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This lecture covers

1. Existence of solutions to optimization problems
2. Optimization subject to an equality constraint: first-order conditions
3. Examples of equality constrained optimization problems



Existence of optimal choices: why care?
Example (1 is the largest natural number)

Proof.
I Denote the largest natural number (i.e. strictly positive integer) by x .
I Since x is a natural number, also x2 is a natural number.
I Since x is the largest natural number, we have:

x ≥ x2.

I Dividing both sides by x (a positive number since it is a natural number), we
get

1 ≥ x .

I Since all natural numbers are larger than or equal to 1, the claim follows.
I Where is the mistake?



Existence helps the characterization

I Suppose that you know that a problem has a solution
I Suppose you know that a single point satisfies first-order necessary

conditions
I Do you need to worry about second-order conditions at the critical point?
I Hence it is important to find general enough conditions that guarantee the

existence of a solution
I Weierstrass’ theorem is pretty good at this



Existence of optimal choices

I You need to check conditions
1. On the domain (feasible set) of the problem
2. On the objective function

I Feasible set F bounded
1. Can you fit the feasible set in a large enough box of finite size?
2. To do this, for F ⊂ Rn, show that F ⊂ [−M,M]n for some M <∞.
3. E.g. F = {x ∈ Rn|p · x ≤ w ,x ≥ 0} for some strictly positive price vector p

satisfies xi ≤ w
mini pi

for all i .

I Feasible set F closed
1. If xn → x and xn ∈ F for all n, then x ∈ F .
2. E.g. F = {x |g(x) ≤ 0} for a continuous g : Rn → Rk .
3. F = {x ∈ Rn|p · x ≤ w ,x ≥ 0} satisfies this.



Existence of optimal choices

I Objective function continuous

1. Almost all functions you will encounter in economics are continuous
2. Utility functions, cost functions etc.
3. Failure of continuity: demand for price setting firms where all buyers buy from

the firm with the lowest price.

I A set F ⊂ Rn is called compact if it is closed and bounded.
I Once we recall that all sets in R have a greatest lower bound (infimum) and a

lowest upper bound (supremum), we are ready for the main existence result,
Weierstrass theorem



Main existence theorem

Theorem (Weierstrass’ Theorem)
Suppose f is a continuous function on a compact set F , and

M = sup
x∈F

f (x) , m = inf
x∈F

f (x) .

Then there exist points x , x ∈ F such that f (x) = M and f (x) = m.



Weierstrass’ theorem

Remark
To see that F must be closed and bounded and that f has to be continuous,
consider the following examples where one property fails in each case:

1. f (x) = x and F = R (F not bounded).
2. f (x) = x and F = {x : 0 < x < 1}. (F not closed).
3. f (x) = x for 0 ≤ x < 1, f (1) = 0 and E = {x : 0 ≤ x ≤ 1} (f not continuous).



Example: Consumer’s problem
I A consumer chooses how to spend her wealth w on two goods x1, x2 whose

prices are p1,p2.
I Continuously differentiable utility, strictly positive marginal utility for both

goods.
I The feasible set (budget set) {(x1, x2)|x1 ≥ 0, x2 ≥ 0,p1x1 + p2x2 ≤ w} is

closed (since it is defined by weak inequalities for a continuous constraint
function).

I By Weierstrass theorem, a utility maximizing choice exists. What can we say
about it?

I Budget constraint must bind: if p1x̂1 + p2x̂2 < w , then (x̂1 + h, x̂2) is feasible
and:

u(x̂1 + h, x̂2) > u(x̂1, x̂2).

I Therefore, we must have p1x̂1 + p2x̂2 = w .
I Can the indifference curve through the optimum intersect the budget line?



Optimization with a single equality constraint

I Local considerations: Let f : Rn → R be the objective function to be
maximized

I Suppose the constraints take the form g(x) = g(x1, ..., xn) = 0.
I In other words, F = {x : g(x) = 0}. We write the maximization problem often

as:

max
x

f (x)

subject to g(x) = 0.



Optimization with a single equality constraint

I A solution to this problem finds point x̂ such that f (x̂) ≥ f (x) for all x ∈ F .
I What can we say about such an x̂?
I At this point, we do not know if it exists. If it exists, and f is differentiable, then

for small ∆,

f (x̂ + ∆(x − x̂))− f (x̂) = Df (x̂)(x − x̂)∆ ≤ 0

for all feasible directions (x − x̂).
I But how do we know which directions are feasible?



