Mathematics for Economists: Lecture 10

Juuso Välimäki

Aalto University School of Business

Spring 2022

This lecture covers

1. The value function
2. Interpreting the Lagrange multipliers
3. Duality in consumer choice
4. Value functions for profit maximizing firms

The value function: motivating example

- Let's begin with a concrete example.
- A profit maximizing monopolist firm selling in a market where the market demand curve is given by $p=a-b q$ with $a, b>0$.
- The cost of producing q units is $c q$ with $0<c<a$.
- The profit is equal to revenue net of cost, i.e. the solves

$$
\max _{q \geq 0}(a-b q) q-c q .
$$

The value function

- Since profit at $q=0$ is zero, the inequality constraint is not binding.
- Since the objective function is strictly concave, any point satisfying the first-order condition is an optimum.
- Setting the derivative of the objective function with respect to q at zero gives:

$$
q^{*}=\frac{a-c}{2 b}
$$

- The maximum profit that the firm can get is therefore

$$
\pi(a, b, c)=(a-c) q^{*}-b\left(q^{*}\right)^{2}=\frac{(a-c)^{2}}{4 b}
$$

The value function

- How does the optimal profit depend on the parameters a, b, c ? Since the optimal q changes, maybe this is quite complicated?
- Just take the derivatives of the function $\pi(a, b, c)$ with respect to its variables.
- We see that $\frac{\partial \pi(a, b, c)}{\partial a}=\frac{a-c}{2 b}=-\frac{\partial \pi(a, b, c)}{\partial c}$, and $\frac{\partial \pi(a, b, c)}{\partial b}=-\frac{(a-c)^{2}}{4 b^{2}}$.
- But it is also true that $\frac{\partial \pi(a, b, c)}{\partial a}=q^{*}=-\frac{\partial \pi(a, b, c)}{\partial c}$ and $\frac{\partial \pi(a, b, c)}{\partial b}=-\left(q^{*}\right)^{2}$.
- But these are the partial derivatives of the objective function with respect to each parameter
- Is there a reason behind this or is this just a coincidence?

The value function

- Consider an unconstrained maximization problem of a function of a single real variable \boldsymbol{x}, where the objective function depends on a parameter $\alpha \in \mathbb{R}$.

$$
\max _{x \in \mathbb{R}} f(x, \alpha) .
$$

- Let $x(\alpha)$ be the solution to this problem.
- Consider the maximum value of the objective function that is achievable at the exogenous variable (or parameter) $\hat{\alpha}$, i.e. $f(x(\hat{\alpha}), \hat{\alpha})$.
- We call this new function the value function of the problem and denote

$$
V(\alpha):=f(x(\alpha), \alpha)
$$

The value function

- At the (unconstrained) optimum $x(\hat{\alpha})$, by the first-order condition:

$$
\frac{\partial f(x(\hat{\alpha}), \hat{\alpha})}{\partial x}=0
$$

Suppose that f is twice continuously differentiable and that the second order condition is satisfied so that

$$
\frac{\partial^{2} f(x(\hat{\alpha}))}{\partial x^{2}}<0
$$

- Then we can use implicit function theorem to see that $x(\alpha)$ satisfying the first-order condition exists in some neighborhood of $\hat{\alpha}$.

The value function

- By chain rule:

$$
V^{\prime}(\hat{\alpha})=\frac{\partial f(x(\hat{\alpha}), \hat{\alpha})}{\partial x} x^{\prime}(\hat{\alpha})+\frac{\partial f(x(\hat{\alpha}), \hat{\alpha})}{\partial \alpha} .
$$

- Since $\frac{\partial f(x(\hat{\alpha}), \hat{\alpha})}{\partial x}=0$, we get

$$
V^{\prime}(\hat{\alpha})=\frac{\partial f(x(\hat{\alpha}), \hat{\alpha})}{\partial \alpha}
$$

Envelope theorem

- Envelope theorem states that for twice continuously differentiable functions $f(x, \alpha)$, and the value function $V(\alpha)=\max _{x} f(x, \alpha)$, we have

$$
V^{\prime}(\alpha)=\frac{\partial f(x(\alpha), \alpha)}{\partial \alpha}
$$

- In words, when a parameter changes, the maximum value of the problem changes only through the direct effects on the objective function.
- Indirect effects on the value vanish because of the first-order condition on x.
- Can you relate the theorem to the motivating example?

