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Constrained optimization

Motivating examples

Maximum on a closed interval

Consider finding the maximum for f(x) = 3 + 2x − x2 on the feasible
set F = {x : −∞ < a ≤ x ≤ b < ∞. Since f is continuous and the
feasible set F is compact, Weierstrass’ theorem (see notes on Analysis for
this) guarantees the existence of a maximizer, i.e. an x ∈ F such that for
all y ∈ F , we have f(x) ≥ f(y).

Notice that f is strictly increasing for x < 1 (since f ′(x) > 0) and strictly
decreasing for x > 1 since f ′(x) < 0. If a ≤ 1 ≤ b, then the function is
maximized at its critical point x = 1. We say that a direction h is feasible
from x0 ∈ F if x0 + h ∈ F for h small enough. Linear approximation by
the derivative gives:

f(x0 + h)− f(x0) = f ′(x0)h.

If we have a maximum at x0, then for all feasible direction

f ′(x0)h ≤ 0.

If a < x0 < b, then we must have f ′(x0) = 0 since both directions h > 0
and h < 0 are feasible. If f ′(x0) > 0, then h > 0 cannot be feasible if x0 is
a maximum. Therefore x0 = b if x0 is the optimal choice and f ′(x0) > 0.
Similarly, if f ′(x0) < 0 and x0 is the optimum, then x0 = a.

If all directions are feasible from x0 and x0 is a maximum, then just as
in the case of unconstrained optimization, we must have f ′(x0). For the
other cases, the derivative of the objective function at optimum is closely
related to the constraint that binds (i.e. restricts the feasible directions).
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Utility maximization

A consumer chooses how to spend her wealthw on two goods x1, x2 whose
prices are p1, p2. If the consumer has a continuously differentiable utility
function u(x1, x2) that has strictly positive marginal utilities in the con-
sumption of each of the goods, then the utility function has no critical
points. The feasible set (budget set) {(x1, x2)|x1 ≥ 0, x2 ≥ 0, p1x1 + p2x2 ≤
w} is closed (since it is defined by weak inequalities) and bounded (since
xi ≤ w

min{p1,p2} ). By Weierstrass theorem, a utility maximizing choice exists.
What can we say about it?

It is not possible to have the optimal consumption at a point (x̂1, x̂2),
where p1x̂1 + p2x̂2 < w. To see this, note that for any such point, (x̂1 +
h, x̂2) ∈ F for h > 0 small enough. Since u is strictly increasing in both
consumptions,

u(x̂1 + h, x̂2) > u(x̂1, x̂2).

Hence we know that the optimum satisfies the budget constraint with
equality: p1x̂1 + p2x̂2 = w.

By the implicit function theorem, you can draw an indifference curve
through any point on the budget line. If the budget line and the indiffer-
ence curve intersect, some points on the budget line are better than the
intersecting point (they are on the better side of the indifference curve).
Hence such an intersection point cannot be an optimum. Hence the only
possibilities for an optimum are: i) a point of tangency between the budget
line and the indifference curve and ii) a solution where x1 = 0 or x2 = 0.
The first case is called an interior solution and the latter is called a corner
solution.

Our task is to come up with a general framework for finding optimum
points for general (differentiable) objective functions f : F → R, where
F ⊂ Rn. With more than two dimensions in the domain, graphical ar-
guments are not possible and we need a general method to handle the
constraints.

Optimization with a single equality constraint

We start with local considerations. Let f : Rn → R be a differentiable func-
tion to be maximized and suppose the constraints take the form g(x) =
g(x1, ..., xn) = 0, where g(·) is also assumed to be differentiable. In other
words, F = {x : g(x) = 0}. We write the maximization problem often as:
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max
x

f(x)

subject to g(x) = 0.

A solution to this problem finds a point x̂ such that f(x̂) ≥ f(x) for all
x ∈ F . What can we say about such an x̂? If it exists,then for small ∆,

f(x̂ + ∆(x− x̂))− f(x̂) = Df(x̂)(x− x̂)∆ ≤ 0

for directions (x− x̂) such that the constraint is satisfied at x̂ + ∆(x− x̂).
But how do we know which directions are feasible?

To find the feasible directions, we go back to implicit function theorem.
If x̂ ∈ F and ∂g

∂xi
(x̂) 6= 0 for some i ∈ {1, ..., n}, then we can find a function

xi = h(x1, ..., xi−1, xi+1, ..., xn) =: h(x−i) in a neighborhood of x̂−i so that

g(h(x−i), x−i) = 0.

Notice that it is not possible to use the implicit function theorem if at
a critical point of the constraint function. Therefore, we must assume that
Dg(x̂) 6= 0. We call this the constraint qualification and we will see differ-
ent versions of this in more complex situations with multiple constraints.

