
Lecture 5: Plasma dynamics 
Electrostatic waves 



Today’s menu

• From perturbations to oscillations to waves:

• Plane waves, Fourier Transformation, and linearization

• Boltzmann relation

• Equation of state & degrees of freedom

• ES waves with no 𝐵-field

• Electron plasma waves

• Ion acoustic wave

• ES waves with 𝐵 ≠ 0:
• Electrons: upper hybrid frequency

• Ions: lower hybrid frequency & electrostatic ion cyclotron wave
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Notational issues …

In these lectures we shall have our mouthful of frequencies and a 

notational mumbo-jumbo lurks behind the corner. We shall try our

best to abide in the following conventions:

Larmor frequency:

capital Ω = 𝑞𝐵/𝑚, separate for electrons and ions

This can also be called gyro or cyclotron frequency, depending on 

the application.

Plasma frequency: 𝜔𝑝 = 𝑒2𝑛/𝜖0𝑚, also separately for e & i
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Perturb a cold plasma

We have actually already perturbed a plasma in the 1st lecture 

➔We found that the plasma responded by oscillating around the 

equilibrium position with frequency called the plasma frequency, 

𝜔𝑝 = 𝑒𝑛/4𝜋𝜖0𝑚.

But the analysis contained some implicit assumptions…

Let’s now take into account that particles in plasma (actually

electrons) have kinetic energy, parameterized by temperature, 𝑇.
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Basic formalism: 
perturbation theory and plane waves
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Perturbations vs oscillations

The basic assumption is that the perturbation is small:

For instance, the density: 𝑛 = 𝑛0 + 𝛿𝑛, with
𝛿𝑛

𝑛0
≪ 1

Small perturbation around equilibrium … ring a bell… HO !!!

➔Solutions expected oscillatory, at least in the first approximation

➔ solutions sines and/or cosines

Or rather: 𝛿𝑛 ∝ 𝑒𝑥𝑝 𝑖 𝑘𝑥 − 𝜔𝑡 ; derivatives become products!

𝜕

𝜕𝑡
→ −𝑖𝜔 and     𝜵 → 𝑖𝒌
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A justification for the harmonic 
approximation

• A euclidian 3D space spanned by any 3 vectors that are orthogonal to each other, 

e.g. 𝒆𝑥, 𝒆𝑦, 𝒆𝑧. These form a complete base for vectors, i.e., any vector can be

expressed as a linear combination of them.

• Same in the functional space: ∃ functions that form a complete base for functions

• Periodic function 𝑓 with period 𝐿: 𝑓 𝑥 = 𝑎0 + σ𝑎𝑖 cos 𝑘𝑖𝑥 + 𝑏𝑖 sin 𝑘𝑖𝑥;  𝑘𝑖 = 𝑖
2𝜋

𝐿
.

• Let 𝐿 → ∞, ➔ ∑ → ∫ : 𝑓 𝑥 = ∞−׬
∞
𝑔 𝑘 𝑒−𝑖𝑘𝑥𝑑𝑘

• In plane... no, plain English: 

Function 𝑓 𝑥, 𝑡 can be expressed as a linear combination of plane waves 𝑒−(𝑖𝑘𝑥−𝑖𝜔𝑡)
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Another look at the Fourier transformation

➔ A Fourier transformation can be viewed as a wave package of plane waves, 

each with a 𝑘-dependent amplitude 𝑔 𝑘 :

𝑓 𝑥 =
1

2𝜋
׬ 𝑔 𝑘 𝑒𝑖(𝑘𝑥−𝜔𝑡)𝑑𝑘

➔ if we know the function, we can find how strongly each plane wave

component contributes to it 

𝑔 𝑘 =
1

2𝜋
׬ 𝑓 𝑥 𝑒−𝑖(𝑘𝑥−𝜔𝑡)𝑑𝑥

➔ Since the harmonic plane waves are linearly independent, we can solve the

equations independently for each 𝑘 and ’sum’ them up in the end !
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Linearization of the equations

If the perturbation is small, we can linearize the equations, i.e., 

throw out all terms that are higher power in perturbed quantities

Notation: any physical quantity 𝑓 = 𝑓0 + 𝑓1, with
𝑓1

𝑓0
≪ 1.

