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Supplementary Readings: Elementary analysis

The goal of these supplementary notes is to find sufficient conditions for
the existence of a solution to constrained optimization problems in Rn. We
start by considering the notions of distance, convergence and continuity
in a bit more detail.

Length and distance in Rn

The only spaces that we will be interested in these notes are the various
Cartesian products of the real line R denoted by Rn. The exponent n is also
called the dimension of the Euclidean space. Hence an element x ∈ Rn is
an ordered n-tuple (x1, ..., xn) where each xi ∈ R.

Distance d(x,y) between two vectors x,y ∈ Rn is usually based on the
Euclidean norm or the length of a vector in x ∈ Rn defined by

‖x‖ =

√√√√ n∑
i=1

x2i . (1)

This is just the generalization of the Pythagorean theorem to an arbitrary
dimension. A distance for Rn can be derived from this norm as

d (x,y) = ‖x− y‖ .

Proposition 1. Let x and y denote points in Rn. Then we have:
(a) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x= 0,
(b) ‖ax‖ = a ‖x‖ for every real a,
(c) ‖x−y‖ = ‖y−x‖ ,
(d) x · y ≤ ‖x‖ ‖y‖ (Cauchy-Schwarz inequality) ,
(e) ‖x+y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality) .
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Remark 1. To see why the Cauchy-Schwarz inequality is true, consider the
sum of squares

n∑
i=1

(xi + tyi)
2.

This is a quadratic polynomial in t, and as a sum of squares, it is also non-
negative. Hence its discriminant is non-positive, i.e.

(2
n∑
i=1

xiyi)
2 ≤ 4(

n∑
i=1

x2i

n∑
i=1

y2i ).

Dividing both sides by 4 and taking square roots on both sides gives
Cauchy-Schwarz inequality.

This simple inequality is one of the most important results in all of
mathematics. Equality holds if and only if x = λy, i.e. x is proportional to
y. We have used this observation to argue that the gradient ∇f(x̂) gives
the direction of steepest ascent for a function f at point x̂.

From Cauchy-Schwarz, we get easily the triangle inequality:

‖x+ y‖2 = (x+ y) · (x+ y) = ‖x‖2 + ‖y‖2 + 2x · y

≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2.

The triangle inequality follows by taking square roots on both sides of the
inequality. The inequality above results from Cauchy-Schwarz inequality.

Exercise In general, any function d̂(x,y) satisfying (a), (c) and (e) in
the above list is a distance. It is a good exercise to show that d̂(x, y) :=
maxi |xi − yi| is a distance in this sense. Are all the other properties above
also satisfied by this distance?

By the segment (a, b) we mean the set of all real number x such that
a < x < b. By the interval [a, b], we mean the set of all real numbers such
that a ≤ x ≤ b.

For x ∈ Rn, we define analogs of intervals as follows. If ai < bi for
i = 1, ..., n, the set of all points x = (x1, ..., xn) in Rn whose coordinates
satisfy ai ≤ xi ≤ bi for (1 ≤ i ≤ n), is called an n-cell. If x ∈ Rn and ε > 0,
the open (or closed) neighborhood Bε(x) with center at x and radius ε is
defined to be the set of all y ∈ Rn, such that ‖y − x‖ < (≤) ε.
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Open and closed sets

Definition 1. A point x is a limit point of the set E ⊂ Rn if every neigh-
borhood of x contains a point y ∈ E with y 6= x.

We say that E is closed if every limit point of E is an element of E. A
point x is an interior point of E if there is a ε > 0 such that the neighbor-
hood Bε(x) of x satisfies Bε(x) ⊂ E. We say that E is open if every point
of E is an interior point.

The complement of E, denoted by Ec is the set of all points x ∈ Rn such
that x /∈ E.

The set E is bounded if there is a real number M such that ‖x‖ < M for
all x ∈ E.

