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Question 1: 

a) A square matrix n by n is full rank if the rows and columns are linearly independent from 

each other.  

for the following matrix: 

[
1 2 3
4 0 5
0 6 𝑐

] 

we set the determinant equal to zero and then find the value of c. 

𝑑𝑒𝑡 = −6(5 − 3 ∗ 4) + 𝑐(0 − 2 ∗ 4) = 42 − 8𝑐 = 0 → 𝑐 =
21

4
 

b)  

𝐴𝑥 = 𝑦 

the above equation has two distinct solutions 𝑥1, 𝑥2, so 𝑥1 ≠ 𝑥2, so we can have: 

𝐴𝑥1 − 𝐴𝑥2 = 𝑦 − 𝑦 = 0 → 𝐴(𝑥1 − 𝑥2) = 0 

We have from previous studies that if we have  

𝐴𝑥 = 0  𝑎𝑛𝑑  𝑥 ≠ 0 → det(𝐴) = 0 

so in our case we have 

𝐴(𝑥1 − 𝑥2) = 0 𝑎𝑛𝑑 𝑥1 ≠ 𝑥2  → det(𝐴) = 0 

and matrix A does not have full rank. 

 

c) we have to derive the eigenvalues of the matrix: 

𝐴 = [
1 2

−1 4
] 

we know that the sum of the eigenvalues is equal to 𝑡𝑟(𝐴) and product of them is equal to 

det(𝐴). Assuming x ,y the eigenvalues: 

𝑥 + 𝑦 = 𝑡𝑟(𝐴) = 5 

𝑥 ∗ 𝑦 = det(𝐴) = 6 

 

solving the system of equations, we have 𝑥 = 2 , 𝑦 = 3. 

 

d)  

𝑥𝑡+1 = 𝑥𝑡 + 2𝑦𝑡  

𝑦𝑡+1 = −𝑥𝑡 + 4𝑦𝑡 

[
𝑥𝑡+1

𝑦𝑡+1
] = [

1 2
−1 4

] [
𝑥𝑡

𝑦𝑡
] = [

1 2
−1 4

] [
1 2

−1 4
] [

𝑥𝑡−1

𝑦𝑡−1
] = [

1 2
−1 4

]
𝑡+1

[
𝑥0

𝑦0
] 

𝐴 = [
1 2

−1 4
] 
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We want to write the A matrix in the form: 

𝐴 = 𝑃𝐷𝑃−1 

Where D is diagonal matrix. 

We know the eigenvalues of the matrix A from part c, so we can easily derive the eigenvectors: 

For 𝜆1 = 2: 

[
1 − 𝜆 2
−1 4 − 𝜆

] = [
−1 2
−1 2

] → 𝑣1 = [
2
1
] 

For 𝜆1 = 3: 

 

[
1 − 𝜆 2
−1 4 − 𝜆

] = [
−2 2
−1 1

] → 𝑣1 = [
1
1
] 

So: 

𝑃 = [
2 1
1 1

]  𝐴𝑁𝐷  𝐷 = [
2 0
0 3

] 

So after all 

[
𝑥𝑡

𝑦𝑡
] = 𝑃𝐷𝑡𝑃−1 [

𝑥0

𝑦0
] = [2

𝑡+1 − 3𝑡 −2𝑡+1 + 2 ∗ 3𝑡

2𝑡 − 3𝑡 −2𝑡 + 2 ∗ 3𝑡 ] [
𝑥0

𝑦0
] 

And since 𝜆1, 𝜆2 > 1, the steady state of the system is not stable. 

 

Question 2: 

(𝑥, �̂�, �̂�, �̂�) = (1,1,−1,4) 

a) 

𝜕𝑓

𝜕𝑥
= −2

𝑦2

𝑥
− 2𝛼𝑥 

𝜕𝑓

𝜕𝑦
= 4𝑦(1 − ln(𝑥)) − 𝛽 

b) at the point (𝑥, �̂�, �̂�, �̂�) = (1,1,−1,4) we have: 

𝜕𝑓

𝜕𝑥
(1,1,−1,4) = −2 + 2 = 0 

𝜕𝑓

𝜕𝑦
= 4 − 4 = 0 

 



 

 

to use implicit function theorem, we should derive 𝐷𝑦, so: 

𝐷𝑦 =

[
 
 
 
 
𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑦𝜕𝑥

𝜕2𝑓

𝜕𝑦2 ]
 
 
 
 

= [

2𝑦2

𝑥2
− 2𝛼 −4

𝑦

𝑥

−4
𝑦

𝑥
4(1 − ln (𝑥))

] = [
4 −4

−4 4
] 

so 

det(𝐷𝑦) = 0 

so we do not have the necessary condition to use implicit function theorem around the point. 

c) since the hessian matrix of f at the point (1,1) is not positive or negative definite so the function f 

does not have a local maximum or local minimum at the point.  

