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This lecture covers

1. What are dynamical systems?
2. Difference equations and motivating examples
3. Linear difference equations with constant coefficients



Dynamical systems

I Dynamical systems describe the evolution of variables over time
I For the state so the system today, xt we can determine the state tomorrow

xt+1
xt+1 = f (xt).

I The solution is a sequence {xt} satisfying this equation for all t + 1, t .
I Hence the variable to be determined is the entire path of x .



Dynamical systems

I What are the interesting questions with dynamical systems
I Is there a steady state, i.e. a value x∗ such that x∗ = f (x∗)?
I Do the solutions converge to this steady state?
I Are the solutions monotone?
I Can we have cycles?
I Because of time constraints, we cannot go very deep into this



Dynamical systems: logistic equation

I How to picture a dynamical system? We start with the case where xt ∈ R.
I Start with a concrete example:

xt+1 = rxt(1− xt).

I This is a nice differentiable function whose values remain in (0,1) for all t as
long as r < 4.

I To analyze a difference equation on the real line, the first step is to look at the
graph of the system equation.
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Dynamical systems: logistic equation

I What is the significance of the intersections of xt+1 = rxt(1− xt) and the 45
-degree line xt+1 = xt .

I The system stops at any such point, because if xt+1 = xt , then also xt+k = xt
by repeated substitution into the system equation.

I These are called the steady states of the dynamical system.
I Notice that the system has a single steady state at x = 0 if r < 1 (can you

show this?).
I For 4 > r > 1, the system has another steady state at x = r−1

r . What
happens to the values of xt as t grows?



Dynamical systems: logistic equation

I Here is a nice graphical way of seeing what happens to the sequence.
I Lets graph the function in a coordinate system where xt+1 is on the vertical

and xt is on the horizontal axis.
I Draw the graph of xt+1 = f (xt) and pick a starting point x0 = 0.4 for example

on the horizontal axis.
I You can read x1 = f (x0) on the graph.
I You need to picture x1 on the horizontal axis to see where x2 is located. But

you can do this by reflection through the 45 -degree line. The you just
continue the procedure.

I Lets look first at the case xt+1 = 1
2xt(1− xt), i.e. lets take the red curve in the

previous picture.
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Dynamical systems: logistic equation

I As you can see, for any starting x0, the system xt converges quite quickly to 0.
I If we take the blue graph from the first picture, things look quite different.
I Let’s follow the system again for a few rounds starting at x0 = 0.4.
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Motivating examples: the Solow growth model

I In this simplest version of the model, labor is kept fixed at L over time and
capital Kt changes over time as a result of savings.

I The aggregate production function is yt = F (Kt ,Lt) and it is usually assumed
to be an increasing concave, linearly homogenous (constant returns to scale)
so that

F (Kt ,Lt) = LtF (
Kt

Lt
,1) := Lt f (kt) = Lf (kt),

where kt :=
Kt
Lt

.
I It is often assumed that limk→0 f ′(k) =∞ and limk→∞ f ′(k) = 0.
I Let’s assume here that yt = kα

t for some 0 < α < 1.



Motivating examples: the Solow growth model

I The output yt is divided between savings and consumption.
I The assumption is that a constant fraction syt is saved.
I As you can recall from Principles of Economics II, savings equals investment

and investment goes into next period’s capital.
I Capital depreciates at rate δ per period.
I Taking all this together, we get

kt+1 = skα
t + (1− δ)kt .



Motivating examples: the Solow growth model

I Let’s draw the graph of skα
t − (1− δ)kt in the (kt , kt+1) plane with the

45-degree line.
I Of special interest is the point k∗ such that s(k∗)α + (1− δ)k∗ = k∗.
I If you start the system with k0 = k∗, the system stays there forever since

k1 = skα
0 + (1− δ)k0 = k0 and therefore also kn = k0 for all n.

I We call k∗ the steady state or a rest point of the system.
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Motivating examples: the Solow growth model

I We can picture the movement of the system by positing an initial point k0 on
the horizontal axis.

I If k0 < k∗, then k1 = f (k0) > k0.
I You can locate the k1 on the horizontal axis by reflecting on the 45-degree

line.
I Repeating this process, you can show that from any initial point, kt converges

to k∗ as t →∞.
I We say that k∗ is a globally stable steady state.
I You may want to note that

k∗ = (
s
δ
)

1
1−α .



Motivating examples: Ramsey-Cass-Koopmans model of growth

I Consider 2-dimensional system:

u′(ct) = β(1− δ + f ′(kt))u′(ct+1).

kt+1 =
1

1 + n
(f (kt) + (1− δ)kt − ct) ,

I The first equation comes from consumer’s optimal timing of their
consumptions. Essentially it states that MRS equals price ration between any
two periods of consumption.

