Solutions to the problem set 5:

Question 1:

a) Matrix A is non-singular if and only if its determinant is not zero. Considering this, it is obvious that the statement is not correct. One easy example would be:

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\operatorname{det}(A)=1 \text { so } \mathrm{A} \text { is non-singular }
\end{gathered}
$$

We can easily calculate the eigen-values as follows:

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=0 \rightarrow \operatorname{det}\left[\begin{array}{cc}
1-\lambda & 0 \\
0 & 1-\lambda
\end{array}\right]=0 \\
\rightarrow(1-\lambda)^{2}=0 \rightarrow \lambda_{1}=\lambda_{2}=1
\end{gathered}
$$

None of the eigen-values is zero.
b) We have the following linear system of equations:

$$
A x=b
$$

Assuming that x_{1}, x_{2} solve this, we have

$$
\begin{gathered}
A x_{1}=b \text { and } A x_{2}=b \\
A x_{1}+A x_{2}=A\left(x_{1}+x_{2}\right)=2 b \\
A\left(\frac{x_{1}+x_{2}}{2}\right)=b
\end{gathered}
$$

so if $x_{1}=(6,2,2$,$) and x_{2}=(2,4,8)$ then $x_{3}=\frac{x_{1}+x_{2}}{2}=(4,3,5)$ is also a solution.
c) $\quad f(x), g(x)$ are strictly increasing and strictly concave functions. We can define f and g as follows:

$$
\begin{gathered}
f(x)=g(x)=x^{\frac{2}{3}} \\
f^{\prime}(x)=g^{\prime}(x)=\frac{2}{3} x^{-\frac{1}{3}}>0 \text { for } x>0 \\
f^{\prime \prime}(x)=g^{\prime \prime}(x)=-\frac{2}{9} x^{-\frac{4}{3}}<0 \text { for } x>0
\end{gathered}
$$

Then the product function h:

$$
\begin{gathered}
h(x)=f(x) g(x)=x^{\frac{4}{3}} \\
h^{\prime}(x)=\frac{4}{3} x^{\frac{1}{3}}>0 \text { for } x>0 \\
h^{\prime \prime}(x)=\frac{4}{9} x^{-\frac{2}{3}}>0 \text { for } x>0
\end{gathered}
$$

so h is a strictly convex function and the statement is not true.
d) We have the following linear system:

$$
\left[\begin{array}{lll}
a & b & b \\
b & a & b \\
b & b & a
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
c \\
c \\
c
\end{array}\right]
$$

We can derive the determinant of the coefficient matrix as follows:

$$
\begin{gathered}
\operatorname{det}\left(\left[\begin{array}{lll}
a & b & b \\
b & a & b \\
b & b & a
\end{array}\right]\right)=a\left(a^{2}-b^{2}\right)-b\left(b a-b^{2}\right)+b\left(b^{2}-a b\right) \\
=a\left(a^{2}-b^{2}\right)-2 b^{2}(a-b)=(a-b)\left(a^{2}+a b-2 b^{2}\right)=(a-b)^{2}(a+2 b)
\end{gathered}
$$

which is always positive if $a, b>0, a \neq b$, so the system has a unique solution.
We use Cramers rule to determine x_{1} :

$$
x_{1}=\frac{\operatorname{det}\left(\left[\begin{array}{lll}
c & b & b \\
c & a & b \\
c & b & a
\end{array}\right]\right)}{\operatorname{det}\left(\left[\begin{array}{lll}
a & b & b \\
b & a & b \\
b & b & a
\end{array}\right]\right)}=\frac{c(a-b)^{2}}{(a-b)^{2}(a+2 b)}=\frac{c}{a+2 b}>0
$$

Question 2:

$$
\begin{aligned}
& f_{1}=x_{1}\left(a-b\left(x_{1}+x_{2}\right)\right)-c_{1} x_{1}^{2} \\
& f_{2}=x_{2}\left(a-b\left(x_{1}+x_{2}\right)\right)-c_{2} x_{2}^{2}
\end{aligned}
$$

a) The first order conditions are as follows:

$$
\begin{aligned}
& \frac{\partial f_{1}}{\partial x_{1}}=a-b\left(x_{1}+x_{2}\right)-b x_{1}-2 c_{1} x_{1}=a-2\left(b+c_{1}\right) x_{1}-b x_{2} \\
& \frac{\partial f_{2}}{\partial x_{2}}=a-b\left(x_{1}+x_{2}\right)-b x_{2}-2 c_{2} x_{2}=a-2\left(b+c_{2}\right) x_{2}-b x_{1}
\end{aligned}
$$

b, c)

$$
\begin{aligned}
& a-2\left(b+c_{1}\right) x_{1}-b x_{2}=0 \\
& a-2\left(b+c_{2}\right) x_{2}-b x_{1}=0
\end{aligned}
$$