Exercise Is the empty set open or closed? Show that A = {x : a < x <
b} is an open set and that A = {x : a ≤ x ≤ b} is a closed set. Show that
the set {1, 1

2
, 1
3
, ...} is neither open nor closed (hint: is 0 a limit point? Is it

in the set?)

Proposition 2. A setE ⊂ Rn is open if and only if its complement is closed.
A set F ⊂ Rn is closed if and only if its complement is open.

A very important property for sets in mathematical analysis is called
compactness. We give here a definition of compactness for sets in Rn that
should really be derived as a theorem (Heine-Borel Theorem) starting from
a more fundamental notion, but for practical matters, this is all we need.

Definition 2 (Compact sets). A set E ⊂ Rn is called compact if it is closed
and bounded.

Sequences and subsequences

Definition 3. If S is any set, a sequence in S is a function whose domain is
the set N = {1, 2, 3, ...} of natural numbers and whose range is in S.

Definition 4. A sequence {xn} in Rn is said to converge if there is a point
x ∈ Rn with the following property: For every ε > 0, there is an integer N
such that n ≥ N implies that d (xn,x) < ε.

We say that xn converges to x, x is the limit of {xn} and we write
xn → x,

lim
n→∞

xn = x.
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Theorem 1. Let {xn} be a sequence in Rn.
(i) {xn} converges to x ∈ Rn if and only if every neighborhood of x

contains all but finitely many of the terms of {xn} .
(ii) If x ∈ Rn, x′ ∈ Rn, and if {xn} converges to x and to x′, then x = x′.
(iii) If {xn} converges, then {xn} is bounded.
(iv) If E ⊂ Rn and x is a limit point of E, then there is a sequence

{xn 6= x} in E such that x = limn→∞ xn.
(v) xn = (x1,n, ..., xk,n) → x = (x1, ..., xk) ⇔ xi,n → xi for all i ∈

{1, ..., k}.

The last part of the proposition claims that a sequence of vectors con-
verges if and only if all of its coordinates converge.

Definition 5. Given a sequence {xn}, consider an infinite sequence {nk}
of positive integers, such that n1 < n2 < · · ·. Then the sequence {xni

}
is called a subsequence of {xn}. If {xni

} converges, its limit is called a
subsequential limit of {xn} .

Exercise Show that if {xn} converges to x, then all of its subsequences
also converge to x.

Definition 6. A sequence {xn} is said to be a Cauchy sequence if for every
ε > 0 there is an integer N such that d (xn,xm) < ε, if n ≥ N and m ≥ N .

Real numbers are constructed in such a way that Cauchy sequences in
R converge, i.e. have limits in R. By part (v) of the previous theorem, the
same is true for real vectors.

Theorem 2. Every bounded subset E ⊂ Rn with infinitely many elements
has a limit point in Rn.

Idea of proof for R: Since E is bounded, it is contained in an interval
[−M,M ] of length 2M for some M < ∞. Since E has infinitely many
elements, either [−M, 0] or [0,M ] or both have infinitely many elements.
Hence some interval of lengthM also contains infinitely many elements of
E. Continue this process of halving the interval to show that you can come
up with a sequence of intervals of length 2−kM containing infinitely many
elements of E. The midpoints of the sequences form a Cauchy sequence
and hence they converge to a point x ∈ R. This x is a limit point of E. The
same construction generalizes easily to Rn

An immediate consequence of this is the following theorem.
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Theorem 3. (Bolzano-Weierstrass Theorem)
Every bounded sequence in Rn contains a convergent subsequence and

every sequence in a compact set E ∈ Rn has a convergent subsequence
whose limit is in E.

Continuous functions

Definition 7. Consider a function f : Rn → Rm. We write f (x) → ŷ as
x→ x̂, or

lim
x→x̂

f (x) = ŷ, (2)

if there is a point y ∈ Rm with the following property: For every ε > 0
there exists a δ > 0 such that

x ∈ Bδ(x̂)⇒ f(x) ∈ Bε(ŷ).

