast 
amount of information available to your senses, how does your 
decoding apparatus sort it out? Clearly-or almost clearly-the 
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hrain does not own any direct copies of stuff in the world. There 
is no lihrary of forms and ideas against which to compare the 
images of perception. Information is stored in a plastic way, al
lowing fantastic juxtapositions and leaps of imagination. Some 
chaos exists out there, and the hrain seems to have more flexihility 
than classical physics in finding the order in it. 

At the same time, Feigenhaum was thinking ahout color. One 
of the minor skirmishes of science in the first years of the nine
teenth century was a difference of opinion hetween Newton's fol
lowers in England and Goethe in Germany over the nature of color. 
To Newtonian physics, Goethe's ideas were just so much pseu
doscientific meandering. Goethe refused to view color as a static 
quantity, to he measured in a spectrometer and pinned down like 
a hutterfly to cardhoard. He argued that color is a matter of per
ception. "With light poise and counterpoise, Nature oscillates within 
her prescrihed limits," he wrote, "yet thus arise ali the varieties 
and conditions of the phenomena which are presented to us in 
space and time. "  

The touchstone o f  Newton's theory was his famous experi
ment with a prism. A prism hreaks a heam of white light into a 
rainhow of colors, spread across the whole visihle spectrum, and 
Newton realized that those pure colors must he the elementary 
components that add to produce white. Further, with a leap of 
insight, he proposed that the colors corresponded to frequencies. 
He imagined that some vihrating hodies-corpuscles was the an
tique word-must he producing colors in proportion to the speed 
of the vihrations. Considering how little evidence supported this 
notion, it was as unjustifiahle as it was hrilliant. What is red? To 
a physicist, it is light radiating in waves hetween 620 to 800 hil
lionths of a meter long. Newton's optics proved themselves a thou
sand times over, while Goethe's treatise on color faded into merciful 
ohscurity. When Feigenhaum went looking for it, he discovered 
that the one copy in Harvard's lihraries had heen removed. 

He finally did track down a copy, and he found that Goethe 
had actually performed an extraordinary set of experiments in his 
investigation of colors. Goethe hegan as Newton had, with a prism. 
Newton had held a prism hefore a light, casting the divided heam 
onto a white surface. Goethe held the prism to his eye and looked 
through it. He perceived no color at ali, neither a rainhow nor 
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individual hues. Looking at a clear white surface or a clear blue 
sky through the prism produced the same effect: uniformity. 

But if a slight spot interrupted the white surface or a cloud 
appeared in the sky, then he would see a burst of color. It is "the 
interchange of light and shadow," Goethe concluded, that causes 
color. He went on to explore the way people perceive shadows 
east by different sources of colored light. He used candles and 
pencils, mirrors and colored glass, moonlight and sunlight, crys
tals, liquids, and color wheels in a thorough range of experiments. 
For example, he lit a candle before a piece of white paper at 
twilight and held up a pencil. The shadow in the candlelight was 
a brilliant blue. Why? The white paper alone is perceived as white, 
either in the declining daylight or in the added light of the warmer 
candle. How does a shadow divide the white into a region of blue 
and a region of reddish-yellow? Color is "a degree of darkness," 
Goethe argued, "allied to shadow." Above all, in a more modem 
language, color comes from boundary conditions and singularities. 

Where Newton was reductionist, Goethe was holistic. Newton 
broke light apart and found the most basic physical explanation 
for color. Goethe walked through flower gardens and · studied 
paintings, looking for a grand, all-encompassing explanation. 
Newton made his theory of color fit a mathematical scheme for 
all of physics. Goethe, fortunately or unfortunately, abhorred 
mathematics. 

Feigenbaum persuaded himself that Goethe had been right 
about color. Goethe's ideas resemble a facile notion, popular 
among psychologists, that makes a distinction between hard phys
ical reality and the variable subjective perception of it. The colors 
we perceive vary from time to time and from person to person
that much is easy to say. But as Feigenbaum understood them, 
Goethe's ideas had more true science in them. They were hard 
and empirical. Over and over again, Goethe emphasized the re
peatability of his experiments. It was the perception of color, to 
Goethe, that was universal and objective. What scientific evidence 
was there for a definable real-world quality of redness independent 
of our perception? 

Feigenbaum found himself asking what sort of mathematical 
formalisms might correspond to human perception, particularly 
a perception that sifted the messy multiplicity of experience and 
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found universal qualities. Redness is not necessarily a particular 
bandwidth of light, as the Newtonians would have it. It is a ter
ritory of a chaotic universe, and the boundaries of that territory 
are not so easy to describe-yet our minds find redness with 
regular and verifiable consistency. These were the thoughts of a 
young physicist, far removed, it seemed, from such problems as 
fluid turbulence. Still, to understand how the human mind sorts 
through the chaos of perception, surely one would need to un
derstand how disorder can produce universality. 

WHEN FEIGENBAUM BEGAN to think about nonlinearity at Los 
Alamos, he realized that his education had taught him nothing 
useful. To solve a system of nonlinear differential equations was 
impossible, notwithstanding the special examples constructed in 
textbooks. Perturbative technique, making successive corrections 
to a solvable problem that one hoped would lie somewhere nearby 
the real one, seemed foolish. He read through texts on nonlinear 
flows and oscillations and decided that little existed to help a 
reasonable physicist. His computational equipment consisting solely 
of pencil and paper, Feigenbaum decided to start with an analogue 
of the simple equation that Robert May studied in the context of 
population biology. 

It happened to he the equation high school students use in 
geometry to graph a parabola. It can he written as y = r(x - x2). 
Every value of x produces a value of y, and the resulting curve 
expresses the relation of the two numbers for the range of values. 
If x (this year's population) is small, then y (next year's) is small, 
but larger than x; the curve is rising steeply. If x is in the middle 
of the range, then y is large. But the parabola levels off and falls, 
so that if x is large, then y will he small again. That is what 
produces the equivalent of population crashes in ecological mod
eling, preventing unrealistic unrestrained growth. 

For May and then Feigenbaum, the point was to use this 
simple calculation not once, but repeated endlessly as a feedback 
loop. The output of one calculation was fed back in as input for 
the next. To see what happened graphically, the parabola helped 
enormously. Pick a starting value along the x axis. Draw a line up 
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to where it meets the parahola. Read the resulting value off the y 
axis. And start all over with the new value. The sequence hounces 
from place to place on the parahola at first, and then, perhaps, 
homes in on a stahle equilihrium, where x and y are equal and 
the value thus does not change. 

ln spirit, nothing could have heen further removed from the 
complex calculations of standard physics. Instead of a lahyrin
thine scheme to he solved one time, this was a simple calculation 
performed over and over again. The numerical experimenter would 
watch, like a chemist peering at a reaction huhhling away inside 
a heaker. Here the output was just a string of numhers, and it did 
not always converge to a steady final state. It could end up oscil
lating hack and forth hetween two values. Or as May had explained 
to population hiologists, it could keep on changing chaotically 
as long as anyone cared to watch. The choice among these dif
ferent possihle hehaviors depended on the value of the tuning pa
rameter. 

Feigenhaum carried out numerical work of this faintly ex
perimental sort and, at the same time, tried more traditiona! the
oretical ways of analyzing nonlinear functions. Even so, he could 
not see the whole picture of what this equation could do. But he 
could see that the possihilities were already so complicated that 
they would he viciously hard to analyze. He also knew that three 
Los Alamos mathematicians-Nicholas Metropolis, Paul Stein, 
and Myron Stein-had studied such "maps" in 1971, and now 
Paul Stein warned him that the complexity was frightening in
deed. If this simplest of equations already proved intractahle, what 
ahout the far more complicated equations that a scientist would 
write down for real systems? Feigenhaum put the whole prohlem 
on the shelf. 

In the hrief history of chaos, this one innocent-looking equa
tion provides the most succinct example of how different sorts of 
scientists looked at one prohlem in many different ways. To the 
hiologists, it was an equation with a message: Simple systems can 
do complicated things. To Metropolis, Stein, and Stein, the proh
lem was to catalogue a collection of topological patterns without 
reference to any numerical values. They would hegin the feedhack 
process at a particular point and watch the succeeding values 
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bounce from place to place on the parabola. As the values moved 
to the right or the left, they wrote down sequences of R's and L's. 
Pattern number one: R. Pattern number two: RLR. Pattern number 
193:  RLLLLLRRLL. These sequences had some interesting features 
to a mathematician-they always seemed to repeat in the same 
special order. But to a physicist they looked obscure and tedious. 

No one realized it then, but Lorenz had looked at the same 
equation in 1964, as a metaphor for a deep question about climate. 
The question was so deep that almost no one had thought to ask 
it before: Does a climate exist? That is, does the earth's weather 
have a long-term average? Most meteorologists, then as now, took 
the answer for granted. Surely any measurable behavior, no matter 
how it fluctuates, must have an average. Yet on reflection, it is far 
from obvious. As Lorenz pointed out, the average weather for the 
last 12,000 years has been notably different than the average for 
the previous 12,000, when most of North America was covered 
by ice. Was there one climate that changed to another for some 
physical reason? Or is there an even longer-term climate within 
which those periods were just fluctuations? Or is it possible that 
a system like the weather may never converge to an average? 

Lorenz asked a second question. Suppose you could actually 
write down the complete set of equations that govem the weather. 
In other words, suppose you had God's own code. Gould you then 
use the equations to calculate average statistics for temperature or 
rainfall? If the equations were linear, the answer would be an easy 
yes. But they are nonlinear. Since God has not made the actual 
equations available, Lorenz instead examined the quadratic dif
ference equation. 

Like May, Lorenz first examined what happened as the eq11:a
tion was iterated, given some parameter. With low parameters he 
saw the equation reaching a stable fixed point. There, certainly, 
the system produced a "climate" in the most trivial sense possi
ble-the "weather" never changed. With higher parameters he 
saw the possibility of oscillation between two points, and there, 
too, the system converged to a simple average. But beyond a certain 
point, Lorenz saw that chaos ensues. Since he was thinking about 
climate, he asked not only whether continual feedback would 
produce periodic behavior, but also what the average output would 
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be. And he recognized that the answer was that the average, too, 
fluctuated unstably. When the parameter value was changed ever 
so slightly, the average might change dramatically. By analogy, 
the earth's climate might never settle reliably into an equilibrium 
with average long-term behavior. 

As a mathematics paper, Lorenz's climate work would have 
been a failure-he proved nothing in the axiomatic sense. As a 
physics paper, too, it was seriously flawed, because he could not 
justify using such a simple equation to draw conclusions about 
the earth's climate. Lorenz knew what he was saying, though. "The 
writer feels that this resemblance is no mere accident, but that the 
difference equation captures much of the mathematics, even if not 
the physics, of the transitions from one regime of fl.ow to another, 
and, indeed, of the whole phenomenon of instability." Even twenty 
years later, no one could understand what intuition justified such 
a bold claim, published in Tellus, a Swedish meteorology journal. 
("Tellus! Nobody reads Tellus," a physicist exclaimed bitterly.) 
Lorenz was coming to understand ever more deeply the peculiar 
possibilities of chaotic systems-more deeply than he could ex
press in the language of meteorology. 

As he continued to explore the changing masks of dynamical 
systems, Lorenz realized that systems slightly more complicated 
than the quadratic map could produce other kinds of unexpected 
patterns. Hiding within a particular system could be more than 
one stable solution. An observer might see one kind of behavior 
over a very long time, yet a completely different kind of behavior 
could be just as natural for the system. Such a system is called 
intransitive. It can stay in one equilibrium or the other, but not 
both. Only a kick from outside can force it to change states. In a 
trivial way, a standard pendulum clock is an intransitive system. 
A steady fl.ow of energy comes in from a wind-up spring or a 
battery through an escapement mechanism. A steady tlow of en
ergy is drained out by friction. The obvious equilibrium state is 
a regular swinging motion. If a passerby bumps the clock, the 
pendulum might speed up or slow down from the momentary jolt 
but will quickly return to its equilibrium. But the clock has a 
second equilibrium as well-a second valid solution to its equa
tions of motion-and that is the state in which the pendulum is 
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hanging straight down and not moving. A less trivial intransitive 
system-perhaps with several distinct regions of utterly different 
behavior-could be climate itself. 

Climatologists who use global computer models to simulate 
the long-term behavior of the earth's atmosphere and oceans have 
known for several years that their models allow at least ane dra
matically different equilibrium. During the entire geological past, 
this alternative climate has never existed, but it could be an equally 
valid solution to the system of equations governing the earth. It 
is what some climatologists call the White Earth climate: an earth 
whose continents are covered by snow and whose oceans are 
covered by ice. A glaciated earth would reflect seventy percent of 
the incoming solar radiation and so would stay extremely cold. 
The lowest layer of the atmosphere, the troposphere, would be 
much thinner. The storms that would blow across the frozen sur
face would be much smaller than the storms we know. In general, 
the climate would be less hospitable to life as we know it. Com
puter models have such a strong tendency to fall into the White 
Earth equilibrium that climatologists find themselves wondering 
why it has never come about. It may simply be a matter of chance. 

To push the earth's climate into the glaciated state would 
require a huge kick from some external source. But Lorenz de
scribed yet another plausible kind of behavior called "almost
intransitivity." An almost-intransitive system displays ane sort of 
average behavior for a very long time, fluctuating within certain 
bounds. Then, for no reason whatsoever, it shifts into a different 
sort of behavior, still fluctuating but producing a different average. 
The people who design computer models are aware of Lorenz's 
discovery, but they try at all costs to avoid almost-intransitivity. 
It is tao unpredictable. Their natural bias is to make models with 
a strong tendency to return to the equilibrium we measure every 
day on the real planet. Then, to explain large changes in climate, 
they look for external causes-changes in the earth's orbit around 
the sun, for example. Yet it takes no great imagination for a cli
matologist to see that almost-intransitivity might well explain why 
the earth's climate has drifted in and out of long Ice Ages at 
mysterious, irregular intervals. If so, no physical cause need be 
found for the timing. The Ice Ages may simply be a byproduct of 
chaos. 
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LIKE A GUN COLLECTOR wistfully recalling the Colt .45 in the 
era of automatic weaponry, the modem scientist nurses a certain 
nostalgia for the HP-65 hand-held calculator. In the few years of 
its supremacy, this machine changed many scientists' working 
habits forever. For Feigenbaum, it was the bridge between pencil
and-paper and a style of working with computers that had not yet 
been conceived. 

He knew nothing of Lorenz, but in the summer of 1975, at a 
gathering in Aspen, Colorado, he heard Steve Smale talk about 
some of the mathematical qualities of the same quadratic differ
ence equation. Smale seemed to think that there were some in
teresting open questions about the exact point at which the mapping 
changes from periodic to chaotic. As always, Smale had a sharp 
instinct for questions worth exploring. Feigenbaum decided to 
look into it once more. With his calculator he began to use a 
combination of analytic algebra and numerical exploration to piece 
together an understanding of the quadratic map, concentrating on 
the boundary region between order and chaos. 

Metaphorically-but only metaphorically-he knew that this 
region was like the mysterious boundary between smooth flow 
and turbulence in a fluid. It was the region that Robert May had 
called to the attention of population biologists who had previously 
failed to notice the possibility of any but orderly cycles in changing 
ånimal populations. En route to chaos in this region was a cascade 
of period-doublings, the splitting of two-cycles into four-cycles, 
four-cycles into eight-cycles, and so on. These splittings made a 
a fascinating pattem. They were the points at which a slight change 
in fecundity, for example, might lead a population of gypsy moths 
to change from a four-year cycle to an eight-year cycle. Feigen
baum decided to begin by calculating the exact parameter values 
that produced the splittings. 

In the end, it was the slowness of the calculator that led him 
to a discovery that August. It took ages-minutes, in fact-to 
calculate the exact parameter value of each period-doubling. The 
higher up the chain he went, the longer it took. With a fast com
puter, and with a printout, Feigenbaum might have observed no 
pattem. But he had to write the numbers down by hand, and then 
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he had to think about them while he was waiting, and then, to 
save time, he had to guess where the next answer would he. 

Yet all in an instant he saw that he did not have to guess. 
There was an unexpected regularity hidden in this system: the 
numbers were converging geometrically, the way a line of identical 
telephone poles converges toward the horizon in a perspective 
drawing. If you know how big to make any two telephone poles, 
you know all the rest; the ratio of the second to the first will also 
he the ratio of the third to the second, and so on. The period
doublings were not just coming faster and faster, but they were 
coming faster and faster at a constant rate. 

Why should this he so? Ordinarily, the presence of geometric 
convergence suggests that something, somewhere, is repeating it
self on different scales. But if there was a scaling pattem inside 
this equation, no one had ever seen it. Feigenbaum calculated the 
ratio of convergence to the finest precision possible on his ma
chine-three decimal places-and came up with a number, 4.669. 
Did this particular ratio mean anything? Feigenbaum did what 
anyone would do who cared about numbers. He spent the rest of 
the day trying to fit the number to all the standard constants-1r, 
e, and so forth. It was a variant of none. 

Oddly, Robert May realized later that he, too, had seen this 
geometric convergence. But he forgot it as quickly as he noted it. 
From May's perspective in ecology, it was a numerical peculiarity 
and nothing more. In the real-world systems he was considering, 
systems of animal populations or even economic models, the in
evitable noise would overwhelm any detail that precise. The very 
messiness that had led him so far stopped him at the crucial point. 
May was excited by the gross behavior of the equation. He never 
imagined that the numerical details would prove important. 

Feigenbaum knew what he had, because geometric conver
gence meant that something in this equation was scaling, and he 
knew that scaling was important. All of renormalization theory 
depended on it. 1n an apparently unruly system, scaling meant 
that some quality was being preserved while everything else 
changed. Some regularity lay beneath the turbulent surface of the 
equation. But where? It was hard to see what to do next. 

Summer turns rapidly to autumn in the rarefied Los Alamos 
air, and October had nearly ended when Feigenbaum was struck 
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by an odd thought. He knew that Metropolis, Stein, and Stein had 
looked at other equations as well and had found that certain pat
tems carried over from one sort of function to another. The same 
combinations of R's and L's appeared, and they appeared in the 
same order. One function had involved the sine of a number, a 
twist that made Feigenbaum's carefully worked-out approach to 
the parabola equation irrelevant. He would have to start over. So 
he took his HP-65 again and began to compute the period-doublings 
for X1 + 1 = r sin 1T x1• Calculating a trigonometric function made 
the process that much slower, and Feigenbaum wondered whether, 
as with the simpler version of the equation, he would he able to 
use a shortcut. Sure enough, scanning the numbers, he realized 
that they were again converging geometrically. It was simply a 
matter of calculating the convergence rate for this new equation. 
Again, his precision was limited, but he got a result to three dec
imal places: 4.669. 

lt was the same number. lncredibly, this trigonometric func
tion was not just displaying a consistent, geometric regularity. It 
was displaying a regularity that was numerically identical to that 
of a much simpler function. No mathematical or physical theory 
existed to explain why two equations so different in form and 
meaning should lead to the same result. 

Feigenbaum called Paul Stein. Stein was not prepared to he
lieve the coincidence on such scanty evidence. The precision was 
low, after all. Nevertheless, Feigenbaum also called his parents in 
New Jersey to tel1 them he had stumbled across something pro
found. He told his mother it was going to make him famous. Then 
he started trying other functions, anything he could think of that 
went through a sequence of bifurcations on the way to disorder. 
Every one produced the same number. 

Feigenbaum had played with numbers all his life. When he 
was a teen-ager he kn�w how to calculate logarithms and sines 
that most people would look up in tables. But he had never learned 
to use any computer bigger than his hand calculator-and in this 
he was typical of physicists and mathematicians, who tended to 
disdain the mechanistic thinking that computer work implied. 
Now, though, it was time. He asked a colleague to teach him For
tran, and, by the end of the day, for a variety of functions, he had 
calculated his constant to five decimal places, 4.66920. That night 
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he read about double precision in the manual, and the next day 
he got as far as 4.6692016090-enough precision to convince Stein. 
Feigenbaum wasn't quite sure he had convinced himseH, though. 
He had set out to look for regularity-that was what understanding 
mathematics meant-but he had aisa set out knowing that particu
lar kinds of equations, just like particular physical systems, behave 
in special, characteristic ways. These equations were simple, after 
ali. Feigenbaum understood the quadratic equation, he understood 
the sine equation-the mathematics was trivial. Yet something in 
the heart of these very different equations, repeating over and 
over again, created a single number. He had stumbled upon some
thing: perhaps just a curiosity; perhaps a new law of nature. 

Imagine that a prehistoric zoologist decides that some things 
are heavier than other things-they have some abstract quality he 
calls weight-and he wants to investigate this idea scientifically. 
He has never actually measured weight, but he thinks he has some 
understanding of the idea. He looks at big snakes and little snakes, 
big bears and little bears, and he guesses that the weight of these 
animals might have some relationship to their size. He builds a 
scale and starts weighing snakes. To his astonishment, every snake 
weighs the same. To his consternation, every bear weighs the 
same, tao. And to his further amazement, bears weigh the same 
as snakes. They all weigh 4.6692016090. Clearly weight is not 
what he supposed. The whole concept requires rethinking. 

Rolling streams, swinging pendulums, electronic oscilla
tors-many physical systems went through a transition on the 
way to chaos, and those transitions had remained tao complicated 
for analysis. These were all systems whose mechanics seemed 
perfectly well understood. Physicists knew ali the right equations; 
yet moving from the equations to an understanding of global, long
term behavior seemed impossible. Unfortunately, equations for 
fluids, even pendulums, were far more challenging than the simple 
one-dimensional logistic map. But Feigenbaum's discovery im
plied that those equations were beside the point. They were ir
relevant. When order emerged, it suddenly seemed to have forgotten 
what the original equation was. Quadratic or trigonometric, the 
result was the same. "The whole tradition of physics is that you 
isolate the mechanisms and then ali the rest flows," he said. "That's 
completely falling apart. Here you know the right equations but 
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they're just not helpful. You add up ali the microscopic pieces 
and you find that you cannot extend them to the long term. They're 
not what's important in the problem. It completely changes what 
it means to know something." 

Although the connection between numerics and physics was 
faint, Feigenbaum had found evidence that he needed to work out 
a new way of calculating complex nonlinear problems. So far, all 
available techniques had depended on the details of the functions. 
H the function was a sine function, Feigenbaum's carefully worked
out calculations were sine calculations. His discovery of univer
sality meant that ali those techniques would have to be thrown 
out. The regularity had nothing to do with sines. It had nothing 
to do with parabolas. It had nothing to do with any particular 
function. But why? It was frustrating. Nature had pulled back a 
curtain for an instant and offered a glimpse of unexpected order. 
What else was behind that curtain? 

WHEN INSPIRATION CAME, it was in the form of a picture, a 
mental image of two small wavy forms and one big one. That was 
all-a bright, sharp image etched in his mind, no more, perhaps, 
than the visible top of a vast iceberg of mental processing that had 
taken place below the waterline of consciousness. It had to do 
with scaling, and it gave Feigenbaum the path he needed. 

He was studying attractors. The steady equilibrium reached 
by his mappings is a fixed point that attracts all others-no matter 
what the starting "poptilation," it will bounce steadily in toward 
the attractor. Then, with the first period-doubling, the attractor 
splits in two, like a dividing cell. At first, these two points are 
practically together; then, as the parameter rises, they float apart. 
Then another period-doubling: each point of the attractor divides 
again, at the same moment. Feigenbaum's number let him predict 
when the period-doublings would occur. Now he discovered that 
he could also predict the precise values of each point on this 
ever-more-complicated attractor-two points, four points, eight 
points . . . He could predict the actual populations reached in the 
year-to-year oscillations. There was yet another geometric con
vergence. These numbers, too, obeyed a law of scaling. 

Feigenbaum was exploring a forgotten middle ground be-
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ZEROING IN O N  CHAOS. A simple equation, repeated many times over: 
Mitchell Feigenbaum focused on straightforward functions, taking one 
number as input and producing another as output. For animal popula
tions, a function might express the relationship between this year's pop
ulation and next year's. 

One way to visualize such functions is to make a graph, plotting 
input on the horizontal axis and output on the vertical axis. For each 
possible input, x, there is just one output, y, and these form a shape 
represented by the heavy line. 

Then, to represent the long-term behavior of the system, Feigenbaum 
drew a trajectory that started with some arbitrary x. Because each y was 
then fed back into the same function as new input, he could use a sort 
of schematic shortcut: The trajectory would bounce off the 45-degree line, 
the line where x equals y. 

For an ecologist, the most obvious sort of function for population 
growth is linear-the Malthusian scenario of steady, limitless growth by 
a fixed percentage each year [left). More realistic functions formed an 
arch, sending the population back downward when it became too high. 
Illustrated is the "logistic map," a perfect parabola, defined by the func
tion y = rx(l - x) , where the value of r, from O to 4, determines the par
abola's steepness. But Feigenbaum discovered that it did not matter precisely 
what sort of arch he used; the details of the equation were beside the 
point. What mattered was that the function should have a "hump." 

The behavior depended sensitively, though, on the steepness-the 
degree of nonlinearity, or what Robert May called "boom-and-bustiness." 
Too shallow a function would produce extinction: Any starting popu
lation would lead eventually to zero. Increasing the steepness produced 
the steady equilibrium that a traditiona! ecologist would expect; that 
point, drawing in all trajectories, was a one-dimensional "attractor." 

Beyond a certain point, a bifurcation produced an oscillating pop
ulation with period two. Then more period-doublings would occur, and 
finally (bottom right) the trajectory would refuse to settle down at all. 

Such images were a starting point for Feigenbaum when he tried to 
construct a theory. He began thinking in terms of recursion: functions of 
functions, and fuhctions of functions of functions, and so on; maps with 
two humps, and then four . . . .  

\ 
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tween mathematics and physics. His work was hard to classify. 
It was not mathematics; he was not proving anything. He was 
studying numbers, yes, but numbers are to a mathematician what 
bags of coins are to an investment banker: nominally the stuff of 
his profession, but actually too gritty and particular to waste time 
on. Ideas are the real currency of mathematicians. Feigenbaum 
was carrying out a program in physics, and, strange as it seemed, 
it was almost a kind of experimental physics. 

Numbers and functions were his ohjeet of study, instead of 
mesons and quarks. They had trajectories and orbits. He needed 
to inquire into their behavior. He needed-in a phrase that later 
became a cliche of the new science-to create intuition. His ac
celerator and his cloud chamber were the computer. Along with 
his theory, he was building a methodology. Ordinarily a computer 
user would construct a problem, feed it in, and wait for the ma
chine to calculate its solution-one problem, one solution. Fei
genbaum and the chaos researchers who followed needed more. 
They needed to do what Lorenz had done, to create miniature 
universes and observe their evolution. Then they could change 
this feature or that and observe the changed paths that would 
result. They were armed with the new conviction, after all, that 
tiny changes in certain features could lead to remarkable changes 
in overall behavior. 

Feigenbaum quickly discovered how ill-suited the computer 
facilities of Los Alamos were for the style of computing he wanted 
to develop. Despite enormous resources, far greater than at most 
universities, Los Alamos had few terminals capable of displaying 
graphs and pictures, and those few were in the Weapons Division. 
Feigenbaum wanted to take numbers and plot them as points on 
a map. He had to resort to the most primitive method conceivable: 
long rolls of printout paper with Iines made by printing rows of 
spaces followed by an asterisk or a plus sign. The official policy 
at Los Alamos held that one big computer was worth far more 
than many little computers-a policy that went with the one prob
lem, one solution tradition. Little computers were discouraged. 
Furthermore, any division's purchase of a computer would have 
to meet stringent government guidelines and a formal review. Only 
later, with the budgetary complicity of the Theoretical Division, 
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did Feigenbaum become the recipient of a $20,000 "desktop cal
culator. "  Then he could change his equations and pictures on the 
run, tweaking them and tuning them, playing the computer like 
a musical instrument. For now, the only terminals capable of 
serious graphics were in high-security areas-behind the fence, 
in local parlance. Feigenbaum had to use a terminal hooked up 
by telephone Iines to a central computer. The reality of working 
in such an arrangement made it hard to appreciate the raw power 
of the computer at the other end of the line. Even the simplest 
tasks took minutes. To edit a line of a program meant pressing 
Return and waiting while the terminal hummed incessantly and 
the central computer played its electronic round robin with other 
users across the laboratory. 

While he was computing, he was thinking. What new math
ematics could produce the multiple scaling patterns he was ob
serving? Something about these functions must be recursive, he 
realized, self-referential, the behavior of one guided by the be
havior of another hidden inside it. The wavy image that had come 
to him in a moment of inspiration expressed something about the 
way one function could he scaled to match another. He applied 
the mathematics of renormalization group theory, with its use of 
scaling to collapse infinities into manageable quantities. In the 
spring of 1976 he entered a mode of existence more intense than 
any he had lived through. He would concentrate as if in a trance, 
programming furiously, scribbling with his pencil, programming 
again. He could not call C division for help , because that would 
mean signing off the computer to use the telephone, and recon
nection was chancy. He could not stop for more than five minutes ' 
thought, because the computer would automatically disconnect 
his line. Every so often the computer would go down anyway, 
leaving him shaking with adrenalin. He worked for two months 
without pause. His' functional day was twenty-two hours. He would 
try to go to sleep in a kind of buzz, and awaken two hours later 
with his thoughts exactly where he had left them. His diet was 
strictly coffee. (Even when healthy and at peace , Feigenbaum sub
sisted exclusively on the reddest possible meat, coffee, and red 
wine. His friends speculated that he must be getting his vitamins 
from cigarettes.) 

I 
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In the end, a doctor called it off. He prescribed a modest 
regimen of Valium and an enforced vacation. But by then Feigen
baum had created a universal theory. 

UNIVERSALITY MADE THE DIFFERENCE between beautiful and 
useful. Mathematicians, beyond a certain point, care little whether 
they are providing a technique for calculation. Physicists, beyond 
a certain point, need numbers. Universality offered the hope that 
by solving an easy problem physicists could solve much harder 
problems. The answers would be the same. Further, by placing 
his theory in the framework of the renormalization group, Fei
genbaum gave it a clothing that physicists would recognize as a 
tool for calculating, almost something standard. 

But what made universality useful also made it hard for phys
icists to believe. Universality meant that different systems would 
behave identically. Of course, Feigenbaum was only studying sim
ple numerical functions. But he believed that his theory expressed 
a natural law about systems at the point of transition between 
orderly and turbulent. Everyone knew that turbulence meant a 
continuous spectrum of different frequencies , and everyone had 
wondered where the different frequencies came from. Suddenly 
you could see the frequencies coming in sequentially. The phys
ical implication was that real-world systems would behave in the 
same, recognizable way, and that furthermore it would be meas-
urably the same. Feigenbaum's universality was not just quali
tative, it was quantitative; not just structural, but metrical. It 
extended not just to patterns, but to precise numbers. To a phys
icist, that strained credulity. 

Years later Feigenbaum still kept in a desk drawer, where he 
could get at them quickly, his rejection letters. By then he had all 
the recognition he needed. His Los Alamos work had won him 
prizes and awards that brought prestige and money. But it still 
rankled that editors of the top academic journals had deemed his 
work unfit for publication for two years after he began submitting 
it. The notion of a scientific breakthrough so original and unex
pected that it cannot be published seems a slightly tarnished myth. 
Modern science, with its vast flow of information and its impartial 
system of peer review, is not supposed to be a matter of taste. One 
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editor who sent back a Feigenbaum manuscript recognized years 
later tliat he had rejected a paper that was a turning point for the 
field; yet he still argued that the paper had been unsuited to his 
journal's audience of applied mathematicians. In the meantime, 
even without publication, Feigenbaum's breakthrough became a 
superheated piece of news in certain circles of mathematics and 
physics. The kernel of theory was disseminated the way most 
science is now disseminated-through lectures and preprints. 
Feigenbaum described his work at conferences, and requests 
for photocopies of his papers came in by the score and then by the 
hundred. 

MoDERN EC0N0MICS RELIES HEAVIL Y on the efficient market 
theory. Knowledge is assumed to flow freely from place to place. 
The people making important decisions are supposed to have 
access to more or less the same body of information. Of course, 
pockets of ignorance or inside information remain here and there, 
but on the whole, once knowledge is public, economists assume 
that it is known everywhere. Historians of science often take for 
granted an efficient market theory of their own. When a discovery 
is made, when an idea is expressed, it is assumed to become the 
common property of the scientific world. Each discovery and each 
new insight builds on the last. Science rises like a building, brick 
by brick. lntellectual chronicles can he, for all practical purposes, 
linear. 

That view of science works best when a well-defined disci
pline awaits the resolution of a well-defined problem. No one 
misunderstood the discovery of the molecular structure of DNA, 
for example. But the history of ideas is not always so neat. As 
nonlinear science arose in odd corners of different disciplines, 
the flow of ideas failed to follow the standard logic of historians. 
The emergence of chaos as an entity unta itself was a story not 
only of new theories and new discoveries, but also of the belated 
understanding of old ideas. Many pieces of the puzzle had been 
seen long before-by Poincare, by Maxwell, even by Einstein
and then forgotten. Many new pieces were understood at first only 
by a few insiders. A mathematical discovery was understood by 
mathematicians, a physics discovery by physicists, a meteorolog-
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ical discovery by no one. The way ideas spread became as im
portant as the way they originated. 

Each scientist had a private constellation of intellectual par
ents. Each had his own picture of the landscape of ideas, and each 
picture was limited in its own way. Knowledge was imperfect. 
Scientists were biased by the customs of their disciplines or by 
the accidental paths of their own educations. The scientific world 
can he surprisingly finite. No committee of scientists pushed his
tory into a new channel-a handful of individuals did it, with 
individual perceptions and individual goals. 

Afterwards, a consensus began to take shape about which 
innovations and which contributions had been most influential. 
But the consensus involved a certain element of revisionism. In 
the heat of discovery, particularly during the late 1970s, no two 
physicists, no two mathematicians understood chaos in exactly 
the same way. A scientist accustomed to classical systems without 
friction or dissipation would place himself in a lineage descending 
from Russians like A. N. Kolmogorov and V. I. Arnold. A mathe
matician accustomed to classical dynamical systems would en
vision a line from Poincare to Birkhoff to Levinson to Smale. Later, 
a mathematician's constellation might center on Smale, Gucken
heimer, and Ruelle. Or it might emphasize a computationally in
clined set of forebears associated with Los Alamos: Ulam, 
Metropolis, Stein. A theoretical physicist might think of Ruelle, 
Lorenz, Rössler, and Yorke. A biologist would think of Smale, 
Guckenheimer, May, and Yorke. The possible combinations were 
endless. A scientist working with materials-a geologist or a seis
mologist-would credit the direct influence of Mandelbrot; a the
oretical physicist would barely acknowledge knowing the name. 

Feigenbaum's role would become a special source of conten
tion. Much later, when he was riding a crest of semicelebrity, 
some physicists went out of their way to cite other people who 
had been working on the same problem at the same time, give or 
take a few years. Some accused him of focusing tao narrowly on 
a small piece of the broad spectrum of chaotic behavior. "Feigen
baumology" was overrated, a physicist might say-a beautiful 
piece of work, to he sure, but not as broadly influential as Yorke's 
work, for example. ln 1984, Feigenbaum was invited to address 
the Nobel Symposium in Sw�den, and there the controversy swirled. 
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Benoit Mandelbrot gave a wickedly pointed talk that listeners later 
described as his "antifeigenbaum lecture." Somehow Mandelbrot 
had exhumed a twenty-year-old paper on period-doubling by a 
Finnish mathematician named Myrberg, and he kept describing 
the Feigenbaum sequences as "Myrberg sequences." 

But Feigenbaum had discovered universality and created a 
theory to explain it. That was the pivot on which the new science 
swung. Unable to publish such an astonishing and counterintui
tive result, he spread the word in a series of lectures at a New 
Hampshire conference in August 1976, an international mathe
matics meeting at Los Alamos in September, a set of talks at Brown 
University in November. The discovery and the theory met sur
prise, disbelief, and excitement. The more a scientist had thought 
about nonlinearity, the more he felt the force of Feigenbaum's 
universality. One put it simply: "lt was a very happy and shocking 
discovery that there were structures in nonlinear systems that are 
always the same if you looked at them the right way." Some 
physicists picked up not just the ideas but also the techniques. 
Playing with these maps-just playing-gave them chills. With 
their own calculators, they could experience the surprise and sat
isfaction that had kept Feigenbaum going at Los Alamos. And they 
refined the theory. Hearing his talk at the Institute for Advanced 
Study in Princeton, Predrag Cvitanovic, a particle physicist, helped 
Feigenbaum simplify his theory and extend its universality. But 
all the while, Cvitanovic pretended it was just a pastime; he could 
not bring himself to admit to his colleagues what he was doing. 

Among mathematicians, too, a reserved attitude prevailed, 
largely because Feigenbaum did not provide a rigorous proof. In
deed, not until 1979 did proof come on mathematicians' terms, 
in work by Oscar E. Lanford III. Feigenbaum often recalled pre
senting his theory to a distinguished audience at the Los Alamos 
meeting in September. He had barely begun to describe the work 
when the eminent mathematician Mark Kac rose to ask: "Sir, do 
you mean to offer numerics or a proof?" 

More than the one and less than the other, Feigenbaum re
plied. 

"Is it what any reasonable man would call a proof?" 
Feigenbaum said that the listeners would have to judge for 

themselves. After he was done speaking, he polled Kac, who re-
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sponded, with a sardonically trilled r: "Yes, that's indeed a rea
sonable man's proof. The details can he left to the r-r-rigorous 
mathematicians.' '  

A movement had begun, and the discovery of universality 
spurred it forward. In the summer of 1977, two physicists, Joseph 
Ford and Giulio Casati, organized the first conference on a science 
called chaos. It was held in a gracious villa in Como, Italy, a tiny 
city at the southern foot of the lake of the same name, a stunningly 
deep blue catchbasin for the melting snow from the Italian Alps. 
One hundred people came-mostly physicists, but also curious 
scientists from other fields. "Mitch had seen universality and found 
out how it scaled and worked out a way of getting to chaos that 
was intuitively appealing," Ford said. "lt was the first time we 
had a clear model that everybody could understand. 

"And it was one of those things whose time had come. In 
disciplines from astronomy to zoology, people were doing the 
same things, publishing in their narrow disciplinary journals, just 
totally unaware that the other people were around. They thought 
they were by themselves, and they were regarded as a bit eccentric 
in their own areas. They had exhausted the simple questions you 
could ask and begun to worry about phenomena that were a bit 
more complicated. And these people were just weepingly grateful 
to find out that everybody else was there, too;" 

LATER, FEIGENBAUM LIVED in a bare space, a bed in one room, 
a computer in another, and, in the third, three black electronic 
towers for playing his solidly Germanic record collection. His one 
experiment in home furnishing, the purchase of an expensive 
marble coffee table while he was in Italy, had ended in failure; 
he received a parcel of marble chips. Piles of papers and books 
lined the walls. He talked rapidly, his long hair, gray now mixed 
with brown, sweeping back from his forehead. "Something dra
matic happened in the twenties. For no good reason physicists 
stumbled upon an essentially correct description of the world 
around them-because the theory of quantum mechanics is in 
some sense essentially correct. It tells you how you can take dirt 
and make computers from it. It's the way we've learned to ma
nipulate our universe. It's the way chemicals are made and plastics 
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and what not. One knows how to compute with it. It's an extrav
agantly good theory-except at some level it doesn't make good 
sense. 