Equivalently

$$
\begin{aligned}
& 2\left(b+c_{1}\right) x_{1}+b x_{2}=a \\
& b x_{1}+2\left(b+c_{2}\right) x_{2}=a
\end{aligned}
$$

We use the Cramers rule to solve the system of equations:

$$
\begin{gathered}
x_{1}=\frac{\operatorname{det}\left(\left[\begin{array}{cc}
a & b \\
a & 2\left(b+c_{2}\right)
\end{array}\right]\right)}{\operatorname{det}\left(\left[\begin{array}{cc}
2\left(b+c_{1}\right) & b \\
b & 2\left(b+c_{2}\right)
\end{array}\right]\right)}=\frac{a\left(b+2 c_{2}\right)}{4\left(b+c_{1}\right)\left(b+c_{2}\right)-b^{2}} \\
x_{2}=\frac{\operatorname{det}\left(\left[\begin{array}{cc}
2\left(b+c_{1}\right) & a \\
b & a
\end{array}\right]\right)}{\operatorname{det}\left(\left[\begin{array}{cc}
2\left(b+c_{1}\right) & b \\
b & 2\left(b+c_{2}\right)
\end{array}\right]\right)}=\frac{a\left(b+2 c_{1}\right)}{4\left(b+c_{1}\right)\left(b+c_{2}\right)-b^{2}}
\end{gathered}
$$

d)

As it is mentioned in the question, it is not possible to explicitly derive the solutions (x_{1}, x_{2}) in here, so we use implicit function theorem to obtain the derivative, $\frac{\partial x}{\partial c}$, to illustrate the changes in endogenous variables (x) when we change the exogenous ones (c). Since $x_{1}=x_{2}, c_{1}=c_{2}$, we have:

$$
\begin{gathered}
f(x)=x p(2 x)-c x^{2} \\
g(x)=\frac{d f}{d x}=p(2 x)+2 x p^{\prime}(2 x)-2 c x=0 \\
\frac{\partial x}{\partial c}=\frac{\frac{\partial g}{\partial c}}{\frac{\partial g}{\partial x}}=\frac{-2 x}{4 p^{\prime}(2 x)+4 x p^{\prime \prime}(2 x)-2 c}=\frac{-x}{2 p^{\prime}(2 x)+2 x p^{\prime \prime}(2 x)-c}
\end{gathered}
$$

Question 3:

$$
\begin{gathered}
\max _{x, y} \alpha \ln (x)+\beta \ln (y) \\
\text { st. } p_{x} x+p_{y} y \leq w \\
x, y>0
\end{gathered}
$$

a)

$$
L=\alpha \ln (x)+\beta \ln (y)-\lambda\left(p_{x} x+p_{y} y-w\right)
$$

first order conditions are:

$$
\begin{gathered}
\frac{\partial L}{\partial x}=\frac{\alpha}{x}-\lambda p_{x}=0 \\
\frac{\partial L}{\partial y}=\frac{\beta}{y}-\lambda p_{y}=0 \\
\lambda\left(p_{x} x+p_{y} y-w\right)=0
\end{gathered}
$$

b) Starting with the assumption that $\lambda=0$, we have:

$$
\frac{\alpha}{x}=0 \text { and } \frac{\beta}{y}=0
$$

which are not possible since x and y cannot take infinite values, so $\lambda \neq 0$ and the budget constraint is binding and

$$
p_{x} x+p_{y} y=w
$$

c)

$$
\begin{gathered}
\max _{x, y, z} \alpha \ln (x+z)+\beta \ln (y+z) \\
\text { st. } p_{x} x+p_{y} y+p_{z} z \leq w \\
x, y, z \geq 0
\end{gathered}
$$

