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Supplementary Readings: Elementary analysis

The goal of these supplementary notes is to find sufficient conditions for
the existence of a solution to constrained optimization problems in R". We
start by considering the notions of distance, convergence and continuity
in a bit more detail.

Length and distance in R"

The only spaces that we will be interested in these notes are the various
Cartesian products of the real line R denoted by R". The exponent n is also
called the dimension of the Euclidean space. Hence an element x € R" is
an ordered n-tuple (21, ..., z,) where each z; € R.

Distance d(x, y) between two vectors «, y € R" is usually based on the
Euclidean norm or the length of a vector in € R" defined by

(1)

This is just the generalization of the Pythagorean theorem to an arbitrary
dimension. A distance for R" can be derived from this norm as

d(z,y) =z —yl.

Proposition 1. Let  and y denote points in R". Then we have:
(a) ||x]| > 0and ||z|| = 0 if and only if x= 0,
(b) ||ax|| = a||x|| for every real a,
() z=yl = [ly—=],
(d) z-y <|z||lyll (Cauchy-Schwarz inequality),
(€) lo+yll < | + |yl (Triangle inequality).



Remark 1. To see why the Cauchy-Schwarz inequality is true, consider the
sum of squares

n
1=1
This is a quadratic polynomial in ¢, and as a sum of squares, it is also non-
negative. Hence its discriminant is non-positive, i.e.

(2 Z ziy;)” < 4(2 ] Z ui).
i—1 -1 =1

Dividing both sides by 4 and taking square roots on both sides gives
Cauchy-Schwarz inequality.

This simple inequality is one of the most important results in all of
mathematics. Equality holds if and only if € = Ay, i.e. @ is proportional to
y. We have used this observation to argue that the gradient V f(x) gives
the direction of steepest ascent for a function f at point &.

From Cauchy-Schwarz, we get easily the triangle inequality:

lz+ylP=(z+y) (@x+y)=|z|*+ |lyl*+2z-y

< lll* + lyll* + 2ll=llllyll = (=] + [ly])*

The triangle inequality follows by taking square roots on both sides of the
inequality. The inequality above results from Cauchy-Schwarz inequality.

Exercise In general, any function d(z,y) satisfying (a), (c) and (e) in
the above list is a distance. It is a good exercise to show that d(z,y) :=
max; |z; — y;| is a distance in this sense. Are all the other properties above
also satisfied by this distance?

By the segment (a,b) we mean the set of all real number z such that
a < x < b. By the interval [a, b], we mean the set of all real numbers such
thata <z <.

For £ € R", we define analogs of intervals as follows. If a; < b; for
i = 1,...,n, the set of all points * = (21, ..., z,) in R” whose coordinates
satisfy a; < z; < b; for (1 <1i < n), is called an n-cell. If x € R" and ¢ > 0,
the open (or closed) neighborhood B*(x) with center at « and radius ¢ is
defined to be the set of all y € R", such that ||y — z|| < (<) e.



Open and closed sets

Definition 1. A point z is a limit point of the set £ C R" if every neigh-
borhood of x contains a point y € E with y # «.

We say that E is closed if every limit point of E is an element of . A
point x is an interior point of E if there is a ¢ > 0 such that the neighbor-
hood B*(x) of x satisfies B°(x) C E. We say that E is open if every point
of E is an interior point.

The complement of E, denoted by E° is the set of all points € R" such
thatz ¢ F.

The set E is bounded if there is a real number M such that ||| < M for
allx € E.

Exercise Is the empty set open or closed? Show that A = {z : a < z <
b} is an open set and that A = {z : « < x < b} is a closed set. Show that
the set {1, 3,3, ...} is neither open nor closed (hint: is 0 a limit point? Is it
in the set?)

Proposition 2. A set E C R"is open if and only if its complement is closed.
A set F' C R" is closed if and only if its complement is open.

A very important property for sets in mathematical analysis is called
compactness. We give here a definition of compactness for sets in R” that
should really be derived as a theorem (Heine-Borel Theorem) starting from
a more fundamental notion, but for practical matters, this is all we need.

Definition 2 (Compact sets). A set £ C R" is called compact if it is closed
and bounded.

Sequences and subsequences

Definition 3. If S is any set, a sequence in S is a function whose domain is
the set N = {1,2, 3, ...} of natural numbers and whose range is in S.

Definition 4. A sequence {z, } in R" is said to converge if there is a point
x € R" with the following property: For every € > 0, there is an integer N
such that n > N implies that d (x,,, ) < e.

We say that x,, converges to x, « is the limit of {x,} and we write
T, > x,

lim x, = x.
n—o0



Theorem 1. Let {x,} be a sequence in R".

(i) {x,,} converges to x € R" if and only if every neighborhood of x
contains all but finitely many of the terms of {z,} .

(it) If x € R", 2’ € R", and if {x,,} converges to  and to &', then x = «'.

(i73) If {z,, } converges, then {z, } is bounded.

(iv) If E C R™ and « is a limit point of E, then there is a sequence
{x, # x} in E such that = lim,,_, ©,.

(v) T = (T1my oo Thp) = T = (T1,...,2%) & 2 — z;foralli €

(1, k).

The last part of the proposition claims that a sequence of vectors con-
verges if and only if all of its coordinates converge.

