
Lecture 6: 
Electromagnetic waves and more



Today’s menu

• Cut-offs & Resonances

• Basic EM waves in plasmas:

• Transverse EM wave in the absence of a background B-field

• Ordinary wave (O-wave)

• Extraordinary wave (X-wave)

• L-wave

• R-wave

• MHD waves:

• Shear-Alfvén waves

• Slow and fast magnetosonic waves (& compressional Alfvén wave)
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Cut-offs and resonances
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Cut-offs and resonances

For any non-trivial dispersive wave, there are two special cases

• 𝑘 → 0, i.e., 𝜆 → ∞. This is the cut-off. A cut-off corresponds to a location
where reflection (or strong attenuation) of the (EM) wave takes place

• 𝑘 → ∞, i.e., 𝜆 → 0. This is called a resonance, and here the wave can be
absorbed or transferred to another wave mode
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Electromagnetic waves in vacuum
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Allow time-dependent 𝑬 and 𝑩 fields
➔ need Maxwell’s equations
Maxwell’s equations once again

𝛻 ⋅ 𝑬 = 𝜌/𝜖0
𝛻 ⋅ 𝑩 = 0

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡

𝛻 × 𝑩 = 𝜇0𝒋 −
1

𝑐2
𝜕𝑬

𝜕𝑡
In vacuum: 𝜌 = 0, 𝒋 = 0
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Wave equation in vacuum

Take curl of Faraday’s law ➔

𝛻 × 𝛻 × 𝑬 = −
𝜕

𝜕𝑡
𝛻 × 𝑩 = −

1

𝑐2
𝜕2𝑬

𝜕𝑡2

𝛻 𝛻 ⋅ 𝑬 − 𝛻2𝑬 = −
1

𝑐2
𝜕2𝑬

𝜕𝑡2

➔Basic wave equation: 𝛻2𝑬 −
1

𝑐2
𝜕2𝑬

𝜕𝑡2
= 0.

Plane wave solution ➔ 𝑘2𝑬 −
𝜔2

𝑐2
𝑬 = 0➔ 𝜔2 = 𝑐2𝑘2
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Wave equation in plasmas

In plasmas, 

• 𝜌 ≈ 0 can be assumed by quasineutrality (or simply make the choice
to look at 𝒌 ⋅ 𝑬 = 0 since EM waves are usually transverse)

• 𝒋 = 0 is a very bad assumption.

➔ wave equation in plasmas: 𝛻2𝑬 = 𝜇0
𝜕𝒋

𝜕𝑡
+

1

𝑐2
𝜕2𝑬

𝜕𝑡2
.

FT & linearize ➔ 𝜔2 − 𝑐2𝑘2 𝑬1 = −𝑖𝜔𝑐2𝜇0𝒋1
EM waves are fast ➔ ions immobile ➔ current solely from electrons
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EM waves w/ no background B field

No guiding B field ➔ electrons are free to move: 𝑚
𝜕𝒗

𝜕𝑡
= −𝑒𝑬

FT & linearize ➔ 𝑗1 = −𝑒𝑛0𝒗1 = −𝑒𝑛0
−𝑒𝑬1

−𝑖𝜔𝑚
= 𝑖

𝑒2𝑛0

𝑚𝜔
𝑬1

➔ 𝜔2 − 𝑐2𝑘2 𝑬1 = −𝑖𝜔𝑐2𝜇0𝒋1 = 𝜔𝑐2𝜇0
𝑒2𝑛0

𝑚𝜔
𝑬1= 

𝑒2𝑛0

𝑚𝜖0
𝑬1 = 𝜔𝑝

2𝑬1

➔Dispersion relation for transverse EM waves propagating in 

plasmas in the absence of DC magnetic field:

𝜔2 = 𝜔𝑝
2 + 𝑐2𝑘2
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Observations on the dispersion relation

