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This lecture covers

1. Economic applications of unconstrained optimization
1.1 Finding extrema of quadratic functions
1.2 Ordinary least squares
1.3 Profit maximizing firm

2. Convex sets
3. Concave and convex functions
4. Quasiconcave functions



f (x1, x2) = �x2
2 � 2x2

1 : maximum at (0, 0)

�4 �2 0 2 4 �5

0

5

�80

�60

�40

�20

0



f (x1, x2) = x2
2 + x2

1 : minimum at (0, 0)

�4 �2 0 2 4 �5

0

5

0

20

40



f (x1, x2) = x2
2 + x2

1 � 10x1x2: saddle at (0, 0)

�4 �2 0 2 4 �5

0

5

�200

0

200



f (x1, x2) = x2
2 � x2

1 : saddle at (0, 0)

�4 �2 0 2 4 �5

0

5

�20

0

20



Quadratic forms and classifying extrema of f : Rn ! R
I A quadratic form is a second-degree polynomial whose terms are all of

second order. They can be written as:

x · Ax ,

for some symmetric matrix A.
I A quadratic form is positive definite if for all x 6= 0, x · Ax > 0. It is positive

semidefinite if for all x , x · Ax � 0.
I A quadratic form is negative definite if for all x 6= 0, x · Ax < 0. It is negative

semidefinite if for all x , x · Ax  0. In all other cases, we say that the
quadratic form is indefinite.

I It may be helpful to write out the matrix products as summations:

x · Ax =
nX

i=1

nX

j=1

aijxixj .



Classifying quadratic forms

I The general case is tedious. We need to consider the leading principal minors
M(k) of A:

M1 = deta11,M2 = det
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Classifying quadratic forms

I A quadratic form
x · Ax

is positive definite if Mi > 0 for all i . It is negative definite if Mi (�1)i > 0 for all
i , i.e. Mi is negative for odd i and positive for even i .

I A quadratic form
x · Ax

is positive definite (semidefinite) if all eigenvalues of A are strictly positive
(non-negative). It is negative definite (semidefinite) if all eigenvalues of A are
strictly negative (non-positive).



Classifying quadratic forms

I To analyze semidefiniteness of A, more is needed. Define for all
1  i1 < i2 < ... < in  n
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Classifying quadratic forms

I The matrix A is positive semidefinite if

M
n

{i1,i2,...,in} � 0 for all n and for all {i1, i2, ..., in}.

It is negative semidefinite if

M
n

{i1,i2,...,in}  0 for all odd n and for all {i1, i2, ..., in},

M
n

{i1,i2,...,in} � 0 for all even n and for all {i1, i2, ..., in}.



An example

I Consider the definiteness of

A =

0

@
2 1 1
1 2 �1
1 �1 1

1

A .

1. M1 = det (a11) = 2.

2. M2 = det

✓
2 1
1 2

◆
= 3.

3. M3 = det

0

@
2 1 1
1 2 �1
1 1 1

1

A = (�1)3+3 det

✓
2 1
1 2

◆
+

(�1)3+2 (�1) det
✓

2 1
1 �1

◆
+ (�1)3+1 det

✓
1 1
2 �1

◆
= 3 � 3 � 3 = �3.

Therefore A is indefinite.



Quadratic functions
I A multivariate quadratic function f : Rn ! R takes the form:

f (x) = c + b · x + x · Ax ,

where c 2 R is the constant term, the inner product b · x is the linear term for
some b 2 Rn, and A is a non-zero symmetric matrix defining a quadratic form.

I Note that for all n ⇥ n matrices B, the matrix 1
2(B

> + B) is a symmetric matrix,
and

x · Bx = x · (1
2
(B> + B))x .

I Writing out the inner products and matrix products, we see that:

f (x) = c +
nX

i=1

bixi +
nX

i=1

nX

j=1

aijxixj .



Derivatives of quadratic functions

I The partial derivative of f with respect to xk is:

@f (x)
@xk

= bk +
nX

i=1

aikxi +
nX

j=1

akjxj .

I Since A is symmetric,
P

n

i=1 aikxi =
P

n

j=1 akjxj and:

@f (x)
@xk

= bk + 2
nX

i=1

aikxi .