"Some part of the imagery is missing. If you ask what the 
equations really mean and what is the description of the world 
according to this theory, it's not a description that entails your 
intuition of the world. You can't think of a particle moving as 
though it has a trajectory. You're not allowed to visualize it that 
way. If you start asking more and more subtle questions-what 
does this theory tel1 you the world looks like?-in the end it's so 
far out of your normal way of picturing things that you run into 
all sorts of conflicts. Now maybe that's the way the world really 
is. But you don't really know that there isn't another way of as
sembling all this information that doesn't demand so radical a 
departure from the way in which you intuit things. 

"There's a fundaniental presumption in physics that the way 
you understand the world is that you keep isolating its ingredients 
until you understand the stuff that you think is truly fundamental. 
Then you presume that the other things you don't understand are 
details. The assumption is that there are a small number of prin
ciples that you can discern by looking at things in their pure 
state-this is the true analytic notion-and then somehow you 
put these together in more complicated ways when you want to 
solve more dirty problems. If you can. 

"In the end, to understand you have to change gears. You 
have to reassemble how you conceive of the important things that 
are going on. You could have tried to simulate a model fluid system 
on a computer. It's just beginning to be possible. But it would 
have been a waste of effort, because what really happens has 
nothing to do with a fluid or a particular equation. lt's a general 
description of w.hat happens in a large variety of systems when 
things work on themselves again and again. It requires a different 
way of thinking about the problem. 

"When you look at this room-you see junk sitting over there 
and a person sitting over here and doors over there-you're sup
posed to take the elementary principles of matter and write down 
the wave functions to describe them. Well, this is not a feasible 
thought. Maybe God could do it, but no analytic thought exists 
for understanding such a problem. 
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"It's not an academic question any more to ask what's going 
to happen to a cloud. People very much want to know-and that 
means there's money available for it. That problem is very much 
within the realm of physics and it's a problem very much of the 
same caliber. You're looking at something complicated, and the 
present way of solving it is to try to look at as many points as you 
can, enough stuff to say where the cloud is, where the warm air 
is, what its velocity is, and so forth. Then you stick it into the 
biggest machine you can afford and you try to get an estimate of 
what it's going to do next. But this is not very realistic." 

He stubbed out ane cigarette and lit another. "One has to look 
for different ways. One has to look for scaling structures-how 
do big details relate to little details. You look at fluid disturbances, 
complicated structures in which the complexity has come about 
by a persistent process. At some level they don't care very much 
what the size of the process is-it could be the size of a pea or 
the size of a basketball. The process doesn't care where it is, and 
moreover it doesn't care how long it's been going. The only things 
that can ever be universal, in a sense, are scaling things. 

"In a way, art is a theory about the way the world looks to 
human beings. lt's abundantly obvious that ane doesn't know the 
world around us in detail. What artists have accomplished is 
realizing that there's only a small amount of stuff that's important, 
and then seeing what it was. So they can do some of my research 
for me. When you look at early stuff of Van Gogh there are zillions 
of details that are put into it, there's always an immense amount 
of information in his paintings. lt obviously occurred to him, what 
is the irreducible amount of this stuff that you have to put in. Or 
you can study the horizons in Dutch ink drawings from around 
1600, with tiny trees and cows that look very real. If you look 
closely, the trees have sort of leafy boundaries, but it doesn't work 
if that's all it is-there are also, sticking in it, little pieces of 
twiglike stuff. There's a definite interplay between the softer tex
tures and the things with more definite Iines. Somehow the com
bination gives the correct perception. With Ruysdael and Turner, 
if you look at the way they construct complicated water, it is 
clearly done in an iterative way. There's some level of stuff, and 
then stuff painted on top of that, and then corrections to that. 
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Turbulent fluids for those painters is always something with a 
scale idea in it. 

"I truly do want to know how to describe clouds. But to say 
there's a piece over here with that much density, and next to it a 
piece with this much density-to accumulate that much detailed 
information, I think is wrong. lt's certainly not how a human being 
perceives those things, and it's not how an artist perceives them. 
Somewhere the business of writing down partial differential equa
tions is not to have done the work on the problem. 

"Somehow the wondrous promise of the earth is that there 
are things beautiful in it, things wondrous and alluring, and by 
virtue of your trade you want to understand them. " He put the 
cigarette down. Smoke rose from the ashtray, first in a thin column 
and then (with a nod to universality) in broken tendrils that swirled 
upward to the ceiling. 

J 



The Experimenter 

It's an experience like no other experience I can 

describe, the best thing that can happen to a 

scientist, realizing that something that's happened in 

his or her mind exactly corresponds to something 

that happens in nature.  It's startling every time it 

occurs . One is surprised that a construct of one's 
own mind can actually be realized in the honest-to
goodness world out there . A great shock, and a great, 
great joy. ,, 

-LEO KADANOFF 



"ALBERT 1s GETTING MATURE." So they said at Ecole Normale 
Superieure, the academy which, with Ecole Polytechnique, sits 
atop the French educational hierarchy. They wondered whether 
age was tak_ing its toll on Albert Libchaber, who had made a dis
tinguished name for himself as a low-temperature physicist, study
ing the quantum behavior of superfluid helium at temperatures a 
breath away from absolute zero. He had prestige and a secure place 
on the faculty. And now in 1977 he was wasting his time and the 
university's resources on an experiment that seemed trivial. Lib
chaber himself worried that he would he jeopardizing the career 
of any graduate student he employed on such a project, so he got 
the assistance of a professional engineer instead. 

Five years before the Germans invaded Paris, Libchaber was 
born there, the son of Polish Jews, the grandson of a rabbi. He 
survived the war the same way Benoit Mandelbrot did, by hiding 
in the countryside, separated from his parents because their ac
cents were too dangerous. His parents managed to survive; the 
rest of the family was lost to the Nazis. In a quirk of political fate, 
Libchaber's own life was saved by the protection of a local chief 
of the Petain secret police, a man whose fervent right-wing beliefs 
were matched only by his fervent antiracism. After the war, the 
ten-year-old boy returned the favor. He testified, only half
comprehending, before a war crimes commission, and his testi
mony saved the man. 

Moving through the world of French academic science, Lib-

191 
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chaber rose in his profession, his brilliance never questioned. His 
colleagues did sometimes think he was a little crazy-a Jewish 
mystic amid the rationalists, a Gaullist where most scientists were 
Communists. They joked about his Great Man theory of history, 
his fixation on Goethe, his obsession with old books. He had 
hundreds of original editions of works by scientists, some dating 
back to the 1600s. He read them not as historical curiosities but 
as a source of fresh ideas about the nature of reality, the same 
reality he was probing with his lasers and his high-technology 
refrigeration coils. In his engineer, Jean Maurer, he had found a 
compatible spirit, a Frenchman who worked only when he felt 
like it. Libchaber thought Maurer would find his new project 
amusing-his understated Gallic euphemism for intriguing or ex
citing or profound. The two set out in 1977 to build an experiment 
that would reveal the onset of turbulence. 

As an experimenter, Libchaber was known for a nineteenth
century style: clever mind, nimble hands, always preferring in
genuity to brute force. He disliked giant technology and heavy 
computation. His idea of a good experiment was like a mathe
matician's idea of a good proof. Elegance counted as much as 
results. Even so, some colleagues thought he was carrying things 
too far with his onset-of-turbulence experiment. It was small enough 
to carry around in a matchbox-and sometimes Libchaber did 
carry it around, like some piece of conceptual art. He called it 
"Helium in a Small Box." The heart of the experiment was even 
smaller, a cell about the size of a lemon seed, carved in stainless 
steel with the sharpest possible edges and walls. Into the cell was 
fed liquid helium chilled to about four degrees above absolute 
zero, warm compared to Libchaber's old superfluid experiments. 

The laboratory occupied the second floor of the Ecole physics 
building in Paris, just a few hundred feet from Louis Pasteur's old 
laboratory. Like all good general-purpose physics laboratories, 
Libchaber's existed in a state of constant mess, paint cans and 
hand tools strewn about on floors and tables, odd-sized pieces of 
metal and plastic everywhere. Amid the disarray, the apparatus 
that held Libchaber's minuscule fluid cell was a striking bit of 
purposefulness. Below the stainless steel cell sat a bottom plate 
of high-purity copper. Above sat a top plate of sapphire crystal. 
The materials were chosen according to how they conducted heat. 
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There were tiny electric heating coils and Tefl.on gaskets. The 
liquid helium fl.owed down from a reservoir, itself just a half-inch 
cube. The whole system sat inside a container that maintained an 
extreme vacuum. And that container, in tum, sat in a bath of liquid 
nitrogen, to help stabilize the temperature. 

Vibration always worried Libchaber. Experiments, like real 
nonlinear systems, existed against a constant background of noise. 
Noise hampered measurement and corrupted data. In sensitive 
fl.ows-and Libchaber's would he as sensitive as he could make 
it-noise might sharply perturb a nonlinear fl.ow, knocking it from 
one kind of behavior into another. But nonlinearity can stabilize 
a system as well as destabilize it. Nonlinear feedback regulates 
motion, making it more robust. In a linear system, a perturbation 
has a constant effect. In the presence of nonlinearity, a pertur
bation can feed on itself until it dies away and the system retums 
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"HELIUM IN A SMALL BOX." Albert Libchaber's delicate experiment: lts 
heart was a carefully machined rectangular cell containing liquid helium; 
tiny sapphire "bolometers" measured the fluid's temperature. The tiny 
cell was embedded in a casing designed to shield it from the noise and 
vibration and to allow precise control of the heating. 
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automatically to a stable state. Libchaber believed that biological 
systems used their nonlinearity as a defense against noise. The 
transfer of energy by proteins, the wave motion of the heart's 
electricity, the nervous system-all these kept their versatility in 
a noisy world. Libchaber hoped that whatever structure underlay 
fluid flow would prove robust enough for his experiment to detect. 

His pian was to create convection in the liquid helium by 
making the bottom plate warmer than the top plate. It was exactly 
the convection model described by Edward Lorenz, the classic 
system known as Rayleigh-Benard convection. Libchaber was not 
aware of Lorenz-not yet. Nor had he any idea of Mitchell Fei
genbaum's theory. In 1977 Feigenbaum was beginning to travel 
the scientific lecture circuit, and his discoveries were making their 
mark where scientists knew how to interpret them. But as far as 
most physicists could tel1, the patterns and regularities of Feigen
baumology bore no obvious connection to real systems. Those 
patterns came out of a digital calculator. Physical systems were 
infinitely more complicated. Without more evidence, the most 
anyone could say was that Feigenbaum had discovered a math
ematical analogy that looked like the beginning of turbulence. 

Libchaber knew that American and French expetiments had 
weakened the Landau idea for the onset of turbulence by showing 
that turbulence arrived in a sudden transition, instead of a con
tinuous piling-up of different frequencies. Experimenters like Jerry 
Gollub and Harry Swinney, with their flow in a rotating cylinder, 
had demonstrated that a new theory was needed, but they had 
not been able to see the transition to chaos in clear detail. Lib
chaber knew that no clear image of the onset of turbulence had 
emerged in a laboratory, and he decided that his speck of a fluid 
cell would give a picture of the greatest possible clarity. 

A NARROWING OF VISION helps keep science moving. By their 
lights, fluid dynamicists were correct to doubt the high level of 
precision that Swinney and Gollub claimed to have achieved in 
Couette flow. By their lights, mathe��ticians were correct to resent 
Ruelle, as they did. He had broken th"e rules. He had put forward 
an ambitious physical theory in the g�ise of a tight mathematical 
statement. He had made it hard to separate what he assumed from 
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what he proved. The mathematician who refuses to endorse an 
idea until it meets the standard of theorem, proof, theorem, proof, 
plays a role that his discipline has written for him: consciously 
or not, he is standing watch against frauds and mystics. The jour
nai editor who rejects new ideas hecause they are east in an un
familiar style may make his victims think that he is guarding turf 
on hehalf of his estahlished colleagues, hut he, too, has a role to 
play in a community with reason to heware of the untried. "Sci
ence was constructed against a lot of nonsense," as Lihchaher 
himself _said. When his colleagues called Lihchaher a mystic, the 
epithet was not always meant to he endearing. 

He was �n experimenter, careful and disciplined, known for 
precision in his prodding of matter. Yet he had a feeling for the 
ahstract, ill-defined, ghostly thing called fl.ow. Flow was shape 
plus change, motion plus form. A physicist, conceiving systems 
of differential equations, would call their mathematical movement 
a tlow. Flow was a Platonic idea, assuming that change in systems 
reflected some reality independent of the particular instant. Lih
chaher emhraced Plato's sense that hidden forms fill the universe. 
"But you know that they do ! You have seen leaves. When you 
look at all the leaves, aren't you struck hy the fact that the numher 
of generic shapes is limited? You could easily draw the main 
shape. It would he of some interest to try to understand that. Or 
other shapes. In an experiment you hava seen liquid penetrating 
into a liquid . "  His desk was strewn with pictures of such exper
iments, fat fractal fingers of liquid. "Now, in your kitchen, if you 
turn on your gas, you see that the flame is this shape again. It's 
very hroad. It's �niversal. I don't care whether it's a huming flame 
or a liquid in a liquid or a solid growing crystal-what I'm inter
ested in is this shape. 

"There has heen since the eighteenth century some kind of 
dream that science was missing the evolution of shape in space 
and the evolution of shape in time. If you think of a tlow, you can 
think of a tlow in many ways, tlow in economics or a flow in 
history. First it may he laminar, then hifurcating to a more com
plicated state, perhaps with oscillations. Then it may he chaotic." 

The universality of shapes, the similarities across scales, the 
recursive power of flows within tlows-all sat just beyond reach 
of the standard differential-calculus approach to equations of change. 
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But that was not easy to see. Scientific problems are expressed in 
the available scientific language. So far, the twentieth century's 
best expression of Libchaber's intuition about flow needed the 
language of poetry. Wallace Stevens, for example, asserted a feel
ing about the world that stepped ahead of the knowledge available 
to physicists . He had an uncanny suspicion about flow, how it 
repeated itself while changing: 

"The flecked river 
Which kept flowing and never the same way twice, flowing 
Through many places, as if it stood still in one ."  
Stevens's poetry often imparts a vision of tumult in atmos

phere and water. It also conveys a faith about the invisible forms 
that order takes in nature, a belief 

"that, in the shadowless atmosphere, 
The knowledge of things lay round but unperceived."  
When Libchaber and some other experimenters in  the 1970s 

began looking into the motion of fluids, they did so with something 
approaching this subversive poetic intent. They suspected a con
nection between motion and universal form. They accumulated 
data in the only way possible, writing down numbers or recording 
them in a digital computer. But then they looked for ways to 
organize the data in ways that would reveal shapes. They hoped 
to express shapes in terms of motion. They were convinced that 
dynamical shapes like flames and organic shapes like leaves 
borrowed their form from some not-yet-understood weaving of 
forces. These experimenters, the ones who pursued chaos most 
relentlessly, succeeded by refusing to accept any reality that 
could he frozen motionless. Even Libchaber would not have 
gone so far as to express it in such terms, but their conception 
came close to what Stevens felt as an "insolid billowing of the 
solid": 

"The vigor of glory, a glittering in the veins, 
As things emerged and moved and were dissolved, 

Either in distance, change or nothingness, 
The visible transformations of summer night, 

An argentine abstraction approaching form 
And suddenly denying itself away." 
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F0R LIBCHABER, GOETHE, N0T STEVENS, supplied mystical in
spiration. While Feigenbaum was looking through Harvard's li
brary for Goethe's Theozy of Colors, Libchaber had already managed 
to add to his collection an original edition of the even more obscure 
monograph On the Transformation of Plants. This was Goethe's 
sidelong assault on physicists who, he believed, worried exclu
sively about static phenomena rather than the vital forces and 
flows that produce the shapes we see from instant to instant. 
Part of Goethe's legacy-a negligible part, as far as literary his
torians were concemed-was a pseudoscientific following in Ger
many and Switzerland, kept alive by such philosophers as Rudoli 
Steiner and Theodor Schwenk. These men, too, Libchaber admired 
as much as a physicist could. 

"Sensitive chaos"-Das sensible Chaos-was Schwenk's phrase 
for the relation between force and form. He used it for the title of 
a strange little book first publisheq in 1965 and falling sporadically 
in and out of print thereafter. It was a book first about water. The 
English edition carried an admiring preface from Commandant 
Jacques Y. Cousteau and testimonials from the Water Resources 
Bulletin and the Journal of the Institute of Water Engineers. Little 
pretense at science marred Schwenk's exposition, and none at 
mathematics. Yet he observed flawlessly. He laid out a multitude 
of natural flowing shapes with an artist's eye. He assembled pho
tographs and made dozens of precise drawings, like the sketches 
of a cell biologist peering through his first microscope. He had an 
open-mindedness and a naivet6 that would have made Goethe 
proud. 

Flow fills his pages. Great rivers like the Mississippi and the 
Bassin d'Arcachon in France meander in wide curves to the sea. 
In the sea itseli, the Gulf Stream, too, meanders, making loops 
that swing east and west. It is a giant river of warm water amid 
cold, as Schwenk said, a river that "builds its own banks out of 
the cold water itseli." When the flow itseli is past or invisible, the 
evidence of flow remains. Rivers of air leave their mark on the 
desert sand, showing the waves. The flow of the ebbing tide in
scribes a network of veins on a beach. Schwenk did not believe 
in coincidence. He believed in universal principles, and, more 
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than universality, he helieved in a certain spirit in nature that 
made his prose uncomfortahly anthropomorphic. His "archetypal 
principle" was this: that flow "wants to realize itself, regardless 
of the surrounding material. " 

Within currents, he knew, there are secondary currents. Water 
moving down a meandering river flows, secondarily, around the 
river's axis, toward one hank, down to the riverhed, across toward 
the other hank, up toward the surface, like a particle spiraling 
around a doughnut. The trail of any water particle forms a string 
twisting around other strings. Schwenk had a topologist's imag
ination for such pattems. "This picture of strands twisted together 
in a spiral is only accurate with respect to the actual movement. 
One does often speak of 'strands' of water; they are however not 
really single strands hut whole surfaces, interweaving spatially 
and flowing past each other." He saw rhythms competing in waves, 
waves overtaking one another, dividing surfaces, and houndary 
layers. He saw eddies,and vortices and vortex trains, understand
ing them as the "rolling" of one surface ahout another. Here he 
came as close as a philosopher could to the physicist's conception 
of the dynamics of approaching turhulence. His artistic conviction 
assumed universality. To Schwenk, vortices meant instahility, and 
instahility meant that a flow was fighting an inequality within 
itself, and the inequality was "archetypal ." The rolling of eddies, 
the unfurling of fems, the creasing of mountain ranges, the hol
lowing of animal organs all followed one path, as he saw it. It had 
nothing to do with any particular medium, or any particular kind 
of difference. The inequalities could he slow and fast, warm and 
cold, dense and tenuous, salt and fresh, viscous and fluid, acid 
and alkaline. At the houndary, life hlossoms. 

Life, though, was D'Arcy Wentworth Thompson's territory. 
This extraordinary naturalist wrote in 1917 :  "It may he that all 
the laws of energy, and all the properties of matter, and all the 
chemistry of all the colloids are as powerless to explain the hody 
as they are impotent to comprehend the soul. For my part, I think 
not. " D' Arcy Thompson hrought to the study of life exactly what 
Schwenk, fatally, lacked: mathematics. Schwenk argued hy anal
ogy. His case-spiritual, flowering, encyclopedic-finally came 
down to a display of similarities. D'Arcy Thompson's masterwork, 
On Growth and Form, shared something of Schwenk's mood and 
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something of his method. The modern reader wonders how much 
to credit the meticulous pictures of multipronged falling droplets 
of liquid, hanging in sinuous tendrils, displayed next to astonish
ingly similar living jellyfi.sh. ls this just a highbrow case of co
incidence? If two forms look alike, must we look for like causes? 

D' Axcy Thompson surely stands as the most influential bi
ologist ever left on the fringes of legitimate science. The twentieth 
century's revolution in biology, well under way in his lifetime, 
passed him by utterly. He ignored chemistry, misunderstood the 
cell, and could not have predicted the explosive development of 
genetics. His writing, even in his time, seemed too classical and 
literary-too beautiful-to he reliably scientific. No modern bi-
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MEANDERING AND SPIRALING FLOWS. Theodor Schwenk depicted the cur
rents of natural flows as strands with complicated secondary motions. 
"They are however not really single strands," he wrote, "but whole sur
faces, interweaving spatially . . . .  " 
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DROPS DESCENDING. D'Arcy Wentworth Thompson showed the hanging 
threads and columns made by ink drops falling through water (left) and 
by jellyfish (right). "An extremely curious result . . .  is to show how 
sensitive these . . .  drops are to physical conditions. For using the same 
gelatine all the while, and merely varying the density of the fluid in the 
third decimal place, we obtain a whole range of configurations, from the 
ordinary hanging drop to the same with a ribbed pattern . . . .  " 

ologist has to read D' Arcy Thompson. Y et somehow the greatest 
biologists find themselves drawn to his book. Sir Peter Medawar 
called it "beyond comparison the finest work of literature in all 
the annals of science that have been recorded in the English tongue."  
Stephen Jay Gould found no place better to turn for the intellectual 
pedigree of his own growing sense that nature constrains the shapes 
of things. Apart from D'  Arcy Thompson, not many modern biol
ogists had pursued the undeniable unity of living organisms. "Few 
had asked whether all the patterns might be reduced to a single 
system of generating forces," as Gould put it. "And few seemed 
to sense what significance such a proof of unity might possess for 
the science of organic form." 
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This classicist, polyglot, mathematician, zoologist tried to see 
life whole, just as biology was turning so productively toward 
methods that reduced organisms to their constituent functioning 
parts. Reductionism triumphed, most thrillingly in molecular bi
ology but everywhere else as well, from evolution to medicine. 
How else to understand cells but by understanding membranes 
and nuclei and ultimately proteins, enzymes, chromosomes, and 
base pairs? When biology finally broached the interior workings 
of sinuses, retinas, nerves, brain tissue, it became unamusingly 
quaint to care about the shape of the skull. D' Arcy Thompson was 
the last to do so. He was also the last great biologist for many 
years to devote rhetorical energy to a careful discussion of cause, 
particularly the distinction between final cause and efficient or 
physical cause. Final cause is cause based on purpose or design: 
a wheel is round because that shape makes transportation possible. 
Physical cause is mechanical: the earth is round because gravity 
pulls a spinning fluid into a spheroid. The distinction is not always 
so obvious. A drinking glass is round because that is the most 
comfortable shape to hold or drink from. A drinking glass is round 
because that is the shape naturally assumed by spun pottery or 
blown glass. 

In science, on the whole, physical cause dominates. Indeed, 
as astronomy and physics emerged from the shiidow of religion, 
no small part of the pain came from discarding arguments by 
design, forward-looking teleology-the earth is what it is so that 
humanity can do what it does. In biology, however, Darwin firmly 
established teleology as the central mode of thinking about cause. 
The biological world may not fulfill God's design, but it fulfills a 
design shaped by natural selection. Natural selection operates not 
on genes or embryos, but on the final product. So an adaptationist 
explanation for the shape of an organism or the function of an 
organ always looks to its cause, not its physical cause but its final 
cause. Final cause survives in science wherever Darwinian think
ing has become habitual. A modern anthropologist speculating 
about cannibalism or ritual sacrifice tends, rightly or wrongly, to 
ask only what purpose it serves. D' Arcy Thompson saw this com
ing. He begged that biology remember physical cause as well, 
mechanism and teleology together. He devoted himself to explain
ing the mathematical and physical forces that work on life. As 

... 
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adaptationism took hold, such explanations came ta seem irrel
evant. It became a rich and fruitful problem ta explain a leaf in 
terms af how natural selection shaped such an effective solar 
panel. Only much later did some scientists start ta puzzle again 
over the side af nature left unexplained. Leaves come in just a 
few shapes, af all the shapes imaginable; and the shape af a leaf 
is not dictated by its function. 

The mathematics available ta D'Arcy Thompson could not 
prove what he wanted ta prove. The best he could do was draw, 
for example, skulls af related species with a crosshatching af co
ordinates, demonstrating that a simple geometric transformation 
tumed ane into the other. For simple organisms-with shapes so 
tantalizingly reminiscent af liquid jets, droplet splashes, and other 
manifestations af flow-he suspected physical causes, such as 
gravity and surface tension, that just could not do the formative 
work he asked af them. Why then, was Albert Libchaber thinking 
about On Growth and Form when he began his fluid experiments? 

D'Arcy Thompson's intuition about the forces that shape life 
came closer than anything in the mainstream af biology ta the 
perspective af dynamical systems. He thought af life as life, always 
in motion, always responding ta rhythms-the "deep-seated 
rhythms af growth" which he believed created universal forms. 
He considered his proper study not just the material forms af 
things but their dynamics-"the interpretation, in terms af force, 
af the operations af Energy." He was enough af a mathematician 
ta know that cataloguing shapes proved nothing. But he was enough 
af a poet ta trust that neither accident nor purpose could explain 
the striking universality af forms he had assembled in his long 
years af gazing at nature. Physical laws must explain it, goveming 
force and growth in ways that were just out af understanding's 
reach. Plato again. Behind the particular, visible shapes af matter 
must lie ghostly forms serving as invisible templates. Forms in 
motion. 

LmcHABER CHOSE LIQUID HELIUM for his experiment. Liquid 
helium has exceedingly low viscosity, so it will roll at the slightest 
push. The equivalent experiment in a medium-viscosity fluid like 
water or air would have taken a much larger box. With low vis-
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cosity, Lihchaber made his experiment that much more sensitive 
to heating. To cause convection in his millimeter-wide cell, he 
had only to create a temperature difference of a thousandth of a 
degree hetween the top and bottom surfaces. That was why the 
cell had to he so tiny. In a larger hox, where the liquid helium 
would have more room to roll, the equivalent motion would re
quire even less heating, much less. 1n a box ten times larger in 
each direction, the size of a grape-a thousand times greater in 
volume-convection would begin with a heat differential of a 
millionth of a degree. Such minute temperature variations could 
not he controlled. 

ln the planning, in ihe design, in the construction, Libchaber 
and his engineer devoted themselves to eliminating any hint of 
messiness. In fact, they did ali they could to eliminate the motion 
they were trying to study. Fluid motion, from smooth tlow to 
turhulence, is thought of as motion through space. Its complexity 
appears as a spatial complexity, its disturbances and vortices as 
a spatial chaos. But Libchaber was looking for rhythms that would 
expose themselves as change over time. Time was the playing 
field and the yardstick. He squeezed space down nearly to a one
dimensional point. He was hringing to an extreme a technique 
that his predecessors in tluid experimentation had used, too. 
Everyone knew that an enclosed tlow-Rayleigh-Benard convec
tion in a hox or Couette-Taylor rotation in a cylinder-hehaved 
measurahly better than an open tlow, like waves in the ocean or 
the air. 1n open tlow, the houndary surface remains free, and the 
complexity multiplies. 

Since convection in a rectilinear hox produces rolls of tluid 
like hot dogs-or in this case like sesame seeds-he chose the 
dimensions of his cell carefully to allow precisely enough room 
for two rolls. The liquid helium would rise in the center, tum up 
and over to the left and right, and then descend on the outside 
edges of the cell. It was an arrested geometry. The wohhling would 
he confined. Clean Iines and careful proportions would eliminate 
any extraneous tluctuations. Libchaher froze the space so that he 
could play with the time. 

Once the experiment began, the helium rolling inside the cell 
inside the vacuum container inside the nitrogen hath, Libchaber 
would need some way to see what was happening. He emhedded 
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two microscopic temperature probes in the sapphire upper surface 
of the cell. Their output was recorded continuously by a pen 
plotter. Thus he could monitor the temperatures at two spots at 
the top of the fluid. It was so sensitive, so clever, another physicist 
said, that Libchaber succeeded in cheating nature. 

This miniature masterpiece of precision took two years to 
explore fully, but it was, as he said, the right brush for his painting, 
not too grand or sophisticated. He finally saw everything. Running 
his experiment hour after hour, night and day, Libchaber found 
a more intricate pattern of behavior in the onset of turbulence than 
he had ever imagined. The full period-doubling cascade appeared. 
Libchaber confined and purified the motion of a fluid that rises 
when heated. The process begins with the first bifurcation, the 
onset of motion as soon as the bottom plate of high-purity copper 
heats up enough to overcome the tendency of the fluid to remain 
still. At a few degrees above absolute zero, a mere one-thousandth 
of a degree is enough. The liquid at the bottom warms and expands 
enough to become lighter than the cool liquid above. To let the 
warm liquid rise, the cool liquid must sink. Immediately, to let 
both motions occur, the liquid organizes itself into a pair of rolling 
cylinders. The rolls reach a constant speed, and the system settles 
into an equilibrium-a moving equilibrium, with heat energy being 
converted steadily into motion and dissipating through friction 
back to heat and passing out through the cool top plate. 

So far, Libchaber was reproducing a well-known experiment 
in fluid mechanics, so well known that it was disdained. "It was 
classical physics," he said, "which unfortunately meant it was 
old, which meant it was uninteresting." It also happened to be 
precisely the flow that Lorenz had modeled with his system of 
three equations. But a real-world experiment-real liquid, a box 
cut by a machinist, a laboratory subject to the vibrations of Parisian 
traffic-already made the task of collecting data far more trouble
some than simply generating numbers by a computer. 

Experimenters like Libchaber used a simple pen plotter to 
record the temperature, as measured by a probe embedded in the 
top surface. In the equilibrium motion after the first bifurcation, 
the temperature at any one point remains steady, more or less, 
and the pen records a straight line. With more heating, more in
stability sets in. A kink develops in each roll, and the kink moves 
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steadily back and forth. This wobble shows up as a changing 
temperature, up and down between two values. The pen now 
draw� a wavy line across the paper. 

From a simple temperature line, changing continuously and 
shaken by experimental noise, it becomes impossible to read the 
exact timing of new bifurcations or to deduce their nature. The 
line makes erratic peaks and valleys that seem almost as random 
as a stock market fever line. Libchaber analyzed such data by 
turning it into a spectrum diagram, meant to reveal the main fre
quencies hidden in the changing temperatures. Making a spectrum 
diagram of data from an experiment is like graphing the sound 
frequencies that make up a complex chord in a symphony. An 
uneven line of fuzziness always runs across the bottom of the 
graph-experimental noise. The main tones show up as vertical 
spikes: the louder the tone, the higher the spike. Similarly, if the 
data produce a dominant frequency-a rhythm peaking once a 
second, for example-then that frequency will show up as a spike 
on a spectrum diagram. 

In Libchaber's experiment, as it happened, the first wave
length to appear was about two seconds. The next bifurcation 
brought a subtle change. The roll continued to wobble and the 
bolometer temperature continued to rise and fall with a dominant 
rhythm. But on odd cycles the temperature started going a bit 
higher than before, and on even cycles a bit lower. In fact, the 
maximum temperature split in two, so that there were two dif
ferent maximums and two minimums. The pen line, though hard 
to read, developed a wobble on top of a wobble-a metawobble. 
On the spectrum diagram, that showed up more clearly. The old 
frequency was still strongly present, since the temperature still 
rose every two seconds. Now, however, a new frequency appeared 
at exactly half the old frequency, because the system had devel
oped a component that repeated every four seconds. As the bi
furcations continued, it was possible to distinguish a strangely 
consistent pattern: new frequencies appeared at double the old, 
so that the diagram filled in the quarters and the eighths and the 
sixteenths, starting to resemble a picket fence with alternating 
short and tall pickets. 

Even to a man looking for hidden forms in messy data, tens 
and then hundreds of runs were necessary before the habits of 
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Two WAYS OF SEEING A BIFURCATION. When an experiment like Libcha
ber's convection cell produces a steady oscillation, its phase-space por
trait is a loop, repeating itself at regular intervals (top left) . An experimenter 
measuring the frequencies in the data will see a spectrum diagram with 
a strong spike for this single rhythm. After a period-doubling bifurcation, 
the system loops twice before repeating itself exactly (center), and now 
the experimenter sees a new rhythm at half the frequency-twice the 
period-of the original. New period-doublings fill in the spectrum dia
gram with more spikes. 

this tiny cell started to come clear. Peculiar things could always 
happen as Libchaber and his engineer slowly turned up the tem
perature and the system settled from one equilibrium into another. 
Sometimes transient frequencies would appear, slide slowly across 
the spectrum diagram, and disappear. Sometimes, the clean ge
ometry notwithstanding, three rolls would develop instead of two
and how could they know, really, what was happening inside that 
tiny cell? 

IF LIBCHABER HAD KNOWN then of Feigenbaum's discovery of 
universality, he would have known exactly where to look for his 
bifurcations and what to call them. By 1979 a growing group of 
mathematicians and mathematically inclined physicists were pay
ing attention to Feigenbaum's new theory. But the mass of sci
entists familiar with the problems of real physical systems believed 
that they had good reason to withhold judgment. Complexity was 
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REAI.-WORLD DATA CONFIRMING THEORY. Libchaber's spectrum diagrams 
showed vividly the precise pattern of period-doubling predicted by the
ory. The spikes of new frequencies stand out clearly above the experi
mental noise. Feigenbaum's scaling theory predicted not only when and 
where the new frequencies would arrive but also how strong they would 
be-their amplitudes. 

...... 
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one thing in the one-dimensional systems, the maps of May and 
Feigenhaum. It was surely something else in the two- or three- or 
four-dimensional systems of mechanical devices that an engineer 
could huild. Those required serious differential equations, not just 
simple difference equations. And another chasm seemed to divide 
those low-dimensional systems from systems of fluid flow, which 
physicists thought of as potentially infinite-dimensional systems. 
Even a cell like Lihchaher's, so carefully structured, had a virtual 
infinitude of fluid particles. Each particle represented at least the 
potential for independent motion. In some circumstances, any 
particle might he the locus of some new twist or vortex. 

"The nation that the actual relevant meat-and-potatoes mo
tion in such a system hoils down to maps-nohody understood 
that," said Pierre Hohenherg of AT&T Bell Lahoratories in New 
Jersey. Hohenherg hecame one of the very few physicists to follow 
the new theory and the new experiments together. "Feigenhaum 
may have dreamt of that, hut he certainly didn't say it. Feigen
haum's work was ahout maps. Why should physicists he interested 
in maps?-it's a game. Really, as long as they were playing around 
with maps, it seemed pretty remote from what we wanted to un
derstand. 

"But when it was seen in experiments, that's when it really 
hecame exciting. The miracle is that, in systems that are interest
ing, you can still ,understand hehavior in detail hy a model with 
a small numher of degrees of freedom." 

It was Hohenherg, in the end, who hrought the theorist and 
the experimenter together. He ran a workshop at Aspen in the 
summer of 1979, and Lihchaher was there. (Four years earlier, at 
the same summer workshop, Feigenhaum had listened to Steve 
Smale talk ahout a numher-just a numher-that seemed to pop 
up when a mathematician looked at the transition to chaos in a 
certain equation.) When Lihchaher descrihed his experiments with 
liquid helium, Hohenherg took note. On his way home, Hohenherg 
happened to stop and see Feigenhaum in New Mexico. Not long 
after, Feigenhaum paid a call on Lihchaher in Paris. They stood 
amid the scattered parts and instruments of Lihchaher's lahoratory. 
Lihchaher proudly displayed his tiny cell and let Feigenhaum 
explain his latest theory. Then they walked through the Paris 
streets looking for the hest possihle cup of coffee. Lihchaher re-
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membered later how surprised he was to see a theorist so young 
and so, he would say, lively. 

THE LEAP FROM MAPS TO FLUID FLOW seemed so great that even 
those most responsible sometimes felt it was like a dream. How 
nature could tie such complexity to such simplicity was far from 
obvious. "You have to regard it as a kind of miracle, not like the 
usual connection between theory and experiment," Jerry Gollub 
said. Within a few years, the miracle was being repeated again 
and again in a vast bestiary of laboratory systems: bigger fluid cells 
with water and mercury, electronic oscillators, lasers, even chem
ical reactions. Theorists adapted Feigenbaum's techniques and 
found other mathematical routes to chaos, cousins of period
doubling: such patterns as intermittency and quasiperiodicity. 
These, too, proved universal in theory and experiment. 

The experimenters' discoveries helped set in motion the era 
of computer experimentation. Physicists discovered that com
puters produced the same qualitative pictures as real experiments, 
and produced them millions of times faster and more reliably. To 
many, even more convincing than Libchaber's results was a fluid 
model created by Valter Franceschini of the University of Modena, 
ltaly-a system of five differential equations that produced at
tractors and period-doubling. Franceschini knew nothing of Fei
genbaum, but his complex, many-dimensional model produced 
the same constants Feigenbaum had found in one-dimensional 
maps. In 1980 a European group provided a convincing mathe
matical explanation: dissipation bleeds a complex system of many 
conflicting motions, eventually bringing the behavior of many di
mensions down to one. 

Outside of computers, to find a strange attractor in a fluid 
experiment remained a serious challenge. lt occupied experimen
ters like Harry Swinney well into the 1980s. And when the ex
perimenters finally succeeded, the new computer experts often 
belittled their results as just the rough, predictable echoes of the 
magnificently detailed pictures their graphics terminals were al
ready churning out. In a computer experiment, when you gener
ated your thousands or millions of data points, patterns made 
themselves more or less apparent. In a laboratory, as in the real 
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world, useful information had to he distinguished from noise. In 
a computer experiment data flowed like wine from a magic chalice. 
In a laboratory experiment you had to fight for every drop. 

Still, the new theories of Feigenbaum and others would not 
have captured so wide a community of scientists on the strength 
of computer experiments alone. The modifications, the compro
mises, the approximations needed to digitize systems of nonlinear 
differential equations were too suspect. Simulations break reality 
into chunks, as many as possible but always too few. A computer 
model is just a set of arbitrary rules, chosen by programmers. A 
real-world fluid, even in a stripped-down millimeter cell, has the 
undeniable potential for all the free, untrammeled motion of nat
ural disorder. It has the potential for surprise. 

In the age of computer simulation, when flows in everything 
from jet turbines to heart valves are modeled on supercomputers, 
it is hard to remember how easily nature can confound an exper
imenter. In fact, no computer today can completely simulate even 
so simple a system as Libchaber's liquid helium cell. Whenever 
a good physicist examines a simulation, he must wonder what bit 
of reality was left out, what potential surprise was sidestepped. 
Libchaber liked to say that he would not want to fly in a simulated 
airplane-he would wonder what had been missed. Furthermore, 
he would say that computer simulations help to build intuition 
or to refine calculations, but they do not give birth to genuine 
discovery. This, at any rate, is the experimenter's creed. 

His experiment was so immaculate, his scientific goals so 
abstract, that there were still physicists who considered Libcha
ber's work more philosophy or mathematics than physics. He be
lieved, in turn, that the ruling standards of his field were reductionist, 
giving primacy to the properties of atoms. "A physicist would ask 
me, How does this atom come here and stick there? And what is 
the sensitivity to the surface? And can you write the Hamiltonian 
of the system? 

