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Minima and maxima of functions

We say that a function f : Rn → R has a (global) maximum at point x̂ if
for all x ∈ Rn,

f (x̂) ≥ f(x).

Function f has a minumum at x̂ if for all x ∈ Rn,

f (x̂) ≤ f(x).

Minimum and maximum points are called extrema or optimum points.
We define Bε(x̂) := {x ∈ Rn| ‖x− x̂‖ < ε}. The function f has a local

maximum at x̂ if there exists an ε > 0 such that for all x ∈ Bε(x̂), we have:

f (x̂) ≥ f(x)

.
A local minimum is defined analogously.
The main questions to be addressed in these notes are:

1. How do we know whether f has a maximum or a minimum at x̂?

2. How to find local minima and maxima?

3. When are local extrema also global extrema?

First-order necessary conditions for local extrema

Consider the partial derivatives of f at x̂:

∂f(x̂)

∂xi

= lim
h→0

f(x̂1, ..., x̂i−1, x̂i + h, x̂i+1, ..., x̂n)− f(x̂)

h
.

If ∂f(x̂)
∂xi

> 0, then for |h| small, then

f(x̂1, ..., x̂i−1, x̂i + h, x̂i+1, ..., x̂n) > f(x̂) for h > 0,
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and
f(x̂1, ..., x̂i−1, x̂i + h, x̂i+1, ..., x̂n) < f(x̂) for h < 0.

Similarly, if ∂f(x̂)
∂xi

< 0, then for small |h|:

f(x̂1, ..., x̂i−1, x̂i + h, x̂i+1, ..., x̂n) < f(x̂) for h > 0,

and
f(x̂1, ..., x̂i−1, x̂i + h, x̂i+1, ..., x̂n) > f(x̂) for h < 0.

We conclude that to have any kind of an extremum at x̂, we must have for
all i:

∂f(x̂)

∂xi

= 0.

We say that the first-order necessary condition for an extremum at x̂ is that
all partial derivatives are zero at x̂. This can be written with the gradient
of f as:

∇f(x̂) = 0.

We call points where ∇f(x̂) = 0 the critical points of f . The fact that x̂
is a critical point does not imply that x̂ is a maximum or a minimum. In
other words,∇f(x̂) = 0 it is not a sufficient condition for an extremum. Just
consider the function f(x) = x3 at x̂ = 0. In order to classify the critical
points, we must find better approximations to f at x̂.

Higher order derivatives

Functions of a real variable

Consider now the derivative f ′(x) as a function of x ∈ R. If f ′ is has a
derivative at x̂, we can form the difference quotient as before:

lim
h→0

f ′(x̂+ h)− f ′(x̂)

h
.

If this limit exists, we call this derivative of the derivative the second
derivative of f at x̂. We denote the second derivative f ′′(x̂). For any k,
define the kth derivative at x̂ as the derivative of the (k−1)st derivative. We
denote this by f (k)(x̂). We say that f is k times continuously differentiable
if f (k)(x) is a continuous function on the domain of f . We write f ∈ Ck(R).
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Taylor’s theorem

Higher order derivatives are useful when one tries to find more accurate
approximations to functions that are k times differentiable. We have al-
ready seen that differentiable functions are well approximated around x̂
by f(x̂) + f ′(x̂)(x − x̂). Linear approximations are good enough to iden-
tify critical points, but they are of no use for deciding whether the critical
points are minima or maxima.

For example, both f(x) = x2 and f(x) = −x2 have a critical point
at x̂ = 0. For the first of these functions, the critical point is the global
minimum since x2 ≥ 0 for all x and x2 > 0 for x 6= 0. For the second, x̂ = 0
is the global maximum.

To get more accurate information, we must look at the second deriva-
tives of f . In the example above, f ′′(0) = 2 in the first case and f ′′(0) = −2
in the second. The following theorem allows us to determine minima and
maxima based on the sign of the second derivative at a critical point.

Theorem 1. Consider a function f : R → R, and assume that it is k + 1
times continuously differentiable at x̂. Then

f (x̂+ h) = f (x̂)+f ′ (x̂)h+
1

2
f ′′ (x̂)h2+...+

1

k!
f [k] (x̂)+

1

(k + 1)!
f [k+1] (x)hk+1,

for some x with x̂ < x < x̂+ h.

An illustration of the approximations of different orders is given in
Figure 1.
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Figure 1: Approximating f(x) = sin(x).

For local analysis around x̂, i.e. for h arbitrarily small, we need to look
for the first term with a non-zero coefficient in the Taylor approximation.
The other terms vanish much more quickly when h → 0 (since they in-
volve the multiplier hk for k > 1. For twice (or more times) continuously
differentiable functions, Taylor’s theorem gives a precise reason why we
called the remainder term as higher-order terms in the first-order approx-
imation by derivatives.