I This means that we can write the gradient of f as

rf (x) = b + 2Ax .
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Quadratic functions

I Therefore we can solve for the critical points (by finding the inverse matrix
A�1, by Gaussian elimination or by Cramer’s rule) from the linear system :

2Ax = �b.

I Because of this linearity in the first-order necessary conditions, quadratic
functions are manageable.

I The Hessian matrix of f is 2A. Hence classifying the critical points depends
on the definiteness of A.

I Quadratic models in economics: mean-variance preferences in finance,
interdependent markets with linear demand curves, capacity expansion with
quadratic adjustment costs, incentive problems with Normally distributed
noise, ordinary least squares...



Application of quadratic optimization: ordinary least squares

I Statistics Finland has register data on N individuals living in Finland.
I Let yi denote the income of individual i .
I Let x i = (xi1, xi2, ..., xiK ) be a vector of numerical covariates that characterize

individual i (e.g. age, years of schooling, years in continuous employment,
etc.)

I Your total data: vector y = (y1, ..., yN) and N ⇥ K matrix of observables X with
element xik for individual i 0s characteristic k .

I How would you find the best linear model to predict yi if you only know x i?



Application of quadratic optimization: ordinary least squares

I If the number of individuals N is large in comparison to the number of
observable characteristics, K , you will not be able to find a perfect linear fit i.e.
a vector � = (�1, ...,�K ) such that:

yi =
KX

k=1

�kxki = x i · � for all i .

I Allow an individual random term ✏i that accounts for the discrepancy and find
the vector � that ’minimizes the size’ of the error vector ✏ = (✏1, ..., ✏N).

I How to measure the size? Ordinary least squares minimizes norm:

✏ · ✏ =
NX

i=1

✏2
i
.



Minimizing the sum of squared errors

I If yi =
P

K

k=1 �kxki + ✏i , then ✏i = yi �
P

K

k=1 �kxki = yi � x i · �. But then:

✏ · ✏ =
NX

i=1

✏2
i
=

NX

i=1

(yi � x i�)
2.

I Writing in vector form, we have:

✏ · ✏ = (y � X�) · (y � X�) = y · y � y · X� � X� · y + � · X>X�

= y · y � 2X>y · � + � · X>X�



Minimizing the sum of squared errors

I We see that this is a quadratic function and therefore we can use our result
from above to conclude that its critical points are found at the solution to:

�2X>y + 2X>X� = 0,

or the critical point �̂ satisfies:

�̂ = (X>X )�1X>y .

I This is the OLS-estimator for the linear model y = X�.



Profit maximization with CES - production function
I Consider profit maximization

max
k ,l>0

f (k , l)� r

p
k � w

p
l ,

with the production function f : R2 ! R:

f (k , l) = (k⇢ + l
⇢)

1
⇢ .

I Form the gradient of profit:

r⇡ (k , l) =

 
p
@f (k ,l)
@k

� r

p

p
@f (k ,l)

@l
� w

p

!
=

0

@ p (k⇢ + l⇢)
1
⇢�1

k⇢�1 � r

p

p (k⇢ + l⇢)
1
⇢�1

l⇢�1 � w

p

1

A .

I The the Hessian matrix is the Hessian matrix of the production function:

Hf (k , l) =

 
@2f (k ,l)
@k@k

@2f (k ,l)
@l@k

@2f (k ,l)
@k@l

@2f (k ,l)
@l@l

!
.



Example: CES -function

I By the product rule:

@2f (k , l)

@k@k
= (⇢� 1) k

⇢�2 (k⇢ + l
⇢)

1
⇢�1

+

✓
1
⇢
� 1
◆
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⇢)
1
⇢�2 ⇢k
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1
⇢
� 1
◆�

k
⇢ + x
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� 1

⇢�2
⇢l

2⇢�2.



Example: CES -function
I By collecting the common terms, we get:

D
2
f (x1, x2) =

 
@2f (k ,l)
@k@k

@2f (k ,l)
@l@k

@2f (k ,l)
@k@l

@2f (k ,l)
@l@l

!