"And if I tel1 him, I don't care, what interests me is this shape, 
the mathematics of the shape and the evolution, the bifurcation 
from this shape to that shape to this shape, he will tel1 me, that's 
not physics, you are doing mathematics. Even today he will tel1 
me that. Then what can I say? Yes, of course, I am doing mathe-
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matics. But it is relevant to what is around us. That is nature, 
too." 

The patterns he found were indeed abstract. They were math
ematical. They said nothing about the properties of liquid helium 
or copper or about the behavior of atoms near absolute zero. But 
they were the patterns that Libchaber's mystical forebears had 
dreamed of. They made legitimate a realm of experimentation in 
which many scientists, from chemists to electrical engineers, soon 
became explorers, seeking öut the new elements of motion. The 
patterns were there to see the first time he succeeded in raising 
the temperature enough to isolate the first period-doubling, and 
the next, and the next. According to the new theory, the bifur
cations should have produced a geometry with precise scaling, 
and that was just what Libchaber saw, the universal Feigenbaum 
constants turning in that instant from a mathematical ideal to a 
physical reality, measurable and reproducible. He remembered 
the feeling long afterward, the eerie witnessing of one bifurcation 
after another and then the realization that he was seeing an infinite 
cascade, rich with structure. It was, as he said, amusing. 

, 



Images of Chaos 

What else, when chaos draws all forces inward 

To shape a single leaf. 

-CONRAD AIKEN 

, 



MICHAEL BARNSLEY MET Mitchell Feigenbaum at a conference 
in Corsica in 1979. That was when Barnsley, an Oxford-educated 
mathematician, learned about universality and period-doubling 
and infinite cascades of bifurcations. A good idea, he thought, just 
the sort of idea that was sure to send scientists rushing to cut off 
pieces for themselves. For his part, Barnsley thought he saw a 
piece that no one else had noticed. 

Where were these cycles of 2, 4, 8, 16, these Feigenbaum 
sequences, coming from? Did they appear by magic out of some 
mathematical void, or did they suggest the shadow of something 
deeper still. Barnsley's intuition was that they must be part of 
some fabulous fractal ohjeet so far hidden from view. 

For this idea, he had a context, the numerical territory known 
as the complex plane. In the complex plane, the numbers from 
minus infinity to infinity-all the real numbers, that is-lie on a 
line stretching from the far west to the far east, with zero at the 
center. But this line is only the equator of a world that also stretches 
to infinity in the north and the south. Each number is composed 
of two parts, a reaI part, corresponding to east-west longitude, and 
an imagina.ry part, corresponding to north-south latitude. By con
vention, these complex numbers are written this way: 2 + 3i, the 
i signifying the imaginary part. The two parts give each number 
a unique address in this two-dimensiohal plane. The original line 
of real numbers, then, is just a special case, the set of numbers 
whose imaginary part equals zero. In the complex plane, to look 
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only at the real numhers-only at points on the equator-would 
he to limit one's vision to occasional intersections of shapes that 
might reveal other secrets when viewed in two dimensions. So 
Barnsley suspected. 

The names real and imaginmy originated when ordinary 
numhers did seem more real than this new hyhrid, hut hy now 
the names were recognized as quite arhitrary, hoth sorts of num
hers heing just as real and just as imaginary as any other sort. 
Historically, imaginary numhers were invented to fi.11 the concep
tual vacuum produced hy the question: What is the square root 
of a negative numher? By convention, the square root of - 1 is i, 
the square root of - 4 is 2i, and so on. It was only a short step to 
the realization that comhinations of real and imaginary numhers 
allowed new kinds of calculations with polynomial equations. 
Complex numhers can he added, multiplied, averaged, factored, 
integrated. Just ahout any calculation on real numhers can he tried 
on complex numhers as well. Barnsley, when he hegan translating 
Feigenhaum functions into the complex plane, saw outlines 
emerging of a fantastical family of shapes, seemingly related to 
the dynamical ideas intriguing experimental physicists, hut also 
startling as mathematical constructs. 

These cycles do not appear out of thin air after all, he realized. 
They fall into the real line off the complex plane, where, if you 
look, there is a constellation of cycles, of all orders. There always 
was a two-cycle, a three-cycle, a four-cycle, floating just out of 
sight until they arrived on the real line. Barnsley hurried hack 
from Corsica to his office at the Georgia Institute of Technology 
and produced a paper. He shipped it off to Communications in 
Mathematical Physics for puhlication. The editor, as it happened, 
was David Ruelle, and Ruelle had some had news. Barnsley had 
unwittingly rediscovered a huried fifty-year-old piece of work hy 
a French mathematician. "Ruelle shunted it hack to me like a 
hot potato and said, 'Michael, you're talking ahout Julia sets, ' " 
Barnsley recalled. 

Ruelle added one piece of advice: "Get in touch with Man
delhrot." 
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JOHN HUBBARD, AN AMERICAN MATHEMATICIAN with a taste 
for fashionahle hold shirts, had heen teaching elementary calculus 
to first-year university students in Orsay, France, three years he
fore. Among the standard topics that he covered was Newton's 
method, the classic scheme for solving equations hy making suc
cessively hetter approximations. Huhhard was a little hored with 
standard topics, however, and for once he decided to teach New
ton's method in a way that would force his students to think. 

Newton's method is old, and it was already old when Newton 
invented it. The ancient Greeks used a version of it to find square 
roots. The method hegins with a guess. The guess leads to a hetter 
guess, and the process of iteration zooms in on an answer like a 
dynamical system seeking its steady state. The process is fast, the 
numher of accurate decinial digits generally douhling with each 
step. Nowadays, of course, square roots succumh to more analytic 
methods, as do all roots of degree-two polynomial equations
those in which variahles are raised only to the second power. But 
Newton's method works for higher-degree polynomial equations 
that cannot he solved directly. The method also works heautifully 
in a variety of computer algorithms, iteration heing, as always, the 
computer's forte. One tiny awkwardness ahout Newton's method 
is that equations usually have more than one solution, particularly 
whet1 complex solutions are included. Which solution the method 
finds depends on the initial guess. In practical terms, students 
find that this is no prohlem at all. Y ou generally have a good idea 
of where to start, and if your guess seems to he converging to the 
wrong solution, you just start someplace else. 

One might ask exactly what sort of route Newton's method 
traces as it winds toward a root of a degree-two polynomial on 
the complex plane. One might answer, thinking geometrically, that 
the method simply seeks out whichever of the two roots is closer 
to the initial guess. That is what Huhhard told his students at 
Orsay when the question arose one day. 

"Now, for equations of, say, degree three, the situation seems 
more complicated," Huhhard said confidently. "I will think of it 
and tel1 you next week." 

He still presumed that the hard thing would he to teach his 
students how to calculate the iteration and that making the initial 
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guess would he easy. But the more he thought ahout it, the less 
he knew-ahout what constituted an intelligent guess or, for that 
matter, ahout what Newton's method really did. The ohvious geo
metric guess would he to divide the plane into three equal pie 
wedges, with ane raot inside each wedge, hut Huhhard discovered 
that that would not work. Strange things happened near the 
houndaries. Furthermore, Huhhard discovered that he was not the 
first mathematician to stumhle on this surprisingly difficult ques
tion. Lord Arthur Cayley had tried in 1879 to move from the 
manageahle second-degree case to the frighteningly intractable 
third-degree case. But Hubhard, a century later, had a tool at hand 
that Cayley lacked. 

Huhhard was the kind of rigorous mathematician who de
spised guesses, approximations, half-truths hased on intuition rather 
than proof. He was the kind of mathematician who would continue 
to insist, twenty years after Edward Lorenz's attractor entered the 
literature, that no ane really knew whether those equations gave 
rise to a strange attractor. It was unproved conjecture. The familiar 
douhle spiral, he said, was not proof hut mere evidence, something 
computers drew. 

Now, in spite of himself, Huhhard hegan using a computer to 
do what the orthodox techniques had not done. The computer 
would prove nothing. But at least it might unveil the truth so that 
a mathematician could know what it was he should try to prove. 
So Huhhard hegan to experiment. He treated Newton's method 
not as a way of solving prohlems hut as a prohlem in itself. Huh
hard considered the simplest example of a degree-three polynom
ial, the equation x3 - 1 = 0. That is, find the cuhe raot of 1. In real 
numhers, of course, there is just the trivial solution: 1. But the 
polynomial also has two complex solutions: - ½ + iV3/2, and 
- ½ - iV3/2. Plotted in the complex plane, these three roots mark 
an equilateral triangle, with ane point at three o'clock, ane at seven 
o'clock, and ane at eleven o'clock. Given any complex numher as 
a starting point, the question was to see which of the three solu
tions Newton's method would lead to. It was as if Newton's method 
were a dynamical system and the three solutions were three attrac
tors. Or it was as if the complex plane were a smooth surface slop
ing down toward three deep valleys. A marhle starting from any-
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where on the plane should roll into one of the valleys-but which? 
Hubbard set about sampling the infinitude of points that make 

up the plane. He had his computer sweep from point to point, 
calculating the flow of Newton's method for each one, and color
coding the results. Starting points that led to one solution were 
all colored blue. Points that led to the second solution were red, 
and points that led to the third were green. In the crudest ap
proximation, he found, the dynamics of Newton's method did 
indeed divide the plane into three pie wedges. Generally the points 
near a particular solution led quickly into that solution. But sys
tematic computer exploration showed complicated underlying 
organization that could never have been seen by earlier mathe
maticians, able only to calculate a point here and a point there. 
While some starting guesses converged quickly to a root, others 
bounced around seemingly at random before finally converging 
to a solution. Sometimes it seemed that a point could fall into a 
cycle that would repeat itself forever-a periodic cycle-without 
ever reaching one of the three solutions. 

As Hubbard pushed his computer to explore the space in finer 
and finer detail, he and his students were bewildered by the pic
ture that began to emerge. Instead of a neat ridge between the blue 
and red valleys, for example, he saw blotches of green, strung 
together like jewels. It was as if a marble, caught between the 
conflicting tugs of two nearby valleys, would end up in the third 
and most distant valley instead. A boundary between two colors 
never quite forms. On even closer inspection, the line between a 
green blotch and the blue valley proved to have patches of red. 
And so on-the boundary finally revealed to Hubbard a peculiar 
property that would seem bewildering even to someone familiar 
with Mandelbrot's monstrous fractals: no point serves as a bound
ary between just two colors. Wherever two colors try to come 
together, the third always inserts itself, with a series of new, self
similar intrusions. Impossibly, every boundary point borders a 
region of each of the three colors. 

Hubbard embarked on a study of these complicated shapes 
and their implications for mathematics. His work and the work 
of his colleagues soon became a new line of attack on the problem 
of dynamical systems. He realized that the mapping of Newton's 
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BOUNDARIES OF INFINITE COMPLEXITY. When a pie is cut into three slices, 
they meet at a single point, and the boundaries between any two slices 
are simple. But many processes of abstract mathematics and real-world 
physics turn out to create boundaries that are almost unimaginably com
plex. 

Above, Newton's method applied to finding the cube root of - 1 
divides the plane into three identical regions, one of which is shown in 
white. All white points are "attracted" to the root lying in the largest 
white area; all black points are attracted to one of the other two roots. 
The boundary has the peculiar property that every point on it borders all 
three regions. And, as the insets show, magnified segments reveal a fractal 
structure, repeating the basic pattern on smaller and smaller scales. 

method was just one of a whole unexplored family of pictures 
that reflected the behavior of forces in the real world. Michael 
Barnsley was looking at other members of the family. Benoit Man
delbrot, as both men soon learned, was discovering the grand
daddy of all these shapes. 
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THE MANDELBR0T SET 1s  the most complex ohjeet in mathe
matics, its admirers like to say. An eternity would not he enough 
time to see it all , its disks studded with prickly thorns, its spirals 
and filaments curling outward and around, bearing bulbous mol
ecules that hang, infinitely variegated, like grapes on God's per
sona! vine. Examined in color through the adjustable window of 
a computer screen, the Mandelbrot set seems more fractal than 
fractals, so rich is its complication across scales. A cataloguing of 
the different images within it or a numerical description of the 
set's outline would require an infinity of information. But here is 
a paradox: to send a full description of the set over a transmission 
line requires just a few dozen characters of code. A terse computer 
program contains enough information to reproduce the entire set. 
Those who were first to understand the way the set commingles 
complexity and simplicity were caught unprepared-even Man
delbrot. The Mandelbrot set became a kind of public emblem for 
chaos, appearing on the glossy covers of conference brochures 
and engineering quarterlies, forming the centerpiece of an exhibit 
of computer art that traveled internationally in 1985 and 1986. 
Its beauty was easy to feel from these pictures; harder to grasp 
was the meaning it had for the mathematicians who slowly under
stood it. 

Many fractal shapes can he formed by iterated processes in 
the complex plane, but there is just one Mandelbrot set. It started 
appearing, vague and spectral, when Mandelbrot tried to find a 
way of generalizing about a class of shapes known as Julia sets. 
These were invented and studied during World War I by the French 
mathematicians Gaston Julia and Pierre Fatou, laboring without 
the pictures that a computer could provide. Mandelbrot had seen 
their modest drawings and read their work-already obscure
when he was twenty years old. Julia sets, in a variety of guises, 
were precisely the objects intriguing Barnsley. Some Julia sets are 
like circles that have been pinched and deformed in many places 
to give them a fractal structure. Others are broken into regions, 
and still others are disconnected dusts . But neither words nor the 
concepts of Euclidean geometry serve to describe them. The French 
mathematician Adrien Douady said: "You obtain an incredible 
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AN ASSaRTMENT aF JULIA SETS. 

variety af Julia sets: some are a fatty cloud, others are a skinny 
bush af brambles, same look like the sparks which float in. the air 
after a firework has gone aff. One has the shape af a rabbit, lats 
af them have sea-harse tails. "  

In 1979 Mandelbrat discovered that he cauld create ane image 
in the camplex plane that would serve as a catalague af Julia sets, 
a guide ta each and every ane. He was explaring the iteratian of 
camplicated pracesses, equatians with square roots and sines and 
casines. Even after building his intellectual life around the prap
asition that simplicity breeds complexity, he did not immediately 
understand how extraordinary was the ohjeet hovering just beyond 
the view of his camputer screens at IBM and Harvard. He pressed 
his programmers hard for more detail, and they sweated over the 
allocatian of already strained memary, the new interpolation of 
points on an IBM mainframe computer with a crude black and 
white display tube. To make matters worse, the programmers al
ways had ta stand guard against a comman pitfall of computer 
explaration, the production of "artifacts," features that sprang 
solely from same quirk af the machine and wauld disappear when 
a program was written differently. 
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Then Mandelbrot turned his attention to a simple mapping 
that was particularly easy to program. On a rough grid, with a 
program that repeated the feedback loop just a f ew times, the first 
outlines of disks appeared. A few Iines of pencil calculation showed 
that the disks were mathematically real, not just products of some 
computational oddity. To the right and left of the main disks , 
hints of more shapes appeared. In his mind, he said later, he saw 
more : a hierarchy of shapes, atoms sprouting smaller atoms ad 
infinitum. And where the set intersected the real line, its succes
sively smaller disks scaled with a geometric regularity that dy
namicists now recognized: the Feigenbaum sequence of bifurcations. 

That encouraged him to push the computation further, refin
ing those first crude images, and he soon discovered dirt cluttering 
the edge of the disks and also floating in the space nearby. As he 
tried calculating in finer and finer detail ,  he suddenly felt that his 
string of good luck had broken. Instead of becoming sharper, the 
pictures became messier. He headed back to IBM's Westchester 
County research center to try computing power on a proprietary 
scale that Harvard could not match. To his surprise, the growing 
messiness was the sign of something real. Sprouts and tendrils 
spun languidly away from the main island. Mandelbrot saw a 
seemingly smooth boundary resolve itself into a chain of spirals 
like the tails of sea horses. The irrational fertilized the rational. 

The Mandelbrot set is a collection of points. Every point in 
the complex plane-that is, every complex number-is either in 
the set or outside it. One way to define the set is in terms of a test 
for every point, involving some simple iterated arithmetic. To test 
a point, take the complex number; square it; add the original 
number; square the result; add the original number; square the 
result-and so on, over and over again. If the total runs away to 
infinity, then the point is not in the Mandelbrot set. If the total 
remains finite (it could be trapped in some repeating loop, or it 
could wander chaotically) , then the point is in the Mandelbrot 
set. 

This business of repeating a process indefinitely and asking 
whether the result is infinite resembles feedback processes in the 
everyday world. Imagine that you are setting up a microphone, 
amplifier, and speakers in an auditorium. You are worried about 
the squeal of sonic feedback. If the microphone picks up a loud 



THE MANDELBROT SET EMERGES. In Benoit Mandelbrot's first crude com
puter printouts, a rough structure appeared, gaining more detail as the 
quality of the computation improved. Were the buglike, tloating "mole
cules" isolated islands? Or were they attached to the main body by fil
aments too fine to he observed? It was impossible to tel1. 
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enough noise, the amplified sound from the speakers will feed 
back into the microphone in an endless, ever louder loop. On the 
other hand, if the sound is small enough, it will just die away to 
nothing. To model this feedback process with numbers, you might 
take a starting number, multiply it by itself, multiply the result 
by itself, and so on. Y ou would discover that large numbers lead 
quickly to infinity: 10, 100, 10,000 . . . .  But small numbers lead 
to zero: ½, ¼, 1/1s . . . .  To make a geometric picture, you define a 
collection of all the points that, when fed into this equation, do 
not run away to infinity. Consider the points on a line from zero 
upward. If a point produces a squeal of feedback, color it white. 
Otherwise color it black. Soon enough, you will have a shape that 
consists of a black line from O to 1. 

For a one-dimensional process, no one need actually resort 
to experimental trial. It is easy enough to establish that numbers 
greater than one lead to infinity a:pd the rest do not. But in the 
two dimensions of the complex plane, to deduce a shape defined 
by an iterated process, knowing the equation is generally not enough. 
Unlike the traditiona! shapes of geometry, circles and ellipses and 
parabolas, the Mandelbrot set allows no shortcuts. The only way 
to see what kind of shape goes with a particular equation is by 
trial and error, and the trial-and-error style brought the explorers 
of this new terrain closer in spirit to Magellan than to Euclid. 

Joining the world of shapes to the world of numbers in this 
way represented a break with the past. New geometries always 
begin when someone changes a fundamental rule. Suppose space 
can be curved instead of flat, a geometer says, and the result is a 
weird curved parody of Euclid that provides precisely the right 
framework for the general theory of relativity. Suppose space can 
have four dimensions, or five, or six. Suppose the number ex
pressing dimension can he a fraction. Suppose shapes can he twisted, 
stretched, knotted. Or, now, suppose shapes are defined, not by 
solving an equation once, but by iterating it in a feedback loop. 

Julia, Fatou, Hubbard, Barnsley, Mandelbrot-these mathe
maticians changed the rules about how to make geometrical shapes. 
The Euclidean and Cartesian methods of turning equations into 
curves are familiar to anyone who has studied high school ge
ometry or found a point on a map using two coordinates. Standard 
geometry takes an equation and asks for the set of numbers that 
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satisfy it. The solutions to an equation like x2 + y2 = 1, then, form 
a shape, in this case a circle. Other simple equations produce 
other pictures, the ellipses, paraholas, and hyperholas of conic 
sections or even the more complicated shapes produced hy dif
ferential equations in phase space. But when a geometer iterates 
an equation instead of solving it, the equation hecomes a process 
instead of a description, dynamic instead of static. When a numher 
goes into the equation, a new numher comes out; the new numher 
goes in, and so on, points hopping from place to place. A point 
is plotted not when it satisfies the equation hut when it produces 
a certain kind of hehavior. One hehavior might he a steady state. 
Another might he a convergence to a periodic repetition of states. 
Another might he an out-of-control race to infinity. 

Before computers, even Julia and Fatou, who understood the 
possihilities of this new kind of shape-making, lacked the means 
of making it a science. With computers, trial-and-error geometry 
hecame possihle. Huhhard explored Newton's method hy calcu
lating the hehavior of point after point, and Mandelhrot first viewed 
his set the same way, using a computer to sweep through the points 
of the plane, one after another. Not all the points, of course. Time 
and computers heing finite, such calculations use a grid of points. 
A finer grid gives a sharper picture, at the expense of longer com
putation. For the Mandelhrot set, the calculation was simple, he
cause the process itself was so simple: the iteration in the complex 
plane of the mapping z---+z2 + c. Take a numher, multiply it hy 
itself, and add the original numher. 

As Huhhard grew comfortahle with this new style of exploring 
shapes hy computer, he also hrought to hear an innovative math
ematical style, applying the methods of complex analysis, an area 
of mathematics that had not heen applied to dynamical systems 
hefore. Everything was coming together, he felt. Separate disci
plines within mathematics were converging at a crossroads. He 
knew it would not suffice to see the Mandelhrot set; hefore he was 
done, he wanted to understand it, and indeed, he finally claimed 
that he did understand it. 

If the houndary were merely fractal in the sense of Mandel
hrot's tum-of-the-century monsters, then one picture would look 
more or less like the last. The principle of self-similarity at dif
ferent scales would make it possihle to predict what the electronic 
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microscope would see at the next level af magnification. Instead, 
each foray deeper into the Mandelhrot set hrought new surprises. 
Mandelhrot started worrying that he had offered tao restrictive a 
definition af fractal; he certainly wanted the word ta apply ta this 
new ohjeet. The set did prove ta contain, when magnified enough, 
rough copies af itself, tiny huglike ohjects floating off from the 
main hody, hut greater magnification showed that none af these 
molecules exactly matched any other. There were always new 
kinds af sea horses, new curling hothouse species. In fact, no part 
af the set exactly resemhles any other part, at any magnification. 

The discovery af floating molecules raised an immediate proh
lem, though. Was the Mandelhrot set connected, ane continent 
with far-flung peninsulas? Or was it a dust, a main hody sur
rounded hy fine islands? It was far from ohvious. No guidance 
came from the experience with Julia sets, hecause Julia sets came 
in hoth flavors, some whole shapes and some dusts. The dusts, 
heing fractal, have the peculiar property that no two pieces are 
"together" -hecause every piece is separated from every other hy 
a region af empty space-yet no piece is "alone," since whenever 
you find ane piece, you can always find a group af pieces arhi
trarily close hy. As Mandelhrot looked at his pictures, he realized 
that computer experimentation was failing ta settle this funda
mental question. He focused more sharply on the specks hovering 
ahout the main hody. Some disappeared, hut others grew into clear 
near-replicas. They seemed independent. But possihly they were 
connected hy Iines so thin that they continued ta escape the lattice 
af computed points. 

Douady and Huhhard used a hrilliant chain af new mathe
matics ta prove that every floating molecule does indeed hang on 
a filigree that hinds it ta all the rest, a. delicate weh springing from 
tiny outcroppings on the main set, a "devil's polymer," in Man
delhrot's phrase. The mathematicians proved that any segment
no matter where, and no matter how small-would, when hlown 
up hy the computer microscope, reveal new molecules, each re
semhling the main set and yet not quite the same. Every new 
molecule would he surrounded hy its own spirals and flame
like projections , and those, inevitahly, would reveal molecules 
tinier still, always similar, never identical, fulfilling some man
date af infinite variety, a miracle af miniaturization in which 
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every new detail was sure to he a universe of its own, diverse 
and entire. 

"EVERYTHING WAS VERY GEOMETRIC straight-line approaches," 
said Heinz-Otto Peitgen. He was talking ahout modern art. "The 
work of Josef Alhers, for example, trying to discover the relation 
of colors, this was essentially just squares of different colors put 
anto each other. These things were very popular. H you look at it 
now it seems to have passed. People don't like it c1.ny more. ln 
Germany they huilt huge apartment hlocks in the Bauhaus style 
and people move out, they don't like to live there. There are very 
deep reasons, it seems to me, in society right now to dislike some 
aspects of our conception of nature." Peitgen had heen helping a 
visitor select hlowups of regions of the Mandelhrot set, Julia sets, 
and other complex iterative processes, all exquisitely colored. In 
his small California office he offered slides, large transparencies, 
even a Mandelhrot set calendar. "The deep enthusiasm we have 
has to do with this different perspective of looking at nature. What 
is the true aspect of the natural ohjeet? The tree, let's say-what 
is important? 1s it the straight line, or is it the fractal ohjeet?" At 
Cornell, meanwhile, John Huhhard was struggling with the de
mands of commerce. Hundreds of letters were flowing into the 
mathematics department to request Mandelhrot set pictures, and 
he realized he had to create samples and price lists. Dozens of 
images were already calculated and stored in his computers, ready 
for instant display, with the help of the graduate students who 
rememhered the technical detail. But the most spectacular pic
tures, with the finest resolution and the most vivid coloration, 
were coming from two Germans, Peitgen and Peter H. Richter, and 
their team of scientists at the University of Bremen, with the en
thusiastic sponsorship of a local hank. 

Peitgen and Richter, ane a mathematician and the other a 
physicist, turned their careers over to the Mandelhrot set. It held 
a universe of ideas for them: a modern philosophy of art, a jus
tification of the new role of experimentation in mathematics, a 
way of hringing complex systems h�fore a large puhlic. They puh
lished glossy catalogs and hooks, and they traveled around the 
world with a gallery exhihit of their computer images. Richter had 
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come to complex systems from physics hy way of chemistry and 
then hiochemistry, studying oscillations in hiological pathways. 
In a series of papers on such phenomena as the immune system 
and the conversion of sugar into energy hy yeast, he found that 
oscillations often governed the dynamics of processes that were 
customarily viewed as static, for the good reason that living sys
tems cannot easily he opened up for examination in real time. 
Richter kept clamped to his windowsill a well-oiled douhle pen
dulum, his "pet dynamical system," custom-made for him hy his 
university machine shop. From time to time he would set it spin
ning in chaotic nonrhythms that he could emulate on a computer 
as well. The dependence on initial conditions was so sensitive 
that the gravitational pull of a single raindrop a mile away mixed 
up the motion within fifty or sixty revolutions, ahout two minutes. 
His multicolor graphic pictures of the phase space of this douhle 
pendulum showed the mingled regions of periodicity and chaos, 
and he used the same graphic techniques to display, for example, 
idealized regions of magnetization in a metal and also to explore 
the Mandelhrot set. 

For his colleague Peitgen the study of complexity provided a 
chance to create new traditions in science instead of just solving 
prohlems. "In a hrand new area like this one, you can start thinking 
today and if you are a good scientist you might he ahle to come 
up with interesting solutions in a few days or a week or a month," 
Peitgen said. The suhject is unstructured. 

"In a structured suhject, it is known what is known, what is 
unknown, what people have already tried and doesn't lead any
where. There you have to work on a prohlem which is known to 
he a prohlem, otherwise you get lost. But a prohlem which is 
known to he a prohlem must he hard, otherwise it would already 
have heen solved." 

Peitgen shared little of the mathematicians' unease with the 
use of computers to conduct experiments. Granted, every result 
must eventually he made rigorous hy the standard methods of 
proof, or it would not he mathematics. To see an image on a 
graphics screen does not guarantee its existence in the language 
of theorem and proof. But the very availahility of that image was 
enough to change the evolution of mathematics. Computer explo
ration was giving mathematicians the freedom to take a more nat-
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ural path, Peitgen helieved. Temporarily, for the moment, a 
mathematician could suspend the requirement of rigorous proof. 
He could go wherever experiments might lead him, just as a phys
icist could. The numerical power of computation and the visual 
cues to intuition would suggest promising avenues and spare the 
mathematician hlind alleys. Then, new paths having heen found 
and new ohjects isolated, a mathematician could return to stan
dard proofs. "Rigor is the strength of mathematics," Peitgen said. 
"That we can continue a line of thought which is ahsolutely guar
anteed-mathematicians never want to give that up. But you can 
look at situations that can he understood partially now and with 
rigor perhaps in future generations. Rigor, yes, hut not to the extent 
that I drop something just hecause I can't do it now." 

By the 1980s a home computer could handle arithmetic pre
cise enough to make colorful pictures of the set, and hohhyists 
quickly found that exploring these pictures at ever-greater mag
nification gave a vivid sense of expanding scale. If the set were 
thought of as a planet-sized ohjeet, a persona! computer could 
show the whole ohjeet, or features the size of cities, or the size of 
huildings, or the size of rooms, or the size of hooks, or the size of 
letters, or the size of hacteria, or the size of atoms. The people 
who looked at such pictures saw that all the scales had similar 
patterns, yet every scale was different. And all these microscopic 
landscapes were generated hy the same few Iines of computer 
code. *  

* A Mandelbrot set program needs just a few essential pieces. The main 
engine is a loop of instructions that takes its starting complex number and applies 
the arithmetical rule to it. For the Mandelbrot set, the rule is this: :&-+z2 + c, where 
z begins at zero and c is the complex number corresponding to the point being 
tested. So, take 0, multiply it by itself, and add the starting number; take the 
result-the starting number-multiply it by itself, and add the starting number; 
take the new result, multiply it by itself, and add the starting number. Arithmetic 
with complex numbers is straightforward. A complex number is written with two 
parts: for example, 2 + 3i (the address for the point at 2 east and 3 north on the 
complex plane). To add a pair of complex numbers, you just add the real parts to 
get a new real part and the imaginary parts to get a new imaginary part: 

2 + 4i 
+ 9 - 2i 

11 + 2i 

To multiply two complex numbers, you multiply each part of one number by each 

'\ 
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THE BOUNDARY 1s WHERE a Mandelbrot set program spends 
most af its time and makes ali af its compromises. There, when 
100 or 1,000 or 10,000 iterations fail ta break away, a program still 
cannot he absolutely certain that a point falls inside the step. Who 
knows what the millionth iteration will bring? So the programs 
that made the most striking, most deeply magnified pictures af 
the set ran on heavy mainframe computers, or computers devoted 
ta parallel processing, with thousands af individual brains per
forming the same arithmetic in lock step. The boundary is where 
points are slowest ta escape the pull af the set. It is as if they are 
balanced between competing attractors, ane at zero and the other, 
in effect, ringing the set at a distance af infinity. 

When scientists moved from the Mandelbrot set itself ta new 
problems af representing real physical phenomena, the qualities 

part of the other and add the four results together. Because i multiplied hy itself 
equals - 1 , hy the original definition of imaginary numhers, one term of the result 
collapses into another. 

2 + 3i 
X 2 + 3i 

6i + 9i2 

4 + 6i 
4 + 12i + 9i2 

= 4 + 12i - 9 
= - 5 + 12i 

To hreak out of this loop, the program needs to watch the running total. If the 
total heads off to infinity, moving farther and farther from the center of the plane, 
the original point does not helong to the set, and if the running total hecomes 
greater than 2 or smaller than - 2 in either its real or imaginary part, it is surely 
heading off to infinity-the program can move on. But .if the program repeats the 
calculation many times without hecoming greater than 2, then the point is part of 
the set. How many times depends on. the amount of magnification. For the scales 
accessihle to a personal computer, 100 or 200 is often plenty, and 1 ,000 is safe. 

The program must repeat this process for each of thousands of points on a 
grid, with a scale that can he adjusted for greater magnification. And the program 
must display its result. Points in the set can he colored hlack, other points white. 
Or for a more vividly appealing picture, the white points can he replaced hy colored 
gradations. If the iteration hreaks off after ten repetitions, for example, a program 
might plot a red dot; for twenty repetitions an orange dot; for forty repetitions a 
yellow dot, and so on. The choice of colors and cutoff points can he adjusted to 
suit the programmer's taste. The colors reveal the contours of the terrain just 
outside the set proper . 

. J 
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of the set's boundary came to the fore. The boundary between two 
or more attractors in a dynamical system served as a threshold of 
a kind that seems to govern so many ordinary processes, from the 
breaking of materials to the making of decisions. Each attractor in 
such a system has its basin, as a river has a watershed basin that 
drains into it. Each basin has a boundary. For an influential group 
in the early 1980s, a most promising new field of mathematics 
and physics was the study of fractal basin boundaries. 

This branch of dynamics concerned itself not with describing 
the final, stable behavior of a system but with the way a system 
chooses between competing options. A system like Lorenz's now
classic model has just one attractor in it, one behavior that prevails 
when the system settles down, and it is a chaotic attractor. Other 
systems may end up with nonchaotic steady-state behavior-but 
with more than one possible steady state. The study · of fractal 
basin boundaries was the study of systems that could reach one 
of several nonchaotic final states, raising the question of how to 
predict which. James Yorke, who pioneered the investigation of 
fractal basin boundaries a decade after giving chaos its name, 
proposed an imaginary pinball machine. Like most pinball ma
chines it has a plunger with a spring. You pull back the plunger 
and release it to send the ball up into the playing area. The ma
chine has the customary tilted landscape of rubber edges and 
electric bouncers that give the ball a kick of extra energy. The kick 
is important: it means that energy does not just decay smoothly. 
For simplicity's sake this machine has no flippers at the bottom, 
just two exit ramps. The ball must leave by one ramp or the other. 

This is deterministic pinball-no shaking the machine. Only 
one parameter controls the ball's destination, and that is the initial 
position of the plunger. Imagine that the machine is laid out so 
that a short pull of the plunger always means that the ball will 
end up rolling out the right-hand ramp, while a long pull always 
means that the ball will finish in the left-hand ramp. In between, 
the behavior gets complex, with the ball bouncing from bumper 
to bumper in the usual energetic,  noisy, and variably long-lived 
manner before finally choosing one exit or the other. 

Now imagine making a graph of the result of each possible 
starting position of the plunger. The graph is just a line. If a po
sition leads to a right-hand departure, plot a red point, and plot 
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a green point for left. What can we expect to find ahout these 
attractors as a function of the initial position? 

The houndary proves to he a fractal set, not necessarily self
similar, hut infinitely detailed. Some regions of the line will he 
pure red or green, while others, when magnified, will show new 
regions of red within the green, or green within the red. For some 
plunger positions, that is, a tiny change makes no difference. But 
for others, even an arhitrarily small change will make the differ
ence hetween red and green. 

To add a second dimension meant adding a second parameter, 
a second degree of freedom. With a pinhall machine, for example, 
one might consider the effect of changing the tilt of the playing 
slope. One would discover a kind of in-and-out complexity that 
would give nightmares to engineers responsihle for controlling the 
stahility of sensitive, energetic real systems with more than one 
parameter-electrical power grids, for example, and nuclear gen
erating plants, hoth of which hecame targets of chaos-inspired 
research in the 1980s. For one value of parameter A, parameter B 
might produce a reassuring, orderly kind of hehavior, with co
herent regions of stahility. Engineers could make studies and graphs 
of exactly the kind their linear-oriented training suggested. Yet 
lurking nearhy might he another value of parameter A that trans
forms the importance of parameter B. 

Y orke would rise at conferences to display pictures of fractal 
hasin houndaries. Some pictures represented the hehavior of forced 
pendulums that could end up in one of two final states-the forced 
pendulum heing, as his audiences well knew, a fundamental os
cillator with many guises in everyday life. "Nohody can say that 
l've rigged the system hy choosing a pendulum," Yorke would say 
jovially. "This is the kind of thing you see throughout nature. But 
the hehavior is different from anything you see in the literature. 
lt's fractal hehavior of a wild kind." The pictures would he fan
tastic swirls of white and hlack, as if a kitchen mixing howl had 
sputtered a few times in the course of incompletely folding to
gether vanilla and chocolate pudding. To make such pictures, his 
computer had swept through a 1,000 hy 1,000 grid of points, each 
representing a different starting position for the pendulum, and 
had plotted the outcome: hlack or white. These were hasins of 
attraction, mixed and folded hy the familiar equations of New-
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F'RACTAL BASIN BOUNDARIES. Even when a dynamical system's long-term 
behavior is not chaotic, chaos can appear at the boundary between one 
kind of steady behavior and another. Often a dynamical system has more 
than one equilibrium state, like a pendulum that can come to a halt at 
either of two magnets placed at its base. Each equilibrium is an attractor, 
and the boundary between two attractors can be complicated but smooth 
(left). Or the boundary can he complicated but not smooth. The highly 
fractal interspersing of white and black (right) is a phase-space diagram 
of a pendulum. The system is sure to reach one of two possible steady 
states. For some starting conditions, the outcome is quite predictable
black is black and white is white. But near the boundary, prediction 
becomes impossible. 

tonian motion, and the result was more houndary than anything 
else. Typically, more than three-quarters of the plotted points lay 
on the houndary. 

To researchers and engineers, there was a lesson in these 
pictures-a lesson and a warning. Too often, the potential range 
of hehavior of complex systems had to he guessed from a small 
set of data. When a system worked normally, staying within a 
narrow range of parameters, engineers made their ohservations 
and hoped that they could extrapolate m�re or less linearly to less 
usual hehavior. But scientists studying fractal hasin houndaries 
showed that the horder hetween calm and catastrophe could he 
far more complex than anyone had dreamed. "The whole electrical 
power grid of the East Coast is an oscillatory system, most of the 
time stahle, and you'd like to 1cnow what happens when you per
turh it," Yorke said. "You need to know what the houndary is. 
The fact is, they have no idea what the houndary looks like. " 
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Fractal basin boundaries addressed deep issues in theoretical 
physics. Phase transitions were matters of thresholds , and Peitgen 
and Richter looked at one of the best-studied kinds of phase tran
sitions, magnetization and nonmagnetization in materials. Their 
pictures of such boundaries displayed the peculiarly beautiful 
complexity that was coming to seem so natural, cauliflower shapes 
with progressively more tangled knobs and furrows. As they varied 
the parameters and increased their magnification of details, one 
picture seemed more and more random, until suddenly, unex
pectedly, deep in the heart of a bewildering region, appeared a 
familiar oblate form, studded with buds: the Mandelbrot set, every 
tendril and every atom in place. It was another signpost of uni
versality. "Perhaps we should believe in magic," they wrote. 

MICHAEL BARNSLEY TOOK a different road. He thought about 
nature's own images , particularly the patterns generated by living 
organisms. He experimented with Julia sets and tried other pro
cesses, always looking for ways of generating even greater varia
bility. Finally, he turned to randomness as the hasis for a new 
technique of modeling natural shapes. When he wrote about his 
technique, he called it "the global construction of fractals by means 
of iterated function systems. "  When he talked about it, however, 
he called it "the chaos game. "  

To  play the chaos game quickly, you need a computer with 
a graphics screen and a random number generator, but in principle 
a sheet of paper and a coin work just as well. You choose a starting 
point somewhere on the paper. lt does not matter where. You 
invent two rules, a heads rule and a tails rule. A rule tells you 
how to take one point to another: "Move two inches to the north
east, "  or "Move 25 percent closer to the center. " Now you start 
flipping the coin and marking points, using the heads rule when 
the coin comes up heads and the tails rule when it comes up tails. 
lf you throw away the first fifty points, like a blackjack dealer 
burying the first few cards in a new deal, you will find the chaos 
game producing not a random field of dots but a shape, revealed 
with greater and greater sharpness as the game goes on. 

