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This lecture covers

1. Economic applications of constrained optimization
1.1 Utility maximization continued
1.2 Expenditure and cost minimization

2. First look at duality and value functions



Utility maximization: Cobb-Douglas utility function

I Perhaps the most used functional form in economics is the Cobb-Douglas
function

u(x) = x↵y1�↵,

for some ↵ 2 (0, 1).
I The distinguishing feature of this form is that the function is homogenous of

degree 1.
I You can check with the Hessian matrix (as an exercise) that u(x , y) is

concave and therefore also quasiconcave.



Utility maximization: Cobb-Douglas utility function

I Both marginal utilities are strictly positive at all (x , y) > (0, 0) and

lim
x!0

@u(x , ȳ)
@x

= lim
y!0

@u(x̄ , y)
@y

= 1,

for x̄ , ȳ > 0. Since x = y = ✏ is feasible for small enough ✏ and
u(✏, ✏) = ✏ > 0 = u(0, 0), we know that even though (0, 0, 0, 0, 0) is a critical
point of the utility function, it is not a maximum.

I Similarly (0, y) and ((x , 0) cannot be optimal solutions and we can restrict to
interior points.



UMP: Cobb-Douglas utility function

I The requirement that MRSx ,y = px
py

gives:

↵y
(1 � ↵)x

=
px

py
or pxx =

↵

1 � ↵
pyy .

I Using the budget constraint:

pxx + pyy = w ,

we get:

x(px , py ,w) =
↵w
px

, and y(px , py ,w) =
(1 � ↵)w

py
.



UMP: Cobb-Douglas utility function

I For the Cobb-Douglas utility function, you get the result that the expenditure
shares px x

w = ↵ and py y
w = 1 � ↵ do not depend on prices or w .

I This extends easily to the case with n goods and u(x) = x↵1
1 . . . x↵n

n with
↵i > 0,

P
i ↵i = 1 at prices p = (p1, ..., pn). Then you have:

xi(p,w) =
↵iw
pi

.

I This is not very realistic.
I The rich and the poor use their budgets very differently.



UMP: Stone-Geary utility function

I One way to get more realistic consumption patters is to define the utility
function for consumptions above a level needed for subsistence.

I Let x = (x1, ..., xn) be the levels of each good needed for survival and assume
that w � p · x .

I The utility function for x 2 Rn such that xi � xi is of Cobb-Douglas -like form:

u(x) = (x1 � x1)
↵1 . . . (xn � xn)

↵n ,

where 0 < ↵i < 1 for all i and
Pn

i=1 ↵i = 1.
I Notice that the marginal utility for good i is infinite if xi = xi and that the utility

function is strictly increasing in all of its components.
I Hence we still have an interior solution and the budget constraint binds.



UMP: Stone-Geary utility function
I We get as above:

@u(x)
@xi

@u(x)
@xk

=
↵i(xk � xk )

↵k (xi � xi)
=

pi
pk

for all i , k ,

nX

i=1

pixi = w .

I Taking k = 1, we get that

xi � xi =
↵i p1

↵1pi
(x1 � x1) for all i . (9)

I Multiplying both sides by pi and summing over i gives:

nX

i=1

pi(xi � xi) =
p1

Pn
i=1 ↵i

↵1
(x1 � x1).



UMP: Stone-Geary utility function

I So we can solve:

x1 � x1 =
↵1(w �

Pn
i=1 pixi)

p1
,

where we used the budget constraint
Pn

i=1 pixi = w and
Pn

i=1 ↵i = 1
I By (9), we see that

xi � xi =
↵i(w �

Pn
j=1 pjxj)

pi
.

I The consumer uses a constant fraction of her excess income (above what is
needed for the necessities x) in constant shares given by the ↵i .

I Since the poor have less excess wealth, their consumption fractions are
closer to the ones given by the subsistence levels �i :=

xiP
i xi

.



Quasilinear utility function

I We end the section on utility maximization with u(x , y) = v(x) + y , where v is
a strictly increasing and strictly concave function subject to non-negativity of
x , y and the budget constraint

pxx + y  w .

I Are we losing generality in assuming that py = 1?
I Now MRSx ,y = v 0(x).



Quasilinear utility function
I If v 0( w

px
) > px , or if v 0(0) < px , then we have a corner solution.

I In the first case, x(px ,w) = w
px
, y(px ,w) = 0.

I In the second case, x(px ,w) = 0 and y(px ,w) = w .
I Otherwise x(px ,w) solves

v 0(x) = px ,

and
y = (w � pxx(px ,w)).

I Notice that MRSx ,y does not depend on y . A higher y simply shifts vertically
the indifference curves.

I This utility function lies behind partial equilibrium analysis in microeconomics
where x is sold in the market of interest and y is everything else.

I y represents expenditure on all other goods or total income. With quasi-linear
utility, there are no income effects (as long as we remain in the range for
interior solutions).



