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Economic applications of constrained optimization

Utility maximization problem (UMP)

A consumer allocates her budget of w > 0 to n goods. Her consump-
tion vector is an element of the positive orthant of the n Euclidean space
X = {x ∈ Rn

+}. We assume that the consumer has a continuous utility
function u(x) defined on X . Economic scarcity is present through the bud-
get constraint:

p · x ≤ w or
n∑
i=1

pixi ≤ w,

where p = (p1, ..., pn) > 0 is the vector of strictly positive prices for the
goods.

We can write this problem then as
Maximize

u(x1, ..., xn)

subject to

n∑
i=1

pixi ≤ w,

xi ≥ 0 for all i.

By writing the constraints in the equivalent form:
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subject to

n∑
i=1

pixi − w ≤ 0,

−xi ≤ 0 for all i,

the problem is in the standard form that we always write for inequality
constrained optimization problems.

Let’s pause to see what we know about this problem already. To see
that the feasible set is bounded, let pmin = minj pj (i.e. one of the smallest
prices pj). Then we know that for all feasible x, we have pixi ≤ w for all i
since xi ≥ 0 and pi > 0 for all i. Therefore for all feasible x, xi ≤ w

pmin
for

all i. In other words, the feasible set is bounded since 0 ≤ xi ≤ w
pmin

for all
i.

To see that the feasible set is closed, we need to show that all limit
points of the feasible belong to the feasible set. We show this by arguing
that when y is not in the feasible set, it is not a limit point. If y is not
feasible, then either yi < 0 for some i or

∑
i piyi > w. In the first case,

if yi = −a for some a > 0, then no Bε(y) contains any feasible point for
ε < a. Hence y is not a limit point.

For the second case
∑

i piyi − w = b for some b > 0, let pmax = maxj pj .
Then no point in Bε(y) for ε < b

pmax
is feasible. Hence y is not a limit point.

Remark 1. You do not have to prove this closedness property every time.
It is sufficient to note that {x ∈ Rn : g(x) ≤ 0} is a closed set whenever g
is continuous. In our case here, all gk are linear and therefore continuous.
For multiple constraints, just observe that intersections of closed sets are
closed.

Hence we know by Weierstrass’ theorem that a maximum exists. Since
the constraint functions are linear, the feasible set is convex. If u is strictly
increasing (as we usually assume) and quasiconvex, then the first order
Kuhn-Tucker conditions are necessary and sufficient for optimum. In words,
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whenever we find a point satisfying the K-T conditions, we have solved
the problem.

Let’s turn our attention next to the Lagrangean and the K-T conditions:

L(x, λ) = u(x)− λ0

[
n∑
i=1

pixi − w

]
+

n∑
i=1

λixi

The first-order K-T conditions are:

∂L
∂x

=
∂u(x)

∂xi
− λ0pi + λi = 0 for all i, (1)

λ0

[
n∑
i=1

pixi − w

]
= 0, (2)

λixi = 0 for all i, (3)
n∑
i=1

pixi − w ≤ 0, (4)

−xi ≤ 0 for all i, (5)

λi ≥ 0 i ∈ {0, 1, ..., n}. (6)

If the utility function has a strictly positive partial derivative for some
xi at the optimum, then the budget constraint must bind and λ0 > 0. This
follows immediately from the first line of the K-T conditions. For the other
inequality constraints, consider the partial derivatives at x ∈ X with xi →
0 for some i. If

lim
xi→0

∂u

∂xi
=∞,

then we know again from the first line of the K-T conditions that at opti-
mum xi > 0. (Intuitively, if you have an infinitely large marginal utility for
some good, you would want to consume more of it). If this is true for all
i, then we can ignore the non-negativity constraints and we are effectively
back to a problem with a single equality constraint.
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If ∂u(x)
∂xi

< ∞ for x = (xi,x−i) = (0,x−i), then we must also consider
corner solutions where xi = 0 at optimum. For interior solutions, we get
from the first equation by eliminating λ the familiar condition:

∂u
∂xi
∂u
∂xk

=
pi
pk
. (7)

This is of course the familiar requirement that MRSxi,xk = pi
pk

that we
saw in Principles of Economics 1. Now we see that the same condition
extends for many goods and the economic intuition is exactly the same.
The price ration gives the marginal rate of transformation between the
different goods and at an interior optimum, that rate must coincide with
the marginal rate of substitution. In some cases, the functional form is
such that the problem can be solved explicitly.