We now form the lagrangian and the first order conditions:

$$
\begin{gathered}
L=\alpha \ln (x+z)+\beta \ln (y+z)-\lambda_{1}\left(x p_{x}+y p_{y}+z p_{z}-w\right)+\lambda_{2} x+\lambda_{3} y+\lambda_{4} z \\
\frac{\partial L}{\partial x}=\frac{\alpha}{x+z}-\lambda_{1} p_{x}+\lambda_{2}=0 \\
\frac{\partial L}{\partial y}=\frac{\beta}{y+z}-\lambda_{1} p_{y}+\lambda_{3}=0 \\
\frac{\partial L}{\partial z}=\frac{\alpha}{x+z}+\frac{\beta}{y+z}-\lambda_{1} p_{z}+\lambda_{4}=0 \\
\lambda_{1}\left(x p_{x}+y p_{y}+z p_{z}-w\right)=0 \\
\lambda_{2} x=0 \\
\lambda_{3} y=0 \\
\lambda_{4} z=0
\end{gathered}
$$

If we set $z=0$, the first two conditions will be as follows:

$$
\begin{aligned}
& \frac{\partial L}{\partial x}=\frac{\alpha}{x}-\lambda_{1} p_{x}+\lambda_{2}=0 \\
& \frac{\partial L}{\partial y}=\frac{\beta}{y}-\lambda_{1} p_{y}+\lambda_{3}=0
\end{aligned}
$$

It seems obvious that $x, y>0$, otherwise the denominator will be zero.
d) Assuming that $x, y, z>0$, we have the following conditions:

$$
\begin{gathered}
\frac{\partial L}{\partial x}=\frac{\alpha}{x+z}-\lambda_{1} p_{x}=0 \\
\frac{\partial L}{\partial y}=\frac{\beta}{y+z}-\lambda_{1} p_{y}=0 \\
\frac{\partial L}{\partial z}=\frac{\alpha}{x+z}+\frac{\beta}{y+z}-\lambda_{1} p_{z}=0 \\
\lambda_{1}\left(x p_{x}+y p_{y}+z p_{z}-w\right)=0
\end{gathered}
$$

We can easily prove that budget constraint is binding since by setting $\lambda_{1}=0$, we have

$$
\frac{\alpha}{x+z}=\frac{\beta}{y+z}=0
$$

which is not possible in here, so $x p_{x}+y p_{y}+z p_{z}=w$.

From the first two equations we have:

$$
\begin{aligned}
& \frac{\alpha}{x+z}=\lambda_{1} p_{x} \\
& \frac{\beta}{y+z}=\lambda_{1} p_{y}
\end{aligned}
$$

Putting them inside the third one, we have

$$
\begin{gathered}
\lambda_{1} p_{x}+\lambda_{1} p_{y}=\lambda_{1} p_{z} \text { and } \lambda_{1} \neq 0 \\
p_{x}+p_{y}=p_{z}
\end{gathered}
$$

We derive this result without having any additional assumption, so we can use this in our FOC conditions. The resulting system of equations are as follows:

$$
\begin{gathered}
\frac{\alpha}{x+z}-\lambda_{1} p_{x}=0 \\
\frac{\beta}{y+z}-\lambda_{1} p_{y}=0 \\
\frac{\alpha}{x+z}+\frac{\beta}{y+z}-\lambda_{1} p_{x}-\lambda_{1} p_{y}=0 \\
\lambda_{1}\left(x p_{x}+y p_{y}+z p_{z}-w\right)=0
\end{gathered}
$$

It is obvious that the third equation is just the sum of the first two ones. As the result we have three identifying equations and four variables, so this system has infinite number of solutions.
e) The resulting system of equations are as follows:

$$
\begin{gathered}
\frac{\alpha}{x}-\lambda_{1} p_{x}=0 \\
\frac{\beta}{y}-\lambda_{1} p_{y}=0 \\
\frac{\alpha}{x}+\frac{\beta}{y}-\lambda_{1} p_{z}+\lambda_{4}=0 \\
\lambda_{1}\left(x p_{x}+y p_{y}-w\right)=0
\end{gathered}
$$

The budget constraint is binding so $\lambda_{1} \neq 0$. The easiest way to solve this system is to derive x and y as a function of λ_{1} from the first two equations. Then we can use the budget constraint to derive λ_{1} and finally we have x and y.

$$
x=\frac{\alpha}{\lambda_{1} p_{x}}, y=\frac{\beta}{\lambda_{1} p_{y}}
$$

using budget constraint:

$$
\frac{\alpha}{\lambda_{1}}+\frac{\beta}{\lambda_{1}}=\frac{\alpha+\beta}{\lambda_{1}}=w \rightarrow \lambda_{1}=\frac{\alpha+\beta}{w}
$$

and

$$
\begin{aligned}
& x=\frac{\alpha w}{p_{x}(\alpha+\beta)} \\
& y=\frac{\beta w}{p_{y}(\alpha+\beta)}
\end{aligned}
$$