With the help of Taylor’s theorem, we can classify all points with f ′ (x̂) =
0:

1. If the first l for which f [l] (x̂) 6= 0, is odd, then f does not have an
extremum (i.e. minimum or maximum) at x̂.

2. If the first l for which f [l] (x̂) 6= 0, is even and f [l] (x̂) < 0, then f has
a local maximum at x̂.

3. If the first l for which f [l] (x̂) 6= 0, is even and f [l] (x̂) > 0, then f has
a local minimum at x̂.

To see why this is true, define l as above and divide the right-hand side
of Taylor’s theorem by hl−1and let h→ 0.
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The requirement f ′(x̂) = 0 and f ′′(x̂) < 0 is called the second-order
sufficient condition for local maximum at x̂.

One more point should be kept in mind. The function f may have
several local maxima and not all of them are maxima. We will have more to
say about global extrema when we discuss convex and concave functions.

Higher order derivatives of multivariate functions

The gradient of a multivariate function f : Rn → R at x̂ is the column
vector of its partial derivatives ∂f(x̂)

∂xi
. If these partial derivatives are differ-

entiable, we can evaluate all the partial derivatives of the partial deriva-
tives at x̂. We define the second derivative of f to be the derivative of its
gradient. Hence the second derivative at point x̂ is given by the matrix
Hf(x̂):

Hf(x) =


∂f(x̂)
∂x1∂x1

· · · ∂f(x̂)
∂x1∂xn

... . . . ...
∂f(x̂)
∂xn∂x1

· · · ∂f(x̂)
∂xn∂xn

 .

Young’s theorem guarantees that the Hessian matrix is symmetric:

Theorem 2. Let f : Rn → R be a twice continuously differentiable func-
tion. Then for all i, j ∈ {1, ..., n} and all x, we have

∂2f(x)

∂xi∂xj

=
∂2f(x)

∂xj∂xi

.

Multivariate Taylor approximation

One can also define kth order derivatives for multivariate functions, but
there is little use for higher orders than the second order derivative defined
above. Taylor’s theorem is also valid for functions f : Rn → R. Most
useful for us is the second order approximation:

Theorem 3. Consider a function f : Rn → R, and assume that it is 3 times
continuously differentiable at x̂. Then

f (x) = f (x̂) +∇f (x̂) (x− x̂) +
1

2
(x− x̂) ·Hf(x̂)(x− x̂) +R(x),

where limx→x̂
R(x)
‖x−x̂‖2 = 0.
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Recall that ∇f(x̂) = 0 at any critical point x̂, and therefore we can
determine if f(x) ≤ f(x̂) by examining the sign of the term:

(x− x̂) ·Hf(x̂)(x− x̂).

Hence we have identified as the key question the determination of the
sign of x ·Ax for a symmetric matrix A.

Quadratic forms and classifying extrema of f : Rn → R

A quadratic form is a second-degree polynomial whose terms are all of
second order. They can be written as:

x ·Ax

for some symmetric matrix A.
A quadratic form is positive definite if for all x 6= 0, x · Ax > 0. It is

positive semidefinite if for all x, x ·Ax ≥ 0.
A quadratic form is negative definite if for all x 6= 0, x ·Ax < 0. It is

negative semidefinite if for all x, x ·Ax ≤ 0. In all other cases, we say that
the quadratic form is indefinite.

Main take-away for this section:
Taylor’s theorem for multivariate functions tells us that a critical point at
x̂ is a local maximim (minimum) if its Hessian matrix at x̂ is negative
(positive) definite. This is a sufficient condition for maximum (minimum).
Conversely if f has a local maximum (minumum) at x̂, then Hf(x̂) is neg-
ative (positive) semi-definite.

Classifying quadratic forms

The following few subsection are long and at times cumbersome. Do not
mistake the length to be a sign that it is of overwhelming importance. I
discuss definiteness in some detail in the notes as it is not covered so much
in the lectures.

A first observation is that ei ·Aei = aii. Therefore a quadratic form is
indefinite if it has diagonal elements with different signs.

Another easy case is when A is a 2× 2 matrix:

A =

(
a b
b c

)
,
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so that the quadratic form is:

ax2
1 + 2bx1x2 + cx2

2.

View this as a second degree function in x2. If c > 0, this function has a
minimum at

x2 = −
bx1

c
.

Substituting into the quadratic form:

ax2
1 − 2

b2x2
1

c
+

b2x2
1

c
=

(
a− b2

c

)
x2
1.

This is strictly positive if (
a− b2

c

)
> 0 or

ac > b2.

