
Solutions to the problem set 5: 

Question 1: 

a) Matrix A is non-singular if and only if its determinant is not zero. Considering this, it is 

obvious that the statement is not correct. One easy example would be: 

𝐴 = [
1 0
0 1

] 

det(𝐴) = 1 so A is non-singular 

We can easily calculate the eigen-values as follows: 

det(𝐴 − 𝜆𝐼) = 0 → 𝑑𝑒𝑡 [
1 − 𝜆 0

0 1 − 𝜆
] = 0 

→ (1 − 𝜆)2 = 0 → 𝜆1 = 𝜆2 = 1 

None of the eigen-values is zero. 

b) We have the following linear system of equations: 

𝐴𝑥 = 𝑏 

Assuming that 𝑥1, 𝑥2 solve this, we have 

𝐴𝑥1 = 𝑏 𝑎𝑛𝑑 𝐴𝑥2 = 𝑏 

𝐴𝑥1 + 𝐴𝑥2 = 𝐴(𝑥1 + 𝑥2) = 2𝑏 

𝐴 (
𝑥1 + 𝑥2

2
) = 𝑏 

so if 𝑥1 = (6,2,2, ) and 𝑥2 = (2,4,8) then 𝑥3 =
𝑥1+𝑥2

2
= (4,3,5) is also a solution. 

c) 𝑓(𝑥), 𝑔(𝑥) are strictly increasing and strictly concave functions. We can define f and g as 

follows: 

𝑓(𝑥) = 𝑔(𝑥) = 𝑥
2
3 

𝑓′(𝑥) = 𝑔′(𝑥) =
2

3
𝑥−

1
3 > 0 𝑓𝑜𝑟 𝑥 > 0 

𝑓′′(𝑥) = 𝑔′′(𝑥) = −
2

9
𝑥−

4
3 < 0 𝑓𝑜𝑟 𝑥 > 0 

Then the product function h: 

ℎ(𝑥) = 𝑓(𝑥)𝑔(𝑥) = 𝑥
4
3 

ℎ′(𝑥) =
4

3
𝑥

1
3 > 0 𝑓𝑜𝑟 𝑥 > 0 

ℎ′′(𝑥) =
4

9
𝑥−

2
3 > 0 𝑓𝑜𝑟 𝑥 > 0 

so h is a strictly convex function and the statement is not true. 

 



 

d) We have the following linear system: 

[
𝑎 𝑏 𝑏
𝑏 𝑎 𝑏
𝑏 𝑏 𝑎

] [

𝑥1

𝑥2

𝑥3

] = [
𝑐
𝑐
𝑐

] 

We can derive the determinant of the coefficient matrix as follows: 

det ([
𝑎 𝑏 𝑏
𝑏 𝑎 𝑏
𝑏 𝑏 𝑎

]) = 𝑎(𝑎2 − 𝑏2) − 𝑏(𝑏𝑎 − 𝑏2) + 𝑏(𝑏2 − 𝑎𝑏) 

= 𝑎(𝑎2 − 𝑏2) − 2𝑏2(𝑎 − 𝑏) = (𝑎 − 𝑏)(𝑎2 + 𝑎𝑏 − 2𝑏2) = (𝑎 − 𝑏)2(𝑎 + 2𝑏) 

which is always positive if 𝑎, 𝑏 > 0 , 𝑎 ≠ 𝑏, so the system has a unique solution. 

We use Cramers rule to determine 𝑥1: 

𝑥1 =

det ([
𝑐 𝑏 𝑏
𝑐 𝑎 𝑏
𝑐 𝑏 𝑎

])

det ([
𝑎 𝑏 𝑏
𝑏 𝑎 𝑏
𝑏 𝑏 𝑎

])

=
𝑐(𝑎 − 𝑏)2

(𝑎 − 𝑏)2(𝑎 + 2𝑏)
=

𝑐

𝑎 + 2𝑏
> 0 

 

Question 2: 

𝑓1 = 𝑥1(𝑎 − 𝑏(𝑥1 + 𝑥2)) − 𝑐1𝑥1
2 

𝑓2 = 𝑥2(𝑎 − 𝑏(𝑥1 + 𝑥2)) − 𝑐2𝑥2
2 

a) The first order conditions are as follows: 

