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Maximum value function and envelope theorem

The value function for utility maximization

Consider an unconstrained maximization problem of a function of a single
real variable x, where the objective function depends on a parameter α ∈
R.

max
x∈R

f(x, α).

Let x(α) be the solution to this problem. Consider the maximum value
of the objective function that is achievable at the exogenous variable (or
parameter) α̂, i.e. f(x(α̂), α̂).

We call this new function the value function of the problem and denote

V (α) := f(x(α), α).

At the (unconstrained) optimum x(α̂), by the first-order condition:

∂f(x(α̂), α̂)

∂x
= 0.

Suppose that f is twice continuously differentiable and that the second
order condition is satisfied so that

∂2f(x(α̂), α̂)

∂x2
< 0.

Then we can use implicit function theorem to see that x(α) satisfying
the first-order condition ∂f(x(α̂),α̂)

∂x
= 0 exists in some neighborhood of α̂.

We can compute via the chain rule:

V ′(α̂) =
∂f(x(α̂), α̂)

∂x
x′(α̂) +

∂f(x(α̂), α̂)

∂α
.

Since ∂f(x(α̂),α̂)
∂x

= 0, we get
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V ′(α) =
∂f(x(α), α)

∂α
.

This observation is called the envelope theorem. In words, it states that
when a parameter changes, the maximum value of the problem changes
only through the direct effects on the objective function. The indirect ef-
fects on the value vanish because of the first-order condition on x.

In the more general case, where x ∈ Rn, the message is exactly the
same. The first order-condition is now:

∂f(x(α̂), α̂)

∂xi
= 0 for all i ∈ {1, ..., n}.

Assuming the conditions for implicit function theorem, we have by
chain rule:

V ′(α̂) =
n∑
i=1

∂f(x(α̂), α̂)

∂xi
x′i(α̂) +

∂f(x(α̂), α̂)

∂α
.

Again, the first term vanishes by first-order condition and we are left
with

V ′(α̂) =
∂f(x(α̂), α̂)

∂α
.

The situation is slightly different with constrained optimization prob-
lems. Suppose that we have an equality constrained parametric maximiza-
tion problem for x ∈ Rn:

max
x

f(x, α)

subject to g(x, α) = 0.

Please note that the problem may have many parameters so that α is a
vector, but the analysis here is with respect to a single component of the
parameter vector.

Let x(α) denote the optimal solution to the problem and assume again
that he conditions for the implicit function theorem around the solution
are satisfied as before. The value function is still defined as before:

V (α) = f(x(α), α).
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We begin the analysis by forming the Lagrangean:

L(x, µ;α) = f(x, α)− µg(x, α).
Envelope theorem relates the derivative of the value function with respect
to the parameter to the partial derivatives of the Lagrangean.

Theorem 1 (Envelope theorem). In an optimization problem subject to an
equality constraint, we have:

V ′(α) =
∂L(x, µ;α)

∂α
.

Proof.

V ′(α̂) =
n∑
i=1

∂f(x(α̂), α̂)

∂xi
x′i(α̂) +

∂f(x(α̂), α̂)

∂α
.

First-order conditions for optimum imply that:

∂f(x(α̂), α̂)

∂xi
= µ

∂g(x(α̂), α̂)

∂xi
.

Since the g(x(α), α) = 0 holds for all α near α̂, we have

n∑
i=1

∂g(x(α̂), α̂)

∂xi
x′i(α̂) = −

∂g(x(α̂), α̂)

∂α
.

Combining these gives:

V ′(α̂) =
∂f(x(α̂), α̂)

∂α
− µ∂g(x(α̂), α̂)

∂α
.

Indirect utility function

The envelope theorem gives us a nice way of understanding the Lagrange
multipliers in utility maximization problems. The Lagrangeam for the
UMP with a single binding equality constraint is:

L(x, λ) = u(x)− µ

[
n∑
i=1

pixi − w

]
.
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The maximum value function

v(p, w) = maxu(x) subject to p · x = w,

is called the indirect utility function. It computes the optimal utility level
for all combinations of prices p ∈ Rn

++ and income w > 0.
Envelope theorem tells us that:

∂v(p, w)

∂w
= µ.