 

Question 3: 

max
𝑥,𝑦

 (
1

𝑥2
+

1

𝑦2
)−

1
2 

𝑠𝑡. 𝑝𝑥𝑥 + 𝑝𝑦𝑦 ≤ 𝑤 

𝑥, 𝑦 > 0 

a) we first form the Lagrangean of the problem: 

𝐿 =  (
1

𝑥2
+

1

𝑦2
)−

1
2 − 𝜇1(𝑝𝑥𝑥 + 𝑝𝑦𝑦 − 𝑤) + 𝜇2𝑥 + 𝜇3𝑦 = 0  

Now we can write the Kuhn Tucker conditions as follows: 

𝑑𝐿

𝑑𝑥
= (

−1

2
) (

−2

𝑥3
) (

1

𝑥2
+

1

𝑦2
)
−

3
2
− 𝜇1𝑝𝑥 + 𝜇2 = 0 

𝑑𝐿

𝑑𝑦
= (

−1

2
)(

−2

𝑦3
)(

1

𝑥2
+

1

𝑦2
)
−

3
2
− 𝜇1𝑝𝑦 + 𝜇3 = 0 

𝜇1(𝑝𝑥𝑥 + 𝑝𝑦𝑦 − 𝑤) = 0 

𝜇2𝑥 = 0 

𝜇3𝑦 = 0 

since x and y are strictly positive we can easily conclude that 𝜇2 = 𝜇3 = 0 

b)  

Using the first equation, we have: 



𝜇1 =
(

1
𝑥2 +

1
𝑦2)

−
3
2

𝑥3𝑝𝑥
 

and since x and y are positive numbers, there is no way 𝜇1 = 0, so the budget constraint is binding 

and we have:  𝑝𝑥𝑥 + 𝑝𝑦𝑦 = 𝑤 

To solve the problem, we can use the first two equations to eliminate 𝜇1 and find x as a function of 

y. 

 

(
1
𝑥2 +

1
𝑦2)

−
3
2

𝑥3𝑝𝑥
=

(
1
𝑥2 +

1
𝑦2)

−
3
2

𝑦3𝑝𝑦
→

𝑥3

𝑦3
=

𝑝𝑦

𝑝𝑥
→

𝑥

𝑦
= (

𝑝𝑦

𝑝𝑥
)
1
3 

using the binding budget constraint, we will have: 

𝑦 =
𝑤

𝑝𝑦

1
3𝑝𝑥

2
3 + 𝑝𝑦

 

𝑥 =
𝑤

𝑝𝑥

1
3𝑝𝑦

2
3 + 𝑝𝑥

 

c)we write the partial derivatives as follows: 

𝑑𝑥

𝑑𝑤
=

1

𝑝𝑥

1
3𝑝𝑦

2
3 + 𝑝𝑥

 

𝑑𝑥

𝑑𝑝𝑥
= −

𝑤(
1
3𝑝𝑥

−
2
3𝑝𝑦

2
3 + 1)

(𝑝𝑥

1
3𝑝𝑦

2
3 + 𝑝𝑥)

2

 

 

𝑑𝑥

𝑑𝑝𝑦
= −

𝑤(
2
3𝑝𝑥

1
3𝑝𝑦

−
1
3)

(𝑝𝑥

1
3𝑝𝑦

2
3 + 𝑝𝑥)

2

 

Question 4: 

The cost minimization problem: 

min
𝑘,𝑙

𝑟𝑘 + 𝑤𝑙 

𝑠𝑡. 𝑓(𝑘, 𝑙) = 𝑞 

a) In an optimization problem where 

max
𝑥∈𝑅

𝑓(𝑥, 𝑎) 

 



 

the value function is the maximum value of the objective function that is achievable on the 

exogenous variable �̂�. we will show the value function as the function of the exogenous variables: 

𝑉(𝛼) = 𝑓(𝑥(𝛼), 𝛼) 

b) In an optimization problem with constraints, we have: 

𝑉′(𝛼) =
𝜕𝐿(𝑥, 𝜇; 𝛼)

