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Economic Applications

Ordinary least squares

Consider a statistical sample consisting of on N pairs of observations

(y1, x1) , ..., (yN , xN) .

Suppose that we want to find a linear relation between x and y. We
would like to find a coefficient β that rationalizes the observations as

yi = βxi.

If we have many observations, this will not be satisfied in general. To ac-
count for errors in the linear relationship, specify the following statistical
model

yi = βxi + εi,

where εi is an identically and independently distributed error term for all
i.

Our task is to infer β from the sample. One way of doing this is based
on minimizing the sum of squared error terms (εi)

2, i.e. to

min
β
f (β) = ΣN

i=1 (yi − βxi)2 .

Compute f ′ (β) and consider β̂ such that:

f ′
(
β̂
)

= 0.

By taking the derivative, we get:

f ′
(
β̂
)

=
N∑
i=1

−2xi

(
yi − β̂xi

)
.
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As a result, f ′
(
β̂
)

= 0 if

β̂ =
ΣN
i=1xiyi

ΣN
i=1x

2
i

.

Since f ′′(β̂) =
∑N

i=1 x
2
i > 0, we have found the minimum.

If we want to include a constant term α, we get:

yi = α + βxi + εi.

function of (α, β):

f (α, β) = ΣN
i=1 (yi − α− βxi)2 .

To find
(
α̂, β̂

)
such that

∂f
(
α̂, β̂

)
∂α

=
∂f
(
α̂, β̂

)
∂β

= 0,

we get:

ΣN
i=1

(
yi − α̂− β̂xi

)
= 0,

ΣN
i=1 − 2xi

(
yi − α̂− β̂xi

)
= 0.

Solving for α from the first equation gives:

α̂ =
ΣN
i=1yi − β̂ΣN

i=1xi
N

:= y − β̂x.

Using the first equation we also see that:

ΣN
i=1x

(
yi − α̂− β̂xi

)
= 0.

By substituting into the second, we get:

β̂ =
ΣN
i=1 (xi − x) (yi − y)

ΣN
i=1 (xi − x)2

=
Cov (y, x)

V ar (x)
.
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More generally, we can consider samples with more explanatory vari-
ables: (y1, x11, x21, ..., xK1) , ... (yN , x1N , ..., xKN) and a linear model y1

...
yn


 =

...
=


 β1x11+ · · · βKxK1

...
...

β1x1N · · · βKxKN

+

 ε1
...
εN


or in matrix form:

y = Xβ + ε.

We can compute the sum of squares now as:

f (β) = ε · ε = (y −Xβ)> (y −Xβ)

= y · y − (Xβ)> y − y>Xβ + β>X>Xβ

= y · y − 2y>Xβ + β>X>Xβ.

The derivative of −2y>Xβ is the row vector −2y>X and the deriva-
tive of β>X>Xβ is 2β>X>X . (To see this, write the matrix product as a
sum). Writing with the gradient, we have:

∇f
(
β̂
)

= −2X>y + 2X>Xβ̂.

Therefore we can find a candidate for the extremum by setting

∇f
(
β̂
)

= 0.

Solving for β, we get:
β̂ =

(
X>X

)−1
X>y.

Exercise: Is there a need to add a constant term to get a more general
formula? When is the Hessian of f(β) positive definite?

Second derivatives of functions used in economics

Power function

Sums of power functions are common in consumer theory. Each compo-
nent in the sum measures the utility from consumption in a given period.
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(Individual components xρi are often called CRRA functions since they dis-
play constant relative risk aversion).

f (x1, x2) = xρ1 + xρ2.

Form the gradient

∇f (x1, x2) =

(
∂f(x1,x2)

∂x1
∂f(x1,x2)

∂x2

)
=

(
ρxρ−11

ρxρ−12

)
.

Form the Hessian matrix by taking the derivative of the gradient:

Hf (x1, x2) =

(
∂2f(x1,x2)
∂x1∂x1

∂2f(x1,x2)
∂x2∂x1

∂2f(x1,x2)
∂x1∂x2

∂2f(x1,x2)
∂x2∂x2

)
.

We get:

Hf (x1, x2) =

(
ρ (ρ− 1)xρ−21 0

0 ρ (ρ− 1)xρ−22

)
.

D2f (x1, x2) is thus negative definite when xi 6= 0 ja 0 < ρ < 1.

CES -function

Recall the CES -function (utility and production function).

f (x1, x2) = (xρ1 + xρ2)
1
ρ .

Form the gradient:

∇f (x1, x2) =

(
∂f(x1,x2)

∂x1
∂f(x1,x2)

∂x2

)
=

(
(xρ1 + xρ2)

1
ρ
−1 xρ−11

(xρ1 + xρ2)
1
ρ
−1 xρ−12

)
.