Since the function g is at constant value in the feasible set, we have for
all feasible directions (x− x̂) :

∇g(x̂)(x− x̂) = 0.

Notice also that if (x − x̂) is feasible, then also −(x − x̂) is feasible.
From the linear approximation above, this means immediately that for all
feasible directions,

Df(x̂)(x− x̂) = 0.

But therefore we have shown that at optimum x̂,

∇f(x̂) = µ∇g(x̂).

We have derived the following necessary condition for a constrained
optimum at x̂: the gradient of the objective function must be a scalar mul-
tiple of the gradient of the constraint function at the optimum. The second
requirement is that the choice must be feasible, i.e. g(x̂) = 0.
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Figure 1: Single equality constraint
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The Lagrangean function

The previous discussion motivates the following function that incorpo-
rates the constraints into an augmented objective function called the La-
grange’s function or the Lagrangean of the problem.

For a constrained optimization problem with a single equality con-
straint, we define the following function of n+ 1 variables:

L(x, µ) = f(x)− µg(x).

We call the new variable µ the Lagrange multiplier. We will give it a
good economic interpretation later in the course. We are interested in the
critical points of this augmented function. Therefore we look for (x̂, µ̂)
such that

∂L
∂xi

(x̂, µ̂) =
∂f

∂xi
(x̂)− µ̂ ∂g

∂xi
(x̂) = 0 for all i,

∂L
∂µ

(x̂, µ̂) = g(x̂) = 0.

As argued above, these are the first-order conditions for the constrained
optimization problem. In order to know if we have found a local maxi-
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mum or a minimum, we need to look at the second-order Taylor -approximations
and the definiteness of the Hessian matrix at the critical point.

As before, write the second-order Taylor approximation to f : Rn → R
at x̂ as:

f(x) = f(x̂) +Df(x̂)(x− x̂) + (x− x̂) ·Hf(x̂)(x− x̂).

If x̂ is a maximum, then for all feasible directions (x− x̂), we have:
i) Df(x̂)(x− x̂) = 0,
ii) (x− x̂) ·Hf(x̂)(x− x̂) ≤ 0.
Since the feasible directions are give by vectors (x− x̂) such that

∇g(x̂) · (x− x̂) = 0,

the condition for having a local maximum at x̂ is equivalent to checking
the negative definiteness of the bordered Hessian where we need

1. The Lagrangean L,

2. The Equality constraint h.

To get the bordered Hessian, start with the derivative of the Lagrangean
with respect to the choice variables x at the critical point x̂: HxL(x̂, µ̂) and
’border’ it with the derivative of the constraint function (to capture the
restriction to feasible directions).

HL =

[
0 Dg(x̂)

[Dg(x̂)]T HxL(x̂)

]
In the special case where we have only two choice variables, I let the

variables be x, y for notational ease, we need to examine

HL =

 0 gx gy
gx Lxx Lxy

gy Lyx Lyy


How do we determine the negative definiteness of the bordered Hes-

sian?
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1. Leading principal minors must alternate in sign 1

2. detHL(x̂) must have the same sign as (−1)n.

How many principal minors to examine?

• You need to check the sign of the last (n−1) leading principal minors

• For completeness, I state here that with more constraints, you need
to border the Hessian with the derivatives of all binding constraints.
If you have k such constraints, then you need to examine the sign of
(n− k) leading principal minors.

Bordered Hessians are a bit of a nightmare for me. They are tedious to
compute and they tell nothing of significance in the end. In most cases, we
can argue by Weierstrass’ theorem that a maximum exists and therefore it
has to be at a critical point of the Lagrangean (since this is a necessary
condition). If there is a single critical point, it must be the maximum. Oth-
erwise one must compare the values of the objective function at the critical
points to find the global maximum. (Sometimes it is not entirely trivial to
see how to apply Weierstrass’ theorem, but in most cases, this is not diffi-
cult.)

In any case, here is finally a concrete example:

Example 1. Find the minima and maxima of f(x, z) = x+ z2 subject to

x2 + z2 = 1

Form the Lagrangean

L(x, z, µ) = x+ z2 − µ(x2 + z2 − 1)

Differentiate to get the first-order conditions (FOC):

1Recall that a leading principal minor of kth order is obtained from a matrix A by
deleting its last k rows and columns.
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∂L
∂x

= 1− 2µx = 0 (1)

∂L
∂y

= 2z − 2µz = 0 (2)

∂L
∂µ

= 1− x2 − z2 = 0 (3)

The second FOC gives:

z(2− 2µ) = 0

Therefore either z = 0, or µ = 1.
Consider first the possibility that z = 0. In that case, (??) implies that

x = ±1. We get two critical points from (??):(
x = 1, z = 0, µ = 1

2

)
and

(
x = −1, z = 0, µ = −1

2

)
If µ = 1, (??) implies that x = 1

2
. By substituting into (??) we get the

critical points:

(
x = 1

2
, z =

√
3
2
, µ = 1

)
and

(
x = 1

2
, z = −

√
3
2
, µ = 1

)
As a result, we have four critical points for the Lagrangean. Draw the

constraint set and level curves for the objective function to get a guess of
the classification of the critical points.