Barnsley's central insight was this: Julia sets and other fractal 
shapes, though properly viewed as the outcome of a deterministic 
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process, had a second, equally valid existence as the limit of  a 
random process. By analogy, he suggested, one could imagine a 
map of Great Britain drawn in chalk on the floor of a room. A 
surveyor with standard tools would find it complicated to measure 
the area of these awkward shapes, with fractal coastlines, after all. 
But suppose you throw grains of rice into the air one hy one, 
allowing them to fall randomly to the floor and counting the grains 
that land inside the map. As time goes on, the result hegins to 
approach the area of the shapes-as the limit of a random process. 
In dynamical terms, Barnsley's shapes proved to he attractors. 

The chaos game made use of a fractal quality of certain pic
tures, the quality of heing huilt up of small copies of the main 
picture. The act of writing down a set of rules to he iterated ran
domly captured certain glohal information ahout a shape, and the 
iteration of the rules regurgitated the information without regard 
to scale. The more fractal a shape was, in this sense, the simpler 
would he the appropriate rules. Barnsley quickly found that he 
could generate all the now-classic fractals from Mandelhrot's hook. 
Mandelhrot's technique had heen an infinite succession of con
struction and refinement. For the Koch snowflake or the Sierpinski 
gasket, one would remove line segments and replace them with 
specified figures. By using the chaos game instead, Barnsley made 
pictures that hegan as fuzzy parodies and grew progressively sharper. 
No refinement process was necessary: just a single set of rules that 
somehow emhodied the final shape. 

Barnsley and his co-workers now emharked on an out-of
control program of producing pictures, cahhages and molds and 
mud. The key question was how to reverse _the process: given a 
particular shape, how to choose a set of rules. The answer, which 
he called "collage theorem," was so inanely simple to descrihe 
that listeners sometimes thought there must he some trick. Y ou 
would hegin with a drawing of the shape you wanted to reproduce. 
Barnsley chose a hlack spleenwort fern for one of his first exper
iments, having long heen a fern huff. Then using a computer ter
minal and a mouse as pointing device, you would lay small copies 
over the original shape, letting them overlap sloppily if need he. 
A highly fractal shape could easily he tiled with copies of itself, 
a less fractal shape less easily, and at some level of approximation 
every shape could he tiled. 

..., 
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THE CHAOS GAME. Each new point falls randomly, but gradually the image 
of a fern emerges. All the necessary information is encoded in a few 
simple rules. 

"If the image is complicated, the rules will he complicated," 
Barnsley said. "On the other hand, if the ohjeet has a hidden fractal 
order to it-and it's a central ohservation of Benoit's that much 
of nature does have this hidden order-then it will he possible 
with a few rules to decode it. The model, then, is more interesting 
than a model made with Euclidean geometry, hecause we know 
that when you look at the edge of a leaf you don't see straight 
Iines."  His first fern, produced with a small desktop computer, 
perfectly matched the image in the fern hook he had had since he 
was a child. "It was a staggering image, correct in every aspect. 
No hiologist would have any trouhle identifying it. " 
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In some sense, Barnsley contended, nature must he playing 
its own version of the chaos game. "There's only so much infor
mation in the spore that encodes one fern, " he said. "So there's 
a limit to the elahorateness with which a fern could grow. It's not 
surprising that we can find equivalent succinct information to 
descrihe ferns. It would he surprising if it were otherwise." 

But was chance necessary? Huhhard, too, thought ahout the 
parallels hetween the Mandelhrot set and the hiological encoding 
of information, hut he hristled at any suggestion that such pro
cesses might depend on prohahility. "There is no randomness in 
the Mandelhrot set, " Huhhard said. "There is no randomness in 
anything that I do. Neither do I think that the possihility of ran
domness has any direct relevance to hiology. In hiology random
ness is death, chaos is death. Everything is highly structured. 
When you clone plants , the order in which the hranches come 
out is exactly the same. The Mandelhrot set oheys an extraordi
narily precise scheme leaving nothing to chance whatsoever. I 
strongly suspect that the day somehody actually figures out how 
the hrain is organized they will discover to their amazement that 
there is a coding scheme for huilding the hrain which is . of ex
traordinary precision. The idea of randomness in hiology is just 
reflex." 

In Barnsley's technique, however, chance serves only as a 
tool. The results are deterministic and predictahle. As points flash 
across the computer screen, no one can guess where the next one 
will appear; that depends on the flip of the machine's internal 
coin. Y et somehow the flow of light always remains within the 
hounds necessary to carve a shape in phosphorous. To that extent 
the role of chance is an illusion. "Randomness is a red herring," 
Barnsley said. "It's central to ohtaining images of a certain invar
iant measure that live upon the fractal ohjeet. But the ohjeet itself 
does not depend on the randomness. With prohahility one, you 
always draw the same picture. 

"lt's giving deep information, prohing fractal ohjects with a 
random algorithm. Just as, when we go into a new room, our eyes 
dance around it in so�e order which we might as well take to he 
random, and we get a good idea of the room. The room is just 
what it is. The ohjeet exists regardless of what I happen to do. "  

The Mandelhrot set, in the same way, exists. It existed hefore 

.... , 
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Peitgen and Richter began turning it into an art form, before Hub
bard and Douady understood its mathematical essence, even be
fore Mandelbrot discovered it. It existed as saan as science created 
a context-a framework af complex numbers and a nation af it
erated functions. Then it waited ta he unveiled. Or perhaps it 
existed even earlier, as saan as nature began organizing itself by 
means af simple physical laws, repeated with infinite patience 
and everywhere the same. 
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SANTA CRUZ was the newest campus in the University of 
California system, carved into storybook scenery an hour south of 
San Francisco, and people sometimes said that it looked more like 
a national forest than a college. The buildings were nestled among 
redwoods, and, in the spirit of the time, the planners endeavored 
to leave every tree standing. Little footpaths ran from place to 
place. The whole campus lay atop a hill, so that every so often 
you would happen upon the view south across the sparkling waves 
of Monterey Bay. Santa Cruz opened in 1966, and within a few 
years it became, briefly, the most selective of the California cam
puses. Students associated it with many of the icons of the intel
lectual avant-garde: Norman 0. Brown, Gregory Bateson, and Herbert 
Marcuse lectured there, and Tom Lehrer sang. The school's grad
uate departments, building from scratch, began with an ambiva
lent outlook, and physics was no exception. The faculty-about 
fifteen physicists-was energetic and mostly young, suited to the 
mix of bright nonconformists attracted to Santa Cruz. They were 
influenced by the free-thinking ideology of the time; yet they aisa, 
the physicists, looked southward toward Caltech and realized that 
they needed to establish standards and demonstrate their seri
ousness. 

One graduate student whose seriousness no ane doubted was 
Robert Stetson Shaw, a bearded Boston native and Harvard grad
uate, the oldest of six children of a doctor and a nurse, who in 
1977 was about to turn thirty-one years old. That made him a little 
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older than most graduate students, his Harvard career having been 
interrupted several times for Army service, commune living, and 
other impromptu experiences somewhere between those ex
tremes. He did not know why he came to Santa Cruz. He had never 
seen the campus, although he had seen a brochure, with pictures 
of the redwoods and language about trying new educational phi
losophies. Shaw was quiet-shy, in a forceful sort of way. He was 
a good student, and he had reached a point just a few months 
away from completing his doctoral thesis on superconductivity. 
No one was particularly concemed that he was wasting time down
stairs in the physics building playing with an analog computer. 

The education of a physicist depends on a system of mentors 
and proteges. Established professors get research assistants to help 
with laboratory work or tedious calculations. 1n retum the grad
uate students and postdoctoral fellows get shares of their profes
sors' grant money and bits of publication credit. A good mentor 
helps his student choose problems that will he both manageable 
and fruitful. If the relationship prospers, the professor's intluence 
helps his protege find employment. Often their names will he 
forever linked. When a science does not yet exist, however, few 
people are ready to teach it. In 1977 chaos offered no mentors. 
There were no classes in chaos, no centers for nonlinear studies 
and complex systems research, no chaos textbooks, nor even a 
chaos joumal. 

WILLIAM BURKE, A SANTA CRuz C0SM0L0GIST and relativist, 
ran into his friend Edward A. Spiegel, an astrophysicist, at one 
o'clock in the moming in the lobby of a Boston hotel, where they 
were attending a conference on general relativity. "Hey, l've just 
been listening to the Lorenz attractor," Spiegel said. Spiegel had 
transmuted this emblem of chaos, using some impromptu circuitry 
connected to a hi-fi set, into a looping slide-whistle antimelody. 
He brought Burke into the bar for a drink and explained. 

Spiegel knew Lorenz personally, and he had known about 
chaos since the 1960s. He had made it his business to pursue clues 
to the possibility of erratic behavior in models of star motion, and 
he kept in touch with the French mathematicians. Eventually, as 
a professor at Columbia University, he made turbulence in space-
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"cosmic arrhythmias"-the focus of his astronomical study. He 
had a tlair for captivating his colleagues with new ideas, and as 
the night wore on he captivated Burke. Burke was open to such 
things. He had made his reputation by working through one of 
Einstein's more paradoxical gifts to physics, the notion of gravity 
waves rippling through the fabric of space-time. It was a highly 
nonlinear problem, with misbehavior related to the troublesome 
nonlinearities in fluid dynamics. It was also properly abstract and 
theoretical, but Burke liked down-to-earth physics, too, at one 
point publishing a paper on the optics of beer glasses: how thick 
could you make the glass and st'ill leave the appearance of a full 
partion of beer. He liked to say that he was a bit of a throwback 
who considered physics to he reality. Furthermore, he had read 
Robert May's paper in Nature, with its plaintive plea for more 
education about simple nonlinear systems, and he, too, had taken 
a few hours to play with May's equations on a calculator. So the 
Lorenz attractor sounded interesting. He had no intention of lis
tening to it. He wanted to see it. When he retumed to Santa Cruz, 
he handed Rob Shaw a piece of paper on which he had scrawled 
a set of three differential equations. Gould Shaw put these on the 
analog computer? 

In the evolution of computers, analog machines represented 
a blind alley. They did not belong in physics departments, and 
the existence of such things at Santa Cruz was pure happenstance: 
the original plans for Santa Cruz had included an engineering 
school; by the time the engineering school was canceled, an eager 
purchasing agent had already bought some equipment. Digital 
computers, built up from circuitry that switched off or on, zero 
or one, no or yes, gave precise answers to the questions program
mers asked, and they proved far more amenable to the miniatur
ization and acceleration of technology that ruled the computer 
revolution. Anything done once on a digital computer could he 
done again, with exactly the same result, and in principle could 
he done on any other digital computer. Analog computers were, 
by design, fuzzy. Their building blocks were not yes-no switches 
but electronic circuits like resistors and capacitors-instantly fa
miliar to anyone who played with radios in the era before solid
state, as Shaw had. The machine at Santa Cruz was a Systron
Donner, a heavy, dusty thing with a patch panel for its front, like 
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the patch panels used hy old-fashioned telephone switchhoards. 
Programming the analog computer was a matter of choosing elec
tronic components and plugging cords into the patch panel. 

By huilding up various comhinations of circuitry, a program
mer simulates systems of differential equations in ways that hap
pen to he well-suited to engineering prohlems. Say you want to 
model an automohile suspension with springs, dampers, and mass, 
to design the smoothest ride. Oscillations in the circuitry can he 
made to correspond to the oscillations in the physical system. A 
capacitor takes the place of a spring, inductors represent mass, 
and so forth. The calculations are not precise. Numerical com
putation is sidestepped. Instead you have a model made of metal 
and electrons, quite fast and-hest of all-easily adjustahle. Sim
ply hy turning knohs, you can adjust variahles, making the spring 
stronger or the friction weaker. And you can watch the results 
change in real time, patterns traced across the screen of an oscil
loscope. 

Upstairs in the superconductivity lahoratory, Shaw was mak
ing his desultory way to the end of his thesis work. But he was 
heginning to spend more and more time playing with the Systron
Donner. He had got far enough to see phase-space portraits of 
soma simple systems-representations of periodic orhits, or limit 
cycles. If he had seen chaos, in the form of strange attractors, he 
certainly had not recognized it. The Lorenz equations, handed to 
him on a piece of paper, were no more complicated than the 
systems he had heen tinkering with. It took just a few hours to 
patch in the right cords and adjust the knohs. A few minutes later, 
Shaw knew that he would never finish his superconductivity 
thesis. 

He spent several nights in that hasement, watching the green 
dot of the oscilloscope tlying around the screen, tracing over and 
over the characteristic owl's mask of the Lorenz attractor. The tlow 
of the shape stayed on the retina, a tlickering, tluttering thing, 
unlike any ohjeet Shaw's research had shown him. It seemed to 
have a life of its own. It held the mind just as a flame does, hy 
running in pattems that never repeat. The imprecision and not
quite-repeatahility of the analog computer worked to Shaw's 
advantage. He quickly saw the sensitive dependence on initial 
conditione that persuaded Edward Lorenz of the futility of long-

,,. .. 
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term weather forecasting. He would set the initial conditions, push 
the go button, and off the attractor would go. Then he would set 
the same initial conditions again-as close as physically possi
ble-and the orbit would sail merrily away from its previous course, 
yet end up on the same attractor. 

As a child, Shaw had illusions of what science would be 
like-dashing off romantically into the unknown. This was fi. 
nally a kind of exploration that lived up to his illusions. Low
temperature physics was fun from a tinkerer's point of view, with 
plenty of plumbing and big magnets, liquid helium and dials. But 
for Shaw it was leading nowhere. Soon he moved the analog com
puter upstairs, and the room was never used for superconductivity 
again. 

"ALL YOU HAVE TO no is put your hands on these knobs, and 
suddenly you are exploring in this other world where you are ane 
of the first travelers and you don't want to come up for air," said 
Ralph Abraham, a professor of mathematics who dropped by in 
the early days to watch the Lorenz attractor in motion. He had 
been with Steve Smale in the most glorious early days at Berkeley, 
and so he was one of very few members of the Santa Cruz faculty 
with a background that would let him grasp the significance of 
Shaw's game-playing. His first reaction was astonishment at the 
speed of the display-and Shaw pointed out that he was using 
extra capacitors to keep it from running even faster. The attractor 
was robust, tao. The imprecision of the analog circuitry proved 
that-the tuning and tweaking of knobs did not make the attractor 
vanish, did not tum it into something random, but tumed it or 
bent it in ways that slowly began to make sense. "Rob had the 
spontaneous experience where a little exploration reveals all the 
secrets ," Abraham said. "All the important concepts-the Lya
punov exponent, the fractal dimension-would just naturally occur 
to you. You would see it and start exploring. " 

Was this science? It certainly was not mathematics, this com
puter work with no formalisms or proofs, and no amount of sym-
pathetic encouragement from people like Abraham could change 
that. The physics faculty saw no reason to think it was physics, 
either. Whatever it was, it drew an audience. Shaw usually left 
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his door open, and it happened that the entrance to the physics 
department was just across the hali. The foot traffic was consid
erable. Before long, he found himself with company. 

The group that came to call itself the Dynamical Systems 
Collective-others sometimes called it the Chaos Cabal-de
pended on Shaw as its quiet center. He suffered from a certain 
diffidence in putting his ideas forward in the academic market
place; fortunately for him, his new associates had no such prob
lem. They, meanwhile, often returned to his steady vision of how 
to carry out an unplanned program of exploring an unrecognized 
science. 

Doyne Farmer, a tali, angular, and sandy-haired Texas native, 
became the group's most articulate spokesman. In 197 7  he was 
twenty-four years old, all energy and enthusiasm, a machine for 
ideas. Those who met him sometimes suspected at first that he 
was ali hot air. Norman Packard, three years younger, a boyhood 
friend who had grown up in the same New Mexico town, Silver 
City, arrived at Santa Cruz that fall, just as Farmer was beginning 
a year off to devote all his energy to his pian for applying the laws 
of motion to the game of roulette. This enterprise was as earnest 
as it was far-fetched. For more than a decade Farmer and a chang
ing east of fellow physicists, professional gamblers, and hangers
on pursued the roulette dream. Farmer did not give it up even 
after he joined the Theoretical Division of Los Alamos National 
Laboratory. They calculated tilts and trajectories, wrote and re
wrote custom software, embedded computers in shoes and made 
nervous forays into gambling casinos. But nothing quite worked 
as planned. At one time or another, all the members of the col
lective but Shaw lent their energy to roulette, and it had to be 
said that the project gave them unusual training in the rapid analy
sis of dynamical systems, but it did little to reassure the Santa 
Cruz physics faculty that Farmer was taking science seriously. 

The fourth member of the group was James Crutchfield, the 
youngest and the only native Califomian. He was short and pow
erfully built, a stylish windsurfer and, most important for the 
collective, an instinctive master of computing. Crutchfield came 
to Santa Cruz as an undergraduate, worked as a laboratory assistant 
on Shaw's pre-chaos superconductivity experiments, spent a year 
commuting "over the hill," as they said in Santa Cruz, to a job at 
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IBM's research center in San Jose, and did not actually join the 
physics department as a graduate student until 1980. By then he 
had spent two years hanging around Shaw's laboratory and rush
ing to pick up the mathematics he needed to understand dynam
ical systems. Like the rest of the group, he left the department's 
standard track behind. 

It was spring in 1978 before the department quite believed 
that Shaw was abandoning his superconductivity thesis. He was 
so close to finishing. No matter how bored he was, the faculty 
reasoned that he could rush through the formalities, get his doc
torate and move on to the real world. As for chaos, there were 
questions of academic suitability. No one at Santa Cruz was qual
ified to supervise a course of study in this field-without-a-name. 
No one had ever received a doctorate in it. Certainly no jobs_were 
available for graduates with this kind of specialty. There was also 
the matter of money. Physics at Santa Cruz, as at every American 
university, was financed mostly by the National Science Foun
dation and other agencies of the federal govemment through re
search grants to members of the faculty. The Navy, the Air Force, 
the Department of Energy, the Central Intelligence Agency-all 
dispensed vast sums for pure research, without necessarily caring 
about immediate application to hydrodynamics, aerodynamics, 

,energy, or intelligence. A faculty physicist would get enough to 
pay for laboratory equipment and the salaries of research assist
ants-graduate students, who would piggy-back themselves on 
his grant. He would pay for their photocopying, for their travel to 
meetings, even for salaries to keep them going in the summers. 
Otherwise a student was financially adrift. This was the system 
from which Shaw, Farmer, Packard, and Crutchfield now cut 
themselves off. 

When certain kinds of electronic equipment began to disap
pear at night, it became prudent to look for them in Shaw's former 
low-temperature laboratory. Occasionally a member of the collec
tive would he able to cadge a hundred dollars from the graduate 
student association, or the physics department would find a way 
to appropriate that much. Plotters, converters, electronic filters 
began to accumulate. A particle physics group down the hall had 
a small digital computer that was destined for the scrapheap; it 
found its way to Shaw's lab. Farmer became a particular specialist 
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in scrounging computer time. One summer he was invited to the 
National Center for Atmospheric Research in Boulder, Colorado, 
where huge computers handle research on such tasks as global 
weather modeling, and his ability to siphon expensive time from 
these machines stunned the climatologists. 

The Santa Cruzians' tinkering sensibility served them well. 
Shaw had grown up "gizmo-oriented." Packard had fixed televi
sion sets as a boy in Silver City. Crutchfield belonged to the first 
generation of mathematicians for whom the logic of computer 
processors was a natural language. The physics building itself, in 
its shady redwood setting, was like physics buildings everywhere, 
with a universal ambience of cement floors and walls that always 
needed repainting, but the room taken over by the chaos group 
developed its own atmosphere, with piles of papers and pictures 
of Tahitian islanders on the walls and, eventually, printouts of 
strange attractors. At almost any hour, though night was a safer 
bet than morning, a visitor could see members of the group re
arranging circuitry, yanking out patch cords, arguing about con
sciousness or evolution, adjusting an oscilloscope display, or just 
staring while a glowing green spot traced a curve of light, its orbit 
flickering and seething like something alive. 

"THE SAME THING REALL y DREW all of us: the nation that you 
could have determinism but not really," Farmer said. "The idea 
that all these classical deterministic systems we'd learned about 
could generate randomness was intriguing. We were driven to 
understand what made that tick. 

"You can't appreciate the kind of revelation that is unless 
you've been brainwashed by six or seven years of a typical physics 
curriculum. You're taught that there are classical models where 
everything is determined by initial conditions, and then there are 
quantum mechanical models where things are determined but you 
have to contend with a limit on how much initial information you 
can gather. Nonlinear was a word that you only encountered in 
the back of the book. A physics student would take a math course 
and the last chapter would he on nonlinear equations. You would 
usually skip that, and, if you didn't, all they would do is take 
these nonlinear equations and reduce them to linear equations, 
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so you just get approximate solutions anyway. I t  was just an ex
ercise in frustration. 

"We had no concept of the real difference that nonlinearity 
makes in a model. The idea that an equation could bounce around 
in an apparently random way-that was pretty exciting. You would 
say, 'Where is this random motion coming from? I don't see it in 
the equations. '  It seemed like something for nothing, or something 
out of nothing.' '  

Crutchfield said, "lt was a realization that here is  a whole 
realm of physical experience that just doesn't fit in the current 
framework. Why wasn't that part of what we were taught? We had 
a chance to look around the immediate world-a world so mun
dane it was wonderful-and understand something.' '  

They enchanted themselves and dismayed their professors 
with leaps to questions of determinism, the nature of intelligence, 
the direction of biological evolution. 

"The glue that held us together was a long-range vision," 
Packard said, "It was striking to us that if you take regular physical 
systems which have been analyzed to death in classical physics, 
but you take one little step away in parameter space, you end up 
with something to which all of this huge body of analysis does 
not apply. 

"The phenomenon of chaos could have been discovered long, 
long ago. It wasn't, in part because this huge body of work on the 
dynamics of regular motion didn't lead in that direction. But if 
you just look, there it is . It brought home the point that one should 
allow oneself to be guided by the physics, by observations, to see 
what kind of theoretical picture one could develop. ln the long 
run we saw the investigation of complicated-dynamics as an entry 
point that might lead to an understanding of really, really com
plicated dynamics." 

Farmer said, "On a philosophical level, it struck me as an 
operational way to define free will, in a way that allowed you to 
reconcile free will with determinism. The system is deterministic, 
but you can't say what it's going to do next. At the same time, l'd 
always felt that the important problems out there in the world had 
to do with the creation of organization, in life or intelligence. But 
how did you study that? What biologists were doing seemed so 
applied and specific; chemists certainly weren't doing it; mathe-

... .  
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maticians weren't doing it at all, and it was something that phys
icists just didn't do. I always felt that the spontaneous emergence 
of self-organization ought to he part of physics. 

"Here was ane coin with two sides. Here was order, with 
randomness emerging, and then ane step further away was ran
domness with its own underlying order." 

SHA w AND HIS C0LLEAGUES had to turn their raw enthusiasm 
into a scientific program. They had to ask questions that could he 
answered and that would he worth answering. They sought ways 
of connecting theory and experiment-there, they felt, was a gap 
that needed to he closed. Before they could even begin, they had 
to learn what was known and what was not, and this itself was a 
formidable challenge. 

They were hindered by the tendency of communication to 
travel piecemeal in science, particularly when a new subject jumps 
across the established subdisciplines. Often they had no idea 
whether they were on new or old territory. One invaluable antidote 
to their ignorance was Joseph Ford, an advocate of chaos at the 
Georgia Institute of Technology. Ford had already decided that 
nonlinear dynamics was the future of physics-the entire future
and had set himself up as a clearinghouse of information on jour
nal articles. His background was in nondissipative chaos, the chaos 
of astronomical systems or of particle physics. He had an un
usually intimate knowledge of the work being done by the Soviet 
school, and he made it his business to seek out connections with 
anyone who remotely shared the philosophical spirit of this new 
enterprise. He had friends everywhere. Any scientist who sent in 
a paper on nonlinear science would have his work summarized 
on Ford's growing list of abstracts. The Santa Cruz students found 
out about Ford's list and made up a form postcard for requesting 
prepublication copies of articles. Soon the preprints flooded in. 

They realized that many sorts of questions could he asked 
about strange attractors. What are their characteristic shapes? What 
is their topological structure? What does the geometry reveal about 
the physics of the related dynamical systems? The first approach 
was the hands-on exploration that Shaw began with. Much of 
the mathematical literature dealt directly with structure, but the 
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mathematical approach struck Shaw as too detailed-still too many 
trees and not enough forest. As he worked his way through the 
literature, he felt that the mathematicians, deprived by their own 
traditions of the new tools of computing, had been buried in the 
particular complexities of orbit structures, infinities here and dis
continuities there. The mathematicians had not cared especially 
about analog fuzziness-from the physicist's point of view, the 
fuzziness that surely controlled real-world systems. Shaw saw on 
his oscilloscope not the individual orbits but an envelope in which 
the orbits were embedded. It was the envelope that changed as he 
gently turned the knobs. He could not give a rigorous explanation 
of the folds and twists in the language of mathematical topology. 
Yet he began to feel that he understood them. 

A physicist wants to make measurements. What was there in 
these elusive moving images to measure? Shaw and the others 
tried to isolate the special qualities that made strange attractors 
so enchanting. Sensitive dependence on initial conditions-the 
tendency of nearby trajectories to pull away from one another. 
This was the quality that made Lorenz realize that deterministic 
long-term weather forecasting was an impossibility. But where 
were the calipers to gauge such a quality? Gould unpredictability 
itself he measured? 

The answer to this question lay in a Russian conception, the 
Lyapunov exponent. This number provided a measure of just the 
topological qualities that corresponded to such concepts as un
predictability. The Lyapunov exponents in a system provided a 
way of measuring the conflicting effects of stretching, contracting, 
and folding in the phase space of an attractor. They gave a picture 
of all the properties of a system that lead to stability or instability. 
An exponent greater than zero meant stretching-nearby points 
would separate. An exponent smaller than zero meant contraction. 
For a fixed-point attractor, all the Lyapunov exponents were neg
ative, since the direction of pull was inward toward the final 
steady state. An attractor in the form of a periodic orbit had one 
exponent of exactly zero and other exponents that were negative. 
A strange attractor, it turned out, had to have at least one positive 
Lyapunov exponent. 

To their chagrin, the Santa Cruz students did not invent this 
idea, but they developed it in the most practical ways possible, 
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FOLDING PHASE SPACE. The topological reshaping of phase space creates 
an attractor, like a doughnut but folded in on itself, known as Birkhoff's 
bagel. 
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learning how to measure Lyapunov exponents and relate them to 
other important properties. They used computer animation to make 
movies illustrating the heating together of order and chaos in dy
namical systems. Their analysis showed vividly how some sys
tems could create disorder in one direction while remaining trim 
and methodical in another. One movie showed what happened to 
a tiny cluster of nearhy points-representing initial conditions
on a strange attractor as the system evolved in time. The cluster 
hegan to spread out and lose focus. It turned into a dot and then 
a hloh. For certain kinds of attractors, the hloh would quickly 
spread all over. Such attractors were efficient at mixing. For other 
attractors, though, the spreading would only occur in certain di
rections. The hloh would hecome a hand, chaotic along one axis 
and orderly along another. lt was as if the system had an orderly 
impulse and a disorderly one together, and they were decoupling. 
As one impulse led to random unpredictahility, the other kept 
time like a precise clock. Both impulses could he defined and 
measured. 

THE MOST CHARACTERISTICALL y Santa Cruzian imprint on chaos 
research involved a piece of mathematics cum philosophy known 
as information theory, invented in the late 1940s hy a researcher 
at the Bell Telephone Lahoratories, Claude Shannon. Shannon 
called his work "The Mathematical Theory of Communication," 
hut it concerned a rather special quantity called information, and 
the name information theory stuck. The theory was a product of 
the electronic age. Communication Iines and radio transmissions 
were carrying a certain thing, and computers would soon he stor
ing this same thing on punch cards or magnetic cylinders, and 
the thing was neither knowledge nor meaning. Its hasic uni ts were 
not ideas or concepts or even, necessarily, words or numhers. This 
thing could he sense or nonsense-hut the engineers and mathe
maticians could measure it, transmit it, and test the transmission 
for accuracy. Information proved as good a word as any, hut people 
had to rememher that they were using a specialized value-free 
term without the usual connotations of facts, learning, wisdom, 
understanding, enlightenment. 

Hardware determined the shape of the theory. Because in-
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formation was stored in hinary on-off switches newly designated 
as hits, hits hecame the hasic measure of information. From a 
technical point of view, information theory hecame a handle for 
grasping how noise in the form of random errors interfered with 
the flow of hits. It gave a way of predicting the necessary carrying 
capacity of communication Iines or compact disks or any tech
nology that encoded language, sounds, or images. It offered a the
oretical means of reckoning the effectiveness of different schemes 
for correcting errors-for example, using some hits as checks on 
others. It put teeth into the crucial notion of "redundancy." In 
terms of Shannon's information theory, ordinary language con
tains greater than fifty percent redundancy in the form of sounds 
or letters that are not strictly necessary to conveying a message. 
This is a familiar idea; ordinary communication in a world of 
mumhlers and typographical errors depends on redundancy. The 
famous advertisement for shorthand training-if u en rd ths 
msg . . . -illustrated the point, and information theory allowed 
it to he measured. Redundancy is a predictahle departure from 
the random. Part of the redundancy in ordinary language lies in 
its meaning, and that part is hard to quantify, depending as it does 
on people's shared knowledge of their language and the world. 
This is the part that allows people to solve crossword puzzles or 
fill in the missing word at the end of a. But other kinds of redun
dancy lend themselves more easily to numerical measures. Sta
tistically, the likelihood that any letter in English will he "e" is 
far greater than one in twenty-six. Furthermore, letters do not have 
to he counted as isolated units. Knowing that one letter in an 
English text is "t" helps in predicting that the next might he "h" 
or "o," and knowing two letters helps even more, and so on. The 
statistical tendency of various two- and three-letter comhinations 
to turn up in a language goes a long way toward capturing some 
characteristic essence of the language. A computer guided only 
hy the relative likelihood of the possihle sequences of three letters 
can produce an otherwise random stream of nonsense that is rec
ognizahly English nonsense. Cryptologists have long made use of 
such statistical patterns in hreaking simple codes. Communica
tions engineers now use them in devising techniques to compress 
data, removing the redundancy to save space on a transmission 
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line or  storage disk. To Shannon, the right way to look at such 
patterns was this: a stream of data in ordinary language is less 
than random; each new hit is partly constrained hy the bits hefore; 
thus each new hit carries somewhat less than a bit's worth of real 
information. There was a hint of paradox floating in this formu
lation. The more random a data stream, the more information 
would be conveyed hy each new hit. 

Beyond its technical aptness to the heginning of the computer 
era, Shannon information theory gained a modest philosophical 
stature, and a surprising part of the theory's appeal to people 
beyond Shannon's field could he attributed to the choice of a single 
word: entropy. As Warren Weaver put it in a classic exposition 
of information theory, "When one meets the concept of entropy 
in communication theory, he has a right to he rather excited-a 
right to suspect that one has hold of something that may turn out 
to he hasic and important." The concept of entropy comes from 
thermodynamics, where it serves as an adj unet of the Second Law, 
the inexorahle tendency of the universe, and any isolated system 
in it, to slide toward a state of increasing disorder. Divide a swim
ming pool in half with some harrier; fill one half with water and 
one with ink; wait for all to he still; lift the harrier; simply through 
the random motion of molecules, eventually the ink and water 
will mix. The mixing never reverses itself, even if you wait till 
the end of the universe, which is why the Second Law is so often 
said to he the part of physics that makes time a one-way street. 
Entropy is the name for the quality of systems that increases under 
the Second Law-mixing, disorder, randomness. The concept is 
easier to grasp intuitively than to measure in any real-life situation. 
What would he a reliahle test for the level of mixing of two suh
stances? One could imagine counting the molecules of each in 
some sample. But what if they were arranged yes-no-yes-no
yes-no-yes-no? Entropy could hardly he descrihed as high. One 
could count just the even molecules, hut what if the arrangement 
were yes-no-no-yes-yes-no-no-yes? Order intrudes in ways 
that defy any straightforward counting algorithm. And in infor
mation theory, issues of meaning and representation present extra 
complications. A sequence like 01 0100 0100 0010 111 010 11 00 
000 0010 111 010 11 0100 0 000 000 . . . might seem orderly only 
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to an observer familiar with Morse code and Shakespeare. And 
what about the topologically perverse patterns of a strange attrac
tor? 

To Robert Shaw, strange attractors were engines of informa
tion. In his first and grandest conception, chaos offered a natural 
way of returning to the physical sciences, in reinvigorated form, 
the ideas that information theory had drawn from thermody
namics. Strange attractors, conflating order and disorder, gave a 
challenging twist to the question of measuring a system's entropy. 
Strange attractors served as efficient mixers. They created unpre
dictability. They raised entropy. And as Shaw saw it, they created 
information where none existed. 

Norman Packard was reading Scientific American one day 
and spotted an advertisement for an essay contest called the Louis 
Jacot competition. This was suitably far-fetched-a prize lucra
tively endowed by a French financier who had nurtured a private 
theory about the structure of the universe, galaxies within galaxies. 
It called for essays on Jacot's theme, whatever that was. ("lt sounded 
like a bunch of crank mail," Farmer said.) But judging the com
petition was an impressive panel drawn from France's scientific 
establishment, and the money was impressive as well. Packard 
showed the advertisement to Shaw. The deadline was New Year's 
Day 1978. 

By now the collective was meeting regularly in an outsized 
old Santa Cruz house not far from the beach. The house accu
mulated flea-market furniture and computer equipment, much of 
which was devoted to the roulette problem. Shaw kept a piano 
there, on which he would play baroque music or improvise his 
own blend of the classical and modern. 1n their meetings the 
physicists developed a working style, a routine of throwing out 
ideas and filtering them through some sieve of practicality, reading 
the literature, and conceiving papers of their own. Eventually they 
learned to collaborate on journal articles in a reasonably efficient 
round-robin way, but the first paper was Shaw's, one of the few 
he would produce, and he kept the writing of it to himself, char
acteristically. Also characteristically, it was late. 

In December 1977 Shaw headed out from Santa Cruz to attend 
the first meeting of the New York Academy of Sciences devoted 
to chaos. His superconductivity professor paid his fare, and Shaw 
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arrived uninvited to hear in person the scientists he knew only 
. from their writing. David Ruelle. Robert May. James Yorke. Shaw 
was awed by these men and also by the astronomical $35 room 
charge at the Barbizon Hotel. Listening to the talks, he swung back 
and forth between feeling that he had been ignorantly reinventing 
ideas that these men had worked out in considerable detail and, 
on the other hand, feeling that he had an important new point of 
view to contribute. He had brought the unfinished draft of his 
information theory paper, scribbled in longhand on scraps of paper 
in a folder, and he tried unsuccessfully to get a typewriter, first 
from the hotel and then from local repair shops. In the end he 
took his folder away with him. Later, when his friends begged 
him for details, he told them the high point had been a dinner in 
honor of Edward Lorenz, who was finally receiving the recognition 
that had eluded him for so many years. When Lorenz walked into 
the room, shyly holding his wife's hand, the scientists rose to their 
feet to give him an ovation. Shaw was struck by how terrified the 
meteorologist looked. 

A few weeks later, on a trip to Maine, where his parents had 
a vacation house, he finally mailed his paper to the Jacot com
petition. New Year's had passed, but the envelope was generously 
backdated by the local postmaster. The paper-a blend of esoteric 
mathematics and speculative philosophy, illustrated with cartoon
like drawings by Shaw's brother Chris-won an honorable men
tion. Shaw received a large enough cash prize to pay for a trip to 
Paris to collect the honor. It was a small enough achievement, but 
it came at a difficult moment in the group's relations with the 
department. They desperately needed whatever external signs of 
credibility they could find. Farmer was giving up astrophysics, 
Packard was abandoning statistical mechanics, and Crutchfield 
still was not ready to call himself a graduate student. The de
partment felt matters were out of control. 

"STRANGE ATTRACTORS, CHAOTIC BEHAVIOR, and Information 
Flow" circulated that year in a preprint edition that eventually 
reached about 1,000, the first painstaking effort to weave together 
information theory and chaos. 

Shaw brought some assumptions of classical mechanics out 
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of the shadows. Energy in natural systems exists on two levels: 
the macroscales, where everyday ohjects can he counted and meas
ured, and the microscales, where countless atoms swim in random 
motion, unmeasurahle except as an average entity, temperature. 
As Shaw noted, the total energy living in the microscales could 
outweigh the energy of the macroscales, hut in classical systems 
this thermal motion was irrelevant-isolated and unusahle. The 
scales do not communicate with one another. "One does not have 
to know the temperature to do a classical mechanics prohlem," 
he said. It was Shaw's view, however, that chaotic and near
chaotic systems hridged the gap between macroscales and mi
croscales. Chaos was the creation of information. 

One could imagine water flowing past an ohstruction. As every 
hydrodynamicist and white-water canoeist knows, if the water 
flows fast enough, it produces whorls downstream. At some speed, 
the whorls stay in place. At some higher speed, they move. An 
experimenter could choose a variety of methods for extracting data 
from such a system, with velocity prohes and so forth, hut why 
not try something simple: pick a point directly downstream from 
the ohstruction and, at uniform time intervals, ask whether the 
whorl is to the right or the left. 

If the whorls are static, the data stream will look like this: 
left-left-left-left-left-left-left-left-left-left-left-left-left-left-left
left-left-left-left-left-. After a while, the ohserver starts to feel 
that new hits of data are failing to offer new information ahout 
the system. 

Or the whorls might he moving hack and forth periodical
ly: left-right-left-right-left-right-left-right-left-right-left-right
left-right-left-right-left-right-left-right-. Again, though at first 
the system seems one degree more iriteresting, it quickly ceases 
to offer any surprises. 

As the system hecomes chaotic, however, strictly hy virtue of 
its unpredictahility, it generates a steady stream of information. 
Each new ohservation is a new hit. This is a prohlem for the 
experimenter trying to characterize the system completely. "He 
could never leave the room," as Shaw said. "The flow would he 
a continuous source of information." 

Where is this information coming from? The heat hath of the 
microscales, hillions of molecules in their random thermodynamic 
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dance. Just as turbulence transmits energy from large scales down
ward through chains of vortices to the dissipating small scales of 
viscosity, so information is transmitted back from the small scales 
to the large-at any rate, this was how Shaw and his colleagues 
began describing it. And the channel transmitting the information 
upward is the strange attractor, magnifying the initial randomness 
just as the Butterfly Effect magnifies small uncertainties into large
scale weather pattems. 

The question was how much. Shaw found-after unwittingly 
duplicating some of their work-that again Soviet scientists had 
been there first. A. N. Kolmogorov and Yasha Sinai had worked 
out some illuminating mathematics for the way a system's "en
tropy per unit time" applies to the geometric pictures of surfaces 
stretching and folding in phase space. The conceptual core of the 
technique was a matter of drawing some arbitrarily small box 
around some set of initial conditions, as one might draw a small 
square on the side of a balloon, then calculating the effect of 
various expansions or twists on the box. It might stretch in one 
direction, for example, while remaining narrow in the other. The 
change in area corresponded to an introduction of uncertainty 
about the system's past, a gain or loss of information. 