Envelope theorem

- In the more general case, where $\boldsymbol{x} \in \mathbb{R}^{n}$, the message is exactly the same. The first order-condition is now:

$$
\frac{\partial f(\boldsymbol{x}(\hat{\alpha}), \hat{\alpha})}{\partial x_{i}}=0 \text { for all } i \in\{1, \ldots, n\}
$$

- Assuming the conditions for implicit function theorem, we have by chain rule:

$$
V^{\prime}(\hat{\alpha})=\sum_{i=1}^{n} \frac{\partial f(\boldsymbol{x}(\hat{\alpha}), \hat{\alpha})}{\partial x_{i}} x_{i}^{\prime}(\hat{\alpha})+\frac{\partial f(\boldsymbol{x}(\hat{\alpha}), \hat{\alpha})}{\partial \alpha}
$$

- Again, the first term vanishes by first-order condition and we are left with

$$
V^{\prime}(\hat{\alpha})=\frac{\partial f(\boldsymbol{x}(\hat{\alpha}), \hat{\alpha})}{\partial \alpha}
$$

Envelope theorem in equality constrained problems

- Suppose that we have an equality constrained parametric maximization problem for $\boldsymbol{x} \in \mathbb{R}^{n}$:

$$
\begin{gathered}
\max _{\boldsymbol{x}} f(\boldsymbol{x}, \alpha) \\
\text { subject to } g(\boldsymbol{x}, \alpha)=0 .
\end{gathered}
$$

- Let $\boldsymbol{x}(\alpha)$ denote the optimal solution and assume sufficient differentability that we can use implicit function theorem around the solution as before. (I.e. assume that the objective function is twice continuously differentiable).
- The value function is still defined as: $V(\alpha)=f(\boldsymbol{x}(\alpha), \alpha)$.
- Form the Lagrangean:

$$
\mathcal{L}(\boldsymbol{x}, \mu ; \alpha)=f(\boldsymbol{x}, \alpha)-\mu \boldsymbol{g}(\boldsymbol{x}, \alpha)
$$

Envelope theorem in equality constrained problems

Theorem (Envelope theorem)
In an optimization problem subject to an equality constraint, we have:

$$
V^{\prime}(\alpha)=\frac{\partial \mathcal{L}(\boldsymbol{x}, \mu ; \alpha)}{\partial \alpha}
$$

Proof.

$$
V^{\prime}(\hat{\alpha})=\sum_{i=1}^{n} \frac{\partial f(\boldsymbol{x}(\hat{\alpha}), \hat{\alpha})}{\partial x_{i}} x_{i}^{\prime}(\hat{\alpha})+\frac{\partial f(\boldsymbol{x}(\hat{\alpha}), \hat{\alpha})}{\partial \alpha} .
$$

Now the first-order condition implies that

$$
\frac{\partial f(\boldsymbol{x}(\hat{\alpha}), \hat{\alpha})}{\partial x_{i}}=\mu \frac{\partial g(\boldsymbol{x}(\hat{\alpha}), \hat{\alpha})}{\partial x_{i}} .
$$

Envelope theorem in equality constrained problems

Since the constraint holds for all α, we have

$$
\sum_{i=1}^{n} \frac{\partial g(\boldsymbol{x}(\hat{\alpha}), \hat{\alpha})}{\partial x_{i}} x_{i}^{\prime}(\hat{\alpha})=-\frac{\partial g(\boldsymbol{x}(\hat{\alpha}), \hat{\alpha})}{\partial \alpha} .
$$

Combining these gives:

$$
V^{\prime}(\hat{\alpha})=\frac{\partial f(\boldsymbol{x}(\hat{\alpha}), \hat{\alpha})}{\partial \alpha}-\mu \frac{\partial g(\boldsymbol{x}(\hat{\alpha}), \hat{\alpha})}{\partial \alpha} .
$$

Interpreting the Lagrange multipliers

- Envelope theorem gives us a nice way of understanding the Lagrange multipliers in UMP
- The Lagrangean for the UMP with a single binding equality constraint is:

$$
\mathcal{L}(\boldsymbol{x}, \lambda)=u(\boldsymbol{x})-\mu\left[\sum_{i=1}^{n} p_{i} x_{i}-w\right] .
$$

- The maximum value function

$$
v(\boldsymbol{p}, w)=\max u(\boldsymbol{x}) \text { subject to } \boldsymbol{p} \cdot \boldsymbol{x}=w
$$

is called the indirect utility function. It computes the optimal utility level for all combinations of prices $\boldsymbol{p} \in \mathbb{R}_{++}^{n}$ and income $w>0$.