We say that f is continuous at x̂ if for all ε > 0 there exists a δ > 0 such that

x ∈ Bδ(x̂)⇒ f(x) ∈ Bε(f(x̂)).

Another way of writing this is given in the following simple proposi-
tion.

Proposition 3. A function f : Rn → Rm is continuous at x̂ if for every
sequence {xn} that converges to x̂, the sequence {f (xn)} converges to
f(x̂); in symbols,

lim
n→∞

f (xn) = f
(
lim
n→∞

xn

)
.

A function is said to be continuous if it is continuous at all points in its
domain. Continuity of a function f at a point x̂ is called a local property of
f because it depends on the behavior of f only in the immediate vicinity
of x̂. A property of f which concerns the whole domain of f is called a
global property. Thus, continuity of f on its domain is a global property.

The following proposition gives yet another way of looking at continu-
ity.

Proposition 4. A function f is continuous if and only if the inverse image
f−1 (V ) is open (closed) for every open (closed) set V in Y.
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Proposition 5. Let f : Rn → Rm and g : Rm → Rk be continuous functions,
and let h be the composite function defined by

h (x) = g (f (x)) for x ∈ Rn.

If f is continuous at x̂ and if g is continuous at f(x̂), then h is continuous
at x̂.

Global properties of continuous functions

Definition 8. A function f : E → R is said to be bounded if there is a real
number M such that |f (x)| ≤M for all x ∈ E.

Recall the definition of the least upper bound and greatest lower bound
for a set A of real numbers. We say that a is the least upper bound of A if
for all x ∈ A, x ≤ a and for all a′ < a, there is some x ∈ A such that x > a′.
Similarly, we say that a is the greatest lower bound of A if for all x ∈ A,
x ≥ a and for all a′ > a, there is some x ∈ A such that x < a′.

We write:
a := supA, a := inf A.

Theorem 4 (Weierstrass’ Theorem). Suppose f is a continuous function on
a compact set E, and

M = sup
x∈E

f (x) , m = inf
x∈E

f (x) .

Then there exists a point x, and x ∈ E such that f (x) =M and f (x) = m.

Proof. We show this for the supremum. The case for the infimum is anal-
ogous. Let M = supx∈E f (x). Let {Mn} → M with Mn < M for all
n. By the definition of the supremum, there exists a sequence {xn} ∈ E
with xn ≥ Mn. Since E is compact, {xn} has a convergent subsequence
{xnk

} → x ∈ E. Since {Mn} → M , we also know that {Mnk
} → M . By

continuity of f ,

M ≥ f(x) = lim f(xnk
) ≥ limMnk

=M.
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This theorem ensures that our maximization and minimization prob-
lems have solutions as long as the objective function is continuous and the
feasible set is compact.

Remark 2. To see that E must be closed and bounded and that f has to be
continuous, consider the following examples where a single hypothesis
(in brackets) of the theorem fails:

1. f(x) = x and E = R (domain not bounded).

2. f(x) = x and E = {x : 0 < x < 1} (domain not closed).

3. f(x) = x for 0 ≤ x < 1, f(1) = 0 and E = {x : 0 ≤ x ≤ 1} (f not
continuous).

Here are two more useful results. The first is a generalization of Weier-
strass’ theorem, the second is a generalization of the intermediate value
theorem for functions of a single real variable.

Proposition 6. Let f : X → Y be a continuous function. the image f(E) of
any compact set E ⊂ X is compact.

Proposition 7. Let f : X → Y be a continuous function. the image f(E) of
any connected set E ⊂ X is connected.

Intervals (including the entire real line and the empty set) are the only
connected sets on R. It is surprisingly hard to give a general and easily
verified definition of connected sets in Rn, but for many applications of
this theorem, it is enough to note that convex sets in Rn for any n are
connected.
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