In other words, the quadratic form is positive definite if i) a, c > 0 ja ii)
detA > 0.

For negative definiteness, assume that a, c < 0. Solving for the maximal
x2 for each x1 gives:

x2 = −
bx1

c

and substituting into the quadratic form and require that:

ax2
1 − 2

b2x2
1

c
+

b2x2
1

c
=

(
a− b2

c

)
x2
1 < 0.

We get:

a <
b2

c
or ac > b2.

In other words,
detA > 0.
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Unfortunately, the general case is tedious. I give it here for complete-
ness, but it is not particularly illuminating. We need to consider the lead-
ing principal minors M(k) of A:

M1 = det a11,M2 = det

(
a11 a12
a12 a22

)
,

M3 = det

 a11 a12 a13
a12 a22 a23
a13 a23 a33

 , ...

A quadratic form
x ·Ax

is positive definite if Mi > 0 for all i. It is negative definite if Mi (−1)i > 0
for all i, i.e. Mi is negative for odd i and positive for even i.

To analyze semidefiniteness of A, more is needed. Define for all 1 ≤
i1 < i2 < ... < in ≤ n

An
{i1,i2,...,in} =


ai1i1 ai1i2 · ·· ai1in
·
·
·

·
·
·

aini1 aini2 ... ainin

 .

and
Mn
{i1,i2,...,in} = det

(
An
{i1,i2,...,in}

)
.

The matrix A is positive semidefinite if

Mn
{i1,i2,...,in} ≥ 0 for all n and for all {i1, i2, ..., in}.

It is negative semidefinite if

Mn
{i1,i2,...,in} ≤ 0 for all odd n and for all {i1, i2, ..., in},

Mn
{i1,i2,...,in} ≥ 0 for all even n and for all {i1, i2, ..., in}.

At the end of Part II of these lectures, we will discuss the eigenvalues
of a matrix. It turns out that for symmetric matrices, A, there is a simple
connection between definiteness and the sign of the eigenvalues. First of
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all, all eigenvalues of a symmetric matrix are real. If they are all positive
(negative), then A is positive (negative) semidefinite. If they are all strictly
positive (strictly negative), then it is positive (negative) semidefinite. A is
indefinite only if it has a strictly positive and a strictly negative eigenvalue.

Definiteness with linear constraints

The definiteness of the quadratic form

x ·Ax

can also be considered under linear constraints. In other words, we require
that

b · x = 0.

The restriction b · x = 0 restricts the set of vectors that we consider to
the plane normal to b. We can ask whether A is definite for vectors in this
plane.

Consider the matrix

B =


0 b1 · · · bn
b1 a11 a1n
...
bn an1 ann

 ,

and assume that b1 6= 0.
The matrix A consisting of elements aij is positive definite in directions

{x |b · x = 0} if all the leading principal minors of B except for the first
one are negative. It is negative definite in directions {x |b · x = 0} if all the
leading principal minors of B except for the first one alternate in sign.

Examples

1. Consider the definiteness of

A =

 2 1 1
1 2 −1
1 −1 1

 .

(a) M1 = det (a11) = 2.
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(b) M2 = det

(
2 1
1 2

)
= 3.

(c) M3 = det

 2 1 1
1 2 −1
1 −1 1

 = (−1)3+3 det

(
2 1
1 2

)
+(−1)3+2 (−1) det

(
2 1
1 −1

)
+

(−1)3+1 det

(
1 1
2 −1

)
= 3− 3− 3 = −3.

Therefore A is indefinite.

2. Consider matrix

A =

 2 1 1
1 −1 −1
1 −1 1

 .

This is easily seen to be indefinite (why?).

3. Consider

A =

 −1 −4 −1−4 0 1
−1 1 −1

 .

(a) M1
1 = −1,M1

2 = 0,M1
3 = −1.

(b) M2
{1,2} = −16, M2

{1,3} = 0,M2
{2,3} = −1.

We see already that A is indefinite.

4. Consider the function

f (x1, x2, x3) = x2
1 − x3

2 + x1x3

around (x1, x2, x3) = (0, 0, 0). The gradient is

∇f (x1, x2, x3) =

 2x1 + x3

−3x2
2

x1


Compute

∇f (0, 0, 0) =

 0
0
0

 .
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The Hessian matrix is given by:

Hf (x1, x2, x3) =

 2 0 1
0 −6x2 0
1 0 0

 .

Evaluate at (0, 0, 0) :

Hf (0, 0, 0) =

 2 0 1
0 0 0
1 0 0

 .

This matrix is indefinite since M1
1 = 2 > 0 and M2

{1,3} = det

(
2 1
1 0

)
=

−1.
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