𝜕𝑓1

𝜕𝑥1
= 𝑎 − 𝑏(𝑥1 + 𝑥2) − 𝑏𝑥1 − 2𝑐1𝑥1 = 𝑎 − 2(𝑏 + 𝑐1)𝑥1 − 𝑏𝑥2 

𝜕𝑓2

𝜕𝑥2
= 𝑎 − 𝑏(𝑥1 + 𝑥2) − 𝑏𝑥2 − 2𝑐2𝑥2 = 𝑎 − 2(𝑏 + 𝑐2)𝑥2 − 𝑏𝑥1 

b,c) 

𝑎 − 2(𝑏 + 𝑐1)𝑥1 − 𝑏𝑥2 = 0 

𝑎 − 2(𝑏 + 𝑐2)𝑥2 − 𝑏𝑥1 = 0 

Equivalently 

2(𝑏 + 𝑐1)𝑥1 + 𝑏𝑥2 = 𝑎 

𝑏𝑥1 + 2(𝑏 + 𝑐2)𝑥2 = 𝑎 

We use the Cramers rule to solve the system of equations: 



𝑥1 =
det ([

𝑎 𝑏
𝑎 2(𝑏 + 𝑐2)

])

det ([
2(𝑏 + 𝑐1) 𝑏

𝑏 2(𝑏 + 𝑐2)
])

=
𝑎(𝑏 + 2𝑐2)

4(𝑏 + 𝑐1)(𝑏 + 𝑐2) − 𝑏2
 

𝑥2 =
det ([

2(𝑏 + 𝑐1) 𝑎
𝑏 𝑎

])

det ([
2(𝑏 + 𝑐1) 𝑏

𝑏 2(𝑏 + 𝑐2)
])

=
𝑎(𝑏 + 2𝑐1)

4(𝑏 + 𝑐1)(𝑏 + 𝑐2) − 𝑏2
 

d) 

As it is mentioned in the question, it is not possible to explicitly derive the solutions (𝑥1, 𝑥2) in 

here, so we use implicit function theorem to obtain the derivative, 
𝜕𝑥

𝜕𝑐
 , to illustrate the changes 

in endogenous variables (x) when we change the exogenous ones (c). Since 𝑥1 = 𝑥2 , 𝑐1 = 𝑐2, we 

have: 

𝑓(𝑥) = 𝑥𝑝(2𝑥) − 𝑐𝑥2 

𝑔(𝑥) =
𝑑𝑓

𝑑𝑥
= 𝑝(2𝑥) + 2𝑥𝑝′(2𝑥) − 2𝑐𝑥 = 0 

𝜕𝑥

𝜕𝑐
=

𝜕𝑔
𝜕𝑐
𝜕𝑔
𝜕𝑥

=
−2𝑥

4𝑝′(2𝑥) + 4𝑥𝑝′′(2𝑥) − 2𝑐
=

−𝑥

2𝑝′(2𝑥) + 2𝑥𝑝′′(2𝑥) − 𝑐
 

Question 3: 

max
𝑥,𝑦

𝛼 ln(𝑥) + 𝛽ln (𝑦) 

𝑠𝑡. 𝑝𝑥𝑥 + 𝑝𝑦𝑦 ≤ 𝑤 

𝑥, 𝑦 > 0 

a)  

𝐿 = 𝛼 ln(𝑥) + 𝛽 ln(𝑦) − 𝜆(𝑝𝑥𝑥 + 𝑝𝑦𝑦 − 𝑤) 

first order conditions are: 

𝜕𝐿

𝜕𝑥
=

𝛼

𝑥
− 𝜆𝑝𝑥 = 0 

𝜕𝐿

𝜕𝑦
=

𝛽

𝑦
− 𝜆𝑝𝑦 = 0 

𝜆(𝑝𝑥𝑥 + 𝑝𝑦𝑦 − 𝑤) = 0 

b) Starting with the assumption that 𝜆 = 0, we have: 

𝛼

𝑥
= 0 𝑎𝑛𝑑 

𝛽

𝑦
= 0 

which are not possible since x and y cannot take infinite values, so 𝜆 ≠ 0 and the budget 

constraint is binding and 

𝑝𝑥𝑥 + 𝑝𝑦𝑦 = 𝑤 



c)  

max
𝑥,𝑦,𝑧

𝛼 ln(𝑥 + 𝑧) + 𝛽ln (𝑦 + 𝑧) 

𝑠𝑡. 𝑝𝑥𝑥 + 𝑝𝑦𝑦 + 𝑝𝑧𝑧 ≤ 𝑤 

𝑥, 𝑦, 𝑧 ≥ 0 

We now form the lagrangian and the first order conditions: 