Let’s practise with the continuity equation:
𝜕(𝑛0 + 𝑛1)

𝜕𝑡
+ 𝛁 ⋅ 𝑛0 + 𝑛1 𝒗𝟎 + 𝒗𝟏 = 0

Assume initially stationary (𝒗𝟎 = 0) and homogeneous (𝛁𝑛0 = 0)
plasma & linearize:

𝜕(𝑛1)

𝜕𝑡
+ 𝑛0𝛁 ⋅ 𝒗𝟏 = 0
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First application of linearization:
the Boltzmann relation
Equation of motion for electron fluid :  𝑚𝑛

𝜕𝒗

𝜕𝑡
+ 𝒗 ⋅ 𝛁 𝒗 = −𝑒𝑛𝑬 − 𝛻𝑝

• Assume 𝑛0=constant, 𝒗𝟎 = 0, 𝑇𝑒 = constant (isothermal plasma)

• Set 𝑧-axis so that 𝛻𝑝 =
𝜕𝑝

𝜕𝑧

Linearize➔
𝜕𝒗1

𝜕𝑡
= −𝑒𝑬1/𝑚 −

𝑇𝑒

𝑚𝑛

𝜕𝑛

𝜕𝑧

If we can neglect electron inertia (𝑚 → 0) but keep 𝑣 < ∞, the terms on the RHS 

have to balance: 𝑒
𝜕𝜙

𝜕𝑧
=

𝑇𝑒

𝑛

𝜕𝑛

𝜕𝑧
; 𝐸1 = −

𝜕𝜙

𝜕𝑧

➔𝑑𝑧׬ e𝜙 = 𝑇𝑒 log 𝑛 + 𝐶

➔ Boltzmann relation:  𝑛𝑒 = 𝑛0𝑒
𝑒𝜙/𝑇𝑒
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Electrostatic waves in non-
magnetized plasmas
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Perturbations, oscillations and waves

We actually perturbed the plasma already in the first lecture

➔Plasma (electron) oscillations with 𝜔 = 𝜔𝑝𝑒 = 𝑒𝑛/4𝜋𝜖0𝑚

There we assumed cold plasma, 𝑇𝑒 = 0.

Let us now (re-)analyze using the full set of fluid equations what

happens when we perturb the plasma

We will find that a perturbation can propagate as a wave.

Note: in neutral gas we have a single wave: the sound wave.

In plasmas we will find 𝑁 waves with 𝑁 ≫ 1 … ☺
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Definition of a wave

A wave is propagation with periodic motion characterized by

• Wavelength λ

• Wave number 𝑘 =
2𝜋

λ

• Angular frequency 𝜔

• Amplitude A

The phase velocity, 𝑣𝑝ℎ = 𝜔/𝑘 characterizes motion of wave crests

The group velocity 𝑣𝑔𝑟 =
𝑑𝜔

𝑑𝑘
gives the speed at which the full wave

package, i.e., information can propagate. 
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Why frequency is important

If the frequency at which the plasma responds to the perturbation is 

sufficiently high, the ions with large inertia cannot respond

➔ take ions as immobile positive charge background and analyze

only electron dynamics. 

Dynamics requires including electron inertia, which is the force

counter-acting external perturbation.

But first, a closer look at the equation of state …
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Equation of state and degrees of freedom

The equation of state was adopted to close the set of equations

𝑝 = 𝐶𝑛𝛾 , where 𝛾 =
𝑁+2

𝑁
, with 𝑁 = # of degrees of freedom.

➔
𝛻𝑝

𝑝
= 𝛾

𝛻𝑛

𝑛

Special case: isothermal plasma, 𝑇 = 𝑐𝑜𝑛𝑠𝑡.→ 𝛻𝑝 = 𝑇𝛻𝑛

So for isothermal plasma 𝛾 = 1.
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Generating electron plasma vibes

Hit the plasma w/ a hammer = 1D perturbation ➔ 𝛾 = 3.

Unperturbed plasma:  

• 𝑛0=const., 𝒗𝟎 = 0, 𝑬𝟎 = 0, 𝑇𝑒 = 𝑐𝑜𝑛𝑠𝑡

Linearize EoM: 𝑚𝑛0
𝜕𝑣1

𝜕𝑡
= −𝑒𝑛𝐸1 − 3𝑇𝑒

𝜕𝑛1

𝜕𝑥

x-axis along perturbation & FT ➔ −𝑖𝜔𝑚𝑛0𝑣1 = −𝑒𝑛0𝐸1 − 𝑖𝑘3𝑇𝑒𝑛1
Need equations to link 𝑣1, 𝐸1and 𝑛1… 
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Eliminating unknowns

Continuity equation: 
𝜕𝑛

𝜕𝑡
+ 𝛻 ⋅ 𝑛𝒗 = 0➔ 𝑣1 ↔ 𝑛1

Linearize & FT ➔ −𝑖𝜔𝑛1 + 𝑛0𝑖𝑘𝑣1 = 0 → 𝑛1 =
𝑘𝑛0

𝜔
𝑣1

How about 𝐸1?

