Mathematics for Economists Aalto BIZ Spring 2022 Juuso Välimäki

Supplementary Readings: Elementary analysis

The goal of these supplementary notes is to find sufficient conditions for the existence of a solution to constrained optimization problems in \mathbb{R}^n . We start by considering the notions of distance, convergence and continuity in a bit more detail.

Length and distance in \mathbb{R}^n

The only spaces that we will be interested in these notes are the various Cartesian products of the real line \mathbb{R} denoted by \mathbb{R}^n . The exponent *n* is also called the dimension of the Euclidean space. Hence an element $x \in \mathbb{R}^n$ is an ordered *n*-tuple $(x_1, ..., x_n)$ where each $x_i \in \mathbb{R}$.

Distance d(x, y) between two vectors $x, y \in \mathbb{R}^n$ is usually based on the Euclidean norm or the length of a vector in $x \in \mathbb{R}^n$ defined by

$$\|\boldsymbol{x}\| = \sqrt{\sum_{i=1}^{n} x_i^2}.$$
(1)

This is just the generalization of the Pythagorean theorem to an arbitrary dimension. A distance for \mathbb{R}^n can be derived from this norm as

$$d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\|.$$

Proposition 1. Let *x* and *y* denote points in \mathbb{R}^n . Then we have:

- (a) $\|\boldsymbol{x}\| \ge 0$ and $\|\boldsymbol{x}\| = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$,
- (b) $||a\boldsymbol{x}|| = a ||\boldsymbol{x}||$ for every real a,

(c)
$$\|x - y\| = \|y - x\|$$
,

(d) $\boldsymbol{x} \cdot \boldsymbol{y} \leq \|\boldsymbol{x}\| \|\boldsymbol{y}\|$ (Cauchy-Schwarz inequality),

(e) $\|\boldsymbol{x}+\boldsymbol{y}\| \leq \|\boldsymbol{x}\| + \|\boldsymbol{y}\|$ (Triangle inequality).

Remark 1. To see why the Cauchy-Schwarz inequality is true, consider the sum of squares

$$\sum_{i=1}^{n} (x_i + ty_i)^2.$$

This is a quadratic polynomial in *t*, and as a sum of squares, it is also non-negative. Hence its discriminant is non-positive, i.e.

$$(2\sum_{i=1}^{n} x_i y_i)^2 \le 4(\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2)$$

Dividing both sides by 4 and taking square roots on both sides gives Cauchy-Schwarz inequality.

This simple inequality is one of the most important results in all of mathematics. Equality holds if and only if $x = \lambda y$, i.e. x is proportional to y. We have used this observation to argue that the gradient $\nabla f(\hat{x})$ gives the direction of steepest ascent for a function f at point \hat{x} .

From Cauchy-Schwarz, we get easily the triangle inequality:

$$egin{aligned} \|m{x}+m{y}\|^2 &= (m{x}+m{y})\cdot(m{x}+m{y}) = \|m{x}\|^2 + \|m{y}\|^2 + 2m{x}\cdotm{y} \ &\leq \|m{x}\|^2 + \|m{y}\|^2 + 2\|m{x}\|\|m{y}\| = (\|m{x}\|+\|m{y}\|)^2. \end{aligned}$$

The triangle inequality follows by taking square roots on both sides of the inequality. The inequality above results from Cauchy-Schwarz inequality.

Exercise In general, any function d(x, y) satisfying (a), (c) and (e) in the above list is a distance. It is a good exercise to show that $\hat{d}(x, y) := \max_i |x_i - y_i|$ is a distance in this sense. Are all the other properties above also satisfied by this distance?

By the segment (a, b) we mean the set of all real number x such that a < x < b. By the interval [a, b], we mean the set of all real numbers such that $a \le x \le b$.