Constant elasticity of substitution

We start with the functional form that we have already seen a number of
times in this course:

u(x) = (a1x
ρ
1 + · · ·+ anx

ρ
n)

1
ρ ,

for ρ > 1. You have already shown in problem sets that functions of
this type are quasiconcave. We compute the marginal utility for each xi:

∂u

∂xi
= ρa1x

ρ−1
i

1

ρ
(a1x

ρ
1 + · · ·+ anx

ρ
n)

1
ρ 1 .

Note that since ρ < 1, we have ∂u
∂xi

> 0, and

lim
xi→0

∂u

∂xi
=∞.

Since the feasible set is convex and the objective function is quasiconvcave
with a non-vanishing derivative, the first order conditions are necessary
and sufficient for optimum. Since the marginal utility is unbounded at the
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boundary, we know that we have an interior solution and that the budget
constraint is binding. Hence the K-T conditions require simply that for all
i, k:

∂u
∂xi
∂u
∂xk

=
pi
pk
,

and the budget constraint holds as an equality:

n∑
i=1

pixi = 0.

Hence we have that
a1x

ρ−1
1

akx
ρ−1
k

=
p1
pk
,

or
x1
xk

= (
akp1
a1pk

)
1
ρ−1 ,

or
xk = x1(

akp1
a1pk

)
1

1−ρ . (8)

Substituting into the budget constraint, we get:

p1x1 +
n∑
k=2

pkx1(
akp1
a1pk

)
1

1−ρ = w.

We can solve for x1 to get

x1 =
w

p1 +
∑n

k=2 pk(
akp1
a1pk

)
1

1−ρ
.

Substituting into (8), we can solve the other xj .
To get a bit nicer expression, let r = ρ

ρ−1 and assume that ai = 1 for all
i. Then we have for each j:

xj =
wpr−1j∑n
k=1 p

r
k

.

(Exercise: Check that you can get this formula from the equation above).
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In this case, we are able to solve the optimal demands as explicit func-
tions of the exogenous variables. We call the optimal solutions to the util-
ity maximization problem the Marshallian demands. You will see these
demand functions for CES utility functions in your future studies in mod-
els of monopolistic competition as needed in growth theory, international
trade and industrial organization.

If you want to understand where the name constant elasticity of sub-
stitution comes from, you should note that

xi
xk

= (
pi
pk

)
1
ρ−1 (

ak
ai

)
1
ρ−1 .

Hence a small percentage change in the price ratio between any two
goods induces the same percentage change in the optimal consumptions.
The size of this change is given by 1

ρ−1 and hence ρ measures the elastic-
ity of substitution between any two goods. The higher, ρ, the higher the
substitution away from a good when its price increases.

You should consider the comparative statics of the optimal demands
in prices and income. In other words, compute the partial derivatives
∂xi(p,w)
∂pi

, ∂xi(p,w)
∂pj

and ∂xi(p,w)
∂w

. For example, when does the demand for good
i increase in the price of another good pj?

Let’s look at some special cases. In Problem set 1, you showed that as
ρ → 0, the CES -function converges to the Cobb-Douglas utility function
u(x) = xα1

1 . . . xαnn .
If we just substitute ρ = 0 into the optimal demand, we get

xi =
αiw

pi(
∑n

i=1 αi)
.