To the extent that information was just a fancy word for un
predictability, this conception merely matched the ideas that such 
scientists as Ruelle were developing. But the information theory 
framework allowed the Santa Cruz group to adopt a body of 
mathematical reasoning that had been well investigated by com
munications theorists. The problem of adding extrinsic noise to an 
otherwise deterministic system, for example, was new in dynam
ics but familiar enough in communications. The real appeal for 
these young scientists, however, was only partly the mathematics. 
When they spoke of systems generating information, they thought 
about the spontaneous generation of pattem in the world. "At the 
pinnacle of complicated dynamics are processes of biological 
evolution, or thought processes,"  Packard said. "Intuitively there 
seems a clear sense in which these ultimately complicated systems 
are generating information. Billions of years ago there were just 
blobs of protoplasm; now billions of years later here we are. So 
information has been created and stored in our structure. 1n the 
development of one person's mind from childhood, information 
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is clearly not just accumulated but also generated-created from 
connections that were not there before." It was the kind of talk 
that could make a sober physicist's head spin. 

THEY WERE TINKERERS FIRST, though, and philosophers only 
second. Gould they make a bridge from the strange attractors they 
knew so well to the experiments of classical physics? It was ane 
thini to say that right-left-right-right-left-right-left-left-left
right was unpredictable and information-generating. It was quite 
another to take a stream of real data and measure its Lyapunov 
exponent, its entropy, its dimension. Still, the Santa Cruz phys
icists had made themselves more comfortable with these ideas 
than had any of their older colleagues. By living with strange 
attractors day and night, they convinced themselves that they 
recognized them in the flapping, shaking, beating, swaying phe
nomena of their everyday lives. 

They had a game they would play, sitting at a coffeehouse. 
They would ask: How far away is the nearest strange attractor? 
Was it that rattling automobile fender? That flag snapping errat
ically in a steady breeze? A fluttering leaf? "You don't see some
thing until you have the right metaphor to let you perceive it," 
Shaw said, echoing Thomas S. Kuhn. Before long, their relativist 
friend Bill Burke was quite convinced that the speedometer in his 
car was rattling in the nonlinear fashion of a strange attractor. And 
Shaw, settling on an experimental project that would occupy him 
for years to come, adopted as homely a dynamical system as any 
physicist could imagine: a dripping faucet. Most people imagine 
the canonical dripping faucet as relentlessly periodic, but it is not 
necessarily so, as a moment of experimentation reveals. "lt's a 
simple example of a system that goes from predictable behavior 
to unpredictable behavior," Shaw said. "If you turn it up a little 
bit, you can see a regime where the pitter-patter is irregular. As 
it turns out, it's not a predictable pattern beyond a short time. So 
even something as simple as a faucet can generate a pattern that 
is etemally creative." 

As a generator of organization, the dripping faucet offers little 
to work with. It generates only drips, and each drip is about the 
same as the last. But for a beginning investigator of chaos, the 
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dripping faucet proved to have certain advantages. Everyone 
already has a mental picture of it. The data stream is as one
dimensional as could he: a rhythmic drumheat of single points 
measured in time. None of these qualities could he found in sys
tems that the Santa Cruz group explored later-the human im
mune system, for example, or the trouhlesome heam-heam effect 
that was inexplicahly degrading the performance of colliding par
ticle heams at the Stanford Linear Accelerator Center to the 
north. Experimenters like Lihchaher and Swinney ohtained a 
one-dimensional data stream hy placing a prohe arhitrarily at one 
point in a slightly more complex system. In the dripping faucet 
the single line of data is all there is. And it isn't even a contin
uously varying velocity or temperature-just a list of drip times. 

Asked to organize an attack on such a system, a traditiona! 
physicist might hegin hy making as complete a physical model as 
possihle. The processes governing the creation and hreaking off 
of drips are understandahle, if not quite so simple as they might 
seem. One important variahle is the rate of flow. (This had to he 
slow compared to most hydrodynamic systems. Shaw usually looked 
at drop rates of 1 to 10 per second, which meant a flow rate of 30 
to 300 gpf-gallons per fortnight.) Other variahles include the 
viscosity of the fluid and the surface tension. A drop of water 
hanging from a faucet, waiting to hreak off, assumes a complicated 
three-dimensional shape, and the calculation of this shape alone 
was, as Shaw said, "a state-of-the-art computer calculation." Fur
thermore, the shape is far from static. A drop filling with water 
is like a little elastic hag of surface tension, oscillating this way 
and that, gaining mass and stretching its walls until it passes a 
critical point and snaps off. A physicist trying to model the drip 
prohlem completely-writing down sets of coupled nonlinear par
tial differential equations with appropriate houndary conditions 
and then trying to solve them-would find himself lost in a deep, 
deep thicket. 

An alternative approach would he to forget ahout the physics 
and look only at the data, as though it were coming out of a hlack 
hox. Given a list of numhers representing intervals hetween drips, 
could an expert in chaotic dynamics find something useful to say? 
Indeed, as it turned out, methods could he devised for organizing 
such data and working hackward into the physics, and these 
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methods hecame critical to the applicahility of chaos to real-world 
prohlems. 

But Shaw hegan halfway hetween these extremes, hy making 
a sort of caricature of a complete physical model. lgnoring drop 
shapes, ignoring complex motions in three dimensions, he roughly 
summarized drip physics. He imagined a weight hanging from a 
spring. He imagined that the weight grew steadily with time. As 
it grew, the spring would stretch and the weight would hang lower 
and lower. When it reached a certain point, a partion of the weight 
would hreak off. The amount that would detach, Shaw supposed 
arhitrarily, would depend strictly on the speed of the descending 
weight when it reached the cutoff point. 

Then, of course, the remaining weight would hounce hack 
up, as springs do, with oscillations that graduate students leam 
to model using standard equations. The interesting feature of the 
model-the only interesting feature, and the nonlinear twist that 
made chaotic hehavior possihle-was that the next drip depended 
on how the springiness interacted with the steadily increasing 
weight. A down hounce might help the weight reach the cutoff 
point that much sooner, or an up hounce might delay the process 
slightly. With a real faucet, drops are not all the same size. The 
size depends hoth on the velocity of the flow and on the direction 
of the hounce. If a drop starts off its life already moving downward, 
then it will hreak off sooner. If it happens to he on the rehound, 
it will he ahle to fill with a hit more water hefore it snaps. Shaw's 
model was exactly crude enough to he summed up in three dif
ferential equations, the minimum necessary for chaos, as Poincare 
and Lorenz had shown. But would it generate as much complexity 
as a real faucet? And would the complexity he of the same kind? 

Thus Shaw found himself sitting in a lahoratory in the physics 
huilding, a hig plastic tuh of water over his head, a tuhe running 
down to a premium-quality hardware-store hrass nozzle. As each 
drop fell, it interrupted a light heam, and a microcomputer in the 
next room recorded the time. Meanwhile Shaw had his three ar
hitrary equations up and running on the analog computer, pro
ducing a stream of imaginary data. One day he performed some 
show-and-tell for the faculty-a "pseudocolloquium," as Crutch
field said, hecause graduate students were not permitted to give 
formal colloquiums. Shaw played a tape of a faucet making its 
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drumbeat on a piece of tin. And he had his computer going click
click-click in a crisp syncopation, revealing patterns to the ear. 
He had solved the problem simultaneously from front and back, 
and his listeners could hear the deep structure in this seemingly 
disorderly system. But to go further, the group needed a way of 
taking raw data from any experiment and working backward to 
equations and strange attractors that characterized chaos. 

With a more complicated system, one could imagine plotting 
one variable against another, relating changes in temperature or 
velocity to the passage of time. But the dripping faucet provided 
only a series of times. So Shaw tried a technique that may have 
been the Santa Cruz group's cleverest and most enduring practical 
contribution to the progress of chaos. It was a method of recon
structing a phase space for an unseen strange attractor, and it could 
be applied to any series of data at all. For the dripping faucet data, 
Shaw made a two-dimensional graph in which the x axis repre
sented a time interval between a pair of drops and the y axis 
represented the next time interval. If 150 milliseconds passed 
between drop one and drop two, and then 150 milliseconds passed 
between drop two and drop three, he would plot a point at the 
position 150-150. 

That was all there was to it. If the dripping was regular, as it 
tended to be when the water flowed slowly and the system was 
in its "water clock regime," the graph would be suitably dull. 
Every point would land at the same place. The graph would be a 
single dot. Or almost. Actually, the first difference between the 
computer dripping faucet and the real dripping faucet was that 
the real version was subject to noise, and exceedingly sensitive. 
"It turns out that the thing is an excellent seismometer," Shaw 
said ironically, "very efficient in bringing noise up from the little
league scales to the big-league scales. " Shaw ended up doing most 
of his work at night, when foot traffic in the physics corridors was 
lightest. Noise meant that, instead of the single dot predicted by 
theory, he would see a slightly fuzzy blob. 

As the flow rate was increased, the system would go through 
a period-doubling bifurcation. Drops would fall in pairs. One in
terval might be 150 milliseconds, and the next might be 80. So 
the graph would show two fuzzy blobs, one centered at 150-80 
and the other at 80-150. The real test came when the pattern 
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hecame chaotic. If it were truly random, points would he scattered 
all over the graph. There would he no relation to he found hetween 
one interval and the next. But if a strange attractor were hidden 
in the data, it might reveal itself as a coalescence of fuzziness into 
distinguishahle structures. 

Often three dimensions were necessary to see the structure, 
hut that was no prohlem. The technique could easily he gener
alized to higher-dimensional graph-making. Instead of plotting 
interval n against interval n +  1 ,  one could plot interval n against 
interval n +  1 against interval n +  2. It was a trick-a gimmick. 
Ordinarily a three-dimensional graph required knowledge of three 
independent variahles in a system. The trick gave three variahles 
for the price of one. It reflected the faith of these scientists that 
order was so deeply ingrained in apparent disorder that it would 
find a way of expressing itself even to experimenters who did not 
know which physical variahles to measure or who were not ahle 
to measure such variahles directly. As Farmer said, "When you 
think ahout a variahle, the evolution of it must he influenced hy 
whatever other variahles it's interacting with. Their values must 
somehow he contained in the history of that thing. Somehow their 
mark must he there." In the case of Shaw's dripping faucet the 
pictures illustrated the point. In three dimensions, especially, the 
patterns emerged, resemhling loopy trails of smoke left hy an out
of-control sky-writing plane. Shaw was ahle to match plots of the 
experimental data with data produced hy his analog computer 
model, the main difference heing that the real data was always 
fuzzier, smeared out hy noise. Even so, the structure was unmis
takahle. The Santa Cruz group hegan collahorating with such ex
perienced experimentalists as Harry Swinney, who had moved to 
the University of Texas in Austin, and they learned how to retrieve 
strange attractors from all kinds of systems. It was a matter of 
emhedding the data in a phase space of enough dimensions. Soon 
Floris Takens, who had invented strange attractors with David 
Ruelle, independently gave a mathematical foundation for this 
powerful technique of reconstructing the phase space of an at
tractor from a stream of real data. As countless researchers soon 
discovered, the technique distinguishes hetween mere noise and 
chaos, in the new sense: orderly disorder created hy simple pro
cesses. Truly random data remains spread out in an undefined 
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mess. But chaos-deterministic and pattemed-pulls the data into 
visible shapes. Of all the possible pathways of disorder, nature 
favors just a few. 

THE TRANSITION FROM REBEL to physicist was slow. Every so 
often, sitting in a coffeehouse or working in their laboratory, ane 
or another of the students would have to fight back amazement 
that their scientific fantasy had not ended. God, we're still doing 
this and it sti11 makes sense, as Jim Crutchfield would say. We're 
still here. How far is it going to go? 

Their chief supporters on the faculty were the Smale protege 
Ralph Abraham in the mathematics department and in the physics 
department Bill Burke, who had himself made "czar of the analog 
computer" to protect the collective's claim to this piece of equip
ment, at least. The rest of the physics faculty found itself in a 
more difficult position. A few years later, some professors denied 
bitterly that the collective had been forced to overcome indiffer
enc13 or opposition from the department. The collective reacted 
just as bitterly to what it considered revisionist history on the part 
of belated converts to chaos. "We had no advisor, nobody telling 
us what to do," said Shaw. "We were in an adversary role for 
years, and it continues to this day. We were never funded at Santa 
Cruz. Every ane of us worked for considerable periods of time 
without pay, and it was a shoestring operation the entire way, 
with no intellectual or other guidance." 

By its lights, though, the faculty tolerated and even abetted a 
long period of research that seemed to fall short of any substantial 
kind of science. Shaw's thesis advisor in superconductivity kept 
him on salary for a year or so, long after Shaw had veered away 
from low-temperature physics. No one ever quite ordered the chaos 
research to stop. At worst the faculty reached an attitude of be
nevolent discouragement. Each member of the collective was taken 
aside from time to time for heart-to-heart talks. They were warned 
that, even if somehow a way could be found to justify doctorates, 
no ane would be able to help the students find jobs in a nonexistent 
field. This may be a fad, the faculty would say, and then where 
will you be? Yet outside the redwood shelter of the Santa Cruz 



268 C H A O S 

hills, chaos was creating its own scientific estahlishment, and the 
Dynamical Systems Collective had to join it. 

One year Mitchell Feigenhaum came hy, making the rounds 
of the lecture circuit to explain his hreakthrough in universality. 
As always, his talks were ahstrusely mathematical; renormaliza
tion group theory was an esoteric piece of condensed matter phys
ics that these students had not studied. Besides, the collective was 
more interested in real systems than in delicate one-dimensional 
maps. Doyne Farmer, meanwhile, heard that a Berkeley mathe
matician, Oscar E. Lanford III, was exploring chaos, and he went 
up to talk. Lanford listened politely and then looked at Farmer 
and said they had nothing in common. He was trying to under
stand Feigenhaum. 

How deadly! Where's the guy's sense of scope? Farmer thought. 
"He was looking at these little orhits. Meanwhile we were into 
information theory with all its profundity, taking chaos apart, 
seeing what make it tick, trying to relate metric entropy and Lya
punov exponents to more statistical measures." 

In his conversation with Farmer, Lanford did not emphasize 
universality, and only later did Farmer realize that he had missed 
the point. "It was my naivete," Farmer said. "The idea of uni
versality was not just a great result. Mitchell's thing was also a 
technique to employ a whole army of unemployed critical phe
nomena people. 

"Up to that point it appeared that nonlinear systems would 
have to he treated in a case-hy-case way. We were trying to come 
up with a language to quantify it and descrihe it, hut it still seemed 
as though everything would have to he treated case hy case. We 
saw no way to put systems in classes and write solutions that 
would he valid for the whole class, as in linear systems. Univer
sality meant finding properties that were exactly the same in quan
tifiahle ways for everything in that class. Predictable properties. 
That's why it was really important. 

"And there was a sociological factor that pumped even more 
fuel. Mitchell east his results in the language of renormalization. 
He took all this machinery that people in critical phenomena had 
heen skilled in using. Those guys were having a hard time, hecause 
there didn't seem to he any interesting prohlems left for them to 
do. They were looking around for something else to apply their 
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bag of tricks to. And suddenly Feigenbaum came forward with 
his extremely significant application of this bag of tricks. It spawned 
an entire subdiscipline."  

Quite independently, however, the Santa Cruz students began 
to make an impression of their own. Within the department their 
star began to rise after a surprise appearance at a midwinter meet
ing in condensed matter physics in Laguna Beach in 1978, orga
nized by Bernardo Huberman of the Xerox Palo Alto Research 
Center and Stanford University. The collective was not invited, 
but it went nonetheless, bundling itself into Shaw's 1959 Ford 
ranch-style station wagon, an automobile known as the Cream 
Dream. Just in case, the group brought some equipment, including 
a huge television monitor and a videotape. When an invited speaker 
canceled at the last minute, Huberman invited Shaw to take his 
place. The timing was perfect. Chaos had attained the status of 
buzzword, but few of the physicists attending the conference knew 
what it meant. So Shaw began by explaining attractors in phase 
space: first fixed points (where everything stops) ; then limit cycles 
(where everything oscillates) ; then strange attractors (everything 
else) . He demonstrated with his computer graphics on videotape. 
("Audiovisual aids gave us an edge," he said. "We could hyp
notize them with flashing lights.") He illuminated the Lorenz at
tractor and the dripping faucet. He explained the geometry-how 
shapes are stretched and folded, and what that meant in the grand 
terms of information theory. And for good measure, he put in a 
few words at the end about shifting paradigms. The talk was a 
popular triumph, and in the audience were several members of 
the Santa Cruz faculty, seeing chaos for the first time through the 
eyes of their colleagues. 

lN 1979 THE WHOLE GROUP attended the second chaos meeting 
of the New York Academy, of Sciences, this time as participants, 
and now the field was exploding. The 1977 meeting had been 
Lorenz's, attended by specialists numbering in the dozens. This 
meeting was Feigenbaum's, and scientists came by the hundreds. 
Where two years earlier Rob Shaw had shyly tried to find a type
writer so that he could produce a paper to leave under people's 
doors, now the Dynamical Systems Collective had become a vir-
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tual printing press, producing papers rapidly and always under 
joint authorship. 

But the collective could not go on forever. The closer it came 
to the real world of science, the closer it came to unraveling. One 
day Bernardo Huberman called. He asked for Rob Shaw, but he 
happened to get Crutchfield. Huberman needed a collaborator for 
a tight, simple paper about chaos. Crutchfield, the youngest mem
ber of the collective, concerned about being thought of as merely 
its "hacker," was beginning to realize that in one respect the Santa 
Cruz faculty had been right all along: each of the students was 
someday going to have to he judged as an individual. Huberman, 
furthermore, had all the sophistication about the profession of 
physics that the students lacked, and in particular he knew how 
to get the most mileage from a given piece of work. He had his 
doubts, having seen their laboratory-"lt was all very vague, you 
know, sofas and bean bags, like stepping into a time machine, 
flower children and the 1960s again." But he needed an analog 
computer, and in fact Crutchfield managed to get his research 
program running in hours. The collective was a problem, though. 
"All the guys want in," Crutchfield said at one point, and Hub
erman said ahsolutely not. "lt's not just the credit, it's the blame. 
Suppose the paper is wrong-you're going to blame a collective? 
l'm not part of a collective." He wanted one partner for a clean 
job. 

The result was just what Huberman had hoped for: the first 
paper about chaos to he published in the premier American journal 
for reporting breakthroughs in physics, Physical Review Letters. 
In terms of scientific politics this was a nontrivial achievement. 
"To us it was fairly obvious stuff," Crutchfield said, "but what 
Bernardo understood was that it would have a huge impact." It 
was also one beginning of the group's assimilation into the real 
world. Farmer was angered, seeing in Crutchfield's defection an 
undermining of the collective spirit. 

Crutchfield was not alone in stepping outside the group. Soon 
Farmer himself, and Packard, too, were collaborating with estab
lished physicists and mathematicians: Huberman, Swinney, Yorke. 
The ideas formed in the cauldron at Santa Cruz became a firm 
part of the framework of the modern study of dynamical systems. 
When a physicist with a mass of data wanted to investigate its 
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dimension or its entropy, the appropriate definitions and working 
techniques might well he those created in the years of patching 
plugs in the Systron-Donner analog computer and staring at the 
oscilloscope. Climate specialists would argue ahout whether the 
chaos of the world's atmosphere and oceans had infinite dimen
sions, as traditiona! dynamicists would assume, or somehow fol
lowed a low-dimensional strange attractor. Economists analyzing 
stock market data would try to find attractors of dimension 3.7 or 
5.3. The lower the dimension, the simpler the system. Many 
mathematical peculiarities had to he sorted and understood. Frac
tal dimension, Hausdorff dimension, Lyapunov dimension, in
formation dimension-the suhtleties of these measures of a chaotic 
system were hest explained hy Farmer and Yorke. An attractor's 
dimension was "the first level of knowledge necessary to char
acterize its properties." It was the feature that gave "the amount 
of information necessary to specify the position of a point on the 
attractor to within a given accuracy." The methods of the Santa 
Cruz students and their older collahorators tied these ideas to the 
other important measures of systems: the rate of decay of pre
dictahility, the rate of information flow, the tendency to create 
mixing. Sometimes scientists using these methods would find 
themselves plotting data, drawing little hoxes, and counting the 
numher of data points in each hox. Yet even such seemingly crude 
techniques hrought chaotic systems for the first time within the 
reach of scientific understanding. 

Meanwhile, having learned to look for strange attractors in 
flapping flags and rattling speedometers, the scientists made a 
point of finding the symptoms of deterministic chaos all through 
the current literature of physics. Unexplained noise, surprising 
fluctuations, regularity mixing with irregularity-these effects 
popped up in papers from experimentalists working with every
thing from particle accelerators to lasers to Josephson junctions. 
The chaos specialists would make these symptoms their own, 
telling the unconverted, in effect, your prohlems are our prohlems. 
"Several experiments on Josephson junction oscillators have re
vealed a striking noise-rise phenomena," a paper would hegin, 
"which cannot he accounted for in terms of thermal fluctuations." 

By the time the collective departed, some of the Santa Cruz 
faculty had tumed to chaos, tao. Other physicists, though, felt in 
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retrospect that Santa Cruz had missed an opportunity to begin the 
kind of national center for work in nonlinear dynamics that soon 
began appearing on other campuses. In the early 1980s the mem
bers of the collective graduated and dispersed. Shaw finished his 
dissertation in 1980, Farmer in 1981, Packard in 1982. Crutch
field's appeared in 1983, a typographical hodgepodge interleaving 
typed pages with no less than eleven papers already published in 
the journals of physics and mathematics. He went on to the Uni
versity of California at Berkeley. Farmer joined the Theoretical 
Division of Los Alamos. Packard and Shaw joined the Institute 
for Advanced Study in Princeton. Crutchfield studied video feed
back loops. Farmer worked on "fat fractals" and modeled the 
complex dynamics of the human immune system. Packard ex
plored spatial chaos and the formation of snowflakes. Only Shaw 
seemed reluctant to join the mainstream. His own influential leg
acy comprised just two papers, ane that had won him a trip to 
Paris and ane, about the dripping faucet, that summed up all his 
Santa Cruz research. Several times, he came close to quitting sci
ence altogether. As ane of his friends said, he was oscillating. 



Inner Rhythms 

The sciences do not try to explain, they hardly even 

try to interpret, they mainly make models. By a 

model is meant a mathematical construct which, 

with the addition of certain verbal interpretations, 

describes observed phenomena. The justification of 

such a mathematical construct is solely and 

precisely that it is expected to work. 

-JOHN VON NEUMANN 



BERNARDO HUBERMAN L00KED 0UT over his audience of as
sorted theoretical and experimental biologists, pure mathemati
cians and physicians and psychiatrists, and he realized that he 
had a communication problem. He had just finished an unusual 
talk at an unusual gathering in 1986, the first major conference 
on chaos in biology and medicine, under the various auspices of 
the New York Academy of Sciences, the National Institute of Men
tal Health, and the Office of Naval Research. In the cavemous 
Masur Auditorium at the National Institutes of Health outside 
Washington, Huberman saw many familiar faces, chaos specialists 
of long standing, and many unfamiliar ones as well. An experi
enced speaker could expect some audience impatience-it was 
the conference's last day, and it was dangerously close to lunch 
time. 

Huberman, a dapper black-haired Californian transplanted 
from Argentina, had kept up his interest in chaos since his col
laborations with members of the Santa Cruz gang. He was a re
search fellow at the Xerox Corporation's Palo Alto Research Center. 
But sometimes he dabbled in projects that did not belong to the 
corporate mission, and here at the biology conference he had just 
finished describing one of those: a model for the erratic eye move
ment of schizophrenics. 

Psychiatrists have struggled for generations to define schiz
ophrenia and classify schizophrenics, but the disease has been 
almost as difficult to describe as to cure. Most of its symptoms 
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appear in mind and behavior. Since 1908, however, scientists have 
known af a physical manifestation af the disease that seems ta 
afflict not only schizophrenics but also their relatives. When pa
tients try ta watch a slowly swinging pendulum, their eyes cannot 
track the smooth motion. Ordinarily the eye is a remarkably smart 
instrument. A healthy person's eyes stay locked on moving targets 
without the least conscious thought; moving images stay frozen 
in place on the retina. But a schizophrenic's eyes jump about 
disruptively in small increments, overshooting or undershooting 
the target and creating a constant haze af extraneous movements. 
No ane knows why. 

Physiologists accumulated vast amounts af data over the years, 
making tables and graphs ta show the pattems af erratic eye mo
tion. They generally assumed that the fluctuations came from fluc
tuations in the signal from the central nervous system controlling 
the eye's muscles. Noisy output implied noisy input, and perhaps 
some random disturbances afflicting the brains af schizophrenics 
were showing up in the eyes. Huberman, a physicist, assumed 
otherwise and made a modest model. 

He thought in the crudest possible way about the mechanics 
af the eye and wrote down an equation. There was a term for the 
amplitude af the swinging pendulum and a term for its frequency. 
There was a term for the eye's inertia. There was a term for damp
ing, or friction. And there were terms for error correction, ta give 
the eye a way af locking in on the target. 

As Huberman explained ta his audience, the resulting equa
ti011 happens ta describe an analogous mechanical system: a ball 
rolling in a curved trough while the trough swings from side ta 
side. The side-ta-side motion corresponds ta the motion af the 
pendulum, and the walls af the trough correspond ta the error
correcting feature, tending ta push the ball back toward the center. 
1n the now-standard style af exploring such equations, Huberman 
had run his model for hours on a computer, changing the various 
parameters and making graphs af the resulting behaviors. He found 
both order and chaos. In some regimes, the eye would track 
smoothly; then, as the degree af nonlinearity was increased, the 
system would go through a fast period-doubling sequence and 
produce a kind af disorder that was indistinguishable from the 
disorder xeported in the medical literature. 
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In the model, the erratic hehavior had nothing to do with any 
outside signal. It was an inevitahle consequence of too much non
linearity in the system. To some of the doctors listening, Huher
man's model seemed to match a plausihle genetic model for 
schizophrenia. A nonlinearity that could either stahilize the sys
tem or disrupt it, depending on whether the nonlinearity was weak 
or strong, might correspond to a single genetic trait. One psychi
atrist compared the concept to the genetics of gout, in which too 
high a level of uric acid creates pathological symptoms. Others, 
more familiar than Huherman with the clinical literature, pointed 
out that schizophrenics were not alone; a whole range of eye 
movement prohlems could he, found in different kinds of neuro
logical patients. Periodic oscillations, aperiodic oscillations, all 
sorts of dynamical hehavior could he found in the data hy anyone 
who cared to go hack and apply the tools of chaos. 

But for every scientist present who saw new Iines of research 
opening up, there was another who suspected Huherman of grossly 
oversimplifying his model. When it came time for questions, their 
annoyance and frustration spilled out. "My prohlem is, what guides 
you in the modeling?" one of these scientists said. "Why look for 
these specific elements of nonlinear dynamics, namely these hi
furcations and chaotic solutions?" 

Huherman paused. "Oh, okay. Then I truly failed at stating 
the purpose of this. The model is simple. Someone comes to me 
and says, we see this, so what do you think happens. So I say, 
well, what is the possihle explanation. So they say, well, the only 
thing we can come up with is something that is fluctuating over 
such a short time in your head. So then I say, well look, I'm a 
chaotician of sorts, and I know that the simplest nonlinear tracking 
model you can write down, the simplest, has these generic fea
tures, regardless of the details of what these things are like. So I 
do that and people say, oh, that's very interesting, we never thought 
that perhaps this was intrinsic chaos in the system. 

"The model does not have any neurophysiological data that 
I can even defend. All I'm saying is that the simplest tracking is 
something that tends to make an error and go to zero. That's the 
way we move our eyes, and that's the way an antenna tracks an 
airplane. You can apply this model to anything." 

Out on the floor, another hiologist took the microphone, still 
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frustrated by the stick-figure simplicity of Huberman's model. In 
real eyes, he pointed out, four muscle-control systems operate 
simultaneously. He began a highly technical description of what 
he considered realistic modeling, explaining how, for example, 
the mass term is thrown away because the eye is heavily over
damped. "And there's ane additional complication, which is that 
the amount of mass present depends on the velocity of rotation, 
because part of the mass lags behind when the eye accelerates 
very rapidly. The jelly inside the eye lags behind when the outer 
casing rotates very fast." 

Pause. Huberman was stymied. Finally ane of the conference 
organizers, Arnold Mandell, a psychiatrist with a long interest in 
chaos, took the microphone from him. 

"Look, as a shrink I want to make an interpretation. What 
you've just seen is what happens when a nonlinear dynamicist 
working with low-dimensional global systems comes to talk to a 
biologist who's been using mathematical tools. The idea that in 
fact there are universal properties of systems, built into the sim
plest representations, alienates all of us. So the question is 'What 
is the subtype of the schizophrenia,' 'There are four ocular motor 
systems,' and 'What is the modeling from the standpoint of the 
actual physical structure,' and it begins to decompose. 

"What's actually the case is that, as physicians or scientists 
learning all 50,000 parts of everything, we resent the possibility 
that there are in fact universal elements of motion. And Bernardo 
comes up with ane and look what happens." 

Huberman said, "It happened in physics five years ago, but 
by now they're convinced." 

THE CHOICE 1s ALWAYS the same. You can make your model 
more complex and more faithful to reality, or you can make it 
simpler and easier to handle. Only the most nai've scientist be
lieves that the perfect model is the ane that perfectly represents 
reality. Such a model would have the same drawbacks as a map 
as large and detailed as the city it represents, a map depicting 
every park, every street, every building, every tree, every pothole, 
every inhabitant, and every map. Were such a map possible, its 
specifi.city would defeat its purpose: to generalize and abstract. 
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Mapmakers highlight such features as their clients choose. What
ever their purpose, maps and models must simplify as much as 
they mimic the world. 

For Ralph Abraham, the Santa Cruz mathematician, a good 
model is the "daisy world" of James E. Lovelock and Lynn Mar
gulis, proponents of the so-called Gaia hypothesis , in which the 
conditions necessary for life are created and maintained by life 
itself in a self-sustaining process of dynamical feedback. The daisy 
world is perhaps the simplest imaginable version of Gaia, so sim
ple as to seem idiotic. "Three things happen," as Abraham put it, 
"white daisies, black daisies, and unplanted desert. Three colors: 
white, black, and red. How can this teach us anything about our 
planet? It explains how temperature regulation emerges. It ex
plains why this planet is a good temperature for life. The daisy 
world model is a terrible model, but it teaches how biological 
homeostasis was created on earth."  

White daisies reflect light, making the planet cooler. Black 
daisies absorb light, lowering the albedo, or reflectivity, and thus 
making the planet warmer. But white daisies "want" warm weather, 
meaning that they thrive preferentially as temperatures rise. Black 
daisies want cool weather. These qualities can he expressed in a 
set of differential equations and the daisy world can he set in 
motion on a computer. A wide range of initial conditions will 
lead to an equilibrium attractor-and not necessarily a static equi
librium. 

"lt's just a mathematical model of a conceptual model, and 
that's what you want-you don't want high-fidelity models of 
biological or social systems," Abraham said. "You just put in the 
albedos, make some initial planting, and watch billions of years 
of evolution go by. And you educate children to he better members 
of the board of directors of the planet." 

The paragon of a complex dynamical system and to many 
scientists, therefore, the touchstone of any approach to complexity 
is the human body. No ohjeet of study available to physicists offers 
such a cacophony of counterrhythmic motion on scales from mac
roscopic to microscopic: motion of muscles, of fluids , of currents , 
of fibers, of cells. No physical system has lent itself to such an 
obsessive brand of reductionism: every organ has its own micro
structure and its own chemistry, and student physiologists spend 
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years just on the naming of parts. Yet how ungraspahle these parts 
can he! At its most tangihle, a hody part can he a seemingly well
defined organ like the liver. Or it can he a spatially challenging 
network of solid and liquid like the vascular system. Or it can he 
an invisihle assemhly, truly as ahstract a thing as "traffic" or "de
mocracy," like the immune system, with its lymphocytes and T4 
messengers, a miniaturized cryptography machine for encoding 
and decoding data ahout invading organisms. To study such sys
tems without a detailed knowledge of their anatomy and chemistry 
would he futile, so heart specialists learn ahout ion transport through 
ventricular muscle tissue, hrain specialists learn the electrical par
ticulars of neuron firing, and eye specialists learn the name and 
place and purpose of each ocular muscle. In the 1980s chaos 
hrought to life a new kind of physiology, huilt on the idea that 
mathematical tools could help scientists understand glohal com
plex systems independent of local detail. Researchers increasingly 
recognized the hody as a place of motion and oscillation-and 
they developed methods of listening to its variegated drumheat. 
They found rhythms that were invisihle on frozen microscope 
slides or daily hlood samples. They studied chaos in respiratory 
disorders. They explored feedhack mechanisms in the control of 
red and white hlood cells. Cancer specialists speculated ahout 
periodicity and irregularity in the cycle of cell growth. Psychia
trists explored a multidimensional approach to the prescription 
of antidepressant drugs. But surprising findings ahout one organ 
dominated the rise of this new physiology, and that was the heart, 
whose animated rhythms, stahle or unstahle, healthy or patho
logical, so precisely measured the difference hetween life and 
death. 

EVEN DAVID RUELLE HAD STRA YED from formalism to specu
late ahout chaos in the heart-"a dynamical system of vital interest 
to every one of us," he wrote. 

"The normal cardiac regime is periodic, hut there are many 
nonperiodic pathologies (like ventricular fihrillation) which lead 
to the steady state of death. It seems that great medical henefit 
might he derived from computer studies of a realistic mathematical 
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model which would reproduce the various cardiac dynamical re
gimes." 

Teams of researchers in the United States and Canada took 
up the challenge. Irregularities in the heartbeat had long since 
been discovered, investigated, isolated, and categorized. To the 
trained ear, dozens of irregular rhythms can he distinguished. To 
the trained eye, the spiky patterns of the electrocardiogram offer 
clues to the source and the seriousness of an irregular rhythm. A 
layman can gauge the richness of the problem from the cornucopia 
of names available for different sorts of arrhythmias. There are 
ectopic beats, electrical alternans, and torsades de pointes. There 
are high-grade block and escape rhythms. There is parasystole 
(atrial or ventricular, pure or modulated). There are Wenckebach 
rhythms (simple or complex). There is tachycardia. Most dam
aging of all to the prospect for survival is fibrillation. This naming 
of rhythms, like the naming of parts, comforts physicians. It allows 
specificity in diagnosing troubled hearts, and it allows some in
telligence to bear on the problem. But researchers using the tools 
of chaos began to discover that traditiona! cardiology was making 
the wrong generalizations about irregular heartbeats, inadvertently 
using superficial classifications to obscure deep causes. 

They discovered the dynamical heart. Almost always their 
backgrounds were out of the ordinary. Leon Glass of McGill Uni
versity in Montreal was trained in physics and chemistry, where 
he indulged an interest in numbers and in irregularity, tao, com
pleting his doctoral thesis on atomic motion in liquids before 
turning to the problem of irregular heartbeats. Typically, he said, 
specialists diagnose many different arrhythmias by looking at short 
strips of electrocardiograms. "It's treated by physicians as a pattern 
recognition problem, a matter of identifying patterns they have 
seen before in practice and in textbooks. They really don't analyze 
in detail the dynamics of these rhythms. The dynamics are much 
richer than anybody would guess from reading the textbooks." 

At Harvard Medical School, Ary L. Goldberger, co-director of 
the arrhythmia laboratory of Beth Israel Hospital in Boston, be
lieved that the heart research represented a threshold for collab
oration between physiologists and mathematicians and physicists. 
"We're at a new frontier, and a new class of phenomenology is 
out there," he said. "When we see bifurcations, abrupt changes 
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in behavior, there is nothing in conventional linear models to 
account for that. Clearly we need a new class of models, and 
physics seems to provide that." Goldberger and other scientists 
had to overcome barriers of scientific language and institutional 
classification. A considerable obstacle, he felt, was the uncom
fortable antipathy of many physiologists to mathematics. "In 1986 
you won't find the word fractals in a physiology book," he said. 
"I think in 1 996 you won't be able to find a physiology book 
without it. " 

A doctor listening to the heartbeat hears the whooshing and 
pounding of fluid against fluid, fluid against solid, and solid against 
solid. Blood courses from chamber to chamber, squeezed by the 
contracting muscles behind, and then stretches the walls ahead. 
Fibrous valves snap shut audibly against the backflow. The muscle 
contractions themselves depend on a complex three-dimensional 
wave of electrical activity. Modeling any one piece of the heart's 
behavior would strain a supercomputer; modeling the whole in
terwoven cycle would be impossible. Computer modeling of the 
kind that seems natural to a fluid dynamics expert designing air
plane wings for Boeing or engine flows for the National Aeronau
tics and Space Administration is an alien practice to medical 
technologists. 

Trial and error, for example, has govemed the design of ar
tificial heart valves, the metal and plastic devices that now prolong 
the lives of those whose natural valves wear out. In the annals of 
engineering a special place must be reserved for nature's own 
heart valve, a filmy, pliant, translucent arrangement of three tiny 
parachute-like cups. To let blood into the heart's pumping cham
bers, the valve must fold gracefully out of the way. To keep blood 
from backing up when the heart pumps it forward, the valve must 
fill and slam closed under the pressure, and it must do so, without 
leaking or tearing, two or three billion times. Human engineers 
have not done so well. Artificial valves, by and large, have been 
borrowed from plumbers: standard designs like "ball in cage," 
tested, at great cost, in animals. To overcome the obvious problems 
of leakage and stress failure was hard enough. Few could have 
anticipated how hard it would be to eliminate another problem. 
By changing the pattems of fluid flow in the heart, artificial valves 
create areas of turbulence and areas of stagnation; when blood 
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stagnates, it forms clots; when clots break off and travel to the 
brain, they cause strokes. Such clotting was the fatal harrier to 
making artificial hearts. Only in the mid-1980s, when mathema
ticians at the Courant Institute of New York University applied 
new computer modeling techniques to the prohlem, did the design 
of heart valves begin to take full advantage of availahle technology. 
Their computer made motion pictures of a heating heart, two
dimensional hut vividly recognizable. Hundreds of dots, repre
senting particles of blood, stream through the valve, stretching the 
elastic walls of the heart and creating whirling vortices. The 
mathematicians found that the heart adds a whole level of com
plexity to the standard fluid flow problem, hecause any realistic 
model must take into account the elasticity of the heart walls 
themselves. lnstead of flowing over a rigid surface, like air over an 
airplane wing, blood changes the heart surface dynamically and 
nonlinearly. 

Even subtler, and far deadlier, was the problem of arrhyth
mias. Ventricular fihrillation causes hundreds of thousands of sud
den deaths each year in the United States alone. In many of those 
cases, fibrillation has a specific, well-known trigger: hlockage of 
the arteries, leading to the death of the pumping muscle. Cocaine 
use, nervous stress, hypothermia-these, too, can predispose a 
person to fihrillation. ln many cases the onset of fihrillation re
mains mysterious. Faced with a patient who has survived an attack 
of fihrillation, a doctor would prefer to see damage-evidence of 
a cause. A patient with a 'seemingly healthy heart is actually more 
likely to suffer a new attack. 