Interpreting the Lagrange multipliers

- Envelope theorem tells us that

$$
\frac{\partial v(\boldsymbol{p}, w)}{\partial w}=\mu
$$

- This means that if your income is increased by one unit, your maximal utility increases the amount given by the multiplier.
- By reducing income $d w$ you lose $\mu d w$ of utility and this is why the multiplier is sometimes called the shadow price of income.
- Note also that the usual first-order condition requires:

$$
\mu d w=\frac{\partial u(\boldsymbol{x})}{\partial x_{i}} \frac{d w}{p_{i}} \text { for all } i .
$$

- With $d w$ of additional income, you can buy $\frac{d w}{p_{i}}$ units of good i.

Interpreting the Lagrange multipliers

- Envelope theorem also tells us that:

$$
\frac{\partial v(\boldsymbol{p}, w)}{\partial p_{i}}=-\mu x_{i}
$$

- Combining these two, we have Roy's identity:

$$
x_{i}(\boldsymbol{p}, w)=-\frac{\frac{\partial v(\boldsymbol{p}, w)}{\partial p_{i}}}{\frac{\partial v(\boldsymbol{p}, w)}{\partial w}}
$$

- In other words, if you have an indirect utility function, you can compute the demand function by simple partial differentiation.
- In later courses, you will learn what properties on $v(\boldsymbol{p}, w)$ guarantee that it is the indirect utility function of some UMP for some $u(\boldsymbol{x})$.

Figure: Expenditure minimization

Expenditure minimization

- Consider next the expenditure minimization problem from Lecture 9.

$$
\min _{\boldsymbol{h} \in X} \boldsymbol{p} \cdot \boldsymbol{x}=\sum_{i=1}^{n} p_{i} h_{i}
$$

subject to

$$
u(\boldsymbol{h})=\bar{u}
$$

- Denote the solution to this problem by $h(\boldsymbol{p}, \bar{u})$. We call $h_{i}(\boldsymbol{p}, \bar{u})$ the Hicksian or compensated demand for good i.
- The (minimum) value function of this problem $e(\boldsymbol{p}, \bar{u})=\sum_{i=1}^{n} p_{i} h_{i}(\boldsymbol{p}, \bar{u})$ is called the expenditure function.
- The objective function is linear in \boldsymbol{p} and hence by the results in Lecture 6, we know that $\boldsymbol{e}(\boldsymbol{p}, \bar{u})$ is concave in \boldsymbol{p}.
- Therefore the Hessian matrix of $e(\boldsymbol{p}, \bar{u})$ is negative semidefinite.

Value function for expenditure minimization

- The Lagrangean for interior solutions:

$$
\mathcal{L}(\boldsymbol{h}, \mu)=\sum_{i=1}^{n} p_{i} h_{i}-\mu(\bar{u}-u(\boldsymbol{h}))
$$

- Envelope theorem tells us that

$$
\frac{\partial e(\boldsymbol{p}, \bar{u})}{\partial p_{i}}=h_{i} .
$$

- The partial derivatives of $h_{i}(\boldsymbol{p}, \bar{u})$ with respect to p_{j} are the elements of the Hessian matrix of $e(\boldsymbol{p}, \bar{u})$.

Connecting expenditure minimization and UMP

- Hold prices \hat{p} fixed for a moment and ask how high utility you can achieve with income w. The answer is given by the indirect utility function $v(\hat{\boldsymbol{p}}, w)$.
- Ask next what is the minimum expenditure that you must use to achieve utility $v(\hat{\boldsymbol{p}}, w)$.
- By choosing $h_{i}=x_{i}(\mathbf{p}, w)$ you achieve that utility at expenditure w.
- If you could achieve $v(\boldsymbol{p}, w)$ at a strictly lower cost, then you could achieve a higher utility at (\boldsymbol{p}, w) contradicting the definition of $v(\boldsymbol{p}, w)$.
- So we conclude:

$$
e(\hat{\boldsymbol{p}}, v(\hat{\boldsymbol{p}}, w))=w
$$

Connecting expenditure minimization and UMP

- Similarly, it costs you $e(\hat{\boldsymbol{p}}, \bar{u})$ to reach utility \bar{u}.
- If your budget is $e(\hat{\boldsymbol{p}}, \bar{u})$, then you can reach utility level \bar{u} by choosing $x_{i}=h_{i}(\boldsymbol{p}, \bar{u})$.
- If you could reach a strictly higher utility level, then by continuity of $u(\cdot)$, you could reach \bar{u} even if you reduced some consumption a bit contradicting the definition of $e(\boldsymbol{p}, \bar{u})$.
- We conclude:

$$
\bar{u}=v(\hat{\boldsymbol{p}}, e(\hat{\boldsymbol{p}}, \bar{u}) .
$$

Figure: UMP for $w=e(\boldsymbol{p}, v(\boldsymbol{p}, w))$

Figure: Expenditure minimization for $\bar{u}=v(\boldsymbol{p}, e(\boldsymbol{p}, \bar{u}))$

Connecting expenditure minimization and UMP

- You can also see that for $\bar{u}=v(\boldsymbol{p}, e(\boldsymbol{p}, \bar{u})$ and $e(\boldsymbol{p}, v(\boldsymbol{p}, w))=w$ the solutions to expenditure minimization and UMP coincide for all p :

$$
\begin{gathered}
h_{i}(\boldsymbol{p}, \bar{u})=x_{i}(\boldsymbol{p}, e(\boldsymbol{p}, \bar{u})) \text { for all } i \\
h_{i}(\boldsymbol{p}, v(\boldsymbol{p}, w))=x_{i}(\boldsymbol{p}, w) \text { for all } i
\end{gathered}
$$

Connecting expenditure minimization and UMP

- Differentiate the first of these identities with respect to p_{j} to get:

$$
\begin{gathered}
\frac{\partial h_{i}(\boldsymbol{p}, \bar{u})}{\partial p_{j}}=\frac{\partial x_{i}(\boldsymbol{p}, w)}{\partial p_{j}}+\frac{\partial x_{i}(\boldsymbol{p}, w)}{\partial w} \frac{\partial e(\boldsymbol{p}, \bar{u})}{\partial p_{j}} \\
=\frac{\partial x_{i}(\boldsymbol{p}, w)}{\partial p_{j}}+\frac{\partial x_{i}(\boldsymbol{p}, w)}{\partial w} h_{j}(\boldsymbol{p}, \bar{u}) \\
=\frac{\partial x_{i}(\boldsymbol{p}, w)}{\partial p_{j}}+\frac{\partial x_{i}(\boldsymbol{p}, w)}{\partial w} x_{j}(\boldsymbol{p}, e(\boldsymbol{p}, \bar{u})) \\
=\frac{\partial x_{i}(\boldsymbol{p}, w)}{\partial p_{j}}+\frac{\partial x_{i}(\boldsymbol{p}, w)}{\partial w} x_{j}(\boldsymbol{p}, w)
\end{gathered}
$$

Connecting expenditure minimization and UMP

- This is the famous Slutsky equation for income and substitution effects.
- The observable change in Marshallian $\frac{\partial x_{i}(\boldsymbol{p}, w)}{\partial p_{j}}$ demands can be decomposed into a substitution effect, i.e. the change in compensated demand $\frac{\partial h_{i}(\boldsymbol{p}, \bar{u})}{\partial p_{j}}$ and the observable income effect $\frac{\partial x_{i}(\boldsymbol{p}, w)}{\partial w} x_{j}(\boldsymbol{p}, w)$.

$$
\frac{\partial x_{i}(\boldsymbol{p}, w)}{\partial p_{j}}=\frac{\partial h_{i}(\boldsymbol{p}, \bar{u})}{\partial p_{j}}-\frac{\partial x_{i}(\boldsymbol{p}, w)}{\partial w} x_{j}(\boldsymbol{p}, w)
$$

- Since we know that the Hessian of $e(\boldsymbol{p}, \bar{u})$ is negative definite, we know that its diagonal elements are non-positive.
- Hence the effect of increasing p_{i} on x_{i} is negative whenever the demand for i is increasing in income (we say then that i is a non-inferior good).

Conditions for demand functions

- We have seen up to now that demand functions arising from utility maximization problems satisfy:

1. Homogeneity of degree 0 (budget set does not change if all prices and income multiplied by the same strictly positive number).
2. If the utility function is strictly increasing, then all income is used:

$$
\sum_{i=1}^{n} p_{i} x_{i}(\boldsymbol{p}, w)=w \text { for all } \boldsymbol{p}, w>0
$$

3. The matrix X (called the Slutsky matrix) with $(i, j)^{\text {th }}$ element $x_{i j}=\frac{\partial x_{i}(\boldsymbol{p}, w)}{\partial p_{j}}+\frac{\partial x_{i}(\boldsymbol{p}, w)}{\partial w} x_{j}(\boldsymbol{p}, w)$ is negative semidefinite.
4. From Young's theorem, Slutsky matrix is symmetric.