1. 𝑣𝑝ℎ
2 =

𝜔2

𝑘2
= 𝑐2 +

𝜔𝑝
2

𝑘2
> 𝑐2

2. 𝑣𝑔𝑟 =
𝑑𝜔

𝑑𝑘
=

𝑐2

𝑣𝑝ℎ
< 𝑐

3. At large 𝑘 (small 𝜆) ➔ ordinary light waves, 𝜔 = 𝑐𝑘

4. There is a cut-off frequency for waves to propagate …

𝜔 < 𝜔𝑐𝑢𝑡−𝑜𝑓𝑓 = 𝜔𝑝 ➔ 𝑐𝑘 = 𝜔2 − 𝜔𝑝
2 = 𝑖 𝜔𝑝

2 − 𝜔2

➔ 𝑒𝑖𝑘𝑥 = 𝑒−𝐼𝑚 𝑘 𝑥 = 𝑒−
𝑥

𝛿 , where 1/𝛿 ≡
1

𝑐
𝜔𝑝
2 − 𝜔2 , 

➔ an exponentially attenuated wave with skin depth 𝛿
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Radio communication

Recall 𝜔𝑝
2 =

𝑒2𝑛0

𝑚𝜖0

➔ For a given frequency 𝜔, there is a maximum density for 

plasmas through which the wave can still propagate.

• This is the basis of short-wavelength radio communication

• To communicate with a satellite, the wave frequency has to be

chosen sufficiently high to penetrate all atmospheric layers

• Space vehicle entering the atmosphere will suffer a 

communication black-out due to the shock wave in front of it
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Electromagnetic waves with𝑩𝟎 ≠ 𝟎
𝒌 ⊥ 𝑩𝟎
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Transverse waves propagating
perpendicular to 𝑩𝟎 : ordinary wave

Transverse wave: 𝒌 ⊥ 𝑬

Propagation perpendicular to magnetic field: 𝒌 ⊥ 𝑩𝟎

#1. Take 𝑬1 ∥ 𝑩𝟎

Then the magnetic field does not constrain the electron motion and 

the math of 𝑩𝟎 = 0 case applies

𝜔2 = 𝜔𝑝
2 + 𝑐2𝑘2

This is called an ordinary wave – or just O-wave between friends.
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Finding the extraordinary wave
#2. Take 𝑬1 ⊥ 𝑩𝟎

Now electron motion is constrained by 𝑩.

Take x-axis so that 𝒌 = 𝑘ෝ𝒙 and 𝑬1 = 𝐸𝑥ෝ𝒙 + 𝐸𝑦ෝ𝒚

• It is known that in this case a longitudinal component will arise➔ 𝐸𝑥 ≠ 0.

Electron EoM, linearized and FT’d:

−𝑖𝑚𝜔𝒗1 = −𝑒 𝑬1 + 𝒗1 × 𝑩0

𝑣𝑥 =
−𝑖𝑒

𝑚𝜔
𝐸𝑥 + 𝑣𝑦𝐵0 𝑣𝑥 =

𝑒

𝑚𝜔
−𝑖𝐸𝑥 −

Ω𝑒

𝜔
𝐸𝑦 / 1 −

Ω𝑒
2

𝜔2

𝑣𝑦 =
−𝑖𝑒

𝑚𝜔
𝐸𝑦 − 𝑣𝑥𝐵0 𝑣𝑦 =

𝑒

𝑚𝜔
−𝑖𝐸𝑦 +

Ω𝑒

𝜔
𝐸𝑥 / 1 −

Ω𝑒
2

𝜔2
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Dispersion relation for the X wave

Now careful with the wave equation: 𝐸𝑥 ≠ 0➔ 𝒌 ⋅ 𝑬 ≠ 0

➔ 𝜔2 − 𝑐2𝑘2 𝑬1 + 𝑐2𝑘𝐸𝑥𝒌 = −𝑖𝜔𝑐2𝜇0𝒋1 = 𝑖𝜔𝑐2𝜇0𝑛0𝑒𝒗1
We already have 𝒗1 = 𝒗1 𝑬1 ➔

A matrix equation: 
𝐴 𝐵
𝐶 𝐷

𝐸𝑥
𝐸𝑦

= 0

➔Use the determinant condition to find the non-trivial solution …

HW ➔
𝑐2𝑘2

𝜔2 = 1 −
𝜔𝑝
2

𝜔2

𝜔2−𝜔𝑝
2

𝜔2−𝜔ℎ
2 , dispersion relation for the X-wave
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Cut-offs and resonances

We have just obtained our first non-trivial dispersion relation.

In particular, it can happen that

• 𝑘 → 0, i.e., 𝜆 → ∞. This is the cut-off that we already got for 𝑩𝟎 = 0. A cut-
off corresponds to reflection of the EM wave

• 𝑘 → ∞, i.e., 𝜆 → 0. This is called a resonance, and here the wave can be
absorbed.