= (k⇢ + l
⇢)

1
⇢�2

✓
(⇢� 1) k⇢�2l⇢ (1 � ⇢) l⇢�1k⇢�1

(1 � ⇢) l⇢�1k⇢�1 (⇢� 1) l⇢�2k⇢

◆
.

I When computing the determinant, we can separate the common factor:

det (Hf (k , l)) =

(k⇢ + l
⇢)

1
⇢�2

k
2⇢�2

l
2⇢�2 det

✓
(⇢� 1) (1 � ⇢)
(1 � ⇢) (⇢� 1)

◆
= 0.

I Hf (x1, x2) is therefore negative semidefinite if ⇢ < 1 and positive semidefinite
if⇢ > 1.



Final comments on unconstrained optimization:

I Do local maxima or minima always exist?
I Are there economically meaningful cases where this could be problematic?
I If you find all local maxima of a function, can you be sure that one of them is a

global maximum?
I How do you determine which one of the local maxima is the global maximum?



Convex and concave functions: Convex sets

Definition
A set X is convex if for all x , y 2 X and for all � 2 [0, 1], we have:

�x + (1 � �) y 2 X .

We call �x + (1 � �) y a convex combination of x and y .
I On the real line, convex sets are intervals a  x  b for some

�1  a  b  1.
I In Rn, convex sets are sets X with the property that when you connect linearly

two points in X , the entire connecting line is also in X .
I Hence a disk in the plane is convex and a cube in the three dimensional

space are convex, but the circle in the plane is not, a disk with the center
removed is not, a doughnut in three dimensions is not etc.



[Convex set] [Non-convex set]

Figure: Illustration of convex sets.



Convex and concave functions: Definitions

I Consider a real-valued function f : X ! R, where X is a convex set.

Definition
The function f is convex if for all x , y 2 X and for all � 2 [0, 1], we have:

f (�x + (1 � �) y)  �f (x) + (1 � �) f (y) .

f is concave if
f (�x + (1 � �) y) � �f (x) + (1 � �) f (y) .

I Note: If f is convex, then �f is concave



A convex function of a real variable

f (x)

a x �x + (1 � �)y y b

f (�x + (1 � �)y)

�f (x) + (1 � �)f (y)

x

f (x)



A concave function of a real variable

f (·)

·x

f (x)

y

f (y)

�x + (1 � �)y

f (�x + (1 � �)y)
�f (x) + (1 � �)f (y)



Properties of convex functions

I If f (x) is convex, then g (x) = �f (x) is concave.
I If f (x) is convex, then af (x) is convex if a > 0.
I If f (x) and g (x) are convex, then h (x) = f (x) + g (x) is convex.
I If f (x) and g (x) are convex, then h (x) = f (x) g (x) is not necessarily

convex. (Give an example for both cases, i.e. where the product of convex
functions is convex and where it is not).

I Exercise: Assume that f : X ! R is convex and g : R ! R is also convex. Is
g(f (x)) convex? What if g is increasing and convex?

I (Optional Exercise): Assume that f : X ! R is a convex function. Show that
the set

{(x , y) 2 Rn+1 | x 2 X , y � f (x)}

is a convex set.



Maximum of linear functions is convex

x

f i
(x
)



Properties of convex functions

One of the most important results is the following:

Proposition
If f (x) and g (x) are convex, then h (x) = max{f (x) , g (x)} is convex.

Proof: In the notes.



Properties of convex functions
I The same result is true for an arbitrary set of convex functions. Let f (x ;↵) be

convex in x for all ↵. Then

g (x) = max
↵

f (x ;↵)

is convex.
I Since linear functions are convex, this result holds for any set of linear

functions.
I Since

max{f (x) , g (x)} = �min{�f (x) ,�g (x)},

and since �f is concave when f is convex, we get:

g (x) = min
↵

f (x ;↵)

is concave if f (x ;↵) is concave in x for all ↵.



Economic examples: profit maximization
I A competitive firm sells output y at price p0 and buys inputs x = (x1, ..., xn) at

input prices p = (p1, ..., pn) . Its profit is

p0y � ⌃n

i=1pixi .