By examining the bordered Hessian, we see that
(
x = −1, z = 0, µ = −1

2

)
and

(
x = 1, z = 0, µ = 1

2

)
are local minima, and

(
x = 1

2
, z = ±

√
3
2
, µ = 1

)
are local maxima.

Can you show the existence of a maximum? Which of the local maxima
is the global maximum?

Multiple equality constraints

Consider next the case, where we have k equality constraints g(x) = (g1(x), ..., gk(x) :
Rn → Rk. In this case, we have the problem:
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max
x

f(x)

subject to g1(x) = 0,

g2(x) = 0,

...
gk(x) = 0.

Form the Lagrangean now with k constraints as a function of n + k
variables:

L(x, µ1, ..., µk) = f(x)−
k∑

j=1

µjgj(x).

We can proceed exactly as before to use the linear approximations to
characterize the feasible directions from x̂ as {(x− x̂) : Dg(x̂)(x− x̂)} = 0.
Since the objective function cannot increase at the optimum in any feasible
direction, we have that

Df(x̂)(x− x̂) = 0 whenever Dg(x̂)(x− x̂) = 0.

If Dg(x̂) has full rank, then this is equivalent to requiring that Df(x̂)
and Dgj(x̂) must be linearly dependent. Since we assume that Dg(x̂) has
full rank, this means that there must exist (µ1, ..., µk) such that

∇f(x̂) =
k∑

j=1

µj∇gj(x̂).

Hence we can summarize the three necessary conditions for local max-
imum:

i) Gradient alignment: ∇f(x̂) =
∑k

j=1 µj∇gj(x̂),
ii) Constraint holds: g(x̂) = 0,
iii) Constraint qualification: Dg1(x̂), ..., Dgk(x̂) are linearly indepen-

dent.
The first two can be achieved by requiring that (x̂, µ̂1, ..., µ̂k) be a crit-

ical point of the Lagrangean. The second-order conditions are based on
bordered Hessian matrices as explained at the end of the previous subsec-
tion.

Let’s end this section with another example
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Example 2.

Consider the objective function

f(x, y, z) = xz + yz

and a maximization problem subject to:

g1(x, y, z) = y2 + z2 − 1 = 0

g2(x, y, z) = xz − 3 = 0

There are two ways to approach such a problem: i) Do not look at
the problem itself, but just plug in the general Lagrangean machinery. ii)
Simplify the problem before forming the Lagrangean. I always opt for the
second since for more complicated problems, the first approach becomes
nightmarish.

For this particular problem, the obvious simplification seems to be to
substitute the second constraint into the objective function. The problem
then becomes:

max
y,z

3 + yz

subject to y2 + z2 − 1 = 0.

This is obviously much easier to solve and also you can see now that
the feasible set F = {(y, z)|y2 +z2 = 1} is a compact set. Since f(y, z) = 3+
yz is continuous in y, z, Weierstrass’ theorem guarantees that a maximum
exists and therefore all you need to consider are the critical points of the
Lagrangean:

L(y, z, µ) = 3 + yz − µ(y2 + z2 − 1).

The first order conditions for a critical point are:

∂L(ŷ, ẑ, µ̂)

∂y
= ẑ − 2µ̂ŷ = 0,

∂L(ŷ, ẑ, µ̂)

∂z
= ŷ − 2µ̂ẑ = 0,
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∂L(ŷ, ẑ, µ̂)

∂µ
= ŷ2 + ẑ2 − 1 = 0.

From the first equation, we get: 2µ̂ = ẑ
ŷ
, and from the second, 2µ̂ = ŷ

ẑ
.

Therefore ŷ = ±ẑ and we get from the third: ŷ, ẑ = ± 1√
2
.

Therefore µ̂ = ±1
2

and we can solve for the original problem that the
following are the critical points:

(x̂, ŷ, ẑ, µ̂) = (3
√

2,
1√
2
,

1√
2
,
1

2
),

(x̂, ŷ, ẑ, µ̂) = (3
√

2,− 1√
2
,

1√
2
,−1

2
),

(x̂, ŷ, ẑ, µ̂) = (−3
√

2,− 1√
2
,− 1√

2
,
1

2
),

(x̂, ŷ, ẑ, µ̂) = (−3
√

2,
1√
2
,− 1√

2
,−1

2
).

For maxima, it is clear that y and z must have the same sign and by the
symmetry of the problem you can see that both solutions with µ = 1

2
are

maxima. You may also want to look graphically at the reduced problem.
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