

Outline

- Basic information about Jupiter
- How Jupiter's magnetic field is formed
- Io's effect on Jupiter
- The properties of the magnetic field
- How the magnetic field is measured
- Results from JUNO mission

Jupiter is significantly larger than earth

Parameter	Earth	Jupiter
Distance from the Sun	1 AU	5.2 AU
Radius	$1 R_e = 6328 \text{ km}$	11.2 R _e
Mass	$1 m_e = 6 \times 10^{24} \text{ kg}$	$317.8 \ m_e$
Volume	$1 V_e = 10^{12} \mathrm{km}^3$	1321 V _e
Density	$1 \rho_e = 1326 \text{ kg/m}^3$	$0.24~ ho_e$

- Jupiter is primarily made out of Hydrogen
 - ♦ And Helium (25% by mass)
- ♦ Jupiter was theorized to have a rocky core
 - ♦ Thanks to the Juno mission it seems to be more of a fuzzy-metal core
- ♦ A day in Jupiter is 10 hours long
 - ♦ It's the fastest rotating planet in the solar system

Jupiter's magnetic field, strong and dangerous

Io's flux tube and plasma torus

- ♦ Jupiter's radiation belt (plasma torus) is formed mainly by Io's particles
 - ♦ Io is the solar system's most volcanically active object
 (releasing ~1 ton of particles per second)
- This flux tube carries millions of Amps
- ♦ The plasma torus is about as thick as Jupiter's diameter

Jupiter's permanent aurorae are mainly caused by AC currents

The magnetic field

- Jupiter's magnetic field is the strongest in the solar system
 - ♦ Only second to the Sun
- Its magnetosphere may extend past Saturn
- \diamond Its magnetic field strength can be up to 2000 μT
- ♦ It behaves mainly like a dipole but is much more complex

How the magnetic field is measured

Juno's orbits

- ♦ The highly elliptic orbit allows for a very close approach
 - ♦ To get a good look at everything under the surface
- ♦ Every orbit pass is ~11 degrees apart from each other
 - ♦ For a total of 34 orbits

Magnetic field measurements by JUNO (2018)

Magnetic field measurements by JUNO (2021)

Measurement comparison (2018 vs 2021)

Conclusion

- Jupiter and its magnetic field are very large structures
- Io is a great contributor to Jupiter's magnetic field strength
- Higher resolution
 measurements allow for
 proper mapping of the field

Sources

- ♦ A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits
 (J. E. P. Connerney 2018)
- ♦ A New Model of Jupiter's Magnetic Field at the Completion of Juno's Prime Mission
 (J. E. P. Connerney 2021)
- ♦ NASA images from JUNO