There is a classic metaphor for the fihrillating heart: a hag of 
worms. Instead of contracting and relaxing, contracting and re
laxing in a repetitive, periodic way, the heart's muscle tissue writhes, 
uncoordinated, helpless to pump hlood. In a normally heating 
heart the electrical signal travels as a coordinated wave through 
the three-dimensiona.l structure of the heart. When the signal ar
rives, each cell contracts. Then each cell relaxes for a critical 
refractory period, during which it cannot he set off again pre
maturely. 1n a fihrillating heart the wave hreaks up. The heart is 
never ali contracted or all relaxed. 

One perplexing feature of fihrillation is that many of the heart's 
individual components can he working normally. Often the heart's 
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pacemaking nodes continue to send out regular electrical ticks. 
Individual muscle cells respond properly. Each cell receives its 
stimulus, contracts, passes the stimulus on, and relaxes to wait 
for the next stimulus. ln autopsy the muscle tissue may reveal no 
damage at all. That is one reason chaos experts believed that a 
new, global approach was necessary: the parts of a fibrillating heart 
seem to be working, yet the whole goes fatally awry. Fibrillation 
is a disorder of a complex system, just as mental disorders
whether or not they have chemical roots-are disorders of a com
plex system. 

The heart will not stop fibrillating on its own. This brand of 
chaos is stable. Only a jolt of electricity from a defibrillation de
vice-a jolt that any dynamicist recognizes as a massive pertur
bation-can return the heart to its steady state. On the whole, 
defibrillators are effective. But their design, like the design of 
artificial heart valves, has required much guesswork. "The busi
ness of determining the size and shape of that jolt has been strictly 
empirical," said Arthur T. Winfree, a theoretical biologist. "There 
just hasn't been any theory about that. It now appears that some 
assumptions are not correct. It appears that defibrillators can he 
radically redesigned to improve their efficiency many fold and 
therefore improve the chance of success many fold. " For other 
abnormal heart rhythms an assortment of drug therapies have been 
tried, also based largely on trial and error-"a black art," as Win
free put it. Without a sound theoretical understanding of the heart's 
dynamics, it is tricky to predict the effects of a given drug. "A 
wonderful job has been done in the last twenty years of finding 
out all the nitty gritty details of membrane physiology, all the 
detailed, precise workings of the immense complexity of all the 
parts of the heart. That essential part of the business is in good 
shape. What's gotten overlooked is the other side, trying to achieve 
some global perspective on how it all works." 

WINFREE CAME FROM A FAMILY in which no one had gone to 
college. He got started, he would say, by not having a proper 
education. His father, rising from the bottom of the life insurance 
business to the level of vice president, moved the family almost 
yearly up and down the East Coast, and Winfree attended more 
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than a dozen schools before finishing high school. He developed 
a feeling that the interesting things in the world had to do with 
biology and mathematics and a companion feeling that no stan
dard combination of the two subjects did justice to what was 
interesting. So he decided not to take a standard approach. He 
took a five-year course in engineering physics at Cornell Univer
sity, learning applied mathematics and a full range of hands-on 
laboratory styles. Prepared to be hired into the military-industrial 
complex, he got a doctorate in biology, striving to combine ex
periment with theory in new ways. He began at Johns Hopkins, 
left because of conflicts with the faculty, continued at Princeton, 
left because of conflicts with the faculty there, and finally was 
awarded a Princeton degree from a distance, when he was already 
teaching at the University of Chicago. 

Winfree is a rare kind of thinker in the biological world, bring
ing a strong sense of geometry to his work on physiological prob
lems. He began his exploration of biological dynamics in the early 
seventies by studying biological clocks-circadian rhythms. This 
was an area traditionally governed by a naturalist's approach: this 
rhythm goes with that animal, and so forth. In Winfree's view the 
problem of circadian rhythms should lend itself to a mathematical 
style of thinking. "I had a headful of nonlinear dynamics and 
realized that the problem could be thought of, and ought to be 
thought of, in those qualitative terms. Nobody had any idea what 
the mechanisms of biological clocks are. So you have two choices. 
You can wait until the biochemists figure out the mechanism of 
clocks and then try to derive some behavior from the known mech
anisms, or you can start studying how clocks work in terms of 
complex systems theory and nonlinear and topological dynamics. 
Which I undertook to do." 

At one time he had a laboratory full of mosquitoes in cages. 
As any camper could guess, mosquitoes perk up around dusk each 
day. In a laboratory, with temperature and light kept constant to 
shield them from day and night, mosquitoes turn out to have an 
inner cycle of not twenty-four hours but twenty-three. Every twenty
three hours, they buzz around with particular intensity. What 
keeps them on track outdoors is the jolt of light they get each day; 
in effect, it resets their clock. 

Winfree shined artificial light on his mosquitoes, in doses that 
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he carefully regulated. These stimuli either advanced or delayed 
the next cycle, and he plotted the effect against the timing of the 
blast. Then, instead of trying to guess at the biochemistry involved, 
he looke� at the problem topologically-that is, he looked at the 
qualitative shape of the data, instead of the quantitative details. 
He came to a startling conclusion: There was a singularity in the 
geometry, a point different from all the other points. Looking at 
the singularity, he predicted that one special, precisely timed burst 
of light would cause a complete breakdown of a mosquito's bio
logical clock, or any other biological clock. 

The prediction was surprising, but Winfree's experiments bore 
it out. "You go to a mosquito at midnight and give him a certain 
number of photons, and that particularly well-timed joit turns off 
the mosquito's clock. He's an insomniac after that-he'll doze, 
buzz for a while, all at random, and he'll continue doing that for 
as long as you care to watch, or until you come along with another 
joit. You've given him perpetual jet lag." 1n the early seventies 
Winfree's mathematical approach to circadian rhythms stirred lit
tle general interest, and it was hard to extend the laboratory tech
nique to species that would ohjeet to sitting in little cages for 
months at a time. 

Human jet lag and insomnia remain on the list of unsolved 
problems in biology. Both bring out the worst charlatanism-use
less pills and nostrums. Researchers did amass data on human 
subjects, usually students or retired people, or playwrights with 
plays to finish, willing to accept a few hundred dollars a week to 
live in "time isolation": no daylight, no temperature change, no 
clocks, and no telephones. People have a sleep-wake cycle and 
also a body-temperature cycle, both nonlinear oscillators that re
store themselves after slight perturbations. 1n isolation, without a 
daily resetting stimulus, the temperature cycle seems to be about 
twenty-five hours, with the low occurring ciuring sleep. But ex
periments by German researchers found that after some weeks the 
sleep-wake cycle would detach itself from the temperature cycle 
and become erratic. People would stay awake for twenty or thirty 
hours at a time, followed by ten or twenty hours of sleep. Not only 
would the subjects remain unaware that their day had lengthened, 
they would refuse to believe it when told. Only in the mid-1980s, 
though, did researchers begin to apply Winfree's systematic ap-



CHEMICAL CHAOS. Waves propagating outward in concentric circles and 
even spiral waves were signs of chaos in a widely studied chemical 
reaction, the Beluzov-Zhabotinsky reaction. Similar pattems have been 
observed in dishes of millions of amoeba. Arthur Winfree theorized that 
such waves are analogous to the waves of electrical activity coursing 
through heart muscles, regularly or erratically. 
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proach to humans, starting with an elderly woman who did needle
point in the evening in front of banks of bright light. Her cycle 
changed sharply, and she reported feeling great, as if she were 
driving in a car with the top down. As for Winfree, he had moved 
on to the subject of rhythms in the heart. 

Actually, he would not have said "moved on." To Winfree it 
was the same subject-different chemistry, same dynamics. He 
had gained a specific interest in the heart, however, after he help
lessly witnessed the sudden cardiac deaths of two people, one a 
relative on a summer vacation, the other a man in a pool where 
Winfree was swimming. Why should a rhythm that has stayed on 
track for a lifetime, two billion or more uninterrupted cycles, 
through relaxation and stress, acceleration and deceleration, sud
denly break into an uncontrolled, fatally ineffectual frenzy? 

WINFREE TOLD THE STORY of an early researcher, George Mines, 
who in 1914 was twenty-eight years old. In his laboratory at McGill 
University in Montreal, Mines made a small device capable of 
delivering small, precisely regulated electrical impulses to the 
heart. 

"When Mines decided it was time to begin work with human 
beings, he chose the most readily available experimental subject: 
himself," Winfree wrote. "At about six o'clock that evening, a 
janitor, thinking it was unusually quiet in the laboratory, entered 
the room. Mines was lying under the laboratory bench surrounded 
by twisted electrical equipment. A broken mechanism was at
tached to his chest over the heart and a piece of apparatus nearby 
was still recording the faltering heartbeat. He died without re
covering consciousness. '' 

One might guess that a small but precisely timed shock can 
throw the heart into fibrillation, and indeed even Mines had guessed 
it, shortly before his death. Other shocks can advance or retard 
the next beat, just as in circadian rhythms. But one difference 
between hearts and biological clocks, a difference that cannot be 
set aside even in a simplified model, is that a heart has a shape 
in space. You can hold it in your hand. You can track an electrical 
wave through three dimensions. 

To do so, however, requires ingenuity. Raymond E. Ideker of 
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Duke University Medical Center read an article hy Winfree in 
Scientific American in 1983 and noted four specific predictions 
ahout inducing and halting fihrillation hased on nonlinear dy
namics and topology. Ideker didn't really helieve them. They seemed 
too speculative and, from a cardiologist's point of view, so ahstract. 
Within three years, all four had heen tested and confirmed, and 
Ideker was conducting an advanced program to gather the richer 
data necessary to develop the dynamical approach to the heart. It 
was, as Winfree said, "the cardiac equivalent of a cyclotron." 

The traditiona! electrocardiogram offers only a gross one
dimensional record. During heart surgery a doctor can take an 
electrode and move it from place to place on the heart, sampling 
as many as fifty or sixty sites over a ten-minute period and thus 

• producing a sort of composite picture. During fihrillation this tech
nique is useless. The heart changes and quivers far too rapidly. 
Ideker's technique, depending heavily on real-time computer pro
cessing, was to emhed 128 electrodes in a weh that he would place 
over a heart like a sock on a foot. The electrodes recorded the 
voltage field as each wave traveled through the muscle, and the 
computer produced a cardiac map. 

Ideker's immediate intention, heyond testing Winfree's the
oretical ideas, was to improve the electrical devices used to hait 
fihrillation. Emergency medical teams carry standard versions of 
defihrillators, ready to deliver a strong DC shock across the thorax 
of a stricken patient. Experimentally, cardiologists have developed 
a small implantahle device to he sewn inside the chest cavity of 
patients thought to he especially at risk, although identifying such 
patients remains a challenge. An implantahle defihrillator, some
what higger than a pacemaker, sits and waits, listening to the 
steady heartheat, until it hecomes necessary to release a hurst of 
electricity. Ideker hegan to assemhle the physical understanding 
necessary to make the design of defihrillators less a high-priced 
guessing game, more a science. 

WHY SHOULD THE LAWS of chaos apply to the heart, with its 
peculiar tissue-cells forming interconnected hranching fihers, 
transporting ions of calcium, potassium, and sodium? That was 
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the question puzzling scientists at McGill and the Massachusetts 
Institute af Technology. 

Leon Glass and his colleagues Michael Guevara and Alvin 
Schrier at McGill carried out ane af the most talked-about Iines 
af research in the whole short history af nonlinear dynamics. They 
used tiny aggregates af heart cells from chicken embryos seven 
days old. These balls af cells, 1/200 af an inch across, placed in 
a dish and shaken together, began beating spontaneously at rates 
on the order af once a second, with no outside pacemaker at ali. 
The pulsation was clearly visible through a microscope. The next 
step was ta apply an external rhythm as well, and the McGill 
scientists did this through a microelectrode, a thin tube af glass 
drawn out ta a fine point and inserted into ane af the cells. An 
electric potential was passed through the tube, stimulating the 
cells with a strength and a rhythm that could be adjusted at will. 

They summed up their findings this way in Science in 1981 :  
"Exotic dynamic behavior that was previously seen in mathe
matical studies and in experiments in the physical sciences may 
in general be present when biological oscillators are periodically 
perturbed." They saw period-doubling-beat patterns that would 
bifurcate and bifurcate again as the stimulus changed. They made 
Poincare maps and circle maps. They studied intermittency and 
mode-locking. "Many different rhythms can be established be
tween a stimulus and a little piece af chicken heart," Glass said. 
"Using nonlinear mathematics, we can understand quite well the 
different rhythms and their orderings. Right now, the training af 
cardiologists has almost no mathematics, but the way we are look
ing at these problems is the way that at some point in the future 
people will have ta look at these problems." 

Meanwhile, in a joint Harvard-M.I.T. program in health sci
ences and technology, Richard J. Cohen, a cardiologist and a phys
icist, found a range af period-doubling sequences in experiments 
with dogs. Using computer models, he tested ane plausible sce
nario, in which the wavefront af electrical activity breaks up on 
islands af tissue. "lt is a clear instance af the Feigenbaum phe
nomenon," he said, "a  regular phenomenon which, under certain 
circumstances, becomes chaotic, and it turns out that the electrical 
activity in the heart has many parallels with other systems that 
develop chaotic behavior." 
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The McGill scientists also went back to old data accumulated 
on different kinds of abnormal heartbeats. In one well-known syn
drome, abnormal, ectopic beats are interspersed with nonnal, sinus 
beats. Glass and his colleagues examined the pattems, counting 
the numbers of sinus beats between ectopic beats. In some people, 
the numbers would vary, but for some reason they would always 
be odd: 3 or 5 or 7. In other people, the number of normal beats 
would always be part of the sequence: 2, 5, 8, 11 . . . .  

"People have made these weird numerology observations, but 
the mechanisms are not very easy to understand," Glass said. 
"There is often some type of regularity in these numbers, but there 
is often great irregularity also. It's one of the slogans in this busi
ness: order in chaos." 

Traditionally, thoughts about fibrillation took two forms. One 
classic idea was that secondary pacemaking signals come from 
abnormal centers within the heart muscle itself, conflicting with 
the main signal. These tiny ectopic centers fire out waves at un
comfortable intervals, and the interplay and overlapping has been 
thought to break up the coordinated wave of contraction. The 
research by the McGill scientists provided some support for this 
idea, by demonstrating that a full range of dynamical misbehavior 
can arise from the interplay between an external pulse and a rhythm 
inherent in the heart tissue. But why secondary pacemaking cen
ters should develop in the first place has remained hard to explain. 

The other approach focused not on the initiation of electrical 
waves but on the way they are conducted geographically through 
the heart, and the Harvard-M.I.T. researchers remained closer to 
this tradition. They found that abnormalities in the wave, spinning 
in tight circles, could cause "re-entry," in which some areas begin 
a new beat too soon, preventing the heart from pausing for the 
quiet interval necessary to maintain coordinated pumping. 

By stressing the methods of nonlinear dynamics, both groups 
of researchers were able to use the awareness that a small change 
in one parameter-perhaps a change in timing or electrical con
ductivity-could push an otherwise healthy system across a bi
furcation point into a qualitatively new behavior. They also began 
to find common ground for studying heart problems globally, link
ing disorders that were previously considered unrelated. Fur
thermore, Winfree believed that, despite their different focus, both 
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the ectopic heat school and the re-entry school were right. His 
topological approach suggested that the two ideas might he one 
and the same. 

"Dynamical things are generally counterintuitive, and the heart 
is no exception," Winfree said. Cardiologists hoped that the re
search would lead to a scientific way of identifying those at risk 
for fihrillation, designing defihrillating devices, and prescrihing 
drugs. Winfree hoped, too, that a glohal, mathematical perspective 
on such prohlems would fertilize a discipline that harely existed 
in the United States, theoretical hiology. 

Now SOME PHYSIOLOGISTS SPEAK of dynamical diseases: dis
orders of systems, hreakdowns in coordination or control. "Sys
tems that normally oscillate, stop oscillating, or hegin to oscillate 
in a new and unexpected fashion, and systems that normally do 
not oscillate, hegin oscillating," was one formulation. These syn
dromes include hreathing disorders: panting, sighing, Cheyne-Stokes 
respiration, and infant apnea-linked to sudden infant death syn
drome. There are dynamical hlood disorders, including a form of 
leukemia, in which disruptions alter the halance of white and red 
cells, platelets and lymphocytes. Some scientists speculate that 
schizophrenia itself might helong in this category, along with some 
forms of depression. 

But physiologists have also hegan to see chaos as health. It 
has long heen understood that nonlinearity in feedhack processes 
serves to regulate and control. Simply put, a linear process, given 
a slight nudge, tends to remain slightly off track. A nonlinear 
process, given the same nudge, tends to retum to its starting point. 
Christian Huygens, the seventeenth-century Dutch physicist who 
helped invent hoth the pendulum clock and the classical science 
of dynamics, stumhled upon one of the great examples of this form 
of regulation, or so the standard story goes. Huygens noticed one 
day that a set of pendulum clocks placed against a wall happened 
to he swinging in perfect chorus-line synchronization. He knew 
that the clocks could not he that accurate. Nothing in the math
ematical description then availahle for a pendulum could explain 
this mysterious propagation of order from one pendulum to 
another. Huygens surmised, correctly, that the clocks were co-
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ordinated by vibrations transmitted through the wood. This 
phenomenon, in which one regular cycle locks into another, is 
now called entrainment, or mode locking. Mode locking explains 
why the moon always faces the earth, or more generally why 
satellites tend to spin in some whole-number ratio of their orbital 
period: 1 to 1 ,  or 2 to 1 , or 3 to 2. When the ratio is close to a 
whole number, nonlinearity in the tidal attraction of the satellite 
tends to lock it in. Mode locking occurs throughout electronics, 
making it possible, for example, for a radio receiver to lock in on 
signals even when there are small tluctuations in their frequency. 
Mode locking accounts for the ability of groups of oscillators, 
including biological oscillators, like heart cells and nerve cells , 
to work in synchronization. A spectacular example in nature is a 
Southeast Asian species of firetly that congregates in trees during 
mating periods, thousands at one time, blinking in a fantastic 
spectral harmony. 

With all such control phenomena, a critical issue is robust
ness: how well can a system withstand small jolts. Equally critical 
in biological systems is tlexibility: how well can a system function 
over a range of frequencies. A locking-in to a single mode can be 
enslavement, preventing a system from adapting to change. Or
ganisms must respond to circumstances that vary rapidly and 
unpredictably; no heartbeat or respiratory rhythm can be locked 
into the strict periodicities of the simplest physical models, and 
the same is true of the subtler rhythms of the rest of the body. 
Some researchers , among them Ary Goldberger of Harvard Medical 
School, proposed that healthy dynamics were marked by fractal 
physical structures ,  like the branching networks of bronchial tubes 
in the lung and conducting fibers in the heart, that allow a wide 
range of rhythms. Thinking of Robert Shaw's arguments, Gold
berger noted: "Fractal processes associated with scaled, broad
band spectra are 'information-rich. ' Periodic states, in contrast, 
retlect narrow-band spectra and are defined by monotonous, re
petitive sequences, depleted of information content." Treating such 
disorders, he and other physiologists suggested, may depend on 
broadening a system's spectral reserve, its ability to range over 
many different frequencies without falling into a locked periodic 
channel. 

Arnold Mandell, the San Diego psychiatrist a.nd dynamicist 
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CHAOTIC HARMONIES. The interplay of different rhythms, such as radio 
frequencies or planetary orbits, produces a special version of chaos. Below 
and on the facing page, computer pictures of some of the "attractors" that 
can result when three rhythms come together. 
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CHAOTIC FLOWS. A 
rod drawn through 
viscous fluid causes 
a simple, wavy 
form. H drawn sev
eral times, more 
complicated forms 
arise. 
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who came to Bernardo Huberman's defense over eye movement 
in schizophrenics, went even further on the role of chaos in phys
iology. "ls it possible that mathematical pathology, i.e. chaos, is 
health? And that mathematical health, which is the predictability 
and differentiability of this kind of a structure, is disease?" Man
dell had turned to chaos as early as 1977, when he found "peculiar 
behavior" in certain enzymes in the brain that could only he ac
counted for by the new methods of nonlinear mathematics. He 
had encouraged the study of the oscillating three-dimensional 
entanglements of protein molecules in the same terms; instead of 
drawing static structures ,  he argued, biologists should understand 
such molecules as dynamical systems, capable of phase transi
tions. He was, as he said himself, a zealot, and his main interest 
remained the most chaotic organ of all. "When you reach an equi
librium in biology you're dead,"  he said. "If I ask you whether 
your brain is an equilibrium system, all I have to do is ask you 
not to think of elephants for a few minutes, and you know it isn't 
an equilibrium system. " 

To Mandell, the discoveries of chaos dictate a shift in clinical 
approaches to treating psychiatric disorders. By any objective mea
sure, the modern business of "psychopharmacology"-the use of 
drugs to treat everything from anxiety and insomnia to schizo
phrenia itself-has to he judged a failure. Few patients, if any, 
are cured. The most violent manifestations of mental illness can 
he controlled, but with what long-term consequences, no ane knows. 
Mandell offered his colleagues a chilling assessment of the most 
commonly used drugs. Phenothiazines, prescribed for schizo
phrenics, make the fundamental disorder worse. Tricyclic anti
depressants "increase the rate of mood cycling, leading to 
long-term increases in numbers of relapsing psychopathologic ep
isodes. "  And so on. Only lithium has any real medical success, 
Mandell said, and only for some disorders. 

As he saw it, the problem was conceptual. Traditiona! methods 
for treating this "most unstable, dynamic,  infinite-dimensional 
machine" were linear and reductionist. "The underlying para
digm remains : ane gene ---+ ane peptide ---+ ane enzyme ---+ ane 
neurotransmitter ---+ ane receptor ---+ ane animal behavior ---+ one 
clinical syndrome ---+ ane drug ---+ ane clinical rating scale. It dom
inates almost all research and treatment in psychopharmacology. 
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More than 50 transmitters, thousands of cell types, complex elec
tromagnetic phenomenology, and continuous instability based 
autonomous activity at all levels, from proteins to the elec
troencephalogram-and still the brain is thought of as a chemical 
point-to-point switchboard." To someone exposed to the world of 
nonlinear dynamics the response could only be: How naive. Man
dell urged his colleagues to understand the flowing geometries 
that sustain complex systems like the mind. 

Many other scientists began to apply the formalisms of chaos 
to research in artificial intelligence. The dynamics of systems wan
dering between basins of attraction, for example, appealed to those 
looking for a way to model symbols and memories. A physicist 
thinking of ideas as regions with fuzzy boundaries, separate yet 
overlapping, pulling like magnets and yet letting go, would nat
urally turn to the image of a phase space with "basins of attrac
tion." Such models seemed to have the right features: points of 
stability mixed with instability, and regions with changeable 
boundaries. Their fractal structure offered the kind of infinitely 
self-referential quality that seems so central to the mind's ability 
to bloom with ideas, decisions, emotions, and all the other artifacts 
of consciousness. With or without chaos, serious cognitive sci
entists can no longer model the mind as a static structure. They 
recognize a hierarchy of scales, from neuron upward, providing 
an opportunity for the interplay of microscale and macroscale so 
characteristic of fluid turbulence and other complex dynamical 
processes. 

Pattern born amid formlessness: that is biology's basic beauty 
and its basic mystery. Life sucks order from a sea of disorder. 
Erwin Schrödinger, the quantum pioneer and one of several phys
icists who made a nonspecialist's foray into biological speculation, 
put it this way forty years ago: A living organism has the "aston
ishing gift of concentrating a 'stream of order' on itself and thus 
escaping the decay into atomic chaos." To Schrödinger, as a phys
icist, it was plain that the structure of living matter differed from 
the kind of matter his colleagues studied. The building block of 
life-it was not yet called DNA-was an aperiodic crystal. "In 
physics we have dealt hitherto only with periodic crystals. To a 
humble physicist's mind, these are very interesting and compli
cated objects; they constitute one of the most fascinating and com-
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plex material structures by which inanimate nature puzzles his 
wits. Yet, compared with the aperiodic crystal, they are rather 
plain and dull ."  The difference was like the difference between 
wallpaper and tapestry, between the regular repetition of a pattem 
and the rich, coherent variation of an artist's creation. Physicists 
had learned only to understand wallpaper. It was no wonder they 
had managed to contribute so little to biology. 

Schrödinger's view was unusual. That life was both orderly 
and complex was a truism; to see aperiodicity as the source of its 
special qualities verged on mystical. In Schrödinger's day, neither 
mathematics nor physics provided any genuine support for the 
idea. There were no tools for analyzing irregularity as a building 
block of life. Now those tools exist. 



Chao s and Be yond 
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Two DECADES AGO Edward Lorenz was thinking about the 
atmosphere, Michel Henon the stars, Robert May the balance of 
nature. Benoit Mandelbrot was an unknown IBM mathematician, 
Mitchell Feigenbaum an undergraduate at the City College of New 
York, Doyne Farmer a boy growing up in New Mexico. Most prac
ticing scientists shared a set of beliefs about complexity. They 
held these beliefs so closely that they did not need to put them 
into words. Only later did it become possible to say what these 
beliefs were and to bring them out for examination. 

Simple systems behave in simple ways. A mechanical con
traption like a pendulum, a small electrical circuit, an idealized 
population of fish in a pond-as long as these systems could be 
reduced to a few perfectly understood, perfectly deterministic 
laws, their long-term behavior would be stable and predictable. 

Complex behavior implies complex causes. A mechanical de
vice, an electrical circuit, a wildlife population, a fluid flow, a 
biological organ, a particle beam, an atmospheric storm, a national 
economy-a system that was visibly unstable, unpredictable, or 
out of control must either be govemed by a multitude of inde
pendent components or subject to random extemal influences. 

Different systems behave differently. A neurobiologist who 
spent a career studying the chemistry of the human neuron with
out learning anything about memory or perception, an aircraft 
designer who used wind tunnels to solve aerodynamic problems 
without understanding the mathematics of turbulence, an econ-
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omist who analyzed the psychology of purchasing decisions with
out gaining an ability to forecast large-scale trends-scientists like 
these, knowing that the components of their disciplines were dif
ferent, took it for granted that the complex systems made up of 
billions of these components must also he different. 

Now all that has changed. In the intervening twenty years, 
physicists, mathematicians, biologists, and astronomers have cre
ated an alternative set of ideas. Simple systems give rise to com
plex behavior. Complex systems give rise to simple behavior. And 
most important, the laws of complexity hold universally, caring 
not at all for the details of a system's constituent atoms. 

For the mass of practicing scientists-particle physicists or 
neurologists or even mathematicians-the change did not matter 
immediately. They continued to work on research problems within 
their disciplines. But they were aware of something called chaos. 
They knew that some complex phenomena had been explained, 
and they knew that other phenomena suddenly seemed to need 
new explanations. A scientist studying chemical reactions in a 
laboratory or tracking insect populations in a three-year field ex
periment or modeling ocean temperature variations could not re
spond in the traditiona! way to the presence of unexpected 
fluctuations or oscillations-that is, by ignoring them. For some, 
that meant trouble. On the other hand, pragmatically, they knew 
that money was available from the federal government and from 
corporate research facilities for this faintly mathematical kind of 
science. More and more of them realized that chaos offered a fresh 
way to proceed with old data, forgotten in desk drawers because 
they had proved too erratic. More and more felt the compartment
alization of science as an impediment to their work. More and 
more felt the futility of studying parts in isolation from the whole. 
For them, chaos was the end of the reductionist program in 
science. 

Uncomprehension; resistance; anger; acceptance. Those who 
had promoted chaos longest saw all of these. Joseph Ford of the 
Georgia Institute of Technology remembered lecturing to a ther
modynamics group in the 1970s and mentioning that there was a 
chaotic behavior in the Duffing equation, a well-known textbook 
model for a simple oscillator subject to friction. To Ford, the pres-
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ence of chaos in the Duffing equation was a curious fact-just one 
of those things he knew to he true, although several years passed 
hefore it was puhlished in Physical Review Letters. But he might 
as well have told a gathering of paleontologists that dinosaurs had 
feathers. They knew hetter. 

"When I said that? Jee-sus Christ, the audience hegan to bounce 
up and down. It was, 'My daddy played with the Duffing equation, 
and my granddaddy played with the Duffing equation, and nohody 
seen anything like what you're talking ahout. ' You would really 
run across resistance to the notion that nature is complicated. 
What I didn't understand was the hostility." 

Comfortable in his Atlanta office, the winter sun setting out
side, Ford sipped soda from an oversized mug with the word 
CHAOS painted in hright colors. His younger colleague Ronald Fox 
talked ahout his own conversion, soon after huying an Apple II 
computer for his son, at a time when no self-respecting physicist 
would huy such a thing for his work. Fox heard that Mitchell 
Feigenhaum had discovered universal laws guiding the behavior 
of feedhack functions, and he decided to write a short program 
that would let him see the hehavior on the Apple display. He saw 
it ali painted across the screen-pitchfork hifurcations, stahle Iines 
hreaking in two, then four, then eight; the appearance of chaos 
itself; and within the chaos, the astonishing geometric regularity. 
"In a couple of days you could redo ali of Feigenhaum," Fox said. 
Self-teaching hy computing persuaded him and others who might 
have douhted a written argument. 

Some scientists played with such programs for a while and 
then stopped. Others could not help hut he changed. Fox was one 
of those who had remained conscious of the limits of standard 
linear science. He knew he had hahitually set the hard nonlinear 
prohlems aside. In practice a physicist would always end up say
ing, This is a problem that's going to take me to the handbook of 
special functions, which is the last place I want to go, and I'm 
sure as hell not going to get on a machine and do it, I'm too 
sophisticated for that. 

"The general picture of nonlinearity got a lot of people's at
tention-slowly at first, but increasingly," Fox said. "Everybody 
that looked at it, it bore fruit for. You now look at any problem 
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you looked at before, no matter what science you're in. There was 
a place where you quit looking at it hecause it hecame nonlinear. 
Now you know how to look at it and you go hack." 

Ford said, "If an area hegins to grow, it has to he because 
some clump of people feel that there's something it offers them
that if they modify their research, the rewards could he very hig. 
To me chaos is like a dream. It offers the possihility that, if you 
come over and play this game, you can strike the mother lode." 

Still, no one could quite agree on the word itself. 
Philip Holmes, a white-hearded mathematician and poet from 

Cornell hy way of Oxford: The complicated, aperiodic, attracting 
orbits of certain (usually low-dimensional) dynamical systems. 

Hao Bai-Lin, a physicist in China who assemhled many of the 
historical papers of chaos into a single reference volume: A kind 
of order without periodicity. And: A rapidly expanding field of 
research to which mathematicians, physicists, hydrodynamicists, 
ecologists and many others have all made important contribu
tions. And: A newly recognized and ubiquitous class of natural 
phenomena. 

H. Bruce Stewart, an applied mathematician at Brookhaven 
National Laboratory on Long Island: Apparently random recurrent 
behavior in a simple deterministic (clockwork-like) system. 

Roderick V. Jensen of Yale University, a theoretical physicist 
exploring the possihility of quantum chaos: The irregular, unpre
dictable behavior of deterministic, nonlinear dynamical systems. 

James Crutchfield of the Santa Cruz collective: Dynamics with 
positive, but finite, metric entropy. The translation from math
ese is: behavior that produces information (amplifies small un
certainties), but is not utterly unpredictable. 

And Ford, self-proclaimed evangelist of chaos: Dynamics freed 
at last from the shackles of order and predictability . . . .  Systems 
liberated to randomly explore their every dynamical possibil
ity . . . .  Exciting variety, richness of choice, a cornucopia of op
portunity. 

John Huhbard, exploring iterated functions and the infinite 
fractal wildness of the Mandelhrot set, considered chaos a poor 
name for his work, because it implied randomness. To him, the 
overriding message was that simple processes in nature could 
produce magnificent edifices of complexity without randomness. 
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In nonlinearity and feedback lay all the necessary tools for en
coding and then unfolding structures as rich as the human brain. 

To other scientists, like Arthur Winfree, exploring the global 
topology of biological systems, chaos was tao narrow a name. It 
implied simple systems, the one-dimensional maps of Feigen
baum and the two- or three- (and a fraction) dimensional strange 
attractors of Ruelle. Low-dimensional chaos was a special case, 
Winfree felt. He was interested in the laws of many-dimensional 
complexity-and he was convinced that such laws existed. Tao 
much of the universe seemed beyond the reach of low-dimensional 
chaos. 

The journal Nature carried a running debate about whether 
the earth's climate followed a strange attractor. Economists looked 
for recognizable strange attractors in stock market trends but so 
far had not found them. Dynamicists hoped to use the tools of 
chaos to explain fully developed turbulence. Albert Libchaber, 
now at the University of Chicago, was turning his elegant exper
imental style to the service of turbulence, creating a liquid-helium 
box thousands of times larger than his tiny cell of 197 7. Whether 
such experiments, liberating fluid disorder in both space and time, 
would find simple attractors, no ane knew. As the physicist Ber
nardo Huberman said, "If you had a turbulent river and put a 
probe in it and said, 'Look, here's a low-dimensional strange at
tractor, ' we would all take off our hats and look." 

Chaos was the set of ideas persuading all these scientists that 
they were members of a shared enterprise. Physicist or biologist 
or mathematician, they believed that simple, deterministic sys
tems could breed complexity; that systems tao complex for tra
ditiona! mathematics could yet obey simple laws; and that, whatever 
their particular field, their task was to understand complexity 
itself. 

"LET us AGAIN LOOK at the laws of thermodynamics," wrote 
James E. Lovelock, author of the Gaia hypothesis. "It is true that 
at first sight they read like the notice at the gate of Dante's Hell . . .  " 
But. 

The Second Law is ane piece of technical bad news from 
science that has established itself firmly in the nonscientific cul-
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ture. Everything tends toward disorder. Any process that converts 
energy from one form to another must lose some as heat. Perfect 
efficiency is impossible. The universe is a one-way street. Entropy 
must always increase in the universe and in any hypothetical 
isolated system within it. However expressed, the Second Law is 
a rule from which there seems no appeal. In thermodynamics that 
is true. But the Second Law has had a life of its own in intellectual 
realms far removed from science, taking the blame for disintegra
tion of societies, economic decay, the breakdown of manners, and 
many other variations on the decadent theme. These secondary, 
metaphorical incarnations of the Second Law now seem especially 
misguided. In our world, complexity flourishes, and those looking 
to science for a general understanding of nature's habits will he 
better served by the laws of chaos. 

Somehow, after all, as the universe ebbs toward its final equi
librium in the featureless heat bath of maximum entropy, it man
ages to create interesting structures. Thoughtful physicists concerned 
with the workings of thermodynamics realize how disturbing is 
the question of, as one put it, "how a purposeless flow of energy 
can wash life and consciousness into the world." Compounding 
the trouble is the slippery notion of entropy, reasonably well
defined for thermodynamic purposes in terms of heat and tem
perature, but devilishly hard to pin down as a measure of disorder. 
Physicists have trouble enough measuring the degree of order in 
water, forming crystalline structures in the transition to ice, energy 
bleeding away all the while. But thermodynamic entropy fails 
miserably as a measure of the changing degree of form and form
lessness in the creation of amino acids, of microorganisms, of self
reproducing plants and animals, of complex information systems 
like the brain. Certainly these evolving islands of order must obey 
the Second Law. The important laws, the creative laws, lie else
where. 

Nature forms patterns. Some are orderly in space but disor
derly in time, others orderly in time but disorderly in space. Some 
patterns are fractal, exhibiting structures self-similar in scale. 
Others give rise to steady states or oscillating ones. Pattern for
mation has become a branch of physics and of materials science, 
allowing scientists to model the aggregation of particles into clus
ters, the fractured spread of electrical discharges, and the growth 
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of crystals in ice and metal alloys. The dynamics seem so basic
shapes changing in space and time-yet only now are the tools 
available to understand them. It is a fair question now to ask a 
physicist, "Why are all snowflakes different?" 

Ice crystals form in the turbulent air with a famous blending 
of symmetry and chance, the special beauty of six-fold indeter
minacy. As water freezes, crystals send out tips; the tips grow, 
their boundaries becoming unstable, and new tips shoot out from 
the sides. Snowflakes obey mathematical laws of surprising sub
tlety, and it was impossible to predict precisely how fast a tip 
would grow, how narrow it would be, or how often it would 
branch. Generations of scientists sketched and cataloged the var
iegated patterns: plates and columns, crystals and polycrystals, 
needles and dendrites. The treatises treated crystal formation as 
a classification matter, for lack of a better approach. 

Growth of such tips, dendrites, is now known as a highly 
nonlinear unstable free boundary problem, meaning that models 

\ need to track a complex, wiggly boundary as it changes dynam
ically. When solidification proceeds from outside to inside, as in 
an ice tray, the boundary generally remains stable and smooth, its 
speed controlled by the ability of the walls to draw away the heat. 
But when a crystal solidifies outward from an initial seed-as a 
snowflake does, grabbing water molecules while it falls through 
the moisture-laden air-the process becomes unstable. Any bit of 
boundary that gets out ahead of its neighbors gains an advantage 
in picking up new water molecules and therefore grows that much 
faster-the "lightning-rod effect." New branches form, and then 
subbranches. 

One difficulty was in deciding which of the many physical 
forces involved are important and which can safely be ignored. 
Most important, as scientists have long known, is the diffusion of 
the heat released when water freezes. But the physics of heat 
diffusion cannot completely explain the patterns researchers ob
serve when they look at snowflakes under microscopes or grow 
them in the laboratory. Recently scientists worked out a way to 
incorporate another process: surface tension. The heart of the new 
snowflake model is the essence of chaos: a delicate balance be
tween forces of stability and forces of instability; a powerful in
terplay of forces on atomic scales and forces on everyday scales. 
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Where heat diffusion tends to create instahility, surface ten
sion creates stahility. The pull of surface tension makes a suh
stance prefer smooth boundaries like the wall of a soap huhhle. It 
costs energy to make surfaces that are rough. The halancing of 
these tendencies depends on the size of the crystal. While diffu
sion is mainly a large-scale, macroscopic process , surface tension 
is strongest at the microscopic scales. 

Traditionally, hecause the surface tension effects are so small, 
researchers assumed that for practical purposes they could dis
regard them. Not so. The tiniest scales proved crucial; there the 
surface effects proved infinitely sensitive to the molecular struc
ture of a solidifying suhstance. In the case of ice, a natural mo
lecular symmetry gives a huilt-in preference for six directions 
of growth. To their surprise, scientists found that the mixture of 
stahility and instahility manages to amplify this microscopic pref
erence, creating the near-fractal lacework that makes snowflakes. 
The mathematics came not from atmospheric scientists hut from 
theoretical physicists, along with metallurgists, who had their own 
interest. ln metals the molecular symmetry is different, and so are 
the characteristic crystals, which help determine an alloy's strength. 
But the mathematics are the same: the laws of pattern formation 
are universal. 

Sensitive dependence on initial conditions serves not to de
stroy hut to create. As a growing snowflake falls to earth, typically 
floating in the wind for an hour or more, the choices made hy the 
hranching tips at any instant depend sensitively on such things 
as the temperature, the humidity, and the presence of impurities 
in the atmosphere. The six tips of a single snowflake, spreading 
within a millimeter space, feel the same temperatures, and hecause 
the laws of growth are purely deterministic, they maintain a near
perfect symmetry. But the nature of turhulent air is such that any 
pair of snowflakes will experience very different paths. The final 
flake records the history of all the changing weather conditions it 
has experienced, and the comhinations may as well he infinite. 