Now the density is locally disturbed ➔ 𝛻 ⋅ 𝑬 =
𝑒

4𝜋𝜖0
𝑛0 − 𝑛0 + 𝑛1

Linearize & FT ➔ 𝐸1 = 𝑖
𝑒𝑛1

4𝜋𝜖0𝑘
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Electron plasma wave

Express now everything in terms of 𝑣1in the electron EoM

➔ 𝑖𝜔𝑚𝑛0𝑣1 = 𝑒𝑛0
𝑖𝑒

4𝜋𝜖0𝑘
+ 3𝑖𝑘𝑇𝑒

𝑛0𝑘

𝜔
𝑣1

➔ 𝜔2 =
𝑒2𝑛0

4𝜋𝜖0𝑚
+ 3𝑘2𝑇𝑒/𝑚 = 𝜔𝑝𝑒

2 +
3

2
𝑘2𝑣𝑡ℎ

2 , where 𝑇 =
1

2
𝑚𝑣𝑡ℎ

2

This is the dispersion relation for the electron plasma waves: each

wavelength has slightly different frequency, thus allowing

information to propagate:
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𝜔2 = 𝜔𝑝𝑒
2 +

3
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Physics of electron plasma wave

Changes in plasma quantities propagate at 

the speed

𝑣𝑔𝑟 =
𝑑𝜔

𝑑𝑘
=
3

2

𝑘

𝜔
𝑣𝑡ℎ
2

How come we got plain plasma oscillations

earlier?

When 𝑇 → 0, we get 𝜔2 = 𝜔𝑝
2. Consistent

with our assumptions! ☺
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What happens in longer time scales?

Even the ions will respond to the perturbation.

NOTE: here we cannot ignore the other component of the plasma, 

the electrons, since they will be heeding the ions like faithful dogs…

But first, the ions (same initial assumptions as before):

𝑀𝑛
𝜕𝒗

𝜕𝑡
= 𝑒𝑛𝑬 − 𝛻𝑝

Small perturbation, linearize & use 𝛻𝑝 = 𝛾𝑖𝑇𝛻𝑛

➔ 𝑀𝑛0
𝜕𝑣1

𝜕𝑡
= 𝑒𝑛𝐸1 − 𝛾𝑖𝑇𝑖

𝜕𝑛1

𝜕𝑥
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How about the electrons at these times?

For long time scales the electron inertia can be neglected ➔

Use the Boltzmann relation: :  𝑛𝑒 = 𝑛0𝑒
𝑒𝜙1/𝑇𝑒 ≈ 𝑛0 1 +

𝑒𝜙1

𝑇𝑒

Since the electrostatic potential 𝜙1 has now entered the game, use

the Poisson equation:

𝛻 ⋅ 𝑬 = −𝛻2𝜙 =
𝑒

4𝜋𝜖0
𝑛𝑖 − 𝑛𝑒

Small perturbation: 𝑛𝑖 = 𝑛0 + 𝑛1 ➔ 4𝜋𝜖0𝛻
2𝜙1 = 𝑒 𝑛1 − 𝑛0

𝑒𝜙

𝑇𝑒
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From derivatives to algebra …

FT everything (including the continuity equation) ➔

−𝑖𝜔𝑛0𝑀𝑣1 = −𝑒𝑛0𝑖𝑘𝜙1 − 𝑖𝑘𝛾𝑖𝑇𝑖𝑛1

4𝜋𝜖0𝜙1 𝑘2 +
𝑛0𝑒

2

4𝜋𝜖0𝑇𝑒
= 𝑒𝑛1

𝑛1 =
𝑘𝑛0
𝜔

𝑣1

Recall
𝑛0𝑒

2

4𝜋𝜖0𝑇𝑒
=

1

𝜆𝐷
2 ➔ (HW) 𝜔2= 𝑘2

𝑇𝑒

𝑀

1

1+𝑘2𝜆𝐷
2 +

𝛾𝑖𝑇𝑖

𝑀
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Ion acoustic wave

Recall the definition of sound speed: 𝑣𝑠 ≡ 𝑇/𝑚

So we have found an ion wave that propagates with velocity that is 

reminicent of a sound wave, but with two temperatures!