𝐿 = 𝛼 ln(𝑥 + 𝑧) + 𝛽 ln(𝑦 + 𝑧) − 𝜆1(𝑥𝑝𝑥 + 𝑦𝑝𝑦 + 𝑧𝑝𝑧 − 𝑤) + 𝜆2𝑥 + 𝜆3𝑦 + 𝜆4𝑧 

𝜕𝐿

𝜕𝑥
=

𝛼

𝑥 + 𝑧
− 𝜆1𝑝𝑥 + 𝜆2 = 0 

𝜕𝐿

𝜕𝑦
=

𝛽

𝑦 + 𝑧
− 𝜆1𝑝𝑦 + 𝜆3 = 0 

𝜕𝐿

𝜕𝑧
=

𝛼

𝑥 + 𝑧
+

𝛽

𝑦 + 𝑧
− 𝜆1𝑝𝑧 + 𝜆4 = 0 

𝜆1(𝑥𝑝𝑥 + 𝑦𝑝𝑦 + 𝑧𝑝𝑧 − 𝑤) = 0 

𝜆2𝑥 = 0 

𝜆3𝑦 = 0 

𝜆4𝑧 = 0 

If we set 𝑧 = 0, the first two conditions will be as follows: 

𝜕𝐿

𝜕𝑥
=

𝛼

𝑥
− 𝜆1𝑝𝑥 + 𝜆2 = 0 

𝜕𝐿

𝜕𝑦
=

𝛽

𝑦
− 𝜆1𝑝𝑦 + 𝜆3 = 0 

It seems obvious that 𝑥, 𝑦 > 0, otherwise the denominator will be zero. 

d) Assuming that 𝑥, 𝑦, 𝑧 > 0, we have the following conditions: 
𝜕𝐿

𝜕𝑥
=

𝛼

𝑥 + 𝑧
− 𝜆1𝑝𝑥 = 0 

𝜕𝐿

𝜕𝑦
=

𝛽

𝑦 + 𝑧
− 𝜆1𝑝𝑦 = 0 

𝜕𝐿

𝜕𝑧
=

𝛼

𝑥 + 𝑧
+

𝛽

𝑦 + 𝑧
− 𝜆1𝑝𝑧 = 0 

𝜆1(𝑥𝑝𝑥 + 𝑦𝑝𝑦 + 𝑧𝑝𝑧 − 𝑤) = 0 

We can easily prove that budget constraint is binding since by setting 𝜆1 = 0, we have  

𝛼

𝑥 + 𝑧
=

𝛽

𝑦 + 𝑧
= 0 

which is not possible in here, so 𝑥𝑝𝑥 + 𝑦𝑝𝑦 + 𝑧𝑝𝑧 = 𝑤. 

 

 

 



From the first two equations we have: 

𝛼

𝑥 + 𝑧
= 𝜆1𝑝𝑥 

𝛽

𝑦 + 𝑧
= 𝜆1𝑝𝑦  

Putting them inside the third one, we have 

𝜆1𝑝𝑥 + 𝜆1𝑝𝑦 = 𝜆1𝑝𝑧 𝑎𝑛𝑑 𝜆1 ≠ 0 

𝑝𝑥 + 𝑝𝑦 = 𝑝𝑧 

We derive this result without having any additional assumption, so we can use this in our FOC 

conditions. The resulting system of equations are as follows: 

𝛼

𝑥 + 𝑧
− 𝜆1𝑝𝑥 = 0 

𝛽

𝑦 + 𝑧
− 𝜆1𝑝𝑦 = 0 

𝛼

𝑥 + 𝑧
+

𝛽

𝑦 + 𝑧
− 𝜆1𝑝𝑥 − 𝜆1𝑝𝑦 = 0 

𝜆1(𝑥𝑝𝑥 + 𝑦𝑝𝑦 + 𝑧𝑝𝑧 − 𝑤) = 0 

It is obvious that the third equation is just the sum of the first two ones. As the result we have three 

identifying equations and four variables, so this system has infinite number of solutions. 

e) The resulting system of equations are as follows: 
𝛼

𝑥
− 𝜆1𝑝𝑥 = 0 

𝛽

𝑦
− 𝜆1𝑝𝑦 = 0 

𝛼

𝑥
+

𝛽

𝑦
− 𝜆1𝑝𝑧 + 𝜆4 = 0 

𝜆1(𝑥𝑝𝑥 + 𝑦𝑝𝑦 − 𝑤) = 0 

The budget constraint is binding so 𝜆1 ≠ 0. The easiest way to solve this system is to derive x and y 

as a function of 𝜆1 from the first two equations. Then we can use the budget constraint to derive 

𝜆1and finally we have x and y. 