Definition 5. Given a sequence {x,}, consider an infinite sequence {n;}
of positive integers, such that n; < ny < - - -. Then the sequence {x,,}
is called a subsequence of {z,}. If {x,,} converges, its limit is called a
subsequential limit of {x,,} .

Exercise Show that if {z, } converges to x, then all of its subsequences
also converge to x.

Definition 6. A sequence {x,} is said to be a Cauchy sequence if for every
€ > 0 there is an integer N such that d (x,,, z,,) < ¢, if n > N and m > N.

Real numbers are constructed in such a way that Cauchy sequences in
R converge, i.e. have limits in R. By part (v) of the previous theorem, the
same is true for real vectors.

Theorem 2. Every bounded subset £/ C R" with infinitely many elements
has a limit point in R".

Idea of proof for R: Since E is bounded, it is contained in an interval
[—M, M] of length 2M for some M < oo. Since E has infinitely many
elements, either [—A/, 0] or [0, M] or both have infinitely many elements.
Hence some interval of length M also contains infinitely many elements of
E. Continue this process of halving the interval to show that you can come
up with a sequence of intervals of length 27% M containing infinitely many
elements of £. The midpoints of the sequences form a Cauchy sequence
and hence they converge to a point € R. This z is a limit point of £. The
same construction generalizes easily to R"

An immediate consequence of this is the following theorem.
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Theorem 3. (Bolzano-Weierstrass Theorem)

Every bounded sequence in R” contains a convergent subsequence and
every sequence in a compact set £ € R" has a convergent subsequence
whose limit is in £.

Continuous functions

Definition 7. Consider a function f : R — R™. We write f () — g as
xr — &, or

lim f(x) =¥, ()

T

if there is a point y € R™ with the following property: For every ¢ > 0
there exists a 6 > 0 such that

x € B'(&) = f(x) € B(9).
We say that f is continuous at x if for all € > 0 there exists a § > 0 such that
x € B (&) = f(x) € B°(f(2)).

Another way of writing this is given in the following simple proposi-
tion.

Proposition 3. A function f : R® — R™ is continuous at  if for every
sequence {x,} that converges to &, the sequence {f (x,)} converges to
f(2); in symbols,
lim f (2,) = f (lim @,).
n—oo n—oo
A function is said to be continuous if it is continuous at all points in its
domain. Continuity of a function f at a point & is called a local property of
f because it depends on the behavior of f only in the immediate vicinity
of . A property of f which concerns the whole domain of f is called a
global property. Thus, continuity of f on its domain is a global property.
The following proposition gives yet another way of looking at continu-

ity.

Proposition 4. A function f is continuous if and only if the inverse image
f~1(V) is open (closed) for every open (closed)set V in Y.



Proposition 5. Let f : R — R™ and g : R™ — R* be continuous functions,
and let i be the composite function defined by

h(x)=g(f(x)) forxecR"

If f is continuous at & and if g is continuous at f(), then h is continuous
at .

Global properties of continuous functions

Definition 8. A function f : £ — R is said to be bounded if there is a real
number M such that |f (z)| < M forall € E.

Recall the definition of the least upper bound and greatest lower bound
for a set A of real numbers. We say that @ is the least upper bound of A if
forallz € A, x <aand for all ¢’ < @, there is some =z € A such that z > d.
Similarly, we say that a is the greatest lower bound of A if for all z € A,
x > a and for all «’ > g, there is some x € A such that z < d’.

We write:

a:=supA,a:=inf A.

Theorem 4 (Weierstrass’ Theorem). Suppose £ is a continuous function on
a compact set I/, and

M =sup f(x), m=inf f(x).

zeE zek
Then there exists a point Z, and € E such that f () = M and f (x) = m.

Proof. We show this for the supremum. The case for the infimum is anal-
ogous. Let M = sup,.p f(x). Let {M,} — M with M, < M for all
n. By the definition of the supremum, there exists a sequence {x,} € £
with z,, > M,. Since E is compact, {x,} has a convergent subsequence
{z,,} - = € E. Since {M,,} — M, we also know that {M,, } — M. By
continuity of f,

M > f(x) =lim f(x,, ) > lim M,, = M.



This theorem ensures that our maximization and minimization prob-
lems have solutions as long as the objective function is continuous and the
feasible set is compact.

Remark 2. To see that £ must be closed and bounded and that f has to be
continuous, consider the following examples where a single hypothesis
(in brackets) of the theorem fails:

1. f(z) =z and F = R (domain not bounded).
2. f(xr) =xand E = {z : 0 < z < 1} (domain not closed).

3. f(z) =xzfor0 <z < 1,f(1)=0and £ = {z : 0 < 2 < 1} (f not
continuous).

Here are two more useful results. The first is a generalization of Weier-
strass’ theorem, the second is a generalization of the intermediate value
theorem for functions of a single real variable.

Proposition 6. Let f : X — Y be a continuous function. the image f(E) of
any compact set &' C X is compact.

Proposition 7. Let f : X — Y be a continuous function. the image f(E) of
any connected set &/ C X is connected.

Intervals (including the entire real line and the empty set) are the only
connected sets on R. It is surprisingly hard to give a general and easily
verified definition of connected sets in R", but for many applications of
this theorem, it is enough to note that convex sets in R" for any n are
connected.