➔ the acoustic wave persists even if 𝑇𝑖 → 0 ! (Laboratory plasmas)

• Especially for ions it is very unlikely that we would have a wave

with 𝜆 < 𝜆𝐷 (recall the smallness of 𝜆𝐷) ➔ 𝑘2𝜆𝐷
2 ≪ 1

➔ For most plasmas of interest:  𝜔 = 𝑘𝑣𝑠, 𝑣𝑠
2 ≡

𝑇𝑒

𝑀
+

𝛾𝑖𝑇𝑖

𝑀
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Notes on acoustic wave & Co
Note 1: 

• while plasma frequency depends only on the plasma density, the sound speed
depends only on the plasma temperature!

Note 2: 

• sound wave = 1D compression➔ 𝛾𝑖 = 3.

• Meanwhile electrons assumed infinitely mobile 

➔ equalize T everywhere

➔ isothermal➔ 𝛾𝑒 = 1. (Was already assumed)

Note 3: 

• unlike ordinary fluids, in plasmas ions can transmit vibrations even in the
absence of collisions. This is due to electrostatic interaction.

2.10.2022

24



Comparison of electron and ion waves

Electron plasma wave:

𝜔2 = 𝜔𝑝𝑒
2 +

3

2
𝑘2𝑣𝑡ℎ

2

• essentially a constant-frequency wave, w/ a correction from thermal motion

Ion acoustic wave (with 𝑘2𝜆𝐷
2 ≪ 1):

𝜔 = 𝑘𝑣𝑠, 𝑣𝑠
2≡

𝑇𝑒
𝑀
+
𝛾𝑖𝑇𝑖
𝑀

• a constant-velocity wave, 𝜔𝑝ℎ = 𝜔𝑔𝑟, that needs 𝑇 ≠ 0. (Without thermal

motion, electrons would perfectly shield the charge from ion bunching)
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Ion acoustic wave w/ ”short” wavelength

Now take the opposite limit: 𝑘2𝜆𝐷
2 ≥ 1 , short(ish) wavelengths

𝜔2 ≈
𝑇𝑒
𝑀
𝜆𝐷
−2 =

𝑛0𝑒
2

4𝜋𝜖0𝑀
≡ 𝜔𝑝𝑖

2

So at short 𝜆 (high 𝜔) the ion acoustic wave turns into constant-

frequency oscillations!

Summa summarum: 

electrostatic electron and ion waves

have pretty much complementary

behaviour.
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And The Thing to remember …

You cannot extend the above treatment to arbitrarily high

frequencies because our initial assumption was that the

frequencies are low (≪ 𝜔𝑝𝑒).

Never forget what your assumptions have been when you

construct/extend a theoretical/numerical model !
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Electrostatic waves in the presence 
of a background magnetic field
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Electric & magnetic fields
➔ review Maxwell’s equations

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡
: Linearize & FT ➔ 𝑖𝒌 × 𝑬1 = 𝑖𝜔𝑩1

Two cases:

𝒌 ∥ 𝑬1 ➔
𝜕𝑩

𝜕𝑡
= 0 →

𝜕𝑬

𝜕𝑡
= 0➔ electrostatic wave

𝒌 ⊥ 𝑬1 ➔
𝜕𝑩

𝜕𝑡
≠ 0 →

𝜕𝑬

𝜕𝑡
≠ 0➔ electromagnetic wave (next week)

Define two useful terms:
• Longitudinal = parallel to 𝒌

• Transverse = perpendicular to 𝒌
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An external B-field➔ preferred direction

Set axes so that 𝑩 = 𝑩0ො𝒛

Two fundamentally different cases: 𝒌 = 𝑘ො𝒛 or 𝒌 ⊥ 𝑩0

1. 𝒌 = 𝑘ො𝒛

Since electrostatic motion is parallel to 𝒌, the magnetic field does

not have a say here

➔ the same results as for the 𝑩 = 0 case.

2. 𝒌 ⊥ 𝑩0

Here things get interesting because particles are not free to move

across the magnetic field lines!
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Electrostatic waves ⊥ B: 𝒌 = 𝑘ො𝒙
-- high frequency
Immobile ions, only electrons have time to respond.