𝑥 =
𝛼

𝜆1𝑝𝑥
 , 𝑦 =

𝛽

𝜆1𝑝𝑦
 

using budget constraint: 

𝛼

𝜆1
+

𝛽

𝜆1
=

𝛼 + 𝛽

𝜆1
= 𝑤 → 𝜆1 =

𝛼 + 𝛽

𝑤
 

and 

𝑥 =
𝛼𝑤

𝑝𝑥(𝛼 + 𝛽)
 

𝑦 =
𝛽𝑤

𝑝𝑦(𝛼 + 𝛽)
 



Question 4: 

a) We have 

𝑥1 = 𝑤𝑝1
−0.7 , 𝑥2 = 𝑤𝑝2

−0.3 

Using the utility maximization condition, we have 

𝑀𝑈𝑥

𝑀𝑈𝑦
=

𝜕𝑢
𝜕𝑥
𝜕𝑢
𝜕𝑦

=
𝑝𝑥

𝑝𝑦
 

Now we can use the demand functions to write prices as functions of demand values: 

𝜕𝑢
𝜕𝑥1

𝜕𝑢
𝜕𝑥2

=
𝑝𝑥

𝑝𝑦
=

(
𝑤
𝑥1

)
10
7

(
𝑤
𝑥2

)
10
3

 

We need to find only one specific utility function, so we can easily assume: 

𝜕𝑢

𝜕𝑥1
= (

𝑤

𝑥1
)

10
7  

𝜕𝑢

𝜕𝑥2
= (

𝑤

𝑥2
)

10
3  

We should integrate over 𝑥1, 𝑥2to derive the utility function: 

𝑢1 =
𝑤

10
7 𝑥1

−
3
7

−
3
7

 

𝑢2 =
𝑤

10
3 𝑥2

−
7
3

−
7
3

 

Finally, we can write 

𝑢 = 𝑢1 + 𝑢2 

 

b) The cost function of the firm is equal to  

𝑐(𝑘, 𝑙) = 𝑟𝑘 + 𝑤𝑙 

where r and w are the prices for capitals and labor (wage) respectively. 

We can easily derive the conditional labor demand by taking a partial derivative of the cost 

function with respect to wage(result of the envelope theorem), so 

𝑙(𝑟, 𝑤, 𝑞) =
𝜕𝑐

𝜕𝑤
= 3𝑞    𝑖𝑓 2𝑟 > 3𝑤 

 

 



c) We have 

𝑥𝑡+1 = [
1 1 2
0 1 1
2 1 0

] 𝑥𝑡 = [
1 1 2
0 1 1
2 1 0

]

𝑡+1

𝑥0 

If we can write the matrix A in the form of 

𝐴 = 𝑃𝐷𝑃−1 

we can easily calculate 𝑥𝑡 for large values of t. To do this, we start with the eigenvalues and 

eigenvectors.  

The eigenvalues of the matrix are as follows: 

𝜆1 = 3 , 𝜆2 =
−1 − √5

2
≅ −1.6 , 𝜆3 =

−1 + √5

2
≅ 0.6 

and the eigenvectors are as follows: 

for 𝜆1 = 3: 

𝑣1 = [
1.25
0.5
1

] 

for 𝜆2 = −1.6: 

𝑣2 = [
−0.6
−0.4

1
] 

for 𝜆3 = 0.6 

𝑣3 = [
1.6

−2.6
1

] 

Now we can form matrices P and D. 

𝐷 = [
3 0 0
0 −1.6 0
0 0 0.6

] 

and  

𝑃 = [
1.25 −0.6 1.6
0.5 −0.4 −2.6
1 1 1

] 

𝑥𝑡 = [
1.25 −0.6 1.6
0.5 −0.4 −2.6
1 1 1

] [
3𝑡 0 0
0 (−1.6)𝑡 0

0 0 0.6𝑡

] [
1.25 −0.6 1.6
0.5 −0.4 −2.6
1 1 1

]

−1

[
1
0
0

] 

We know that  𝜆1 = 3 > 1, so if 𝑐1 = 𝑣−1𝑥0 is not zero then the solution will be unstable. We 

can easily calculate vector c: 

𝑐 = [
0.36

−0.51
0.14

] 



Note that we only needed to calculate 𝑐1. As the result we have: 

𝑥𝑡 = 𝑣1(3)𝑡 . (0.36) 

so the solution is unstable. 