Optimization with a single equality constraint

I Assume that the function g defining the constraint is also differentiable.
I To find the feasible directions, we go back to implicit function theorem.
I If x̂ ∈ F and ∂g

∂xi
(x̂) 6= 0 for some i ∈ {1, ...,n}, then we can find a write

xi = h(x1, ..., xi−1, xi+1, ..., xn) =: h(x−i) in a neighborhood of x̂−i so that

g(h(x−i),x−i) = 0.

I Notice that it is not possible to use the implicit function theorem at a critical
point of the constraint function.

I Therefore, we must assume that Dg(x̂) 6= 0.
I We call this the constraint qualification and we will see different versions of

this in more complex situations with multiple constraints.



Optimization with a single equality constraint
I Since the function g is at constant value in the feasible set, we have for all

feasible directions (x − x̂) :

Dg(x̂)(x − x̂) = 0.

I Notice also that if (x − x̂) is feasible, then also −(x − x̂) is feasible.
I Linear approximation for optimum at x̂ implies that for all feasible directions,

Df (x̂)(x − x̂) = 0.

I But therefore we have shown that at optimum x̂ ,

∇f (x̂) = µ∇g(x̂).

I We have the following necessary condition for a constrained optimum at x̂ :
1. the gradient of the objective function must be a scalar multiple of the gradient of

the constraint function at the optimum
2. the choice must be feasible, i.e. g(x̂) = 0
3. we have assumed constraint qualification at optimum



Lagrangean function
I The previous discussion motivates the following function that incorporates the

constraints into an augmented objective function called the Lagrangean
function.

I For a constrained optimization problem, we define the following function of
n + 1 variables:

L(x , µ) = f (x)− µg(x).

I We call the new variable µ the Lagrange multiplier. We will give it a good
economic interpretation next week.

I We are interested in the critical points of this augmented function. Therefore
we look for (x̂ , µ̂) such that

∂L
∂xi

(x̂ , µ̂) =
∂f
∂xi

(x̂)− µ̂ ∂g
∂xi

(x̂) = 0 for all i ,

∂L
∂µ

(x̂ , µ̂) = g(x̂) = 0.



Figure: Consumer’s problem on a budget line
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Figure: Single equality constraint
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Optimization with a single equality constraint
Find the minima and maxima of f (x , z) = x + z2 subject to constraints

x2 + z2 = 1. (1)

I Form the Lagrangean:

L(x , z, µ) = x + z2 − µ(x2 + z2 − 1). (2)

I Differentiate to get the first-order conditions (FOC):

∂L
∂x

= 1− 2µx = 0, (3)

∂L
∂y

= 2z − 2µz = 0, (4)

∂L
∂µ

= 1− x2 − z2 = 0. (5)



Optimization with a single equality constraint
I The second FOC gives:

z(2− 2µ) = 0

I therefore either z = 0, or µ = 1. Consider first the possibility that z = 0. In
that case, (5) implies that x = ±1. We get two critical points from (3):(

x = 1, z = 0, µ = 1
2

)
and

(
x = −1, z = 0, µ = −1

2

)
I If µ = 1, (3) implies that x = 1

2 . By substituting into (5) we get the critical
points: (

x = 1
2 , z =

√
3

2 , µ = 1
)

and
(

x = 1
2 , z = −

√
3

2 , µ = 1
)



Optimization with a single equality constraint

I As a result, we have four critical points for the Lagrangean. Draw the
constraint set and level curves for the objective function to get a guess of the
classification of the critical points.

I Can you show the existence of a maximum? Which of the local maxima is the
global maximum?



Optimization with multiple equality constraints
Consider next the case, where we have k equality constraints
g(x) = (g1(x), ...,gk (x)) : Rn → Rk . In this case, we have the problem:

max
x

f (x)

subject to g1(x) = 0,

g2(x) = 0,

...
gk (x) = 0.

Form the Lagrangean now with k constraints as a function of n + k variables:

L(x , µ1, ..., µk ) = f (x)−
k∑

j=1

µjgj(x).



Optimization with multiple equality constraints

We can proceed exactly as before to use the linear approximations to characterize
the feasible directions from x̂ as {(x − x̂) : Dg(x̂)(x − x̂)} = 0.

Since the objective function cannot increase at the optimum in any feasible
direction, we have that

Df (x̂)(x − x̂) = 0 whenever Dg(x̂)(x − x̂) = 0.