This means that if your income is increased by one unit, your maximal
utility increases the amount given by the multiplier. By reducing income
dw you lose µdw of utility and this is why the multiplier is sometimes
called the shadow price of income. It evaluates the utility consequences
from relaxing or strengthening the constraint.

Envelope theorem also tells us that:

∂v(p, w)

∂pi
= −µxi.

Combining these two, we have Roy’s identity:

xi(p, w) = −
∂v(p,w)
∂pi

∂v(p,w)
∂w

.

In other words, if you have an indirect utility function, you can compute
the demand function by simple partial differentiation. In later courses,
you will learn what properties on v(p, w) guarantee that it is the indirect
utility function of some UMP for some u(x).

Expenditure minimization

Consider next the expenditure minimization problem (EMP) from Lecture
9.

min
h∈X

p · h =
n∑
i=1

pihi,

subject to
u(h) = u.
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Denote the solution to this problem by h(p, u). We call hi(p, u) the
Hicksian or compensated demand for good i. The (minimum) value func-
tion of this problem,

e(p, u) =
n∑
i=1

pihi(p, u),

is called the expenditure function.
The objective function is linear in p and hence by the results in Lecture

6, we know that e(p, u) is concave in p. Therefore the Hessian matrix of
e(p, u) is negative semidefinite.

We turn next to the The Lagrangean function for the case where we can
ignore the inequality constraints:

L(x, µ) =
n∑
i=1

pihi − µ(u− u(h)).

The envelope theorem tells us that:

∂e(p, u)

∂pi
= hi(p, u).

The partial derivatives of hi(p, u) with respect to pj are the elements of the
Hessian matrix of e(p, u).

Connecting UMP and EMP

The main reason for considering the expenditure minimization problem
is that it gives us a nice tool for understanding the solution to the utility
maximization problem. Hold prices p̂ fixed for a moment and ask how
high utility you can achieve with income w. The answer is given by the
indirect utility function v(p̂, w).

Ask next what is the minimum expenditure that you must use to achieve
utility v(p̂, w). The following figures should convince you that for all p̂,

e(p̂, v(p̂, w)) = w.

Similarly, suppose that it costs you e(p̂, u) to reach utility u. If your
budget is e(p̂, u), then the maximal utility that you can reach is for all p̂,
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Figure 1: Expenditure minimization for u = v(p, w)

x
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pxx+ pyy

u(x, y) = v(p, w)

x̂(px, py, u)

ŷ(px, py, u)

u = v(p̂, e(p̂, u)).

This argument (or alternatively from the K-T constraints of the two
problems), shows that for all p, u = v(p, e(p, u)) and e(p, v(p, w)) = w In
other words, the solutions to expenditure minimization and UMP coincide
for all p:

hi(p, u) = xi(p, e(p, u)) for all i,

hi(p, v(p, w)) = xi(p, w) for all i.

6



Figure 2: UMP for w = e(p, v(p, w))
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Differentiate the first of these identities with respect to pj to get:

∂hi(p, u)

∂pj
=
∂xi(p, w)

∂pj
+
∂xi(p, w)

∂w

∂e(p, u)

∂pj

=
∂xi(p, w)

∂pj
+
∂xi(p, w)

∂w
hj(p, u)

=
∂xi(p, w)

∂pj
+
∂xi(p, w)

∂w
xj(p, e(p, u))

=
∂xi(p, w)

∂pj
+
∂xi(p, w)

∂w
xj(p, w).