Question 4:

a) We have

$$
x_{1}=w p_{1}^{-0.7}, x_{2}=w p_{2}^{-0.3}
$$

Using the utility maximization condition, we have

$$
\frac{M U_{x}}{M U_{y}}=\frac{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}}=\frac{p_{x}}{p_{y}}
$$

Now we can use the demand functions to write prices as functions of demand values:

$$
\frac{\frac{\partial u}{\partial x_{1}}}{\frac{\partial u}{\partial x_{2}}}=\frac{p_{x}}{p_{y}}=\frac{\left(\frac{w}{x_{1}}\right)^{\frac{10}{7}}}{\left(\frac{w}{x_{2}}\right)^{\frac{10}{3}}}
$$

We need to find only one specific utility function, so we can easily assume:

$$
\begin{aligned}
& \frac{\partial u}{\partial x_{1}}=\left(\frac{w}{x_{1}}\right)^{\frac{10}{7}} \\
& \frac{\partial u}{\partial x_{2}}=\left(\frac{w}{x_{2}}\right)^{\frac{10}{3}}
\end{aligned}
$$

We should integrate over x_{1}, x_{2} to derive the utility function:

$$
\begin{aligned}
& u_{1}=\frac{w^{\frac{10}{7}} x_{1}-\frac{3}{7}}{-\frac{3}{7}} \\
& u_{2}=\frac{w^{\frac{10}{3}} x_{2}^{-\frac{7}{3}}}{-\frac{7}{3}}
\end{aligned}
$$

Finally, we can write

$$
u=u_{1}+u_{2}
$$

b) The cost function of the firm is equal to

$$
c(k, l)=r k+w l
$$

where r and w are the prices for capitals and labor (wage) respectively.
We can easily derive the conditional labor demand by taking a partial derivative of the cost function with respect to wage(result of the envelope theorem), so

$$
l(r, w, q)=\frac{\partial c}{\partial w}=3 q \quad \text { if } 2 r>3 w
$$

c) We have

$$
x_{t+1}=\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 1 \\
2 & 1 & 0
\end{array}\right] x_{t}=\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 1 \\
2 & 1 & 0
\end{array}\right]^{t+1} x_{0}
$$

If we can write the matrix A in the form of

$$
A=P D P^{-1}
$$

we can easily calculate x_{t} for large values of t . To do this, we start with the eigenvalues and eigenvectors.

The eigenvalues of the matrix are as follows:

$$
\lambda_{1}=3, \lambda_{2}=\frac{-1-\sqrt{5}}{2} \cong-1.6, \lambda_{3}=\frac{-1+\sqrt{5}}{2} \cong 0.6
$$

and the eigenvectors are as follows:
for $\lambda_{1}=3$:

$$
v_{1}=\left[\begin{array}{c}
1.25 \\
0.5 \\
1
\end{array}\right]
$$

for $\lambda_{2}=-1.6$:

$$
v_{2}=\left[\begin{array}{c}
-0.6 \\
-0.4 \\
1
\end{array}\right]
$$

for $\lambda_{3}=0.6$

$$
v_{3}=\left[\begin{array}{c}
1.6 \\
-2.6 \\
1
\end{array}\right]
$$

Now we can form matrices P and D.

$$
D=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -1.6 & 0 \\
0 & 0 & 0.6
\end{array}\right]
$$

and

$$
\begin{gathered}
P=\left[\begin{array}{ccc}
1.25 & -0.6 & 1.6 \\
0.5 & -0.4 & -2.6 \\
1 & 1 & 1
\end{array}\right] \\
x_{t}=\left[\begin{array}{ccc}
1.25 & -0.6 & 1.6 \\
0.5 & -0.4 & -2.6 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
3^{t} & 0 & 0 \\
0 & (-1.6)^{t} & 0 \\
0 & 0 & 0.6^{t}
\end{array}\right]\left[\begin{array}{ccc}
1.25 & -0.6 & 1.6 \\
0.5 & -0.4 & -2.6 \\
1 & 1 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

We know that $\lambda_{1}=3>1$, so if $c_{1}=v^{-1} x_{0}$ is not zero then the solution will be unstable. We can easily calculate vector c :

$$
c=\left[\begin{array}{c}
0.36 \\
-0.51 \\
0.14
\end{array}\right]
$$

Note that we only needed to calculate c_{1}. As the result we have:

$$
x_{t}=v_{1}(3)^{t}
$$

so the solution is unstable.

