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Solutions to the problem set 3:
Question 1:

a)

i)

A=l 3
M; =det(1) =1
M, =det(4d) =5-16 = —11

For a matrix to be positive definite we should have M; > 0 for all i
and to be negative definite M;(—1)" > 0

So A is indefinite.

ii)

Ml = det(l) =1

My =det([ 1 1) =0

Ms = det(B) = 1.det([}} _41]) - 1.det([_41 _31]) + 3.det([—11 i )

=-174+11-21= =27
So B is indefinite
iii)
1 2 3
C=|2 5 7
3 7 9
M; =det(1) =1

M2=det(; ?,D=1

M3=det(B)=1.det(§ ;D—Z.det(g 3)+3.det([§ 3)

=—44+46-3= -1

So Cis indefinite.
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b)
According to the definition, matrix A is positive semi-definite if for any x, x!Ax > 0.
Now assuming that A = XTX where X, and z is any arbitrary vector with length n, we have:
2T (XTX)z = (X2)T(Xz) = ||IXz||3 = 0
Note that Xz is a vector of k X 1.
so XT X is a positive semi-definite matrix .

If we add a constraint “X has rank k” we can prove that XT X is POSITIVE definite, because then we
know there is no non-zero z for which Xz = 0.

c)
flx,y) =x%+42bxy +4y? —3x+ 2y +7

to find the critical point of the function f, we should set the gradient equal to zero, so:

df—Z + 2by =3
dx X =

df—Zb +8y=-2
dy XToy=

Multiplying the first equation by b and subtracting the second one from it, we have:

3b+2

Y= 20— 4
Using the same procedure for x

b+6
4 — b?

sob # 2,—2.

We then form the Hessian matrix of the coefficients:

0%f  9%f
_|ax*  axay _|2 Zb]
o2f 9| lep 8
layax a—yzj

Since the critical point is a global minimum, the Hessian matrix should be positive definite, so

det(H) =16 —4b> >0-> -2< b <2



d)

f=xAx+bx+c
_[a b] 4 _
where 4 = [b c] ,b=1[d,e]

Forming the partial derivatives, we have:

6f—2 +2by+d=0
0 2ax y =

af—Zb +2cy+e=0
3y~ X+2cy+e=

Now what happens if a = b = ¢ # 0 but d # e. The coefficients are the same but the constants are
different. Obviously, it is not possible to solve the system of equations and it has no critical points.

Question 2:
a)

flx,y) = =1+ 3e**y? —6x — 6y

d
d—£=6ezxy2—6
d
é=6ezxy—6
d*f  d*f
_|dxdx dxdy| [12e**y? 12e**y] 12 12
Hf = d? d> - 2x 2x | T [12 6]
f f 12e“*y  6e
ldydx dydy
det(Hf) = —72

At point (0,1) partial derivatives are zero and the determinant of the hessian matrix is negative, so
we have 2 eigen values with different signs and it is a saddle point.

b)
11 2 1
f(x;y;Z)=x3yZZ—_x_y__Z
3 3
IQE S
dx_3x yez 3
af 1 1 _1
vz —1
dy ny z
of 11 1
£= x3yz—§



. d d d . . . o
At point (1,1,2) we have é = % = 0 but é = % # 0, so it is not a critical point. Though it might be

useful to form the Hessian matrix and see its properties:

(0°f  9°f 01 2 s1 1 2.1 1 2 1
a;cz axzay 6x262 TgX Yz px 3y 2z Zx 3y 2
a°f 2°f a°f 1 2 1 11 3 11 1
Hf = =|—-x 3y 2 ——x3y 2 —x3y 2
I=\azay 37 ayaz| |6* V% T3VE
1 2 1 1 1 1
azf azf azf —x3y2 —x3y 2 0
|0xdz dydyz 0z21 -3 2
4 1 17
9 3 3
1 1 1
Hf=|2- _- Z
f 3 2
1 1 0
[ 3 2 |
o)
M. = 4
7 9
4 1
_ "9 3||_1
M, = det 1 117 9
3 2
4 1 1 1
_ 1 "9 3.1 3 3||_5
M, —Edet 1 1>+§det 1 1 E
3 2 2

so the matrix Hf is indefinite.

Question 3:
x x
[ =1~ ¥ +2
,()_x2—2x+2—x(2x—2)_ —x? +2
[ = (x? —2x + 2)2 C (x2—2x+2)?

ff)=0-x=+V2,-2
To derive the second order taylor approximation, we also need f", so

men  (F20) (0 = 2+ 2)% — (=x% + 2)(2(2x — 2)(x* — 2x + 2))
1) = (x? —2x + 2)*

The second term in the numerator is equal to zero at x = V2,—V2, so

—-2V2
f”(\/f) = — < 0 - local maxima

(4 — 2v/2)?



and

o 2V2
4+ 2V2)?

f"(=V2)

> 0 - local minima

Taylor approximation around x = /2

V2

FZ+) = F(V2) 4/ (VDR + 51" (VW =

Taylor approximation around x = —/2

2

(ﬁ—1)2+1_(4—2ﬁ)2h

V2

F(—VZ+B) = f(V2) + (VDR + 51" (VDR =

Question 4:
a)

R is the overall return

R = le‘Ri = xARA + xBRB
E(R) = E(XARA + xBRB) = XAE(RA) + xBE(RB)

U= Xala t+ Xplip

o is the overall variance
o =E[R-m? =
E[(xaRa + xpRp — Xaps — xpp)*] =

E [(XA(RA — ) + xg(Ry — #A))Z] =

(—V2-1)2+1 " (4 + 2v2)2

Xa2E[(Ra — 1a)?] + x5*E[(Rp — up)?] + 2x4xpE[(Ra — a) (Rg — 1ip)]