Conditions for demand functions

- We could ask conversely, what conditions on a vector valued function $\boldsymbol{x}(\boldsymbol{p}, w)$ guarantee that it is the Marshallian demand for some utility maximization problem.
- A remarkable (but unfortunately somewhat hard to prove) result states that the above four conditions are sufficient.
- In other words: Any vector valued function that is homogenous of degree 0 , uses the entire budget and has symmetric and positive definite Slutsky matrix is a demand function for some (strictly increasing and quasiconcave) utility function.

Cost function of a competitive firm

- A firm chooses its inputs k, I to minimize the cost of reaching a production target of \bar{q} at given input prices r, w.
- The production function is assumed to be a strictly increasing and quasiconcave function $f(k, l)$.

$$
\min _{(k, l) \in \mathbb{R}_{+}^{2}} r k+w l
$$

subject to

$$
f(k, l)=q
$$

Cost function of a competitive firm

- The value function of this problem is called the cost function of the firm and denoted by $c(r, w, q)$.

$$
c(r, w, q)=r k(r, w, q)+w /(r, w, q),
$$

where $k(r, w, q), l(r, w, q)$ solve the cost minimization problem.

- These are called the conditional factor demands.

As in the case with expenditure minimization, we see that the cost function is concave in r, w since it is the minimum of linear functions of r, w.

- Therefore the Hessian of the cost function is negative semidefinite.

Cost function of a competitive firm

- By envelope theorem, we have the result known as Shephard's lemma:

$$
\frac{\partial c(r, w, q)}{\partial r}=k(r, w, q), \quad \frac{\partial c(r, w, q)}{\partial w}=I(r, w, q)
$$

- Negative semidefiniteness of the Hessian of c implies that (since the diagonal elements must be non-positive)

$$
\frac{\partial k(r, w, q)}{\partial r} \leq 0, \frac{\partial l(r, w, q)}{\partial w} \leq 0
$$

- In words, conditional factor demands are decreasing in own price (not surprisingly).

Profit function of a competitive firm

- We end this part of the course with the analysis of profit maximization for a price taking firm.
- There are two ways to think about this. Either minimize cost for each production level q to get $c(r, w, q)$ and then choose q optimally to maximize $p q-c(r, w, q)$, where p is the price of the output.
- Alternatively, you can write directly:

$$
\max _{k, l, q} p q-r k-w l
$$

subject to

$$
q=f(k, l)
$$

Profit function of a competitive firm

- An advantage of the second approach is that the problem is immediately seen to be linear in the input and output prices p, r, w.
- Let $q(p, r, w), k(p, r, w), I(p, r, w)$ be the optimal output and input choices in the problem. The value function $\pi(p, r, w)$ is called the profit function of the firm.
- Since π is the maximum of linear functions in p, r, w, we get by Lecture 6 that π is convex and hence its Hessian is positive semidefinite.

Profit function of a competitive firm

- The envelope theorem gives us Hotelling's lemma:

$$
\frac{\partial \pi(p, r, w)}{\partial p}=q(p, r, w), \quad \frac{\partial \pi(p, r, w)}{\partial r}=-k(p, r, w), \quad \frac{\partial \pi(p, r, w)}{\partial w}=-l(p, r, w)
$$

- Since π is positive semi-definite, its diagonal elements are non-negative.
- This gives the 'Law of Supply' (supply increases in output price)

$$
\frac{\partial q(p, r, w)}{\partial p} \geq 0
$$

and the 'Law of Factor Demands' (factor demand decrease in factor price):

$$
\frac{\partial k(p, r, w)}{\partial r} \leq 0, \quad \frac{\partial I(p, r, w)}{\partial w} \leq 0
$$

Profit function of a competitive firm

- As you can see, the theory of the competitive firm is easier than consumer theory since changes in prices do not change the constraint set (as with the budget set)
- You will see the firm's problem in some form in almost all branches of economics and in particular in Intermediate Microeconomics
- Of course, in many industries firms are not competitive \rightarrow Industrial organization
- Firms do not make decisions but people do and people may have different objectives \rightarrow Organizational economics, Contract theory