For the Cobb-Douglas utility function, you get the result that the ex-
penditure share pixi

w
on each good is equal to αi

(
∑n
i=1 αi)

. In this case, the
consumer’s expenditure share does not depend on her wealth. In other
words, rich and poor consumers use the same fraction of their income on
food, clothing, yachts etc. This is clearly not a very good description of
reality.
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By equation (8), you can see that CES -functions do not offer that much
help either. The expenditure shares are still constant in wealth (even though
they depend now on the entire price vector). One way to get more realis-
tic consumption patters is to define the utility function for consumptions
above a level needed for subsistence. Let x = (x1, ..., xn) be the levels of
each good needed for survival and assume that w ≥ p · x. The utility
function for x ∈ Rn such that xi ≥ xi is of Cobb-Douglas -like form:

u(x) = (x1 − x1)α1 . . . (xn − xn)αn ,

where 0 < αi < 1 for all i and
∑n

i=1 αi = 1. Notice that the marginal
utility for good i is infinite if xi = xi and that the utility function is strictly
increasing in all of its components. Hence we still have an interior solution
and the budget constraint binds.

We get as above:

∂u(x)
∂xi
∂u(x)
∂xk

=
αi(xi − xi)
αk(xk − xk)

=
pi
pk

for all i, k,

and
n∑
i=1

pixi = w.

We get that
xi − xi =

αip1
α1pi

(x1 − x1) for all i. (9)

Multiplying both sides by pi and summing over i gives:

n∑
i=1

pi(xi − xi) =
p1

∑n
i=1 αi
α1

(x1 − x1).

So we can solve:

x1 − x1 =
α1(w −

∑n
i=1 pixi)

p1
,

where we used the budget constraint
∑n

i=1 pixi = w and
∑n

i=1 αi = 1
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By (9), we see that

xk − xk =
αk(w −

∑n
i=1 pixi)

pk
.

Now you can see that the consumer uses a constant fraction of her ex-
cess income (above what is needed for the necessities x) in constant shares
given by the αi. Since the poor have less excess wealth, their consumption
fractions are closer to the ones given by the subsistence levels βi :=

xi∑
i xi

.
Hence the richest spend fractions αi 0n good i and the poorest spend βi.

Expenditure minimization problem

We cover briefly the related problem of minimizing expenditure subject
to the constraint of reaching a specified level of utility. All the notation is
exactly as in the previous subsection. We assume that the utility function
that we have is quasiconcave.

min
x∈X

p · x =
n∑
i=1

pixi,

subject to
u(x) ≥ u.

This means that we have a linear and thus quasiconvex objective func-
tion for our minimization problem and since the utility function is qua-
siconcave, the feasible set is convex. Hence we know that K-T neces-
sary conditions are also sufficient. Notice that the feasible set is now not
bounded (why?), but the solution exists because we can take any x∗ such
that u(x∗) ≥ u and restrict attention to x such that

p · x ≤ p · x∗,

since x∗ is a feasible solution. But this set is convex and bounded since it
is a budget set.

The Lagrangean to the problem is:
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L(x, λ) =
n∑
i=1

pixi − λ0(u(x)− u)−
n∑
i=1

λixi.

The first-order conditions are:

∂L
∂x

= pi + λ0
∂u

∂xi
+ λi = 0 for all i,

λ0[u(x)− u] = 0,

λixi = 0 for all i,

u− u(x) ≤ 0,

−xi ≤ 0 for all i,

λi ≥ 0 i ∈ {0, 1, ..., n}.

Notice that for interior solutions (where λ1 = λ2 = ... = λn = 0, we
get again (after eliminating the multiplier) from the first line of the K-T
conditions that

∂u(x)
∂xi
∂u(x)
∂xk

=
pi
pk
.

We have exactly the same situation as before. Now the ratio of marginal
utilities is really the MRT for the problem since it describes the feasible set.
The price ratio is now the MRS of this new problem. We will relate these
two problems in the next lecture.