This is the famous Slutsky equation for income and substitution effects.
It relates the changes in the Marshallian (UMP) demands to the Hicksian
(EMP) demands. Since the Marshallian demands depend on prices and
income, they are in principle observable from demand data. The Hicksian
demands depend on the utility level and hence they cannot be directly ob-
served. Nevertheless, we know from the Hessian of the expenditure func-
tion that e.g. the Hicksian demand is downward sloping in own demand.
With Slutsky equation, we can translate this knowledge to the Marshallian
demands where the results are very hard to obtain directly.
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The observable change in Marshallian ∂xi(p,w)
∂pj

demands can be decom-
posed into a substitution effect, i.e. the change in compensated demand
∂hi(p,u)
∂pj

and the observable income effect ∂xi(p,w)
∂w

xj(p, w).

∂xi(p, w)

∂pj
=
∂hi(p, u)

∂pj
− ∂xi(p, w)

∂w
xj(p, w).

Since we know that the Hessian of e(p, u) is negative definite, we know
that its diagonal elements are non-positive. Hence the effect of increasing
pi on xi is negative whenever the demand for i is increasing in income (we
say then that i is a non-inferior good).

Cost minimization

A firm chooses its inputs k, l to minimize the cost of reaching a production
target of q at given input prices r, w. The production function is assumed
to be a strictly increasing and quasiconcave function f(k, l).

min
(k,l)∈R2

+

rk + wl

subject to
f(k, l) = q.

The value function of this problem is called the cost function of the firm
and denoted by c(r, w, q). We write:

c(r, w, q) = rk(r, w, q) + wl(r, w, q),

where k(r, w, q), l(r, w, q) solve the cost minimization problem. These are
called the conditional factor demands.

As in the case with expenditure minimization, we see that the cost
function is concave in r, w since it is the minimum of linear functions of
r, w. Therefore the Hessian of the cost function is negative semidefinite.
By envelope theorem, we have the result known as Shephard’s lemma:

∂c(r, w, q)

∂r
= k(r, w, q),

∂c(r, w, q)

∂w
= l(r, w, q).

Negative semi-definiteness of the Hessian of c implies that (since the
diagonal elements must be non-positive)
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∂k(r, w, q)

∂r
≤ 0,

∂l(r, w, q)

∂w
≤ 0.

In words, conditional factor demands are decreasing in own price (not
surprisingly).

Profit function of a competitive firm

We end this part of the course with the analysis of profit maximization
for a price taking firm. There are two ways to think about this. Either
minimize cost for each production level q to get c(r, w, q) and then choose
q optimally to maximize

pq − c(r, w, q),
where p is the price of the output.

Alternatively, you can write directly:

max
k,l,q

pq − rk − wl

subject to
q = f(k, l).

An advantage of the second approach is that the problem is immedi-
ately seen to be linear in the input and output prices p, r, w. Let

(q(p, r, w), k(p, r, w), l(p, r, w)),

be the optimal output and input choices in the problem. The value func-
tion π(p, r, w) is called the profit function of the firm.

Since π is the maximum of linear functions in p, r, w, we get by Lecture
6 that π is convex and hence its Hessian is positive semi-definite.

The envelope theorem gives us Hotelling’s lemma:

∂π(p, r, w)

∂p
= q(p, r, w),

∂π(p, r, w)

∂r
= −k(p, r, w), ∂π(p, r, w)

∂w
= −l(p, r, w).

Since π is positive semi-definite, its diagonal elements are non-negative.
This gives the ’Law of Supply’ (supply increases in output price):

∂q(p, r, w)

∂p
≥ 0,
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and the ’Law of Factor Demands’ (factor demand decrease in factor price):

∂k(p, r, w)

∂r
≤ 0,

∂l(p, r, w)

∂w
≤ 0.

As you can see, the theory of the competitive firm is easier than con-
sumer theory since changes in prices do not change the constraint set (as
with the budget set). You will see the firm’s problem in some form in
almost all branches of economics and in particular in Intermediate Mi-
croeconomics. Of course, in many industries firms are not competitive→
Industrial organization.

On the other hand, firms do not make decisions but people do and peo-
ple may have different objectives → Organizational economics, Contract
theory.
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