How do cut-offs and resonances look for the X-wave?
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Cut-offs and resonances of the X-wave

• Resonance: 

• 𝑘 → ∞ when 𝜔 → 𝜔ℎ

➔ Resonance occurs at a point in the plasma where 𝜔2 = 𝜔ℎ
2 = 𝜔𝑝

2 + Ω𝑒
2

But this dispersion relation we know: electrostatic ’waves’ across 𝐵0 !

➔ When an EM wave approaches a point in a plasma where 𝜔 → 𝜔ℎ, both 𝑣𝑝ℎ
and 𝑣𝑔𝑟 go to zero and the wave is converted into upper hybrid oscillations !

• Cut-off: 

• 𝑘 → 0 when 1 =
𝜔𝑝
2

𝜔2

𝜔2−𝜔𝑝
2

𝜔2−𝜔ℎ
2 =

𝜔𝑝
2

𝜔2 1 −
Ω𝑒
2

𝜔2−𝜔𝑝
2

−1

➔ 𝜔2∓Ω𝑒𝜔 − 𝜔𝑝
2 = 0
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Stop bands for X-wave

HW ➔ 2 cut-off frequencies:

𝜔𝑅 =
1

2
Ω𝑒
2 + 4𝜔𝑝

2 + Ω𝑒

𝜔𝐿 =
1

2
Ω𝑒
2 + 4𝜔𝑝

2 − Ω𝑒

The resonance and cut-off frequencies divide the dispersion 

diagram into propagation and non-propagation zones. 

➔ X-wave has two regions of propagation, separated by a ’stop 

band’ where it cannot propagate. 

6.10.2022
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Note: All 𝜔′𝑠
increase with

increasing 𝑛0 due

to 𝜔𝑝 dependence



The new dispersion diagram

Note: the dispersion diagram for the X-wave was no longer of the

type 𝜔 = 𝜔(𝑘).

The reason is that we do not have simple enough functional

dependence between 𝜔 and 𝑘.

➔ Plotting
𝜔

𝑐𝑘
=

𝑣𝑝ℎ

𝑐
as a function of 𝜔 has proven to be

enlightening.
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Stop band for the O wave?

Simpler: 𝜔2 = 𝜔𝑝
2 + 𝑐2𝑘2

➔
𝑐2𝑘2

𝜔2 = 1 −
𝜔𝑝
2

𝜔2

➔ No resonances

➔ One cut-off: 𝑘 → 0 when 𝜔 = 𝜔𝑝 (as was discovered already ☺)
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Electromagnetic waves with𝑩𝟎 ≠ 𝟎
𝒌 ∥ 𝑩𝟎
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How about waves parallel to𝑩𝟎 ?

Now 𝒌 ∥ 𝑩𝟎 ➔ 𝒌 = 𝑘ො𝒛, and from electron motion we can expect

𝑬1 = 𝐸𝑥ෝ𝒙 + 𝐸𝑦ෝ𝒚➔ we can use the wave equation from X wave

with the substitutions 𝒌 = 𝑘ෝ𝒙 → 𝑘ො𝒛➔

𝜔2 − 𝑐2𝑘2 𝐸𝑥 = 𝛼 𝐸𝑥 −
𝑖Ω𝑒

𝜔
𝐸𝑦 ,     where 𝛼 =

𝜔𝑝
2

1−Ω𝑒
2/𝜔2

𝜔2 − 𝑐2𝑘2 𝐸𝑥 = 𝛼 𝐸𝑥 +
𝑖Ω𝑒

𝜔
𝐸𝑦

Again we have a coupled set of equations ➔ use det = 0 ➔

𝜔2 − 𝑐2𝑘2 − 𝛼 = ±𝛼
Ω𝑒

ω
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Wave names by polarization

We then obtain two waves propagation along the B field:

• R-wave:   
𝑐2𝑘2

𝜔2 = 1 −
𝜔𝑝
2

𝜔2 1 −
Ω𝑒

𝜔

−1

• L-wave:   
𝑐2𝑘2

𝜔2 = 1 −
𝜔𝑝
2

𝜔2 1 +
Ω𝑒

𝜔

−1

Reason for names:

The 𝑬1vector of the R-wave rotates clockwise in time as viewed in the

direction of propagation ➔ right-hand circularly polarized wave

Vice versa for the L-wave.
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Cut-offs and resonances for L and R ?