If Dg(x̂) has full rank, then this is equivalent to requiring that Df (x̂) and Dgj(x̂)
must be linearly dependent. Since we assume that Dg(x̂) has full rank, this means
that there must exist (µ1, ..., µk ) such that

∇f (x̂) =
k∑

j=1

µj∇gj(x̂).



Optimization with multiple equality constraints

Hence we can summarize the three necessary conditions for local maximum:

i) Gradient alignment: ∇f (x̂) =
∑k

j=1 µj∇gj(x̂),

ii) Constraint holds: g(x̂) = 0,

iii) Constraint qualification: Dg1(x̂), ...,Dgk (x̂) are linearly independent.

The first two can be achieved by requiring that (x̂ , µ̂1, ..., µ̂k ) be a critical point of
the Lagrangean.



Optimization with multiple equality constraints: an example

I Consider the problem of maximizing

f (x , y , z) = xz + yz

subject to:

g1(x , y , z) = y2 + z2 − 1
g2(x , y , z) = xz − 3

1. Find the critical points of f subject to constraints g1(x , y , z) = 0 and
g2(x , y , z) = 0.

2. How would you determine which of the critical points are local minima and which
are local maxima?

3. What about constraint qualification?



Optimization with multiple equality constraints: an example
1. Find first the critical points of the Lagrangean

L(x , y , z, µ1, µ2) = xz + yz − µ1(y2 + z2 − 1)− µ2(xz − 3)

2. First-order conditions:

∂L
∂x

= z − µ2z = 0 (6)

∂L
∂y

= z − 2µ1y = 0 (7)

∂L
∂z

= x + y − 2µ1z − µ2x = 0 (8)

∂L
∂µ1

= y2 + z2 − 1 = 0 (9)

∂L
∂µ2

= xz − 3 = 0 (10)



Optimization with multiple equality constraints: an example

We need to solve this system of equations to find the critical points. Start with (6),
giving

z(1− µ2) = 0,⇔ z = 0 or µ2 = 1

If z = 0, then (10) is not true for any x and as a result, we must havez 6= 0.
Therefore, we can only have µ2 = 1 as a candidate solution. The second FOC (7)
gives

y − 2µ1z = 0, ⇔ y =
z

2µ1
.



Optimization with multiple equality constraints: an example

Plug in the solutions for y and µ2 into (8) :

z
2µ1
− 2µ1z = 0 ⇔ z

(
1

2µ1
− 2µ1

)
= 0.

We already know that z 6= 0, and therefore

1
2µ1
− 2µ1 = 0 ⇔ 4µ2

1 = 1 ⇔ µ1 = ±1
2



Optimization with multiple equality constraints: an example

We have now solved for possible Lagrange multipliers µ1 ja µ2, i.e. we have:

µ1 = ±1
2 and µ2 = 1



Optimization with multiple equality constraints: an example
To get the values of the choice variables, plug in the values of the multipliers into
(8) to get:

y = ±z.

Substituting into (9), we get (by squaring):

2z2 − 1 = 0 ⇔ z = ± 1√
2

The fifth FOC (10) gives:

x =
3
z
,

or x = 3
√

2 if z = 1√
2

and x = −3
√

2 if z = − 1√
2
. We have now found all that we

need for the critical points of f subject to the constraints.



Optimization with multiple equality constraints: an example

If z = 1√
2
, then x = 3

√
2, y = ±z. This yields two critical points (x , y , z):

1 :
(

3
√

2, 1√
2
, 1√

2

)

2 :
(

3
√

2,− 1√
2
, 1√

2

)
If z = − 1√

2
, then x = −3

√
2, y = ±z. This gives also two critical points (x , y , z):

3 :
(
−3
√

2,− 1√
2
,− 1√

2

)
4 :
(
−3
√

2, 1√
2
,− 1√

2

)



Optimization with multiple equality constraints: an example

We know that for all critical points, µ2 = 1, and we can check the sign of µ1 from
FOC (7). After this, we have all the critical points of the problem as:

Critical points for the problem (x , y , z, µ1, µ2):

1 :

(
3
√

2,
1√
2
,

1√
2
,
1
2
,1
)

2 :

(
3
√

2,− 1√
2
,

1√
2
,−1

2
,1
)

3 :

(
−3
√

2,− 1√
2
,− 1√

2
,
1
2
,1
)

4 :

(
−3
√

2,
1√
2
,− 1√

2
,−1

2
,1
)



Next Lecture

I Optimization with inequality constraints
I Economic examples of constrained optimization