I The maximization problem is then

max
y ,x2F

p0y � ⌃n

i=1pixi ,

where F is the feasible set determined by technological possibilities.
I The profit function of the firm gives the maximum achievable profit amongst

the feasible set at input and output prices p0,p.

⇡ (p0,p) = ⇡ (p0, p1, ..., pn) = max
y ,x2F

p0y � ⌃n

i=1pixi

I Since the profit from a fixed feasible production is a linear function of the
prices p0,p, the profit function is the maximum over linear functions and
therefore convex in p0,p.



Economic examples: cost minimization

I Let X be the feasible set for inputs x = (x1, ..., xn) and p = (p1, ..., pn) be the
input prices.

I The expenditure function

e (p;X ) = min
x2X

p · x = min
x2X

⌃n

i=1pixi

is a concave function by the same argument as above.
I These two examples show that convexity and concavity play a real role in

economic applications.
I We shall see more applications when we discuss constrained optimization

and value functions of optimization problems.



Lower envelope of linear functions is concave

x

f i
(x
)



Convexity and concavity of differentiable functions

I When f : R ! R, and f is convex and differentable, it it is easy to see by
drawing a picture that for all x , y we have:

f (y)� f (x) � f
0 (x) (y � x) .

I This just says that the graph (x , f (x)) of a convex function f is above all of its
tangent lines.

I Similarly, the graph of a concave function lies below its tangent line.
I The multivariate version of this is proved in the notes.



Second derivatives and convexity

I Start again with functions of a single variable. By Taylor’s theorem without the
remainder term,

f (y) = f (x) + f
0 (x) (y � x) +

1
2

f
00 (x) (y � x)2 +

1
6

f
000 (x) (y � x)3 + ...

I In order to have
f (y)� f (x) � f

0 (x) (y � x)

for |y � x | small, we must have

f
00 (x) � 0.

I In other words, convex functions have a positive second derivative.



Second derivatives and convexity
I Taylor’s theorem with a remainder term of second degree:

f (y) = f (x) + f
0 (x) (y � x) +

1
2

f
00 (z) (y � x)2

for some z 2 [x , y ].

I If f 00 is everywhere non-negative, we get:

f (y)� f (x) � f
0 (x) (y � x)

for all y , x and f is therefore convex.
I Let’s generalize now to f : X ! R, where X is a convex subset of Rn n.
I Convexity corresponds to positive semidefiniteness of the Hessian matrix.
I Concavity corresponds to negative semidefiniteness of the Hessian matrix.
I Hence we see an immediate connection between convexity and the second

order conditions for optimality.



Quasiconvex and quasiconcave functions

Even though the name suggests something extremely technical and tedious,
quasiconcavity is actually one of the most important notions for functions in
economic theory.

Definition
A function f on a convex set X is quasiconcave if for all x , y 2 X and for all
� 2 [0, 1]

f (�x + (1 � �) y) � min{f (x) , f (y)}.

f is quasiconvex is for all x , y 2 X and for all � 2 [0, 1]

f (�x + (1 � �) y)  max{f (x) , f (y)}.

Exercise: f is quasiconcave, then �f is quasiconvex.



Quasiconvex and quasiconcave functions: Observations

I If f is quasiconcave, then af is quasiconcave if a > 0.
I If f and g are quasiconcave f + g is not necessarily quasiconcave.
I All monotone (i.e. all increasing and all decreasing) functions of a single

variable are both quasiconcave and quasiconvex. This is NOT true for
multidimensional functions

I All concave functions are quasiconcave. Show this as an exercise.
I Not all quasiconcave functions are concave.
I If f is a quasiconcave function and g is a strictly increasing function, then

h (x) = g (f (x)) is a quasiconcave function.



Quasiconvex and quasiconcave functions: Observations

I An upper contour set of function f for value ↵ is denoted by U (f ;↵) and
defined as:

U (f ;↵) := {x 2 X |f (x) � ↵}.

I Interpretation: if f is a utility function, U(f ;↵) is the better side of the
indifference curve giving utility level ↵.

Proposition
A function f is quasiconcave if and only if U (f ;↵) is a convex set for all ↵.



Next Lecture:

I Introduction to constrained optimization
I Equality constraints and Lagrange’s function
I Examples of constrained optimization problems