For $x \in \mathbb{R}^n$, we define analogs of intervals as follows. If $a_i < b_i$ for i = 1, ..., n, the set of all points $x = (x_1, ..., x_n)$ in \mathbb{R}^n whose coordinates satisfy $a_i \leq x_i \leq b_i$ for $(1 \leq i \leq n)$, is called an *n*-cell. If $x \in \mathbb{R}^n$ and $\varepsilon > 0$, the open (or closed) neighborhood $B^{\varepsilon}(x)$ with center at x and radius ε is defined to be the set of all $y \in \mathbb{R}^n$, such that $||y - x|| < (\leq) \varepsilon$.

Open and closed sets

Definition 1. A point x is a limit point of the set $E \subset \mathbb{R}^n$ if every neighborhood of x contains a point $y \in E$ with $y \neq x$.

We say that *E* is *closed* if every limit point of *E* is an element of *E*. A point \boldsymbol{x} is an interior point of *E* if there is a $\varepsilon > 0$ such that the neighborhood $B^{\varepsilon}(\boldsymbol{x})$ of \boldsymbol{x} satisfies $B^{\varepsilon}(\boldsymbol{x}) \subset E$. We say that *E* is *open* if every point of *E* is an interior point.

The *complement* of *E*, denoted by E^c is the set of all points $x \in \mathbb{R}^n$ such that $x \notin E$.

The set *E* is *bounded* if there is a real number *M* such that $||\mathbf{x}|| < M$ for all $\mathbf{x} \in E$.

Exercise Is the empty set open or closed? Show that $A = \{x : a < x < b\}$ is an open set and that $A = \{x : a \le x \le b\}$ is a closed set. Show that the set $\{1, \frac{1}{2}, \frac{1}{3}, ...\}$ is neither open nor closed (hint: is 0 a limit point? Is it in the set?)

Proposition 2. A set $E \subset \mathbb{R}^n$ is open if and only if its complement is closed. A set $F \subset \mathbb{R}^n$ is closed if and only if its complement is open.

A very important property for sets in mathematical analysis is called *compactness*. We give here a definition of compactness for sets in \mathbb{R}^n that should really be derived as a theorem (Heine-Borel Theorem) starting from a more fundamental notion, but for practical matters, this is all we need.

Definition 2 (Compact sets). A set $E \subset \mathbb{R}^n$ is called *compact* if it is closed and bounded.

Sequences and subsequences

Definition 3. If *S* is any set, a sequence in S is a function whose domain is the set $\mathbb{N} = \{1, 2, 3, ...\}$ of natural numbers and whose range is in *S*.

Definition 4. A sequence $\{x_n\}$ in \mathbb{R}^n is said to converge if there is a point $x \in \mathbb{R}^n$ with the following property: For every $\epsilon > 0$, there is an integer N such that $n \ge N$ implies that $d(x_n, x) < \epsilon$.

We say that x_n converges to x, x is the limit of $\{x_n\}$ and we write $x_n \rightarrow x$,

$$\lim_{n \to \infty} \boldsymbol{x}_n = \boldsymbol{x}.$$

Theorem 1. Let $\{x_n\}$ be a sequence in \mathbb{R}^n .

(*i*) { x_n } converges to $x \in \mathbb{R}^n$ if and only if every neighborhood of x contains all but finitely many of the terms of { x_n }.

(*ii*) If $x \in \mathbb{R}^n$, $x' \in \mathbb{R}^n$, and if $\{x_n\}$ converges to x and to x', then x = x'. (*iii*) If $\{x_n\}$ converges, then $\{x_n\}$ is bounded.

(*iv*) If $E \subset \mathbb{R}^n$ and \boldsymbol{x} is a limit point of E, then there is a sequence $\{\boldsymbol{x}_n \neq \boldsymbol{x}\}$ in E such that $\boldsymbol{x} = \lim_{n \to \infty} \boldsymbol{x}_n$.