Take a stripped-down case: 𝑛0 = 𝑐𝑜𝑛𝑠𝑡., 𝒗0 = 0, cold plasma: 𝑇 = 0

𝑚
𝜕𝒗1
𝜕𝑡

= −𝑒 𝑬1 + 𝒗1 × 𝑩0

➔ −𝑖𝜔𝑚𝑣𝑥 = −𝑒𝐸1 − 𝑒𝑣yB0
−𝑖𝜔𝑚𝑣𝑦 = 𝑒𝑣xB0
−𝑖𝜔𝑚𝑣𝑧 = 0

➔ 𝑣𝑥 =
𝑒𝐸1/𝑖𝑚𝜔

1−Ω𝑒
2/𝜔2 ; Note: 𝑣𝑥 diverges when 𝜔 → Ω𝑒 !!??
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Eliminating the rest of the junk
𝜕𝑛1

𝜕𝑡
+ 𝑛0𝛻 ⋅ 𝒗1 = 0➔ 𝑛1 =

𝑘

𝜔
𝑛0𝑣𝑥

𝛻 ⋅ 𝑬1 = −
𝑒𝑛1

𝜖0
➔ 𝑖𝑘𝜖0𝐸1 = −𝑒

𝑘

𝜔
𝑛0

𝑒𝐸1/𝑖𝑚𝜔

1−Ω𝑒
2/𝜔2

➔ 𝜔2 = 𝜔𝑝
2 + Ω𝑒

2 ≡ 𝜔ℎ
2 ; the upper hybrid frequency

So the electrons oscillate faster than without B-field. This is 

because there are two restoring forces: the 𝑬1field generated by

the perturbation, and the 𝒗1 × 𝑩0 force.

Sanity checks:

• 𝑩0 → 0: regular plasma oscillation at 𝜔𝑝
2

• 𝑛0 → 0:  simple gyromotion since the ES force vanishes
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What about ion oscillations?

Here we cannot use the Boltzmann relation for electrons because

the ion bunching is ⊥ 𝑩0 ➔ electrons are not free to follow …

➔ need to study both species. Use earlier eqs w/ 𝐸1 = −𝛻𝜙1 :

𝑣𝑖1 =
𝑒𝑘

𝑀𝜔
𝜙1 1 −

Ω𝑖
2

𝜔2

−1

&    𝑛𝑖1 = 𝑛0
𝑘

𝜔
𝑣𝑖1 , Ωi = 𝑞𝐵0/𝑀

𝑣𝑒1 = −
𝑒𝑘

𝑚𝜔
𝜙1 1 −

Ω𝑒
2

𝜔2

−1

&   𝑛𝑒1 = 𝑛0
𝑘

𝜔
𝑣𝑒1 , Ωe = 𝑞𝐵0/𝑚

Plasma approximation: 𝑛𝑖 = 𝑛𝑒 → 𝑣𝑖1 = 𝑣𝑒1
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Lower hybrid oscillations

➔ 𝑀 1−
Ω𝑖
2

𝜔2 = −𝑚 1 −
Ω𝑒
2

𝜔2

➔ … algebra …  (HW)

➔ 𝜔 = Ω𝑖Ω𝑒 ≡ 𝜔𝑙 ; lower hybrid frequency

LH waves can only be launched/observed VERY close to 

perpendicular. Even a small deviation changes the physics …
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Ion waves not exactly perpendicular to B…

If 𝑘∥ ≠ 0➔ electrons can swiftly (= within 1/𝜔) move to shield out 

the ion charge bunching

➔ neglect electron inertia = adopt Boltzmann relation: 𝑛𝑒1 = 𝑛0
𝑒𝜙1

𝑇𝑒

Plasma approximation ➔ 𝑛𝑖1 = 𝑛0
𝑒𝜙1

𝑇𝑒

Continuity equation ➔ 𝑛𝑖1 = 𝑛0
𝑘

𝜔
𝑣𝑖1

➔ 1 −
Ω𝑖
2

𝜔2 𝑣𝑖1 =
𝑒𝑘

𝑀𝜔

𝑇𝑒

𝑒𝑛0

𝑛0𝑘

𝜔
𝑣𝑖1 =

𝑘2

𝜔2 𝑣𝑠
2𝑣𝑖1
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Electrostatic ion cyclotron wave

The dispersion relation:   𝜔2 = Ω𝑖
2 + 𝑘2𝑣𝑠

2

The physics of electrostatic ion cyclotron wave:

like the ion acoustic wave, but now the restoring force is enhanced

by the 𝒗1 × 𝑩0 force.
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