𝜕𝛼
 

where L is the lagrangean of the optimization problem. The intuition behind the envelope 

theorem is that if we want to derive the effect of the parameters (𝛼) on the lagrangean, we 

only need to consider the direct effect, and all the indirect effects will be zero because: 
𝜕𝐿

𝜕𝑥
= 0 

 

c) the cost function of the firm is: 

𝑐(𝑟, 𝑤, 𝑞) = 𝜃𝑞𝑟𝛼𝑤1−𝛼 

using the envelope theorem we have: (q , r , w are exogenous variables) 

𝜕𝑐

𝜕𝑟
= 𝑘 = 𝜃𝑞𝛼𝑟𝛼−1𝑤1−𝛼 → 𝑘 = 𝜃𝑞𝛼𝑟𝛼−1𝑤1−𝛼 

𝜕𝑐

𝜕𝑤
= 𝑙 =  𝜃(1 − 𝛼)𝑞𝑟𝛼𝑤−𝛼 → 𝑙 =  𝜃(1 − 𝛼)𝑞𝑟𝛼𝑤−𝛼   

d) partial derivatives of k: 
𝑑𝑘

𝑑𝑟
= 𝜃𝑞𝛼(𝛼 − 1)𝑟𝛼−2𝑙1−𝛼 

𝑑𝑘

𝑑𝑤
== 𝜃𝑞𝛼(1 − 𝛼)𝑟𝛼−1𝑤−𝛼 

𝑑𝑘

𝑑𝑞
= 𝜃𝛼𝑟𝛼−1𝑤1−𝛼 

 

Question 5: 

our problem is: 

[
𝑥𝑡+1

𝑦𝑡+1
] = [

0 1
−1 5

] [
𝑥𝑡

𝑦𝑡
] 

𝐴 = [
0 1

−1 5
] 

We want to write the A matrix in the form: 

𝐴 = 𝑃𝐷𝑃−1 

Where D is diagonal matrix. 

 

 

 



The eigenvalues of the matrix A are 𝜆1 = 4.79 𝑎𝑛𝑑 𝜆2 = 0.21 

 

so we can easily derive the eigenvectors: 

For 𝜆1 = 4.79: 

𝐴 − 𝜆𝐼 = [
−4.79 1
−1 0.21

] → 𝑣1 = [
1

4.79
] 

For 𝜆1 = 0.21: 

 

𝐴 − 𝜆𝐼 = [
−0.21 1
−1 4.79

] → 𝑣1 = [
1

0.21
] 

So: 

𝑃 = [
1 1

4.79 0.21
]  𝐴𝑁𝐷  𝐷 = [

4.79 0
0 0.21

] 

So after all 

[
𝑥𝑡

𝑦𝑡
] = 𝑃𝐷𝑡𝑃−1 [

𝑥0

𝑦0
] = [

1 1
4.79 0.21

] [4.79𝑡 0
0 0.21𝑡] [

1 1
4.79 0.21

]
−1

[
𝑥0

𝑦0
] 

And since one of the eigenvalues is greater than one 𝜆1 > 1, the steady state of the system is not 

stable. 

 

Question 6: 

The transform matrix is: 

𝐴 = [
0.4 0 0.8
0.6 0.4 0
0 0.6 0.2

] 

since matrix A is a stochastic matrix, one eigenvalue is equal to 1 (we calculated in the first problem 

set). We also know that the sum of the eigenvalues is equal to the tr(A) and product of the is equal 

to the det(A), so 

𝜆1 + 𝜆2 = 0 

𝜆1. 𝜆2 = det(𝐴) = 0.32 

 

to find the eigenvector for the 𝜆 = 1 we have: 

𝐴 − 𝜆𝐼 = [
0 −0.6 0.8

0.6 −0.6 0
0 0.6 −0.8

] → [
0 −0.6 0.8

0.6 −0.6 0
0 0 0

] → 

0.6𝑥2 = 0.8𝑥3 𝑎𝑛𝑑 𝑥1 = 𝑥2 

 

 



 

finally, the eigen vector is: 

𝑣 = [
4
4
3
] 

 

 

The absolute value of the second and third eigenvalue is less than one so as t goes to infinity the 

effect of them is going to be zero, and 𝑥𝑡 in the long run will converge to the normalized vector of 

the eigenvector corresponding to the eigenvalue 1, which is  

𝑣1 =

[
 
 
 
 
 
4

11
4

11
3

11]
 
 
 
 
 

 

 

 