 $(v) \boldsymbol{x}_n = (x_{1,n}, \dots, x_{k,n}) \rightarrow \boldsymbol{x} = (x_1, \dots, x_k) \Leftrightarrow x_{i,n} \rightarrow x_i \text{ for all } i \in \{1, \dots, k\}.$

The last part of the proposition claims that a sequence of vectors converges if and only if all of its coordinates converge.

Definition 5. Given a sequence $\{x_n\}$, consider an infinite sequence $\{n_k\}$ of positive integers, such that $n_1 < n_2 < \cdots$. Then the sequence $\{x_{n_i}\}$ is called a subsequence of $\{x_n\}$. If $\{x_{n_i}\}$ converges, its limit is called a subsequential limit of $\{x_n\}$.

Exercise Show that if $\{x_n\}$ converges to x, then all of its subsequences also converge to x.

Definition 6. A sequence $\{x_n\}$ is said to be a Cauchy sequence if for every $\epsilon > 0$ there is an integer N such that $d(x_n, x_m) < \epsilon$, if $n \ge N$ and $m \ge N$.

Real numbers are constructed in such a way that Cauchy sequences in \mathbb{R} converge, i.e. have limits in \mathbb{R} . By part (v) of the previous theorem, the same is true for real vectors.

Theorem 2. Every bounded subset $E \subset \mathbb{R}^n$ with infinitely many elements has a limit point in \mathbb{R}^n .

Idea of proof for \mathbb{R} : Since E is bounded, it is contained in an interval [-M, M] of length 2M for some $M < \infty$. Since E has infinitely many elements, either [-M, 0] or [0, M] or both have infinitely many elements. Hence some interval of length M also contains infinitely many elements of E. Continue this process of halving the interval to show that you can come up with a sequence of intervals of length $2^{-k}M$ containing infinitely many elements of E. The midpoints of the sequences form a Cauchy sequence and hence they converge to a point $x \in \mathbb{R}$. This x is a limit point of E. The same construction generalizes easily to \mathbb{R}^n

An immediate consequence of this is the following theorem.

Theorem 3. (Bolzano-Weierstrass Theorem)

Every bounded sequence in \mathbb{R}^n contains a convergent subsequence and every sequence in a compact set $E \in \mathbb{R}^n$ has a convergent subsequence whose limit is in E.

Continuous functions

Definition 7. Consider a function $f : \mathbb{R}^n \to \mathbb{R}^m$. We write $f(\boldsymbol{x}) \to \hat{\boldsymbol{y}}$ as $\boldsymbol{x} \to \hat{\boldsymbol{x}}$, or

$$\lim_{\boldsymbol{x}\to\hat{\boldsymbol{x}}}f\left(\boldsymbol{x}\right)=\hat{\boldsymbol{y}},\tag{2}$$

if there is a point $y \in \mathbb{R}^m$ with the following property: For every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\boldsymbol{x} \in B^{\delta}(\hat{\boldsymbol{x}}) \Rightarrow f(\boldsymbol{x}) \in B^{\varepsilon}(\hat{\boldsymbol{y}}).$$

We say that *f* is *continuous at* \hat{x} if for all $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\boldsymbol{x} \in B^{\delta}(\hat{\boldsymbol{x}}) \Rightarrow f(\boldsymbol{x}) \in B^{\varepsilon}(f(\hat{\boldsymbol{x}})).$$

Another way of writing this is given in the following simple proposition.

Proposition 3. A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous at \hat{x} if for every sequence $\{x_n\}$ that converges to \hat{x} , the sequence $\{f(x_n)\}$ converges to $f(\hat{x})$; in symbols,

$$\lim_{n\to\infty}f\left(\boldsymbol{x}_n\right)=f\left(\lim_{n\to\infty}\boldsymbol{x}_n\right).$$

A function is said to be continuous if it is continuous at all points in its domain. Continuity of a function f at a point \hat{x} is called a local property of f because it depends on the behavior of f only in the immediate vicinity of \hat{x} . A property of f which concerns the whole domain of f is called a global property. Thus, continuity of f on its domain is a global property.