0 = x50, + x305 + 2X4X504p
b)
Our objective function is:

min x50, + x505 + 2X,X5045
XAXB

st.xq+xg =x,045 =0

so equivalently

min x%0, + x50p
XAXB

St.xy +xp=x

2



According to the condition
xB =X — xA

minxs0, + (x — x,)%0p
XA

Using the first order condition:

do
—_— = 2xA0'A — 2(x — xA)O'B =0
dxA
OgX OpX
Xy = and xg = ———
O-A+O-B O-A+O-B

c)
The utility of the investor is u = yu — g, so he tries to solve the following optimization function:

2 2
max Y(Xalta + Xplp) — X404 — X505 — 2X,X04p
A*rB

We first form the first order condition by taking partial derivatives with respect to the portfolio
variables:

Ju

EPR = Ypa — 2x404 — 2xg0oup = 0
XA

Ju

E = YUp — 2Xp0p — 2X4045 = 0

so the system of equations is
Yla = 2X404 + 2Xp0yp

Yip = 2Xp0p + 2X404p

Using the second equation, we can write xg as a function of x,:

YUp — 2X404p

Xp =
20p

We then put it inside the first equation:

Ylp — 2X404p

Ylha = 2x404 + 2045 (—2 )
Op

2x4(040p — O-A%B) = y(Ua0p — 1p0ap)

x=NM%—@%Q
A 2(0405 — 02p)

and similarly we have:

Yo = Y(Up0a — a04B)
B 2(0405 — 02g)




We can also check for the Hessian matrix of the equation:

H = [_ZO'A _ZGAB
- _ZGAB _ZO'B

where
M1 = —ZO'A < O
M, = o405 — O-/%B

If M, > 0, the matrix H is negative definite and the critical point is a global maximum.

Question 5:
a)

composite function v(x,y) = f(u(x, y))

au(’éo:)’o)

_ X

MBSute») = Fuleo,y0)
dy

a,b)

aV(’(;Or)’o) af(u%xoﬂo))_au(go:%) au(i’;o'YO)
MRS,(xy) = X = 1 X = X = MRS
vxy) 0v(xg,yo)  0f (u(xo,¥0)) u(xg,yo) 9u(xo,yo) uy)
dy Ju ' dy dy
c)

Definition of the homogenous function:
A real valued function f (x4, x3, ..., X, ) is homogenous of degree k if for all t > 0:

ftxy, txy, o, txy) = thf(x1, X5, o, Xp)

so considering u as a homogenous function of degree k, we have:

du(txo, tye)  tFou(xp,yo)  Ou(xo,¥o)

_ ox _ ox _ 0x _
MRSu(tx,ty) - au(txo,tyo) - tkau(xo,yo) - au(xo'YO) = MRSu(x,y)
dy ay dy

Question 6:
a)

We assume that prices are given from the outside of the firm, so p, w and r are exogenous
variables. On the other hand, it is possible for us to calculate the exact amount of the capital and
labour to increase out profit so [ and k are endogenous variables.



b)

our endogenous variables are k and |, so:

of (k) 1
ok p
ofth w_ .
o=

c)

We rewrite the problem as follows:

T
fl(kll;plrlw) = g(k:l) _Z_)

fo(k, L;p,r,w) = h(k, 1) _g

where g(k,1) = % and h(k, 1) = % . We should assume that the system of the equations

are satisfied at (k, [, p, 7, W), so in the next step we make the matrices of partial derivative (we
assume y as the endogenous and x as the exogenous variables):

ofi fi [ag(k,z‘) ag(E,z‘)l

N ) ok al
Df (kLT W) =155 a5, | = oh(k,D) ah(k,D)
ok Al ok al
And
oh 9h OA) . _1
- dp Or ow 2
Df(REPTT) =38 of, o, :h ’ 1]
150 o awl Lz 0 73l

Now assuming the fact that functions f and g are continuously differentiable at (E, l_,ﬁ, 7, w), the
necessary condition is:

det (D, f(k,; p,7,w)) # 0
SO:

dg(k,1) on(k,1) ag(k,1)on(k,0)
ok ol T ol ok

d)

Using implicit function theorem we have:

Dyf(9,2)dy + D, f(§,%)dx = 0



So

[69(1;, D ag(k, l_)‘

r 1 0
— — d
ok ol dk]+[p2 p ‘ Tloo
oh(k,l) oh(k,)|ldl w 1
- 0 ——J dw
ok al p p
Using Cramer’s rule:
1 9g(kD)
det|P U |ar
0 dh(k, D)
dk = __ol 1
dg(k,l) ag(k,D
det alf - a_l _
dh(k,l) 0dh(k,D)
ok al

We assume that the denominator of the above formula is always positive. so
ag(k.1) on(k,1) _ag(k,1)on(k, 1)
ok al ol ok

why? It simply means that the cross effects of k and | are not too strong over each other. In other
words, adding Labor does not change the marginal product of k (MP,,) too much and vice versa.

— . . . . dk . ,
considering the previous assumption, we easily conclude that the sign of s the same as the sign of

10h(k,1)
p 0l

dl .
We can compute = by doing the same:

dgk,h) 1

oIk plg
on(k, D)

dl = Ok __
agk,l) ag(k,D)
¢| 9k al
oh(k,1) oh(k,D)

ok ol

det r

And the sign of % is the same as the sign of

10h(k,1)
p 0k