BRANCHING AND CLUMPING, (on facing page). The study of pattern for
mation, encouraged by fractal mathematics, brought together such natural 
patterns as the lightning-like paths of an electrical discharge and the 
simulated aggregation of randomly moving particles (inset) . 





BALANCING STABILITY AND INSTABILITY. As a liquid crystallizes, it forms 
a growing tip (shown in a multiple-exposure photograph) with a boundary 
that becomes unstable and sends off side-branches (left). Computer sim
ulations of the delicate thermodynamic processes mimic real snowflakes 
(above). 
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Snowflakes are nonequilibrium phenomena, physicists like 
to say. They are products of imbalance in the flow of energy from 
one piece of nature to another. The flow turns a boundary into a 
tip, the tip into an array of branches, the array into a complex 
structure never before seen. As scientists have discovered such 
instability obeying the universal laws of chaos, they have suc
ceeded in applying the same methods to a host of physical and 
chemical problems, and, inevitably, they suspect that biology is 
next. In the back of their minds, as they look at computer simu
lations of dendrite growth, they see algae, cell walls , organisms 
budding and dividing. 

From microscopic particles to everyday complexity, many 
paths now seem open. In mathematical physics the bifurcation 
theory of Feigenbaum and his colleagues advances in the United 
States and Europe. In the abstract reaches of theoretical physics 
scientists probe other new issues, such as the unsettled question 
of quantum chaos: Does quantum mechanics admit the chaotic 
phenomena of classical mechanics? In the study of moving fluids 
Libchaber builds his giant liquid-helium box, while Pierre Hoh
enberg and Giinter Ahlers study the odd-shaped traveling waves 
of convection. In astronomy chaos experts use unexpected grav
itational instabilities to explain the origin of meteorites-the 
seemingly inexplicable catapulting of asteroids from far beyond 
Mars. Scientists use the physics of dynamical systems to study 
the human immune system, with its billions of components and 
its capacity for leaming, memory, and pattern recognition, and 
they simultaneously study evolution, hoping to find universal 
mechanisms of adaptation. Those who make such models quickly 
see structures that replicate themselves, compete, and evolve by 
natural selection. 

"Evolution is chaos with feedback," Joseph Ford said. The 
universe is randomness and dissipation, yes. But randomness with 
direction can produce surprising complexity. And as Lorenz dis
covered so long ago, dissipation is an agent of order. 

"God plays dice with the universe,"  is Ford's answer to Ein
stein's famous question. "But they're loaded dice. And the main 
objective of physics now is to find out by what rules were they 
loaded and how can we use them for our own ends." 
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SucH IDEAS HELP drive the collective enterprise of science 
forward. Still, no philosophy, no proof, no experiment ever seems 
quite enough to sway the individual researchers for whom science 
must first and always provide a way of working. ln some labo
ratories, the traditiona! ways falter. Normal science goes astray, 
as Kuhn put it; a piece of equipment fails to meet expectations; 
"the profession can no longer evade anomalies. " For any one 
scientist the ideas of chaos could not prevail until the method of 
chaos became a necessity. 

Every field had its own examples. In ecology, there was Wil
liam M. Schaffer, who trained as the last student of Robert 
MacArthur, the dean of the field in the fifties and sixties. MacArthur 
built a conception of nature that gave a firm footing to the idea of 
natural balance. His models supposed that equilibriums would 
exist and that populations of plants and animals would remain 
close to them. To MacArthur, balance in nature had what could 
almost be called a moral quality-states of equilibrium in his 
models entailed the most efficient use of food resources, the least 
waste. Nature, if left alone, would be good. 

Two decades later MacArthur's last student found himself 
realizing that ecology based on a sense of equilibrium seems doomed 
to fail. The traditiona! models are betrayed by their linear bias. 
Nature is more complicated. lnstead he sees chaos, "both exhil
arating and a bit threatening. " Chaos may undermine ecology's 
most enduring assumptions, he tells his colleagues. "What passes 
for fundamental concepts in ecology is as mist before the fury of 
the storm-in this case, a full, nonlinear storm. " 

Schaffer is using strange attractors to explore the epidemiol
ogy of childhood diseases such as measles and chicken pox. He 

1 - has collected data, first from New York City and Baltimore, then 
from Aberdeen, Scotland, and all England and Wales. He has 
made a dynamical model, resembling a damped, driven pendulum. 
The diseases are driven each year by the infectious spread among 
children returning to school, and damped by natural resistance. 
Schaffer's model predicts strikingly different behavior for these dis
eases. Chicken pox should vary periodically. Measles should vary 
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chaotically. As it happens, the data show exactly what Schaffer 
predicts. To a traditiona! epidemiologist the yearly variations in 
measles seemed inexplicable-random and noisy. Schaffer, using 
the techniques of phase-space reconstruction, shows that measles 
follow a strange attractor, with a fractal dimension of about 2 .5 .  

Schaffer computed Lyapunov exponents and made Poincare 
maps. "More to the point ," Schaffer said, "if you look at the pic
tures it jumps out at you, and you say, 'My God, this is the same 
thing. ' " Although the attractor is chaotic, some predictability be
comes possible in light of the deterministic nature of the model. 
A year of high measles infection will he followed by a crash. After 
a year of medium infection, the level will change only slightly. A 
year of low infection produces the greatest unpredictability. Schaf
fer's model also predicted the consequences of damping the dy
namics by mass inoculation programs-consequences that could 
not he predicted by standard epidemiology. 

On the collective scale and on the persona! scale, the ideas 
of chaos advance in different ways and for different reasons. For 
Schaffer, as for many others, the transition from traditiona! science 
to chaos came unexpectedly. He was a perfect target for Robert 
May's evangelical plea in 1975;  yet he read May's paper and dis
carded it. He thought the mathematical ideas were unrealistic for 
the kinds of systems a practicing ecologist would study. Oddly, 
he knew too much about ecology to appreciate May's point. These 
were one-dimensional maps, he thought-what bearing could they 
have on continuously changing systems? So a colleague said, "Read 
Lorenz. ' '  He wrote the reference on a slip of paper and never 
bothered to pursue it. 

Years later Schaffer lived in the desert outside of Tucson, 
Arizona, and summers found him in the Santa Catalina mountains 
just to the north, islands of chaparral, merely hot when the desert 
floor is roasting. Amid the thickets in June and July, after the spring 
blooming season and before the summer rain, Schaffer and his 
graduale students tracked bees and flowers of different species. 
This ecological system was easy to measure despite all its year
to-year variation. Schaffer counted the bees on every stalk, meas
ured the pollen by draining flowers with pipettes, and analyzed 
the data mathematically. Bumblebees competed with honeybees, 



Chaos and Beyond 317 

and honeybees competed with carpenter bees, and Schaffer made 
a convincing model to explain the fluctuations in population. 

By 1980 he knew that something was wrong. His model broke 
down. As it happened, the key player was a species he had over
looked: ants. Some colleagues suspected unusual winter weather; 
others unusual summer weather. Schaffer considered complicat
ing his model by adding more variables. But he was deeply frus
trated. Word was out among the graduate students that summer 
at 5,000 feet with Schaffer was hard work. And then everything 
changed. 

He happened upon a preprint about chemical chaos in a com
plicated laboratory experiment, and he felt that the authors had 
experienced exactly his problem: the impossibility of monitoring 
dozens of fluctuating reaction products in a vessel matched the 
impossibility of monitoring dozens of species in the Arizona 
mountains. Yet they had succeeded where he had failed. He read 
about reconstructing phase space. He finally read Lorenz, and 
Yorke, and others. The University of Arizona sponsored a lecture 
series on "Order in Chaos." Harry Swinney came, and Swinney 
knew how to talk about experiments. When he explained chemical 
chaos, displaying a transparency of a strange attractor, and said, 
"That's real data," a chill ran up Schaffer's spine. 

"All of a sudden I knew that that was my destiny," Schaffer 
said. He had a sabbatical year coming. He withdrew his appli
cation for National Science Foundation money and applied for a 
Guggenheim Fellowship. Up in the mountains, he knew, the ants 
changed with the season. Bees hovered and darted in a dynamical 
buzz. Clouds skidded across the sky. He could not work the old 
way any more. 
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and Further Reading 

THIS BOOK DRAWS on the words of about two hundred scientists, in 
public lectures, in technical writing, and most of ali in interviews con
ducted from April 1984 to December 1986. Some of the scientists were 
specialists in chaos; others were not. Some made themselves available 
for many hours over a period of months, offering insights into the history 
and practice of science that are impossible to credit fully. A few provided 
unpublished written recollections. 

Few useful secondary sources of information on chaos exist, and the 
lay reader in search of further reading will find few places to turn. 
Perhaps the first general introduction to chaos-still eloquently convey
ing the flavor of the subject and outlining some of the fundamental math
ematics-was Douglas R. Hofstadter's November 1981 column in Scientific 
American, reprinted in Metamagical Themas (New York: Basic Books, 
1985). Two useful collections of the most intluential scientific papers 
are Hao Bai-Lin, Chaos (Singapore: World Scientific, 1984) and Predrag 
Cvitanovif, Universality in Chaos (Bristol: Adam Hilger, 1984) . Their 
selections overlap surprisingly little; the former is perhaps a bit more 
historically oriented. For anyone interested in the origins of fractal ge
ometry, the indispensable, encyclopedic, exasperating source is Benoit 
Mandelbrot, The Fractal Geometry of Nature (New York: Freeman, 1977). 
The Beauty of Fractals, Heinz-Otto Peitgen and Peter H. Richter (Berlin: 
Springer-Verlag, 1986), delves into many areas of the mathematics of 
chaos in European-Romantic fashion, with invaluable essays by Man
delbrot, Adrian Douady, and Gert Eilenberger; it contains many lavish 
color and black-and-white graphics, several of which are reproduced in 
this book. A well-illustrated text directed at engineers and others seeking 
a practical survey of the mathematical ideas is H. Bruce Stewart and J. M. 
Thompson, Nonlinear Dynamics and Chaos (Chichester: Wiley, 1986). 
None of these books will he valuable to readers without some technical 
background. 

In describing the events of this book and the motivations and per
spectives of the scientists, I have avoided the language of science wher-
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ever possible, assuming that the technically aware will know when they 
are reading about integrability, power-law distribution, or complex analy
sis. Readers who want mathematical elaboration or specific references 
will find them in the chapter notes below. In selecting a few journal 
articles from the thousands that might have been cited, I chose either 
those which most directly influenced the events chronicled in this book 
or those which will he most broadly useful to readers seeking further 
context for ideas that interest them. 

Descriptions of places are generally based on my visits to the sites. 
The following institutions made available their researchers, their librar
ies, and in some cases their computer facilities: Boston University, Comell 
University, Courant Institute of Mathematics, European Centre for Me
dium Range Weather Forecasts, Georgia Institute of Technology, Harvard 
University, IBM Thomas J, Watson Research Center, Institute for Ad
vanced Study, Lamont-Doherty Geophysical Observatory, Los Alamos 
National Laboratory, Massachusetts Institute of Technology, National Center 
for Atmospheric Research, National Institutes of Health, National Mete
orological Center, New York University, Observatoire de Nice, Princeton 
University, University of Califomia at Berkeley, University of Califomia 
at Santa Cruz, University of Chicago, Woods Hole Oceanographic Insti
tute, Xerox Palo Alto Research Center. 

For particular quotations and ideas, the notes below indicate my 
principal sources. I give full citations for books and articles; where only 
a last name is cited, the reference is to one of the following scientists , 
who were especially helpful to my research: 

Ralph H. Abraham 
Gunter Ahlers 
F. Tito Arecchi 
Michael Bamsley 
Lennart Bengtsson 
William D. Bonner 
Robert Buchal 
William Burke 
David Campbell 
Peter A. Carruthers 
Richard J. Cohen 
James Crutchfi.eld 
Predrag Cvitanovic 
Minh Duong-van 
Freeman Dyson 
Jean-Pierre Eckmann 
Fereydoon Family 
J. Doyne Farmer 
Mitchell J. Feigenbaum 
Joseph Ford 
Ronald Fox 
Robert Gilmore 
Leon Glass 
James Glimm 
Ary L. Goldberger 

Jerry P. Gollub 
Ralph E. Gomory 
Stephen Jay Gould 
John Guckenheimer 
Brosl Hasslacher 
Michel Hanon 
Douglas R. Hofstadter 
Pierre Hohenberg 
Frank Hoppensteadt 
Hendrik Houthakker 
John H. Hubbard 
Bernardo Huberman 
Raymond E. Ideker 
Erica Jen 
Roderick V. Jensen 
Leo Kadanoff 
Donald Kerr 
Joseph Klafter 
Thomas S. Kuhn 
Mark Laff 
Oscar Lanford 
James Langer 
Joel Lebowitz 
Cecil E. Leith 
Herbert Levine 
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Albert Libchaber 
Edward N. Lorenz 
Willem Malkus 
Benoit Mandelbrot 
Arnold Mandell 
Syukuro Manabe 
Arnold J. Mandell 
Philip Marcus 
Paul C. Martin 
Robert M. May 
Francis C. Moon 
Jörgen Moser 
David Mumford 
Michael Nauenberg 
Norman Packard 
Heinz-Otto Peitgen 
Charles S. Peskin 
James Ramsey 
Peter H. Richter 
Otto Rössler 
David Ruelle 
William M. Schaffer 
Stephen H. Schneider 

PROLOGUE 

Christopher Scholz 
Robert Shaw 
Michael F. Shlesinger 
Yasha G. Sinai 
Steven Smale 
Edward A. Spiegel 
H. Bruce Stewart 
Steven Strogatz 
Harry Swinney 
Tomas Toffoli 
Felix Villars 
William M. Visscher 
Richard Voss 
Bruce J. West 
Robert White 
Gareth P. Williams 
Kenneth G. Wilson 
Arthur T. Winfree 
Jack Wisdom 
Helena Wisniewski 
Steven Wolfram 
J. Austin Woods 
James A. Yorke 

1 Los ALAMos Feigenbaum, Carruthers, Campbell, Farmer, Visscher, 
Kerr, Hasslacher, Jen. 

2 "I UNDERSTAND YOU'RE" Feigenbaum, Carruthers. 
4 GovERNMENT PROGRAM Buchal, Shlesinger, Wisniewski. 
5 ELEMENTS OF MOTION Yorke. 
5 PROCESS RATHER THAN STATE F. K. Browand, "The Structure of 

the Turbulent Mixing Layer," Physica 18D (1986), p. 135. 
5 THE BEHAVIOR OF CARS Japanese scientists took the traffic problem 

especially seriously; e.g., Toshimitsu Musha and Hideyo Higuchi, 
"The l/f Fluctuation of a Traffic Current on an Expressway," Jap
anese Journal of Applied Physics (1976), pp. 1271-75. 

5 THAT REALIZATION Mandelbrot, Ramsey; Wisdom, Marcus; Alvin 
M. Saperstein, "Chaos-1\. Model for the Outbreak of War," Nature 
309 (1984), pp. 303-5. 

5 "FIFTEEN YEARS AGO Shlesinger. 
6 JUST THREE THINGS Shlesinger. 
6 THIRD GREAT REVOLUTION Ford. 
6 "RELATIVITY ELIMINATED" Joseph Ford, "What Is Chaos, That We 

Should Be Mindful of It?" preprint, Georgia Institute of Technology, 
p. 12. 

6 THE COSMOLOGIST John Boslough, Stephen Hawking's Universe 
(Cambridge: Cambridge University Press, 1980) ; see also Robert 
Shaw, The Dripping Faucet as a Model Chaotic System (Santa Cruz: 
Aerial, 1984), p. 1. 
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11  THE SIMULATED WEATHER Lorenz, Malkus, Spiegel, Farmer. The 
essential Lorenz is a triptych of papers whose centerpiece is "De
terministic Nonperiodic Flow," Journal of the Atmospheric Sci
ences 20 (1963), pp. 130-41 ;  flanking this are "The Mechanics of 
Vacillation," Journal of the Atmospheric Sciences 20 (1963), pp. 
448-64, and "The Problem of Deducing the Climate from the Gov
erning Equations," Tellus 16 (1964), pp. 1-11 .  They form a decep
tively elegant piece of work that continues to influence 
mathematicians and physicists twenty years later. Some of Lorenz's 
persona! recollections of his first computer model of the atmosphere 
appear in "On the Prevalence of Aperiodicity in Simple Systems," 
in Global Analysis, eds.  Mgrmela and J. Marsden (New York: Sprin
ger-Verlag, 1979),  pp. 53-75. 

12 THEY WERE NUMERICAL RULES A readable contemporary descrip
tion by Lorenz of the problem of using equations to model the 
atmosphere is "Large-Scale Motions of the Atmosphere: Circula
tion," in Advances in Earth Science, ed. P. M. Hurley (Cambridge, 
Mass. :  The M.I.T. Press, 1 966) , pp. 95-109. An early, influential 
analysis of this problem is L. F. Richardson, Weather Prediction by 
Numerical Process (Cambridge: Cambridge University Press, 1922) .  

13  PURITY OF MATHEMATICS Lorenz. Also, an account of  the conflict
ing pulls of mathematics and meteorology in his thinking is in 
"lrregularity: A Fundamental Property of the Atmosphere,"  Cra
foord Prize Lecture presented at the Royal Swedish Academy of 
Sciences, Stockholm, Sept. 28,  1983, in Tellus 36A (1984), pp. 98-
1 10. 

14 "IT woULD EMBRACE" Pierre Simon de Laplace, A Philosophical 
Essay on Probabilities (New York: Dover, 1951) .  

15  "THE BASIC IDEA" Winfree. 
15  "THAT'S THE KIND OF RULE" Lorenz. 
16 SUDDENLY HE REALIZED "On the Prevalence," p.  55.  
17 SMALL ERR0RS PR0VED CATASTR0PHIC Of all the classical physi

cists and mathematicians who thought about dynamical systems, 
the one who best understood the possibility of chaos was Jules 
Henri Poincare. Poincare remarked in Science and Method: 

"A very small cause which escapes our notice determines a 
considerable effect that we cannot fail to see, and then we say that 
the effect is due to chance. If we knew exactly the laws of nature 
and the situation of the universe at the initial moment, we could 
predict exactly the situation of that same universe at a succeeding 
moment. But even if it were the case that the natural laws had no 
longer any secret for us, we could still know the situation approx
imately. If that enabled us to predict the succeeding situation with 
the sama approximation, that is all we require, and we should say 
that the phenomenon had been predicted, that it is governed by 
the laws. But it is not always so; it may happen that small differ
ences in the initial conditions produce very great ones in the final 
phenomena. A small error in the former will produce an enormous 
error in the latter. Prediction becomes impossible . . . .  " 
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Poincare's warning at the tum of the century was virtually 
forgotten; in the United States, the only mathematician to seriously 
follow Poincare's lead in the twenties and thirties was George D. 
Birkhoff, who, as it happened, briefly taught a young Edward Lorenz 
at M.I.T. 

18 "WE CERTAINLY HADN'T" Lorenz. 
17  THAT FIRST DAY Lorenz; also, "On the Prevalence," p. 56. 
18 YEARS OF UNREAL 0PTIMISM Woods, Schneider; a broad survey of 

expert opinion at the time was "W eather Scientists Optimistic That 
New Findings Are Near," The New York Times, 9 September 1963, 
p. 1. 

19 VON NEUMANN IMAGINED Dyson. 
19 VAST AND EXPENSIVE BUREAUCRACY Bonner, Bengtsson, Woods, 

Leith. 
20 FoRECASTS 0F EC0N0MIC Peter B. Medawar, "Expectation and Pre

diction," in Pluto's Republic (Oxford: Oxford University Press, 1982), 
pp. 301-4. 

20 THE BUTTERFLY EFFECT Lorenz originally used the image of a 
seagull; the more lasting name seems to have come from his paper, 
"Predictability: Does the Flap of a Butterfly's Wings in Brazil Set 
Off a Tornado in Texas?" address at the annual meeting of the 
American Association for the Advancement of Science in Wash
ington, 29 December 1979. 

21 SUPP0SE THE EARTH Yorke. 
21 "PREDICTION, N0THING" Lorenz, White. 
22 THERE MUST BE A LINK "The Mechanics of Vacillation." 
23 FoR WANT 0F A NAIL George Herbert; cited in this context by 

Norbert Wiener, "Nonlinear Prediction and Dynamics," in Col
lected Works with Commentaries, ed. P. Masani (Cambridge, Mass.: 
The M.I.T. Press, 1981) ,  3 :371 .  Wiener anticipated Lorenz in seeing 
at least the possibility of "self-amplitude of small details of the 
weather map." He noted, "A tornado is a highly local phenomenon, 
and apparent trifles of no great extent may determine its exact 
track." 

24 "THE CHARACTER 0F THE EQUATION" John von.Neumann, "Recent 
Theories of Turbulence" (1949), in Collected Works, ed. A. H. Taub 
(Oxford: Pergamon Press, 1963), 6 :437 .  

2 4  CUP 0F H0T C0FFEE "The predictability of hydrodynamic flow," 
in Transactions of the New York Academy of Sciences Il:25:4 (1963), 
pp. 409-32.  

25 "WE MIGHT HAVE TR0UBLE" Ibid., p. 410. 
25 LORENZ T00K A SET This set of seven equations to model con

vection was devised by Barry Saltzman of Yale University, whom 
Lorenz was visiting. Usually the Saltzman equations behaved pe
riodically, but one version "refused to settle down," as Lorenz said, 
and Lorenz realized that during this chaotic behavior four of the 
variables were approaching zero-thus they could be disregarded. 
Barry Saltzman, "Finite Amplitude Convection as an Initial Value 
Problem," Joumal of the Atmospheric Sciences 19 (1962) , p. 329. 

29 GE0DYNAM0 Malkus; the chaos view of the earth's magnetic fields 
is still hotly debated, with soma scientists looking for other, ex-
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ternal explanations, such as  blows from huge meteorites. An early 
exposition of the idea that the reversals come from chaos built into 
the system is K. A. Robbins, "A moment equation description of 
magnetic reversals in the earth," Proceedings of the National Acad
emy of Science 73 (1976), pp. 4297-4301.  

29 WATER WHEEL Malkus. 
30 THREE EQUATIONS This classic model, commonly called the Lor-

enz system, is: 
dx!dt = lO(y - x) 
dyldt = xz + 28x - y 
dz/dt = xy - (8/3)z. 

Since appearing in "Deterministic Nonperiodic Flow," the system 
has been widely analyzed; one authoritative technical volume is 
Colin Sparrow, The Lorenz Equations, Bifurcations, Chaos, and 
Strange Attractors (Springer-Verlag, 1982). 

31 "En, WE KNOW" Malkus, Lorenz. 
31  NO ONE THOUGHT "Deterministic Nonperiod Flow" was cited about 

once a year in the mid 1960s by the scientific community; two 
decades later, it was cited more than one hundred times a year. 

REVOLUTION 

35 THE HISTORIAN OF SCIENCE Kuhn's understanding of scientific 
revolutions has been widely dissected and debated in the twenty
five years since he put it forward, at about the time Lorenz was 
programming his computer to model weather. For Kuhn's views I 
hava relied primarily on The Structure of Scientific Revolutions, 
2nd ed. enl. (Chicago: University of Chicago Press, 1970) and sec
ondarily on The Essential Tension: Selected Studies in Scientific 
Tradition and Change (Chicago: University of Chicago, 1977); "What 
Are Scientific Revolutions?" (Occasional Paper No. 18, Center for 
Cognitive Science, Massachusetts Institute of Technology); and Kuhn, 
interview. Another useful and important analysis of the subject is 
1. Bernard Cohen, Revolution in Science (Cambridge, Mass. :  Bel
knap Press, 1985). 

35 "I CAN'T MAKE Structure, pp. 62-65 , citing J. S. Bruner and Leo 
Postman, "On the Perception of Incongruity: A Paradigm," Journal 
of Personality XVIII (1949), p. 206. 

36 MOPPING UP OPERATIONS Structure, p. 24. 
36 EXPERIMENTALISTS CARRY OUT Tension, p. 229. 
36 1N BENJAMIN FRANKLIN'S Structure, pp. 13-15.  
37  "UNDER NORMAL CONDITIONS Tension, p. 234. 
37  A PARTICLE PHYSICIST Cvitanovic 
38 TOLSTOY Ford, interview and "Chaos: Solving the Unsolvable, 

Predicting the Unpredictable," in Chaotic Dynamics and Fractals, 
ed. M. F. Barnsley and S.  G. Demko (New York: Academic Press, 
1985). 

38 SUCH COINAGES But Michael Berry notes that the OED has "Chaol
ogy (rare) 'the history or description of the chaos. ' "  Berry, "The 



324 Notes on Sources 

Unpredictable Bouncing Rotator: A Chaology Tutorial Machine," 
preprint, H. H. Wills Physics Laboratory, Bristol. 

38 "IT's MAS0CHISM Richter. 
39 THESE RESULTS APPEAR J. Crutchfield, M. Nauenberg and J. Rud

nick, "Scaling for External Noise at the Onset of Chaos," Physical 
Review Letters 46 (1981) ,  p. 933.  

39 THE HEART 0F CHAOS Alan Wolf, "Simplicity and Universality in 
the Transition to Chaos," Nature 305 (1983) ,  p. 182 .  

39 CHAOS NOW PRESAGES Joseph Ford, "What is  Chaos, That We Should 
Be Mindful of It?" preprint, Georgia Institute of Technology, At
lanta. 

39 REvoLUTIONS DO N0T "What Are Scientific Revolutions?" p. 23.  
39 "IT IS RATHER AS IF Structure, p. 1 1 1 . 
39 THE LABORATORY MOUSE Yorke and others. 
40 WHEN ARISTOTLE LOOKED "What Are Scientific Revolutions?" pp. 

2-10. 
41 "IF TWO FRIENDS" Galileo Opere VIII: 277. Also VIII: 129-30. 
42 "PHYSIOLOGICAL AND PSYCHIATRIC" David Tritton, "Chaos in the 

swing of a pendulum," New Scientist, 24 July 1986, p. 37 .  This is 
a readable, nontechnical essay on the philosophical implications 
of pendulum chaos. 

42 THAT CAN HAPPEN 1n practice, someone pushing a swing can al
ways produce more or less regular motion, presumably using an 
unconscious nonlinear feedback mechanism of his own. 

42 YET, 0DD AS IT SEEMS Among many analyses of the possible com
plications of a simple driven pendulum, a good summary is D. 
D'Humieres, M. R. Beasley, B. A. Huberman, and A. Libchaber, 
"Chaotic States and Routes to Chaos in the Forced Pendulum," 
Physical Review A 26 (1982) ,  pp.  3483-96. 

43 SPACE BALLS Michael Berry researched the physics of this toy 
both theoretically and experimentally. Jn "The Unpredictable 
Bouncing Rotator" he describes a range of behaviors understand
able only in the language of chaotic dynamics: "KAM tori, bifur
cation of periodic orbits, Hamiltonian chaos, stable fixed points 
and strange attractors ."  

44 FRENCH ASTRONOMER Hanon. 
45 JAPANESE ELECTRICAL ENGINEER Ueda. 
45 A YOUNG PHYSICIST Fox. 
45 SMALE Smale, Yorke, Guckenheimer, Abraham, May, Feigen

baum; a brief, somewhat anecdotal account of Smale's thinking 
during this period is "On How I Got Started in Dynamical Systems," 
in Steve Smale, The Mathematics of Time: Essays on Dynamical 
Systems, Economic Processes, and Related Topics (New York: 
Springer-Verlag, 1980), pp. 147-51 .  

45 THE SCENE IN Moscow Raymond H. Anderson, "Moscow Silences 
a Critical American," The New York Times, 27 August 1966, p. 1 ;  
Smale, "On the Steps of Moscow University," The Mathematical 
Intelligencer 6 :2 ,  pp. 21-27.  

46 WHEN HE RETURNED Smale. 
48 A LETTER FROM A COLLEAGUE The colleague was N. Levinson. 

Several threads of mathematics, running back to Poincare, came 
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together here. The work of Birkhoff was one. In England, Mary Lucy 
Cartwright and J. E. Littlewood pursued the hints turned up by 
Balthaser van der Pol in chaotic oscillators. These mathematicians 
were all aware of the possibility of chaos in simple systems, but 
Smale, like most well-educated mathematicians, was unaware of 
their work, until the letter from Levinson. 

48 R0BUST AND STRANGE Smale; "On How I Got Started." 
49 IT WAS JUST A VACUUM TUBE van der Pol described his work in 

Nature 120 (1927) ,  pp. 363-64. 
49 "OFI'EN AN IRREGULAR NOISE" lbid. 
51 To MAKE A SIMPLE Smale's definitive mathematical exposition of 

this work is "Differentiable Dynamical Systems," Bulletin of the 
American Mathematical Society 1967, pp. 747-817 (also in The 
Mathematics of Time, pp. 1-82). 

51 THE PR0CESS MIMICS Rössler. 
52 BUT F0LDING Yorke. 
52 IT WAS A GOLDEN AGE Guckenheimer, Abraham. 
52 "IT'S THE PARADIGM SHIFI' Abraham. 
52 A M0DEST cosMic MYSTERY Marcus, Ingersoll, Williams; Philip 

S. Marcus, "Coherent Vortical Features in a Turbulen:t Two-Di
mensional Flow and the Great Red Spot of Jupiter," paper presented 
at the 1 10th Meeting of the Acoustical Society of America, Nash
ville, Tennessee, 5 November 1985. 

53 "THE RED SP0T R0ARING" John Updike, "The Moons of Jupiter," 
Facing Nature (New York: Knopf, 1985), p. 74. 

54 V0YAGER HAD MADE Ingersoll; also, Andrew P. lng9rsoll, "Order 
from Chaos: The Atmospheres of Jupiter and Saturn," P1anetary 
Report 4:3 ,  pp. 8-11 .  

55 "You SEE THIS" Marcus. 
, 56 "GEE, WHAT AB0UT" Marcus. 

LIFE'S UPS AND DOWNS 

59 RAVEN0US FISH May, Schaffer, Yorke, Guckenheimer. May's fa
mous review article on the lessons of chaos in population biology 
is "Simple Mathematical Models with Very Complicated Dynam
ics," Nature 261 (1976), pp. 459-67. Also: "Biological Populations 
with Nonoverlapping Generations: Stable Points, Stable Cycles, and 
Chaos,"  Science 186 (1974) , pp. 645-47,  and May and George F. 
Oster, "Bifurcations and Dynamic Complexity in Simple Ecological 
Models,"  The American Naturalist 1 10 (1976), pp. 573-99. An 
excellent survey of the development of mathematical modeling of 
populations, before chaos, is Sharon E. Kingsland, Modeling Na
ture: Episodes in the History of Population Ecology (Chicago: Uni
versity of Chicago Press, 1985). 

59 THE WORLD MAKES May and Jon Seger, "Ideas in Ecology: Yes
terday and Tomorrow," preprint, Princeton University, p. 25. 

60 CARICATURES 0F REALITY May and George F. Oster, "Bifurcations 
and Dynamic Complexity in Simple Ecological Models," The Amer
ican Naturalist 110 (1976), p. 573.  
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63 BY THE 1950S May. 
64 REFERENCE BOOKS J. Maynard Smith, Mathematical Ideas in Bi

ology (Cambridge: Cambridge University Press, 1968) , p. 18; Harvey 
J. Gold, Mathematical Modeling of Biological Systems. 

65 IN THE BACK May. 
65 HE PRODUCED A REPORT GonoJThea Transmission Dynamics and 

Control. Herbert W. Hethcote and James A. Yorke (Berlin: Springer
Verlag, 1984). 

65 THE EVEN-ODD SYSTEM From computer simulations, Yorke found 
that the system forced drivers to make more trips to the filling 
station and to keep their tanks fuller all the time; thus the system 
increased the amount of gasoline sitting wastefully in the nation's 
automobiles at any moment. 

65 HE ANALYZED THE MONUMENT'S SHADOW Airport records later 
proved Yorke correct. 

66 LoRENz's PAPER Yorke. 
66 "F ACULTY MEMBERS" Murray Gell-Mann, "The Concept of the In

stitute," in Emerging Syntheses in Science, proceedings of the 
founding workshops of the Santa Fe Institute (Santa Fe: The Santa 
Fe Institute, 1985), p. 1 1. 

67 HE GAVE A COPY Yorke, Smale. 
67 "IF YOU COULD WRITE" Yorke. 
68 HOW NONLINEAR NATURE 1s A readable essay on linearity, non

linearity, and the historical use of computers in understanding the 
difference is David Campbell, James P. Crutchfield, J. Doyne Farmer, 
and Erica Jen, "Experimental Mathematics: The Role of Compu
tation in Nonlinear Science," Communications of the Association 
/or Computing Machinery 28 (1985), pp. 374-84. 

68 "IT DOES NOT SAY" Fermi, quoted in S. M. Ulam, Adventures of 
a Mathematician (New York: Scribners, 1976). Ulam also describes 
the origin of another important thread in the understanding of non
linearity, the Fermi-Pasta-Ulam theorem. Looking for problems that 
could he computed on the new MANIAC computer at Los Alamos, 
the scientists tried a dynamical system that was simply a vibrating 
string-a simple model "having, in addition, a physically correct 
small non-linear term." They found patterns coalescing into an 
unexpected periodicity. As Ulam recounts it: "The results were 
entirely different qualitatively from what even Fermi, with his great 
knowledge of wave motions, had expected . . . . To our surprise the 
string started playing a game of musical chairs, . . .  " Fermi consid
ered the results unimportant, and they were not widely published, 
but a few mathematicians and physicists followed them up, and 
they became a particular part of the local lore at Los Alamos. Ad
ventures, pp. 226-28. 

68 "NONELEPHANT ANIMALS" quoted in "Experimental Mathemat
ics," p. 3 74. 

68 "THE FIRST MESSAGE" Yorke. 
69 YoRKE'S PAPER Written with his student Tien-Yien Li. "Period 

Three Implies Chaos," American Mathematical Monthly 82 (1975), 
pp. 985-92. 

69 MAY CAME TO BIOLOGY May. 
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69 "WHAT THE CHRIST" May; it was this seemingly unanswerable 
question that drove him from analytic methods to numerical ex
perimentation, meant to provide intuition, at !east. 

73 STARTLING THOUGH IT WAS Yorke. 
74 A. N. SARKOVSKII "Coexistence of Cycles of a Continuous Map 

of a Line into Itself," Ukrainian Mathematics Journal 16 (1964),  p.  
61 .  

76 S0VIET MATHEMATICIANS AND PHYSICISTS Sinai, persona! com-
munication, 8 December 1986. 

76 SOME WESTERN CHAOS EXPERTS e.g. , Feigenbaum, Cvitanovic. 
77 To SEE DEEPER Hoppensteadt, May. 
77 THE FEELING 0F ASTONISHMENT Hoppensteadt. 
77 WITHIN ECOLOGY May. 
79 NEW YORK CITY MEASLES William M. Schaffer and Mark Kot, 

"Nearly One-dimensional Dynamics in an Epidemic," Joumal of 
Theoretical Biology 112  (1985) ,  pp. 403-27; Schaffer, "Stretching 
and Folding in Lynx Fur Returns: Evidence for a Strange Attractor 
in Nature,"  The American Naturalist 1 24 (1984) , pp. 798-820. 

79 THE WORLD wouLD BE "Simple Mathematical Models," p.  467. 
80 "THE MATHEMATICAL INTUITION" Ibid. 

A GEOMETRY OF NATURE 

83 A PICTURE OF REALITY Mandelbrot, Gi:>mory, Voss, Barnsley, Rich
ter, Mumford, Hubbard, Shlesinger. The Benoit Mandelbrot bible 
is The Fractal Geometry of Nature (New York: Freeman, 1977) .  An 
interview by Anthony Barcellos appears in Mathematical People, 
ed. Donald J. Albers and G. L. Alexanderson (Boston: Birkhäuser, 
1985). Two essays by Mandelbrot that are less well known and 
extremely interesting are "On Fractal Geometry and a Few of the 
Mathematical Questions It Has Raised," Proceedings of the Inter
national Congress of Mathematicians, 16-14 August 1983, Warsaw, 
pp. 1661-75; and "Towards a Second Stage of Indeterminism in 
Science,"  preprint, IBM Thomas J. Watson Research Center, York
town Heights, New York. Review articles on applications of fractals 
have grown too common to list, but two useful examples are Leon
ard M. Sander, "Fractal Growth Processes," Nature 322 (1986), pp. 
789-93;  Richard Voss, "Random Fractal Forgeries: From Mountains 
to Music,"  in Science and Uncertainty, ed. Sara Nash (London: 
IBM United Kingdom, 1985) . 

83 CHARTED ON THE OLDER MAN'S BLACKBOARD Houthakker, Man
delbrot. 

84 WASSILY LEONTIEF Quoted in Fractal Geomet.ry, p. 423. 
86 lNTR0DUCED FOR A LECTURE Woods Hole Oceanographic Institute, 

August 1985.  
87 BORN IN WARSAW Mandelbrot. 
88 BOURBAKI Mandelbrot, Richter. Little has been written about 

Bourbaki even now; one playful introduction is Paul R. Halmos, 
"Nicholas Bourbaki,"  Scientific American 196 (1957) ,  pp. 88-89. 

89 MATHEMATICS SHOULD BE SOMETHING Smale. 
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89 THE FIELD DEVEL0PS Peitgen. 
90 PIONEER-BY-NECESSITY "Second Stage," p. 5 .  
92 THIS HIGHLY ABSTRACT Mandelbrot; Fractal Geometry, p. 74;  J. 

M. Berger and Benoit Mandelbrot, "A New Model for the Clustering 
of Errors on Telephone Circuits," IBM Journal of Research and 
Development 7 (1963), pp. 224-36. 

93 THE JOSEPH EFFECT Fractal Geometry, p. 248. 
94 CLOuns ARE N0T SPHERES Ibid. , p. 1, for example. 
95 W0NDERING AB0UT COASTLINES Ibid. , p. 27 .  
97 THE PR0CESS OF ABSTRACTION Ibid. , p. 1 7. 
97 "THE NOTION" Ibid., p.  18. 
98 ONE WINTRY AFTERNOON Mandelbrot. 

100 THE EIFFEL TOWER Fractal Geometry, p. 131 ,  and "On Fractal 
Geometry," p. 1663 . 

102 ORIGINATED BY MATHEMATICIANS F. Hausdorff and A. s. Besico
vich. 

102 "THERE WAS A LONG HIATUS" Mandelbrot. 
103 IN THE NORTHEASTERN Scholz; C. H. Scholz and C. A. Aviles, "The 

Fractal Geometry of Faults and Faulting," preprint, Lamont
Doherty Geophysical Observatory; C. H. Scholz, "Scaling Laws for 
Large Earthquakes,"  Bulletin of the Seismo1ogica1 Society of Amer
ica 72 (1982), pp. 1-14. 