Resonances:

• R-wave: 𝑘 → ∞ @ 𝜔 = Ω𝑒, giving a resonance. Physics of the resonance: 
polarization allows the E field to be in sync with the electron gyration➔
wave dumps its energy to electrons➔ electron cyclotron resonance heating
(ECRH)

• L-wave: no resonance found. (would exist if ion motion were included)

Cut-offs:

• R-wave: 𝑘 → 0 @ 𝜔 = 𝜔𝑅. 

• L-wave: 𝑘 → 0 @ 𝜔 = 𝜔𝐿.

The names of the frequencies make sense! ☺
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Stop bands for R and L waves

The L-wave

• Has a stop band at low- 𝜔➔ behaves like an 
O-wave except with replacement 𝜔𝑝 → 𝜔𝐿

The R-wave

• Has a stop band between Ω𝑒 , 𝜔𝑅

• The low-frequency band, 𝜔 < Ω𝑒, has an 
interesting history and relevance

➔HW: Food for Thought

6.10.2022
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Summary of EM waves in plasmas

Along the B field:

• Right-hand (R) and left-hand (L) circularly polarized waves

Across the B-field:

• plane-polarized ordinary (O) wave and elliptically polarized

extraordinary (X) wave

6.10.2022
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Magnetohydrodynamic waves

6.10.2022
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What is different now?

• Until now we have always been aware that plasma consists of 

ions and electrons ➔ we have made choices of which dynamics

to include.

• In magnetohydrodynamics, the plasma is just a fluid

➔in MHD, the waves are supported/carried by plasma fluid, where

the ion and electron species have just as much to say as oxygen

and hydrogen have in regular hydrodynamics.

We shall now apply our procedure to the MHD equations …
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Linearized MHD equations

Do the linearization procedure for the MHD equations ➔
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here 𝜌 is the fluid density



”Plane wave” solution …

Now take the harmonic approximation and assume that each

perturbed quantity is a sum of plane waves w/ given 𝒌 and ω :



4 equations, 4 unknowns! 

Substitute the expressions for 𝑩1 and 𝑝1 ➔ equation for 𝑽1 :
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Get real(istic) …

Time to fix the space:

• Align the coordinate system so that 𝑩0 = 𝐵0𝒛, 𝒌 = 𝑘𝑥𝒙 + 𝑘𝑧𝒛, 

• Angle 𝜃 defined to be the angle between 𝒌 and 𝑩0

Write the linearized equation of motion in (𝑥, 𝑦, 𝑧) components:

➔Matrix equation

Here 𝑉𝐴
2 =

𝐵0
2

𝜇0𝜌0
is the so-called Alfvén speed, and 𝑉𝑆

2 =
𝛾𝑝0

𝜌0
is the

sound speed
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Non-trivial (≠ 0) solutions only for det = 0

➔Product of three terms (easiest by using either middle row or

middle column)

➔

➔ 3rd order equation for 𝜔2

➔Different kinds of Alfvén waves …
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Shear Alfvén wave

𝜔2 − 𝑘2𝑉𝐴
2 cos2 𝜃 = 0

This corresponds to 𝒌 ⋅ 𝑽1 = 0

➔No density or pressure perturbation associated with the wave

Also 𝑽1 ⋅ 𝑩0 = 0

➔ Motion only perpendicular to the magnetic field



Compressional Alfvén wave

The other two roots: 𝜔 = 𝑘𝑉± , where

These are the fast and slow magnetosonic waves – or fast and 

slow waves between friends.

• In the cold plasma limit (𝑝 → 0), the fast wave becomes the so-

called compressional Alfven wave: 𝜔 = 𝑘𝑉𝐴 and slow wave dies.

• For 𝑉𝐴 ≪ 𝑉𝑆 the fast wave becomes a sound wave, modified by 

the presence of the magnetic field: 𝜔 = 𝑘𝑉𝑆



Hannes Alfvén (1908 – 1995)

• developed the MHD theory

• was the first to discover these wave motions within MHD

• Nobel prize 1970

Alfvén waves can be used to diagnose the plasma (especially in 

space, but also in laboratory plasmas)
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