Genetic circuit modelling in synthetic biology Paula Jouhten

0

0

Explain what are gate response functions

Learning goals After this lecture, you will be able to

Describe why the gate response functions are useful

Suggest how to model circuit dynamics

Reading material

Nielsen et al. (2016) Genetic circuit design automation. Science. 352:aac7341. doi: 10.1126/science.aac7341.

Dynamic modelling part: Moser et al. (2018) Dynamic control of endogenous metabolism with combinatorial logic circuits. Mol Syst Biol. 14:e8605. doi: 10.15252/msb.20188605

Article

Dynamic control of endogenous metabolism with combinatorial logic circuits

Felix Moser, Amin Espah Borujeni, Amar N. Ghodasara, Ewen Cameron, Yongjin Park & Christopher A. Voigt 😳

Genetic circuit design perspectives

Chakraborty et al. (2022) ACS Synth Biol. 11:1377-1388. doi: 10.1021/acssynbio.1c00557.

08/05/2022

Cello automates genetic circuit design for E. coli and S. cerevisiae

S. cerevisiae: Chen et al. Nat Microbiol. 2020 Nov;5(11):1349-1360. doi: 10.1038/s41564-020-0757-2.

E. coli: Nielsen et al. (2016) Science 352:aac7341. doi: 10.1126/science.aac7341.

Gate characteristics described by a response function

NOT-gate

Response function

RPU (relative promoter unit) RBS (ribosome binding site)

Response functions of gates needed for designing circuit(s)

Nielsen et al. (2016) Science 352:aac7341. doi: 10.1126/science.aac7341.

Modelling gate characteristics as a response function

- Standard promoter: *E. coli* BBa_J23101 constitutive promoter, output of 1 RPU
- Fluorescence measured under a range of inducer concentrations from strains in which
 - 1. Fluorescence protein is expressed from the standard promoter $\langle YFP \rangle_{RPU}$
 - 2. Autofluorescence control without fluorescence protein $\langle YFP \rangle_0$
 - 3. Fluorescence protein is expressed from the input promoter
 - 4. Gate controls fluorescence protein

Example for strain 4, IPTG as inducer

Nielsen et al. (2016) Science 352:aac7341. doi: 10.1126/science.aac7341.

Gate characterization and input-output normalization RPUs

- Convert the fluorescence readouts to RPUs for both
 - 1. Fluorescence protein is expressed from the input promoter
 - 2. Gate controls fluorescence protein
- Plot output as a function of input at each concentration of inducer
- Fit Hill function to the response curve

$$y = y_{min} + (y_{max} - y_{min}) \frac{K^n}{K^n + x^n}$$

where

n is the Hill coefficient

K is the threshold input level where the output is half maximum

 y_{min} and y_{max} are the minimum and maximum output values from the gate

Nielsen et al. (2016) Science 352:aac7341. doi: 10.1126/science.aac7341.

Response functions are essential for combining gates into functional circuits

Nielsen et al. (2016) Science 352:aac7341. doi: 10.1126/science.aac7341.

Circuit tuning shifts the response function

Brophy and Voigt, 2014

Gate assignment is an NP-complete optimization problem

Cello uses simulated annealing algorithm to search gate assignments maximizing circuit score S: min(0)

$$S = \frac{\min(ON)}{\max(OFF)}$$

The gate connections must pass input threshold analysis

OL and OH from previous gate output have to leave positive margins when compared to next gate's IL and IH.

E. coli: Nielsen et al. (2016) Science 352:aac7341. doi: 10.1126/science.aac7341.

Circuit dynamics

- If circuit input is dynamic, modelling circuit dynamics is useful for *in silico* screening of circuit designs
- From response functions to ODEs of dynamic responses

NOT

$$y = y_{min} + (y_{max} - y_{min}) \frac{K^n}{K^n + x^n}$$

$$\frac{dy}{dt} = \alpha(y_{max} - y_{min}) \frac{K^n}{K^n + x(t)^n} - \gamma(y(t) - y_{min})$$
AND

$$y = y_{min} + (y_{max} - y_{min}) \frac{x_1 x_2^2}{K + x_1 x_2^2}$$

$$\frac{dy}{dt} = \alpha(y_{max} - y_{min}) \frac{x_1(t) x_2(t)^2}{K + x_1(t) x_2(t)^2} - \gamma(y(t) - y_{min})$$

$$y = y_{min} + (x_1 - y_{min}) \frac{K}{K + x_2}$$

$$\frac{dy}{dt} = \alpha(x_1(t) - y_{min}) \frac{K}{K + x_2(t)} - \gamma(y(t) - y_{min})$$

$$\frac{dy}{dt} = \alpha(x_1(t) - y_{min}) \frac{K}{K + x_2(t)} - \gamma(y(t) - y_{min})$$

$$\frac{dy}{dt} = \alpha(x_1(t) - y_{min}) \frac{K}{K + x_2(t)} - \gamma(y(t) - y_{min})$$

12 Adopted from: Moser et al. (2018) Mol Syst Biol. 14:e8605. doi: 10.15252/msb.20188605.

OFF,

Example: ODE model for a three gate circuit

Parameters from the response function, and rate constants α and γ of turning a gate ON and OFF

Adopted from: Moser et al. (2018) Mol Syst Biol. 14:e8605. doi: 10.15252/msb.20188605.

Glucose, oxygen and acetate sensors' controlled circuit dynamics predicted for *E. coli* batch culture

- ODE system solved discretely
- In each time step, the corresponding empirical values for the output activity of glucose, oxygen, and acetate sensors were assigned to the inputs

Adopted from: Moser et al. (2018) Mol Syst Biol. 14:e8605. doi: 10.15252/msb.20188605.