The the Hessian matrix is:

Hf (x1, x2) =

(
∂2f(x1,x2)
∂x1∂x1

∂2f(x1,x2)
∂x2∂x1

∂2f(x1,x2)
∂x1∂x2

∂2f(x1,x2)
∂x2∂x2

)
.

By the product rule:

∂2f (x1, x2)

∂x1∂x1
= (ρ− 1)xρ−21 (xρ1 + xρ2)

1
ρ
−1

+

(
1

ρ
− 1

)
(xρ1 + xρ2)

1
ρ
−2 ρx2ρ−21 ,
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∂2f (x1, x2)

∂x1∂x2
=

(
1

ρ
− 1

)
(xρ1 + xρ2)

1
ρ
−2 ρxρ−12 xρ−11 ,

∂2f (x1, x2)

∂x2∂x2
= (ρ− 1)xρ−22 (xρ1 + xρ2)

1
ρ
−1

+

(
1

ρ
− 1

)
(xρ1 + xρ2)

1
ρ
−2 ρx2ρ−22 .

By collecting the common terms, we get:

D2f (x1, x2) =

(
∂2f(x1,x2)
∂x1∂x1

∂2f(x1,x2)
∂x2∂x1

∂2f(x1,x2)
∂x1∂x2

∂2f(x1,x2)
∂x2∂x2

)

= (xρ1 + xρ2)
1
ρ
−2
(

(ρ− 1)xρ−21 xρ2 (1− ρ)xρ−12 xρ−11

(1− ρ)xρ−12 xρ−11 (ρ− 1)xρ−22 xρ1

)
.

When computing the determinant, we can separate the common factor:

det
(
D2f (x1, x2)

)
=

(xρ1 + xρ2)
1
ρ
−2 x2ρ−21 x2ρ−22 det

(
(ρ− 1) (1− ρ)
(1− ρ) (ρ− 1)

)
= 0.

D2f (x1, x2) is therefore negative semidefinite if ρ < 1 and positive semidef-
inite ifρ > 1.

Definiteness and comparative statics

Consider the unconstrained optimization of choosing y ∈ R to reach the
highest possible value of:

f (y;x) ,

where x ∈ R is an exogenous variable. Write the problem of maximizing
y : n as follows:

max
y
f (y;x)

The first order condition for optimum at (ŷ, x̂) is:

∂f

∂y
(ŷ; x̂) = 0.
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A sufficient condition for local maximum is obtained from Taylor’s the-
orem:

f (ŷ + dy; x̂)− f (ŷ; x̂) =
∂f

∂y
(ŷ; x̂) dy +

1

2

∂2f

∂y∂y
(ŷ; x̂) (dy)2 + h.o.t.

If
∂2f

∂y∂y
(ŷ; x̂) < 0,

then fhas a local maximum at (ŷ; x̂) .
Note that then also the function

∂f

∂y
(ŷ; x̂)

has a non-zero derivative w.r.t. the endogenous variable at (ŷ; x̂) and we
can apply the implicit function theorem y to get the optimal y as a function
of x.

Since
∂f

∂y
(y (x) ;x) = 0.

for all x near x̂, we get:

∂2f (ŷ; x̂)

∂y∂y
dy +

∂2f (ŷ; x̂)

∂y∂x
dx = 0,

or
dy

dx
= −

∂2f(ŷ;x̂)
∂y∂x

∂2f(ŷ;x̂)
∂y∂y

.

Since ∂2f(ŷ;x̂)
∂y∂y

< 0 by second-order condition for optimum, we see that dy
dx

has the same sign as ∂2f(ŷ;x̂)
∂y∂x

.

Example 1 (Optimal monopoly production). Let q be the output by the
monopolist. Denote the inverse demand by p(q;α) and assume that it is
twice differentiable and downward sloping ∂p(q;α)

∂q
< 0 for all q > 0. Let α

be a demand shifting variable with such as the income of the consumers
and ∂p(q;α)

∂α
> 0 for all q > 0.

Denote the cost function by c(q; β). Assume that the cost is increasing
q and also that the marginal cost is increasing in q. Let β be a cost shifting
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exogenous variable e.g. price of oil and assume that ∂c(q;β)
∂β

< 0 for all q > 0
The monopolist’s maximization problem is then:

max
q
π (q;α, β) = qp(q;α)− c(q; β)

First-order condition for optimality:

Dπ (q;α, c) = p(q;α) + q
∂p(q;α)

∂q
− ∂c(q; β)

∂q
= 0.

Second-order condition:
Hπ (q) < 0.

If ∂c(q;β)
∂β

is decreasing in q, then the second derivative is negative for all q.
How does the optimal output change when α or c changes? By the

previous result, the sign of the change in the endogenous variable depends
on the signs of

∂2π (q;α, )

∂q∂α
,
∂2π (q;α, β)

∂q∂β
.

Notice that we also need to know the signs of ∂2p(q;α)
∂q∂α

and ∂2c(q;β)
∂q∂β

to
determine how optimal output changes.
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