Cost minimization problem for a firm

A firm chooses its inputs k, l to minimize the cost of reaching a production
target of q at given input prices r, w. The production function is assumed
to be a strictly increasing and quasiconcave function f(k, l).

min
(k,l)∈R2

+

rk + wl
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subject to
f(k, l) ≥ q.

Notice that this is the same mathematical problem as in expenditure
minimization. Only the names of variables have changed. The solution to
the problem is therefore also identical and we do not repeat it here.

Examples of the computations

Start with a utility maximization problem with Cobb-Douglas preferences
and strictly positive prices px, py for the wtwo goods x, y, i.e.:

max
x,y

xαy1−α

subject to:
pxx+ pyy ≤ w, x ≥ 0, y ≥ 0.

Form the Lagrangean:

L(x, y, λi, λ2, λ3) = xαy1−α − λ1(pxx+ pyy − w) + λ2x+ λ3y.

We have argued in previous lectures that since the utility function is strictly
increasing, the budget constraint will bind and the non-negativity con-
straints do not bind at the optimum. We have also derived the solution to
be:

x(px, py, w) =
αw

px
, y(px, py, w) =

(1− α)w

py
.

By substituting these optimal solutions to the objective function, we get
the indirect utility function:

v(px, py, w) = x(px, py, w)αy(px, py, w)(1−α) = w(
α

px
)α(

(1− α)

py
)(1−α).

You should check that this indirect utility function is homogenous of de-
gree 0 in (px, py, w), i.e. that multiplying both prices and the income w by
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the same positive number λ leaves that value of the indirect utility func-
tion unchanged. You should also check that Roy’s identity holds, i.e. that
you get the demand function from:

x(px, py, w) = −
∂v(px,py ,w)

∂px
∂v(px,py ,w)

∂w

.

Consider next the expenditure minimization problem for the same pref-
erences:

min
x,y

pxx+ pyy

subject to:
xαy1−α ≥ ū, x ≥ 0, y ≥ 0.

Form the Lagrangean (to get the signs of the multipliers correct, you may
remember that minimizing f(x) has the same solution as maximizing−f(x)

:
L(x, y, λi, λ2, λ3) = −pxx− pyy + λ1(x

αy1−α − ū) + λ2x+ λ3y.

We see immediately that if ū = 0, then the optimal solution is x = y = 0.
For ū > 0, the only feasible consumptions are interior and hence λ2 =

λ3 = 0. The utility constraint must be binding since otherwise it would be
possible to lower the consumption of one of the goods leading to a smaller
expenditure without violating any of the constraints.

The first order conditions for this minimization problem are:

px − µ1α
xαy1−α

x
= 0,

py − µ1(1− α)
xαy1−α

y
= 0,

xαy1−α − ū = 0.

Solving from the first two equations, we get:

y =
px
py

(1− α)

α
x.
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Substituting to the third first-order condition gives:

x(px, py, ū) = ū(
px
py

(1− α)

α
)α−1,

and similarly:
y(px, py, ū) = ū(

py
px

α

(1− α)
)−α.

These are called the Hicksian or compensated demands for x and y.
The value function, i.e. the expenditure function is then:

e(px, py, ū) = ū(px(
px
py

(1− α)

α
)α−1 + py(

py
px

α

(1− α)
)−α).

Is the expenditure function homogenous? Of what degree? Can you see
that by taking the partial derivative of this expenditure function, you get
back the compensated demand for x?

Finally, you can verify the Slutsky equation. For example, the partial
derivative of the compensated demand for x with respect to own price:

∂x(px, py, ū)

∂px
= ū(α− 1)

1

px
(
px
py

(1− α)

α
)α−1

is equal to

∂x(px, py, w)

∂px
+ x(px, py, w)

∂x(px, py, w)

∂w
= −αw

p2x
+
α2w

p2x
,

when evaluated at ū = v(px, py, w) = w( α
px

)α( (1−α)
py

)(1−α).
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