I The second is a capital stock accumulation equation (in per capita term) as in
the Solow model. This is the fundamental system for modern
macroeconomics and the notes explain its solution in the linear case, where
u(ct) = ln ct , and f (kt) = Akt .



Motivating examples: Fibonacci sequence

I Consider the sequence of numbers formed by the rule

xt+2 = xt+1 + xt ,

and set x0 = 0, x1 = 1.
I What is the sequence of numbers generated by this rule?
I This sequence is called the Fibonacci sequence and it is one of the most

famous sequences in all of mathematics
I Notice that we have now dependence on two past values, but we can deal

with this by letting yt+1 = xt and considering the system

(xt+1, yt+1) = A(xt , yt)

for a suitably chosen A.
I We’ll see how to do this on Wednesday.



Motivating examples: SIR model of an epidemic

I Let the population be divided into three classes. Susceptible st , infected it ,
and recovered rt .

st+1 − st = −βitst ,
it+1 − it = βitst − αit ,
rt+1 − rt = αit .

I Here β > 0 is the infection rate in meetings and α > 0 is the recovery rate.
I The much talked about R0 is simply βst

α .



Motivating examples: SIR model of an epidemic

I I guess I do not have to convince you of the importance of this model now.
I This is a non-linear model that does not have an easy closed form solution
I If R0 < 1 at t = 0, then the number of infected is always decreasing and

therefore there cannot be a proper outbreak. If R0 > 1, a fraction of
population will get infected and the fraction is increasing in R0.

I You can see on Youtube a number of nice expositions on how to simulate an
epidemic. For example a good one is on 3blue1brown at
https://www.youtube.com/watch?v=gxAaO2rsdIs



Markov process
I A population consists of three income classes i ∈ {1,2,3}.
I If you are in class i , your children are in income class j with probability pji . Let

P be the matrix with a typical element pij .
I Let x0 = ei if you are in class i . Then the probability that you child is in class j

is given by the column vector

x1 = Px0 = Pei.

I But then the probability that your grandchild is in class j is given by the
column vector

x2 = Px1 = P2x0,

and in general,

x t+1 = Px t .



Markov process

I How do you interpret limt→∞ P tx0?
I How do you describe a society with maximal (minimal) mobility?
I When does limt→∞ P tx0 exist (aperiodicity of the process)? Is the limit

independent of x0 (is the process mixing)?
I If π := (π1, ..., πn) solves

Pπ = π,

does this mean that for all ei the fraction of time spent in class j converges to
πj (is the process ergodic)?

I Is there a ranking on the matrices P that reflects the notion of persistence?



Linear difference equations in R

I The simplest form of difference equations are linear difference equations with
constant coefficients. These can be written as:

xt+1 = Axt + bt ,

where bt is a given sequence.
I If bt = 0 for all t , we have a homogenous equation. We start with the simplest

homogenous equations where xt ∈ R and A = a ∈ R.
I Solving the homogenous equation is very easy. If xt+1 = axt for all t , then

xt+k = akxt .
I Hence any sequence of the form xt = cat solves the difference equation.
I If we are given the initial value x0, the solution is xt = x0at .



Linear difference equations in R
I In other words, the initial value pins down the coefficient c of the general

solution.
I Consider next an inhomogenous equation,

xt+1 = axt + b,

where bt = b for all t .
I Clearly the constant solution xt =

b
1−a for all t solves the equation.

I I claim that also xt = cat + b
1−a solves the equation. But this follows

immediately from the fact that cat+1 = acat .
I This principle holds more generally. If you have a particular solution xP

t to the
inhomogenous equation and the general solution of the homogenous
equation xH

t , then the general solution to the problem is xP
t + xH

t .
I This is called the principle of superposition and it arises from the linearity of

the equations in xt+1, xt . It is valid also for the case with x t ∈ Rn.



Linear difference equations in Rn

I If the following linear recursion holds for all t ,

x t+1 = Ax t ,

then a solution to the model with x0 is easily obtained by repeated
substitution:

x t = Atx0.

I Why do we call this a solution, but not the initial recursion?
I Why are we still not quite happy with this solution?
I Can you see what At looks like for large t?
I What if we can write

A = V−1ΛV ,

for a diagonal matrix Λ and some matrix V?
I Exercise: Prove by induction that in this case,

Ak = V−1ΛkV .

I The topic for the next lecture is how to find such V and Λ?



Next Lecture

I General linear systems of difference equations with constant coefficients
I Eigenvalus, eigenvectors and matrix powers
I Qualitative properties of the solutions
I Recap of the course