Figure: Utility maximization problem
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Expenditure minimization problem

I Suppose the consumer has a utility function given by u(x , y)
I How do you minimize expenditure to reach at least the utility level ū?

min
x ,y

pxx + pyy

subject to:
x , y � 0, u(x , y) � ū.

I We’ll connect UMP and EMP in the second part of this lecture.
I Lagrangean for the problem:

L(x , y ,�1,�2,�3) = pxx + pyy � �1(u(x , y)� ū) + �2x + �3y .

I Exercise: What are the Kuhn-Tucker first-order conditions for this problem?



Figure: Expenditure minimization problem
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Cost minimization problem for a firm

I A firm chooses its inputs k , l to minimize the cost of reaching a production
target of q at given input prices r ,w .

I Notice that the objective function is quasiconvex.
I The production function is assumed to be a strictly increasing and

quasiconcave function f (k , l).

min
(k ,l)2R2

+

rk + wl

subject to
f (k , l) � q̄, k , l � 0.



Cost minimization problem for a firm

I Notice that the feasible set is closed and convex.
I It is not bounded but is this a problem for existence of a solution?
I Lagrangean for the problem:

L(k , l ,�1,�2,�3) = rk + wl � �1(f (k , l)� q̄)� �2k � �3l .

I It is often assumed that f (0, l) = f (k , 0) = 0 and then the non-negativity
constraints are not binding. (Of course, with e.g. linear technologies, you
must consider corner solutions).



Cost minimization problem for a firm: Cobb-Douglas case

I Let f (k , l) = k↵l1�↵.
I (k̂ , l̂) such that k̂ = 0 or l̂ = 0 are not in the feasible set.
I I leave it as an exercise to argue that the constraint f (k , l) � q̄ binds at

optimum, i.e.
f (k̂ , l̂) = q̄.

I First-order conditions for optimum are:

r = �1↵

 
l̂
k̂

!1�↵

,w = �1(1 � ↵)

 
k̂
l̂

!↵

,

and
f (k̂ , l̂) = q̄.



Cost minimization problem for a firm: Cobb-Douglas case

I From the first two, you get:
r
w

=
↵

1 � ↵

l̂
k̂
.

I Solving for k̂ and substituting into the constraint gives:

k̂ = q̄
✓

↵w
(1 � ↵)r

◆1�↵

, l̂ = q̄
✓
(1 � ↵)r

↵w

◆↵

.

I You can also verify that �̂1 > 0.
I The minimal cost for achieving production level q̄ is

c(q̄; r ,w) = r k̂ + wl̂ = q̄(↵)�↵(1 � ↵)↵�1r↵w1�↵.



Comparative statics of utility maximization

I Recall from Principles of Economics I,
1. Substitution effect of price changes
2. Income effect of price changes

I We will see how to express these mathematically by connecting utility
maximization and expenditure minimization problems.

I In order to be able to do this, we need to understand the value functions of the
two problems.
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Value function: utility maximization

I What is the highest utility level that a consumer can reach when maximizing
her utility subject to a budget constraint?

I If (x1(p1, ..., pn,w), ..., xn(p1, ..., pn,w) is her optimal demand, we get the utility
level by plugging the demand back into the utility function:

u(x1(p1, ..., pn,w), ..., xn(p1, ..., pn,w)).

I Notice that this maximized value is a function of the exogenous variables
(p,w). We call it the value function of the problem.

I For utility maximization problems, the value function is called the indirect utility
function:

v(p1, ..., pn,w) := u(x1(p1, ..., pn,w), ..., xn(p1, ..., pn,w)).



Value function: expenditure minimization

I Let’s return to the expenditure minimization problem:

min
h2X

p · h =
nX

i=1

pihi ,

subject to
u(h) = u.

I Denote the solution to this problem by h(p, u). We call hi(p, u) the Hicksian or
compensated demand for good i .

I The value function of this problem is the minimal expenditure needed to
achieve utility level ū:

e(p, u) =
nX

i=1

pihi(p, u).



Connecting expenditure minimization and UMP

I Hold prices p̂ fixed for a moment and ask how high utility you can achieve with
income w . The answer is given by the indirect utility function v(p̂,w).

I Ask next what is the minimum expenditure that you must use to achieve utility
v(p̂,w). The following figures should convince you that for all p̂,

e(p̂, v(p̂,w)) = w .

I It costs you e(p̂, u) to reach utility u. If your budget is e(p̂, u), then the
maximal utility that you can reach is for all p̂,

u = v(p̂, e(p̂, u).



Figure: UMP for w = e(p, v(p,w))
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Figure: Expenditure minimization for u = v(p,w)
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Connecting expenditure minimization and UMP

I You can also see that for u = v(p, e(p, u) and e(p, v(p,w)) = w the solutions
to expenditure minimization and UMP coincide for all p:

hi(p, u) = xi(p, e(p, u)) for all i ,

hi(p, v(p,w)) = xi(p,w) for all i .