104 "A MANIFESTO" Fractal Geometry, p. 24. 
104 "NOT A HOW-TO BOOK" Scholz. 
107 "IT's A SINGLE MODEL" Scholz. 
109 "IN THE GRADUAL" William Bloom and Don W. Fawcett, A Text

book of Histology (Philadelphia: W. B. Saunders, 1975).  
109 SOME THE0RETICAL BIOLOGISTS One review of these ideas is Ary 

L. Goldberger, "Nonlinear Dynamics, Fractals, Cardiac Physiology, 
and Sudden Death," in Tempora1 Disorder in Human Oscillatory 
Systems, ed. L. Rensing, U. An der Heiden, M. Mackey (New York: 
Springer-Verlag, 1987) .  

109 THE NETWORK OF SPECIAL FIBERS Goldberger, West. 
109 SEVERAL CHAOS-MINDED CARDIOLOGISTS Ary L. Goldberger, Val

mik Bhargava, Bruce J. West and Arnold J. Mandell, "On a Mech
anism of Cardiac Electrical Stability: The Fractal Hypothesis," 
Biophysics Journal 48 (1985), p. 525. 

110 WHEN E. 1. DuPoNT Barnaby J. Feder, "The Army May Have 
Matched the Goose,"  The New York Times, 30 November 1986, 
4 :16. 

110 "I STARTED LO0KING" Mandelbrot. 
1 1 1  HIS NAME APPEARED I. Bernard Cohen, Revolution in Science 

(Cambridge, Mass. :  Belknap, 1 985),  p. 46. 
1 1 1  "OF COURSE, HE I S  A BIT" Mumford. 
111  "HE HAD so  MANY DIFFICULTIES" Richter. 
112  IF  THEY WANTED TO AVOID Just as  Mandelbrot later could avoid 

the credit routinely given to Mitchell Feigenbaum in references to 
Feigenbaum numbers and Feigenbaum universality. Instead, Man
delbrot habitually referred to P. J. Myrberg, a mathematician who 
had studied iterates of quadratic mappings in the early 1960s, ob
scurely. 



Notes on Sources 329 

112  "MANDELBROT DIDN'T HAVE EVERYBODY's" Richter. 
1 13  "THE POLmcs AFFECTED" Mandelbrot. 
114 ExxoN'S HUGE RESEARCH FACIUTY Klafter. 
1 14 ONE MATHEMATICIAN TOLD FRIENDS Related by Huberman. 
1 1 7  "WHY 1 s  IT THAT" "Freedom, Science, and Aestetics," i n  Schön

heit im Chaos, p. 35 .  
1 1 7  "THE PERIOD HAD N O  SYMPATHY" John Fowles, A Maggot (Boston: 

Little,  Brown, 1985),  p. 1 1 .  
1 1 8  "WE HAVE THE ASTR0NOMERS" Robert H .  G .  Helleman, "Self-Gen

erated Behavior in Nonlinear Mechanics," in Fundamental Prob
lems in Statistical Mechanics 5, ed. E. G. D. Cohen (Amsterdam: 
North-Holland, 1 980), p. 165 .  

118  BUT PHYSICISTS WANTED MORE Leo Kadanoff, for example, asked 
"Where is the physics of fractals?" in Physics Today, February 
1986, p. 6, and then answered the question with a new "multi
fractal" approach in Physics Today, April 1986, p. 17 ,  provoking 
a typically annoyed response from Mandelbrot, Physics Today, 
September 1986, p. 1 1 .  Kadanoff's theory, Mandelbrot wrote, "fills 
me with the pride of a father-soon to be a grandfather?" 

STRANGE ATIRACTORS 

121 THE GREAT PHYSICISTS Ruelle, Hanon, Rössler, Sinai, Feigen
baum, Mandelbrot, Ford, Kraichnan. Many perspectives exist on 
the historical context for the strange-attractor view of turbulence. 
A worthwhile introduction is John Miles, "Strange Attractors in 
Fluid Dynamics," in Advances in Applied Mechanics 24 (1984) , 
pp. 189-2 14. Ruelle's most accessible review article is "Strange 
Attractors,"  Mathematical InteHigencer 2 (1980) , pp. 126-37;  his 
catalyzing proposal was David Ruelle and Floris Takens, "On the 
Nature of Turbulence," Communications in Mathematical Physics 
20 (1971) ,  pp. 167-92; his other essential papers include "Tur
bulent Dynamical Systems,"  Proceedings of the International Con
gress of Mathematicians, 16-24 August 1 983,  Warsaw, pp. 271-
86; "Five Turbulent Problems,"  Physica 7D (1983) ,  pp.  40-44; and 
"The Lorenz Attractor and the Problem of Turbulence," in Lecture 
Notes in Mathematics No. 565 (Berlin: Springer-Verlag, 1976), pp. 
146-58. 

121  THERE WAS A STORY Many versions of this exist. Orszag cites four 
substitutes for Heisenberg-von Neumann, Lamb, Sommerfeld, and 
von Karman-and adds, "I imagine if God actually gave an answer 
to these four people it would be different in each case." 

123 Tms ASSUMPTION Ruelle; also "Turbulent Dynamical Systems," 
p.  281 .  

123 TEXT ON FLUID DYNAMICS L. D. Landau and E. M. Lifshitz, Fluid 
Mechanics (Oxford: Pergamon, 1959). 

124 THE OSCILLATORY, THE SKEWED VARICOSE Malkus. 
126 "THAT's TRUE" Swinney. 
128 1N 1973 SwINNEY Swinney, Gollub. 
130 "IT WAS A STRING-AND-SEALING-WAX" Dyson. 
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131 "So WE READ THAT" Swinney. 
131 WHEN THEY BEGAN REPORTING Swinney, Gollub. 
131 "THERE WAS THE TRANSITION" Swinney. 
131 EXPERIMENT FAILED TO CONFIRM J.  P.  Gollub and H. L.  Swinney, 

"Onset of Turbulence in a Rotating Fluid," Physical Review Letters 
35 (1975), p. 927. These first experiments only opened the door to 
an appreciation of the complex spatial behaviors that could he 
produced by varying the few parameters of flow between rotating 
cylinders. The next few years identified patterns from "corkscrew 
wavelets" to "wavy inflow and outflow" to "interpenetrating spi
rals." A summary is C. David Andereck, S. S. Liu, and Harry L. 
Swinney, "Flow Regimes in a Circular Couette System with In
dependently Rotating Cylinders," Journal of Fluid Mechanics 164 
(1986) , pp. 155-83. 

132 DAVID RUELLE SOMETIMES SAID Ruelle. 
132 "ALWAYS NONSPECIALISTS FIND" Ruelle. 
133 HE WROTE A PAPER "On the Nature of Turbulence." 
133 OPINIONS STILL VARIED They quickly discovered that some of their 

ideas had already appeared in the Russian literature; "on the other 
hand, the mathematical interpretation which we give of turbulence 
seems to remain our own responsibility! "  they wrote. "Note Con
cerning Our Paper 'On the Nature of Turbulence,' " Communica
tions in Mathematical Physics 23 (1971) ,  pp. 343-44. 

133 PSYCHOANALYTICALLY "SUGGESTIVE" Ruelle. 
133 "Dm YOU EVER ASK Gon" "Strange Attractors," p. 131 .  
133 "TAKENS HAPPENED" Ruelle. 
135 "SOME MATHEMATICIANS IN CALIFORNIA" Ralph H. Abraham and 

Christopher D. Shaw, Dynamics: The Geometry of Behavior (Santa 
Cruz: Aerial: 1984). 

137 "IT ALWAYS BOTHERS ME" Richard P. Feynman, The Character of 
Physical Law (Cambridge, Mass.: The M.I.T. Press, 1967) ,  p. 57 .  

138 DAVID RUELLE SUSPECTED Ruelle. 
139 THE REACTION OF THE SCIENTIFIC PUBLIC "Turbulent Dynamical 

Systems," p. 275. 
139 EDWARD LORENZ HAD ATTACHED "Detenninistic Nonperiodic Flow ," 

p. 137. 
140 "IT IS DIFFICULT TO RECONCILE Ibid., p. 140. 
141 HE WENT TO VISIT LORENZ Ruelle. 
141 "DoN'T FORM A SELFISH CONCEPT Ueda reviews his early discov

eries from the point of view of electrical circuits in "Random Phe
nomena Resulting from Nonlinearity in the System Described by 
Duffing's Equation," in International ]ournal of Non-Llnear Me
chanics 20 (1985), pp. 481-91 ,  and gives a persona! account of his 
motivation and the cool response of his colleagues in a postscript. 
Also, Stewart, private communication. 

141 "A SAUSAGE IN A SAUSAGE" Rössler. 
144 THE MOST ILLUMINATING STRANGE ATTRACTOR Hanon; he reported 

his invention in "A Two-Dimensional Mapping with a Strange At
tractor," in Communications in Mathematical Physics 50 (1976) ,  
pp. 69-77 ,  and Michel Hanon and Yves Pomeau, "Two Strange 
Attractors with a Simple Structure," in Turbulence and the Navier-
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Stokes Equations, ed. R. Teman (New York: Springer-Verlag, 1977). 
145 Is THE SOLAR SYSTEM Wisdom. 
146 "To HAVE MORE FREEDOM" Michel Henon and Carl Heiles, "The 

Applicability of the Third Integral of Motion: Some Numerical Ex
periments," Astronomical Journal 69 (1964) , p. 73. 

147 AT THE 0BSERVATORY Hanon. 
147 "I, T0O, was convinced" Henon. 
147 "HERE COMES THE SURPRISE" "The Applicability," p. 76. 
149 "BUT THE MATHEMATICAL APPR0ACH" Ibid., p. 79. 
149 A VISITING PHYSICIST Yves Pomeau. 
149 "S0METIMES ASTR0N0MERS ARE FEARFUL" Henon. 
152 OTHERS ASSEMBLED MILLIONS Ramsay. 
153 "I HAVE N0T SPOKEN" "Strange Attractors," p. 137. 

UNIVERSALITY 

157 "You CAN Focus" Feigenbaum. Feigenbaum's crucial papers on 
universality are "Quantitative Unversality for a Class of Nonlinear 
Transformations," JournaI of Statistical Physics 19 (1978), pp. 25-
52, and "The Universal Metric Properties of Nonlinear Transfor
mations," Journal of Statistical Physics 21 (1979), pp. 669-706; a 
somewhat more accessible presentation, though still requiring some 
mathematics, is his review article, "Universal Behavior in Nonlin
ear Systems," Los Alamos Science 1 (Summer 1981), pp. 4-27. I 
also relied on his unpublished recollections, "The Discovery of 
Universality in Period Doubling." 

157 WHEN FEIGENBAUM CAME T0 Los ALAMOS Feigenbaum, Carruth-
ers, Cvitanovic, Campbell, Farmer, Visscher, Kerr, Hasslacher, Jen. 

158 "IF Y0U HAD SET UP" Carruthers. 
159 THE MYSTERY 0F THE UNIVERSE Feigenbaum. 
160 OCCASIONALLY AN ADVIS0R Carruthers. 
160 As KADAN0FF VIEWED Kadanoff. 
163 "THE CEASELESS M0TION" Gustav Mahler, letter to Max Mar

schalk. 
164 "WITH LIGHT POISE" Goethe's Ziir Farbenlehre is now available 

in several editions. I relied on the beautifully illustrated Goethe's 
Color Theory, ed. Rupprecht Matthaei, trans. Herb Aach (New York: 
Van Nostrand Reinhold, 1970) ; more readily available is Theory of 
Colors (Cambridge, Mass.: The M.I.T. Press, 1970), with an excellent 
introduction by Deane B. Judd. 

167 THIS 0NE INN0CENT-L00I<ING EQUATION At one point, Ulam and 
von Neumann used its chaotic properties as a solution to the prob
lem of generating random numbers with a finite digital computer. 

167 Ta METR0P0LIS, STEIN, AND STEIN This paper-the sole pathway 
from Stanislaw Ulam and John von Neumann to James Yorke and 
Mitchell Feigenbaum-is "On Finite Limit Sets for Transforma
tions on the Unit Interval," Journal of Combinatorial Theory 15 
(1973), pp. 25-44. 

168 DoEs A CLIMATE EXIST "The Problem of Deducing the Climate 
from the Governing Equations," Tellus 16 (1964), pp. 1-11. 
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170 THE WHITE EARTH CLIMATE Manabe. 
171  HE KNEW NOTHING OF LORENZ Feigenbaum. 
172 ODDLY May. 
173 THE SAME COMBINATIONS OF R's AND L's "On Finite Limit Sets,"  

pp. 30-31 .  The crucial hint: "The fact that these patterns . . .  are a 
common property of four apparently unrelated transformations . . .  
suggests that the pattern sequence is a general property of a wide 
class of mappings. For this reason we have called this sequence of 
patterns the U-sequence where 'U' stands (with soma exaggeration) 
for 'universal. ' " But the mathematicians never imagined that the 
universality would extend to actual numbers; they made a table of 
84 different parameter values, each tak.en to seven decimal places, 
without observing the geometrical relationships hidden there. 

174 "THE WH0LE TRADITION 0F PHYSICS" Feigenbaum. 
179 H1s FRIENDS SPECULATED Cvitanovic. 
180 SUDDENLY YOU C0ULD SEE Ford. 
180 PRIZES AND AWARDS The MacArthur fellowship; the 1986 Wolf 

Prize in physics. 
182 "FEIGENBAUM0LOGY" Dyson. 
183 "IT WAS A VERY HAPPY" Gilmore. 
183 8UT ALL THE WHILE Cvitanovic. 
183 W0RK BY OSCAR E. LANFORD Even then, the proof was unorthodox 

in that it depended on tremendous amounts of numerical calcu
lation, so that it could not he carried out or checked without the 
use of a computer. Lanford; Oscar E. Lanford, "A Computer
Assisted Proof of the Feigenbaum Conjectures,"  Bulletin of the 
American Mathematical Society 6 (1982), p. 427; also, P. Collet, 
J.-P. Eckmann, and 0. E. Lanford, "Universal Properties of Maps on 
an lnterval ," Communications in Mathematical Physics 81 (1980), 
p. 211 .  

183 "SIR, no YOU MEAN" Feigenbaum; "The Discovery of Universal-
ity," p. 17 .  

183 IN THE SUMMER 0F 1977 Ford, Feigenbaum, Lebowitz. 
184 "MITCH HAD SEEN UNIVERSALITY" Ford. 
184 "S0METHING DRAMATIC HAPPENED" Feigenbaum. 

THE EXPERIMENTER 

191 "ALBERT IS GETTING MATURE" Libchaber, Kadanoff. 
191 HE SURVIVED THE WAR Libchaber. 
192 "HELIUM IN A SMALL Box" Albert Libchaber, "Experimental Study 

of Hydrodynamic Instabilities. Rayleigh-Benard Experiment: He
lium in a Small Box," in Nonlinear Phenomena at Phase Transi
tions and Instabilities, ed. T. Riste (New York: Plenum, 1982), p. 
259. 

192 THE LAB0RAT0RY OCCUPIED Libchaber, Feigenbaum. 
195 "SCIENCE WAS CONSTRUCTED" Libchaber. 
195 "BuT YOU KN0W THEY no! " Libchaber. 
196 "THE FLECKED RIVER" Wallace Stevens, "This Solitude of Cata-



Notes on Sources 333  

racts," The Palm at  the End of the Mind, ed. Holly Stevens (New 
York: Vintage, 1972), p. 321 .  

196 "INS0LID BILL0WING 0F THE S0LID" "Reality Is an Activity of the 
Most August Imagination," Ibid. , p. 396. 

197 "BUILDS rrs 0WN BANKS" Theodor Schwenk, Sensitive Chaos (New 
York: Schocken, 1976) , p .  19.  

198 "ARCHETYPAL PRINCIPLE" Ibid. 
198 "THIS PICTURE 0F STRANDS" Ibid. ,  p.  16. 
198 "THE INEQUALITIES" Ibid. ,  p. 39. 
198 "IT MAY BE" D' Arcy Wentworth Thompson, On Growth and Form, 

J. T. Bonner, ed. (Cambridge: Cambridge University Press, 1961), 
p. 8. 

200 "BEYOND C0MPARIS0N THE FINEST" Ibid., p. viii. 
200 "FEW HAD ASKED" Stephen Jay Gould, Hen's Teeth and Horse's 

Toes (New York: Norton, 1983), p. 369. 
202 "DEEP-SEATED RHYTHMS 0F GR0WTH" On Growth and Form, p. 

267. 
202 "THE INTERPRETATION IN TERMS OF F0RCE" lbid. ,  p. 1 14. 
204 IT WAS so SENSITIVE Campbell. 
204 "IT WAS CLASSICAL PHYSics" Libchaber. 
205 Now, HOWEVER, A NEW FREQUENCY Libchaber and Maurer, 1980 

and 1981 . Also Cvitanovic's introduction gives a lucid summary. 
208 "THE N0TI0N THAT THE ACTUAL" Hohenberg. 
208 "THEY ST00D AMID THE SCATTERED" Feigenbaum, Libchaber. 
209 "You HAVE To REGARD IT" Gollub. 
209 A VAST BESTIARY OF LAB0RAT0RY EXPERIMENTS The literature is 

equally vast. One summary of the early melding of theory and 
experiment in a variety of systems is Harry L. Swinney, "Obser
vations of Order and Chaos in Nonlinear Systems," Physica 7D 
(1983), pp. 3-15 ;  Swinney provides a list of references divided into 
categories, from electronic and chemical oscillators to more esoteric 
kinds of experiments. 

209 To MANY, EVEN M0RE C0NVINCING Valter Franceschini and Clau
dio Tebaldi, "Sequences of Infinite Bifurcations and Turbulence in 
a Five-Mode Truncation of the Navier-Stokes Equations," Journal 
of Statistical Physics 21 (1979),  pp. 707-26. 

209 1N 1980 A EUR0PEAN GROUP P. Collet, J.-P. Eckmann, and H. Koch, 
"Period Doubling Bifurcations for Families of Maps on Rn," Journal 
of Statistical Physics 25 (1981) ,  p. 1 .  

210  "A PHYSICIST W0ULD ASK ME" Libchaber. 

IMAGES OF CHAOS 

215 MICHAEL BARNSLEY MET Barnsley. 
216 RUELLE SHUNTED IT BACK Barnsley. 
217 JoHN HUBBARD, AN AMERICAN Hubbard; also Adrien Douady, "Julia 

Sets and the Mandelbrot Set," in pp. 161-73. The main text of The 
Beauty of Fractals also give a mathematical summary of Newton's 
method, as well as the other meeting grounds of complex dynamics 
discussed in this chapter. 
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217  "Now, FOR EQUATIONS"  "Julia Sets and the Mandelbrot Set," p .  
1 70. 

217 HE STILL PRESUMED Hubbard. 
219 A BOUNDARY BETWEEN TWO COLORS Hubbard; The Beauty of Frac

tals; Peter H. Richter and Heinz-Otto Peitgen, "Morphology of Com
plex Boundaries,"  Bunsen-GeseUschaft fiir Physikalische Chemie 
89 1985), pp. 575-88. 

221 THE MANDELBROT SET A readable introduction, with instructions 
for writing a do-it-yourself microcomputer program, is A. K. Dewd
ney, "Computer Recreations,"  Scientific American Ouly 1985), pp. 
16-32. Peitgen and Richter in The Beauty of Fractals offer a detailed 
review of the mathematics, as well as some of the most spectacular 
pictures available. 

221 THE MOST COMPLEX OBJECT Hubbard, for example. 
221 "You OBTAIN AN INCREDIBLE VARIETY "Julia Sets and the Man

delbrot Set," p. 161 .  
222 IN 1979 MANDELBROT mscovEREn Mandelbrot, Laff, Hubbard. A 

first-person account by Mandelbrot is "Fractals and the Rebirth of 
Iteration Theory," in The Beauty of Fractals, pp. 151-60. 

223 As HE TRIED CALCULATING Mandelbrot; The Beauty of Fractals. 
228 MANDELBROT STARTED WORRYING Mandelbrot. 
228 NO TWO PIECES ARE "TOGETHER" Hubbard. 
229 "EVERYTHING WAS VERY GEOMETRIC" Peitgen. 
229 AT CORNELL, MEANWHILE Hubbard. 
229 RICHTER HAD COME TO COMPLEX SYSTEMS Richter. 
230 "IN A BRAND NEW AREA" Peitgen. 
231 "RIGOR IS THE STRENGTH" Peitgen. 
233 FRACTAL BASIN BOUNDARIES Yorke; a good introduction, for the 

technically inclined, is Steven W. MacDonald, Celso Grebogi, Ed
ward Ott, and James A. Yorke, "Fractal Basin Boundaries," Physica 
1 7D (1985), pp. 125-83. 

233 AN IMAGINARY PINBALL MACHINE Yorke. 
234 "NOBODY CAN SAY" Yorke, remarks at Conference on Perspectives 

in Biological Dynamics and Theoretical Medicine, National Insti
tutes of Health, Bethesda, Maryland, 10  April 1986. 

235 TYPICALLY, MORE THAN THREE-QUARTERS Yorke. 
235 THE BORDER BETWEEN CALM AND CATASTROPHE Similarly, in a text 

meant to introduce chaos to engineers, H. Bruce Stewart and J. M. 
Thompson warned: "Lulled into a false sense of security by his 
familiarity with the unique response of a linear system, the busy 
analyst or experimentalist shouts 'Eureka, this is the solution,' once 
a simulation settles onto an equilibrium of steady cycle, without 
bothering to explore patiently the outcome from different starting 
conditions. To avoid potentially dangerous errors and disasters, 
industrial designers must he prepared to devote a greater percentage 
of their effort into exploring the full range of dynamic responses 
of their systems." Nonlinear Dynamics and Chaos (Chichester: Wiley, 
1986), p. xiii. 

236 "PERHAPS WE SHOULD BELIEVE" The Beauty of Fractals, p. 1 36. 
236 WHEN HE WROTE ABOUT e.g., "lterated Function Systems and the 
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Global Construction of  Fractals," Proceedings of the Royal Society 1 
of London A 399 (1985), pp. 243-75.  

238 "IF THE IMAGE IS COMPLICATED" Barnsley. 
239 "THERE IS NO RANDOMNESS" Hubbard. 
239 "RANDOMNESS IS A RED" Barnsley. 

THE DYNAMICAL SYSTEMS COLLECTIVE 

243 SANTA CRUZ Farmer, Shaw, Crutchfield, Packard, Burke, Nauen
berg, Abrahams, Guckenheimer. The essential Robert Shaw, apply
ing information theory to chaos, is The Dripping Faucet as a Model 
Chaotic System (Santa Cruz: Aerial, 1984) ,  along with "Strange 
Attractors, Chaotic Behavior, and Information Theory," Zeitschrift 
fiir Naturforschung 36a (1981),  p. 80. An account of the roulette 
adventures of some of the Santa Cruz students, conveying much of 
the color of these years, is Thomas Bass, The Eudemonic Pie (Bos
ton: Houghton Mifflin, 1985). 

244 HE nm NOT KNOW Shaw. 
244 WILLIAM BURI<E, a SANTA CRUZ COSMOLOGIST Burke, Spiegel. 
245 "cOSMIC ARRHYTHMIAS" Edward A. Spiegel, "Cosmic Arrhyth-

mias,"  in Chaos in Astrophysics, J. R. Buchler et al. ,  eds. (New 
York: D. Reidel, 1985), pp. 91-135.  

245 THE ORIGINAL PLANS Farmer, Crutchfield. 
246 BY BUILDING UP Shaw, Crutchfield, Burke. 
246 A FEW MINUTES LATER Shaw. 
247 "ALL YOU HAVE TO no" Abraham. 
248 DoYNE F ARMER Farmer is the main figure and Packard is a sec

ondary figure in The Eudemonic Pie, the story of the roulette proj
ect, written by a sometime associate of the group. 

249 PHYSICS AT SANTA CRUZ Burke, Farmer, Crutchfield. 
250 "GIZMO-ORIENTED" Shaw. 
252 FORD HAD ALREADY DECIDED Ford. 
252 THEY REALIZED THAT MANY SORTS Shaw, Farmer. 
255 INFORMATION THEORY The classic text, still quite readable, is Claude 

E. Shannon and Warren Weaver, The Mathematica1 Theory of Com
munication (Urbana: University of Illinois, 1963), with a helpful 
introduction by Weaver. 

257 "WHEN ONE MEETS THE CONCEPT" Ibid., p.  13 .  
258 NORMAN PACKARD WAS READING Packard. 
258 IN DECEMBER 1977 Shaw. 
259 WHEN LORENZ WALKED INTO THE ROOM Shaw, Farmer. 
259 HE FINALLY MAILED HIS PAPER "Strange Attractors, Chaotic Be

havior, and Information Flow." 
261 A. N. KOLMOGOROV AND YASHA SINAI Sinai, private communi-

cation. 
261 AT THE PINNACLE Packard. 
262 "You DON'T SEE SOMETHING" Shaw. 
262 "IT'S A SIMPLE EXAMPLE" Shaw. 
263 SYSTEMS THAT THE SANTA CRuz GROUP Farmer; a dynamical sys-
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tems approach to the immune system, modeling the human body's 
ability to "remember" and to recognize patterns creatively, is out
lined in J. Doyne Farmer, Norman H. Packard, and Alan S. Perelson, 
"The Immune System, Adaptation, and Machine Learning," pre
print, Los Alamos National Laboratory, 1986. 

263 ONE IMPORTANT VARIABLE The Dripping Faucet, p. 4. 
263 "A STATE-OF-THE-ART C0MPUTER CALCULATION" Ibid. 
264 A "PSEUDOCOLLOQUIUM" Crutchfield. 
265 "IT TURNS OUT" Shaw. 
266 "WHEN YOU THINK ABOUT A VARIABLE" Farmer. 
266 REC0NSTRUCTING THE PHASE SPACE These methods, which became 

a mainstay of experimental technique in many different fields, were 
greatly refined and extended by the Santa Cruz researchers and 
other experimentalists and theorists. One of the key Santa Cruz 
proposals was Norman H. Packard, James P. Crutchfield, J. Doyne 
Farmer, and Robert S. Shaw [the canonical byline list], "Geometry 
from a Time Series," Physical Review Letters 47 (1980), p. 712. 
The most influential paper on the subject by Floris Takens was 
"Detecting Strange Attractors in Turbulence," in Lecture Notes in 
Mathematics 898, D. A. Rand and L. S. Young, eds. (Berlin: Sprin
ger-Verlag, 1981), p. 336. An early but fairly broad review of the 
techniques of reconstructing phase-space portraits is Harold Froeh
ling, James P. Crutchfield, J. Doyne Farmer, Norman H. Packard, 
and Robert S. Shaw, "On Determining the Dimension of Chaotic 
Flows," Physica 3D (1981), pp. 605-1 7. 

267 "Gon, WE'RE STILL" Crutchfield. 
267 SOME PROFESSORS DENIED e.g . •  Nauenberg. 
267 "WE HAD NO ADVISOR" Shaw. 
268 MORE INTERESTED IN REAL SYSTEMS Not that the students ignored 

maps altogether. Crutchfield, inspired by May's work, spent so much 
time in 1978 making bifurcation diagrams that he was barred from 
the computer center's plotter. Too many pens had been destroyed 
laying down the thousands of dots. 

268 LANF0RD LISTENED POLITELY Farmer. 
268 "IT WAS MY NAIVETt" Farmer. 
269 "Aun1ov1suAL AIDS" Shaw. 
270 ONE DAY BERNARDO HUBERMAN Crutchfield, Huberman. 
270 "IT WAS ALL VERY VAGUE" Huberman. 
270 THE FIRST PAPER Bernardo A. Huberman and James P. Crutchfield, 

"Chaotic States of Anharmonic Systems in Periodic Fields," Phys
ical Review Letters 43 (1979), p. 1 743. 

270 FARMER WAS ANGERED Crutchfield. 
271 CLIMATE SPECIALISTS This is a continuing debate in the journal 

Nature, for example. 
271 EcONOMISTS ANALYZING STOCK MARKET Ramsey. 
271 FRACTAL DIMENSION, HAUSD0RFF DIMENSION J.  Doyne Farmer, Ed

ward Ott, and James A. Yorke, "The Dimension of Chaotic Attrac
tors," Physica 7D (1983), pp. 153-80. 

271 "THE FIRST LEVEL OF KNOWLEDGE" lbid., p. 154. 
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275 HUBERMAN L00KED 0UT Huberman, Mandell (interviews and re
marks at Conference on Perspectives in Biological Dynamics and 
Theoretical Medicine, Bethesda, Maryland, 1 1  April 1986). Also, 
Bernardo A. Huberman, "A Model for Dysfunctions in Smooth Pur
suit Eye Movement," preprint, Xerox Palo Alto Research Center, 
Palo Alto, California. 

279 "THREE THINGS HAPPEN" Abraham. The basic introduction to the 
Gaia hypothesis-an imaginative dynamical view of how the earth's 
complex systems regulate themselves, somewhat sabotaged by its 
deliberate anthropomorphism-is J. E. Lovelock, Gaia: A New Look 
at Life on Earth (Oxford: Oxford University Press, 1979). 

280 RESEARCHERS INCREASINGLY REC0GNIZED A somewhat arbitrary 
selection of references on physiological topics (each with useful 
citations of its own) : Ary L. Goldberger, Valmik Bhargava, and 
Bruce J. West, "Nonlinear Dynamics of the Heartbeat," Physica 1 7D 
(1985), pp. 207-14. Michael C. Mackay and Leon Glass, "Oscilla
tion and Chaos in Physiological Control Systems," Science 197 
(1977) ,  p. 287. Mitchell Lewis and D. C. Rees, "Fractal Surfaces of 
Proteins," Science 230 (1985), pp. 1 163-65. Ary L. Goldberger, et 
al., "Nonlinear Dynamics in Heart Failure: lmplications of Long
Wavelength Cardiopulmonary Oscillations," American Heart Jour
nal 107 (1984), pp. 612-15. Teresa Ree Chay and John Rinzel, 
"Bursting, Beating, and Chaos in an Excitable Membrane Model," 
Biophysical Journal 47 (1985), pp. 357-66. A particularly useful 
and wide-ranging collection of other such papers is Chaos, Arun 
V. Holden, ed. (Manchester: Manchester University Press, 1986). 

280 "A DYNAMICAL SYSTEM 0F VITAL INTEREST" Ruelle, "Strange At-
tractors," p. 48. 

281 "IT'S TREATED BY PHYSICIANS" Glass. 
281 "WE'RE AT A NEW FR0NTIER" Goldberger. 
283 MATHEMATICIANS AT THE C0URANT INSTITUTE Peskin; David M. 

McQueen and Charles S. Peskin, "Computer-Assisted Design of 
Pivoting Disc Prosthetic Mitral Valves," Journal of Thoracic and 
Cardiovascular Surgery 86 (1983), pp. 126-35. 

283 A PATIENT WITH A SEEMINGLY HEALTHY HEART Cohen. 
284 "THE BUSINESS 0F DETERMINING" Winfree. 
285 A STR0NG SENSE 0F GE0METRY Winfree develops his view of geo

metric time in biological systems in a provocative and beautiful 
book, When Time Breaks Down: The Three-Dimensional Dynamics 
of Electrochemical Waves and Cardiac Arrhythmias (Princeton: 
Princeton University Press, 1987); a review article on the appli
cations to heart rhythlJlS is Arthur T. Winfree, "Sudden Cardiac 
Death: A Problem in Topology," Scientific American 248 (May 
1983), p. 144. 

285 "1 HAD A HEADFUL" Winfree. 
286 "You G0 T0 A M0SQUIT0" Winfree. 
288 SHE REP0RTED FEELING GREAT Strogatz; Charles A. Czeisler, et al., 

"Bright Light Resets the Human Circadian Pacemaker Independent 
of the Timing of the Sleep-Wake Cycle," Science 233 (1986), pp. 
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667-70. Steven Strogatz, "A Comparative Analysis of Models of 
the Human Sleep-Wake Cycle," preprint, Harvard University, Cam
bridge, Massachusetts. 

288 HE HAD GAINED Winfree. 
288 "WHEN MINES DECIDED" "Sudden Cardiac Death."  
288 To no so, H0WEVER Ideker. 
289 "THE CARDIAC EQUIVALENT" Winfree. 
289 IDEKER'S IMMEDIATE INTENTION Ideker. 
290 THEY USED TINY AGGREGATES Glass. 
290 "ExoTIC DYNAMIC BEHAVIOR" Michael R. Guevara, Leon Glass, 

and Alvin Schrier, "Phase Locking, Period-Doubling Bifurcations, 
and Irregular Dynamics in Periodically Stimulated Cardiac Cells," 
Science 214 (1981),  p. 1350.  

290 "MANY DIFFERENT RHYTHMS" Glass. 
290 "IT IS A CLEAR INSTANCE" Cohen. 
291 "PE0PLE HAVE MADE THESE WEIRD" Glass. 
292 "DYNAMICAL THINGS ARE GENERALLY" Winfree. 
292 "SYSTEMS THAT N0RMALLY 0SCILLATE" Leon Glass and Michael 

C. Mackay, "Pathological Conditions Resulting from Instabilities in 
Physiological Control Systems," Annals of the New York Academy 
of Sciences 316 (1979),  p. 214.  

293 "FRACTAL PR0CESSES" Ary L. Goldberger, Valmik Bhargava, Bruce 
J. West, and Arnold J. Mandell, "Some Observations on the Ques
tion: Is Ventricular Fibrillation 'Chaos,' " preprint. 

298 "Is IT P0SSIBLE" Mandell. 
298 "WHEN Y0U REACH AN EQUILIBRIUM" Mandell. 
298 MANDELL 0FFERED HIS C0LLEAGUES Arnold J. Mandell, "From Mo

lecular Biological Simplification to More Realistic Central Nervous 
System Dynamics: An Opinion," in Psychiatry: Psychobiological 
Foundations of Clinical Psychiatry 3:2 ,  J. 0. Cavenar, et al., eds. 
(New York: Lippincott, 1985).  

298 "THE UNDERLYING PARADIGM REMAINS" Ibid. 
299 THE DYNAMICS 0F SYSTEMS Huberman. 
299 SucH M0DELS SEEMED T0 HAVE Bernardo A. Huberman and Tad 

Hogg, "Phase Transitions in Artificial lntelligence Systems," pre
print, Xerox Palo Alto Research Center, Palo Alto, Califomia, 1986. 
Also, Tad Hogg and Bernardo A. Huberman, "Understanding Bi
ological Computation: Reliable Learning and Recognition," Pro
ceedings of the National Academy of Sciences 81 (1984) , pp. 6871-
75.  

299 "AST0NISHING GIFT 0F C0NCENTRATING" Erwin Schrödinger, What 
Is Life? (Cambridge: Cambridge University Press, 1967) , p. 82.  

299 "IN PHYSICS WE HAVE DEALT" Ibid., p. 5. 

CHAOS AND BEYOND 

305 "WHEN I SAID THAT?" Ford. 
305 "IN A C0UPLE 0F DAYS" Fox. 
306 THE W0RD ITSELF (Holmes) SIAM Review 28 (1986), p. 107; (Hao) 
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Chaos (Singapore: World Scentific, 1984), p.  i; (Stewart) "The Ge
ometry of Chaos," in The Unity of Science, Brookhaven Lecture 
Series, No. 209 (1984), p. 1 ;  Uensen) "Classical Chaos," American 
Scientist (April 1987); (Crutchfield) private communication; (Ford) 
"Book Reviews," International Journal of Theoretical Physics 25 
(1986), No. 1 .  

306 To HIM, THE OVERRIDING MESSAGE Hubbard. 
307 TOO NARROW A NAME Winfree. 
307 "IF YOU HAD A TURBULENT RIVER" Huberman. 
307 "LET US AGAIN LOOK" Gaia, p. 125 .  
308 THOUGHTFUL PHYSICISTS P. W.  Atkins, The Second Law (New 

York: W. H. Freeman, 1984), p. 1 79. This excellent recent book is 
one of the few accounts of the Second Law to explore the creative 
power of dissipation in chaotic systems. A highly individual, phil
osophical view of the relationships between thermodynamics and 
dynamical systems is Ilya Prigogine, Order Out of Chaos: Man's 
New Dialogue With Nature (New York: Bantam, 1984) .  

309 GROWTH OF SUCH TIPS Langer. The recent literature on the dy
namical snowtlake is voluminous. Most useful are: James S. Langer, 
"lnstabilities and Pattem Formation," Reviews of Modern Physics 
(52) 1980, pp. 1-28; Johann Nittmann and H. Eugene Stanley, "Tip 
Splitting without Interfacial Tension and Dendritic Growth Pattems 
Arising from Molecular Anisotropy, Nature 321  (1986), pp. 663-
68; David A. Kessler and Herbert Levine, "Pattern Selection in 
Fingered Growth Phenomena," to appear in Advances in Physics. 

314 IN THE BACK OF THEIR MINDS Gollub, Langer. 
314 ODD-SHAPED TRA VELING WA VES An interesting example of this route 

to the study of pattem formation is P. C. Hohenberg and M. C. Cross, 
"An Introduction to Pattern Formation in Nonequilibrium Sys
tems," preprint, AT&T Bell Laboratories, Murray Hill, New Jersey. 

314 IN ASTRONOMY, CHAOS EXPERTS Wisdom; Jack Wisdom, "Meteo
rites May Follow a Chaotic Route to Earth," Nature 315 (1985), pp. 
731-33, and "Chaotic Behavior and the Origin of the 3/1 Kirkwood 
Gap," Icarus 56 (1983), pp. 51-74. 

314 STRUCTURES THAT REPLICATE THEMSELVES As Farmer and Packard 
put it: "Adaptive behavior is an emergent property which spon
taneously arises through the interaction of simple components. 
Whether these components are neurons, amino acids, ants, or bit 
strings, adaptation can only occur if the collective behavior of the 
whole is qualitatively different from that of the sum of the indi
vidual parts. This 'is precisely the definition of nonlinear ."  "Evo
lution, Games, and Learning: Models for Adaptation in Machines 
and Nature," introduction to conference proceedings, Center for 
Nonlinear Studies, Los Alamos National Laboratory, May 1985. 

314 "EVOLUTION 1s CHAOS" "What Is Chaos?" p. 14.  
314 "Goo PLAYS DICE" Ford. 
315 "THE PROFESSION CAN NO LONGER" Structure, p .  5 .  
315 "BOTH EXHILARATING AND A BIT THREATENING" William M. Schaf

fer, "Chaos in Ecological Systems: The Coals That Newcastle For
got," Trends in Ecological Systems 1 (1 986), p. 63 . 
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315 "WHAT PASSES FOR FUNDAMENTAL" William M. Schaffer and Mark 
Kot, "Do Strange Attractors Govem Ecological Systems?" Bio
Science 35 (1985), p. 349. 

315 SCHAFFER 1s USING e.g. , William M. Schaffer and Mark Kot, "Nearly 
One Dimensional Dynamics in an Epidemic," Journal of Theoretical 
Biology 1 1 2  (1985),  pp. 403-27.  

316 "MoRE TO THE POINT" Schaffer. 
316 YEARS LATER, SCHAFFER UVED Schaffer; also William M. Schaffer, 

"A Persona} Hejeira,"  unpublished. 
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