The following proposition gives yet another way of looking at continuity.

Proposition 4. A function f is continuous if and only if the inverse image $f^{-1}(V)$ is open (closed) for every open (closed) set V in Y.

Proposition 5. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^k$ be continuous functions, and let *h* be the composite function defined by

$$h(\boldsymbol{x}) = g(f(\boldsymbol{x})) \quad \text{for } \boldsymbol{x} \in \mathbb{R}^n.$$

If f is continuous at \hat{x} and if g is continuous at $f(\hat{x})$, then h is continuous at \hat{x} .

Global properties of continuous functions

Definition 8. A function $f : E \to \mathbb{R}$ is said to be bounded if there is a real number M such that $|f(\mathbf{x})| \le M$ for all $\mathbf{x} \in E$.

Recall the definition of the least upper bound and greatest lower bound for a set *A* of real numbers. We say that \overline{a} is the least upper bound of *A* if for all $x \in A$, $x \leq \overline{a}$ and for all $a' < \overline{a}$, there is some $x \in A$ such that x > a'. Similarly, we say that \underline{a} is the greatest lower bound of *A* if for all $x \in A$, $x \geq \underline{a}$ and for all $a' > \underline{a}$, there is some $x \in A$ such that x < a'.

We write:

$$\overline{a} := \sup A, \underline{a} := \inf A.$$

Theorem 4 (Weierstrass' Theorem). Suppose f is a continuous function on a compact set *E*, and

$$M = \sup_{\boldsymbol{x} \in E} f(\boldsymbol{x}), \quad m = \inf_{\boldsymbol{x} \in E} f(\boldsymbol{x}).$$

Then there exists a point \overline{x} , and $\underline{x} \in E$ such that $f(\overline{x}) = M$ and $f(\underline{x}) = m$.

Proof. We show this for the supremum. The case for the infimum is analogous. Let $M = \sup_{x \in E} f(x)$. Let $\{M_n\} \to M$ with $M_n < M$ for all n. By the definition of the supremum, there exists a sequence $\{x_n\} \in E$ with $x_n \ge M_n$. Since E is compact, $\{x_n\}$ has a convergent subsequence $\{x_{n_k}\} \to x \in E$. Since $\{M_n\} \to M$, we also know that $\{M_{n_k}\} \to M$. By continuity of f,

$$M \ge f(\boldsymbol{x}) = \lim f(\boldsymbol{x}_{n_k}) \ge \lim M_{n_k} = M.$$

This theorem ensures that our maximization and minimization problems have solutions as long as the objective function is continuous and the feasible set is compact.

Remark 2. To see that *E* must be closed and bounded and that *f* has to be continuous, consider the following examples where a single hypothesis (in brackets) of the theorem fails:

- 1. f(x) = x and $E = \mathbb{R}$ (domain not bounded).
- 2. f(x) = x and $E = \{x : 0 < x < 1\}$ (domain not closed).
- 3. f(x) = x for $0 \le x < 1$, f(1) = 0 and $E = \{x : 0 \le x \le 1\}$ (*f* not continuous).

Here are two more useful results. The first is a generalization of Weierstrass' theorem, the second is a generalization of the intermediate value theorem for functions of a single real variable.

Proposition 6. Let $f : X \to Y$ be a continuous function. the image f(E) of any compact set $E \subset X$ is compact.

Proposition 7. Let $f : X \to Y$ be a continuous function. the image f(E) of any connected set $E \subset X$ is connected.

Intervals (including the entire real line and the empty set) are the only connected sets on \mathbb{R} . It is surprisingly hard to give a general and easily verified definition of connected sets in \mathbb{R}^n , but for many applications of this theorem, it is enough to note that convex sets in \mathbb{R}^n for any *n* are connected.