

Lecture 6: Electromagnetic waves and more

Today's menu

- Cut-offs & Resonances
- Basic EM waves in plasmas:
 - Transverse EM wave in the absence of a background *B*-field
 - Ordinary wave (*O*-wave)
 - Extraordinary wave (*X*-wave)
 - *L*-wave
 - *R*-wave
- MHD waves:
 - Shear-Alfvén waves
 - Slow and fast magnetosonic waves (& compressional Alfvén wave)

Cut-offs and resonances

Cut-offs and resonances

For any non-trivial dispersive wave, there are two special cases

- $k \to 0$, i.e., $\lambda \to \infty$. This is the cut-off. A cut-off corresponds to a location where *reflection* (or strong *attenuation*) of the (EM) wave takes place
- $k \to \infty$, i.e., $\lambda \to 0$. This is called a *resonance*, and here the wave can be *absorbed* or *transferred* to another wave mode

Electromagnetic waves in vacuum

Allow time-dependent *E* and *B* fields → need Maxwell's equations

Maxwell's equations once again

$$\nabla \cdot \mathbf{E} = \rho/\epsilon_0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} - \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$

In vacuum: $\rho = 0$, $\mathbf{j} = 0$

Wave equation in vacuum

Take curl of Faraday's law →

$$\nabla \times (\nabla \times \mathbf{E}) = -\frac{\partial}{\partial t} \nabla \times \mathbf{B} = -\frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$$
$$\nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = -\frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

→ Basic wave equation: $\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$.

Plane wave solution
$$\Rightarrow k^2 E - \frac{\omega^2}{c^2} E = 0 \Rightarrow \omega^2 = c^2 k^2$$

Wave equation in plasmas

In plasmas,

- $\rho \approx 0$ can be assumed by quasineutrality (or simply make the choice to look at $\mathbf{k} \cdot \mathbf{E} = 0$ since EM waves are *usually* transverse)
- j = 0 is a very bad assumption.
- ightharpoonup wave equation in plasmas: $\nabla^2 \mathbf{E} = \mu_0 \frac{\partial \mathbf{j}}{\partial t} + \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$.

FT & linearize
$$\rightarrow$$
 $(\omega^2 - c^2 k^2) \mathbf{E}_1 = -i\omega c^2 \mu_0 \mathbf{j}_1$

EM waves are fast → ions immobile → current solely from electrons

EM waves w/ no background B field

No guiding B field \rightarrow electrons are free to move: $m \frac{\partial v}{\partial t} = -e E$

FT & linearize
$$\Rightarrow j_1 = -en_0 v_1 = -en_0 \left(\frac{-eE_1}{-i\omega m}\right) = i\frac{e^2n_0}{m\omega}E_1$$

→ Dispersion relation for transverse EM waves propagating in plasmas in the absence of DC magnetic field:

$$\omega^2 = \omega_p^2 + c^2 k^2$$

Observations on the dispersion relation

1.
$$v_{ph}^2 = \frac{\omega^2}{k^2} = c^2 + \frac{\omega_p^2}{k^2} > c^2$$

$$2. \quad v_{gr} = \frac{d\omega}{dk} = \frac{c^2}{v_{ph}} < c$$

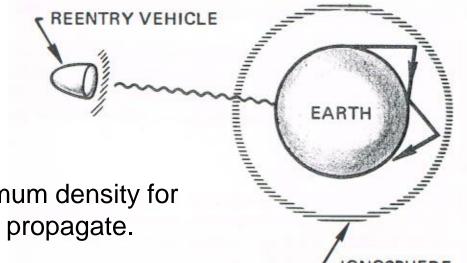
- 3. At large k (small λ) \rightarrow ordinary light waves, $\omega = ck$
- 4. There is a *cut-off frequency* for waves to propagate ...

$$\omega < \omega_{cut-off} = \omega_p \rightarrow ck = \sqrt{\omega^2 - \omega_p^2} = i\sqrt{\omega_p^2 - \omega^2}$$

$$ightharpoonup e^{ikx} = e^{-Im(k)x} = e^{-\frac{x}{\delta}}$$
, where $1/\delta \equiv \frac{1}{c} \sqrt{\omega_p^2 - \omega^2}$,

 \rightarrow an exponentially attenuated wave with skin depth δ

Radio communication



Recall
$$\omega_p^2 = \frac{e^2 n_0}{m \epsilon_0}$$

- \rightarrow For a given frequency ω , there is a maximum density for plasmas through which the wave can still propagate.
- This is the basis of short-wavelength radio communication
- To communicate with a satellite, the wave frequency has to be chosen sufficiently high to penetrate all atmospheric layers
- Space vehicle entering the atmosphere will suffer a communication black-out due to the shock wave in front of it

Electromagnetic waves with $B_0 \neq 0$ $k \perp B_0$

Transverse waves propagating perpendicular to B_0 : ordinary wave

Transverse wave: $k \perp E$

Propagation perpendicular to magnetic field: $k \perp B_0$

#1. Take $E_1 \parallel B_0$

Then the magnetic field does not constrain the electron motion and the math of $\boldsymbol{B_0} = 0$ case applies

$$\omega^2 = \omega_p^2 + c^2 k^2$$

This is called an *ordinary wave* – or just *O-wave* between friends.

Finding the *extraordinary* wave

#2. Take $E_1 \perp B_0$

Now electron motion is constrained by **B**.

Take x-axis so that $\mathbf{k} = k\widehat{\mathbf{x}}$ and $\mathbf{E}_1 = E_x\widehat{\mathbf{x}} + E_y\widehat{\mathbf{y}}$

It is known that in this case a longitudinal component will arise $\rightarrow E_x \neq 0$.

Electron EoM, linearized and FT'd:

$$-im\omega \boldsymbol{v}_1 = -e(\boldsymbol{E}_1 + \boldsymbol{v}_1 \times \boldsymbol{B}_0)$$

$$v_{x} = \frac{-ie}{m\omega} \left(E_{x} + v_{y} B_{0} \right)$$

$$v_{y} = \frac{-ie}{m\omega} \left(E_{y} - v_{x} B_{0} \right)$$

$$v_{x} = \frac{e}{m\omega} \left[-iE_{x} - \frac{\Omega_{e}}{\omega} E_{y} \right] / \left(1 - \frac{\Omega_{e}^{2}}{\omega^{2}} \right)$$
$$v_{y} = \frac{e}{m\omega} \left[-iE_{y} + \frac{\Omega_{e}}{\omega} E_{x} \right] / \left(1 - \frac{\Omega_{e}^{2}}{\omega^{2}} \right)$$

Dispersion relation for the X wave

Now careful with the wave equation: $E_x \neq 0 \implies k \cdot E \neq 0$

We already have $v_1 = v_1(E_1)$

A matrix equation:
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E_{\chi} \\ E_{\nu} \end{bmatrix} = 0$$

→ Use the determinant condition to find the non-trivial solution ...

HW
$$\Rightarrow$$
 $\frac{c^2k^2}{\omega^2} = 1 - \frac{\omega_p^2}{\omega^2} \frac{\omega^2 - \omega_p^2}{\omega^2 - \omega_h^2}$, dispersion relation for the X-wave

Cut-offs and resonances

We have just obtained our first *non-trivial* dispersion relation. In particular, it can happen that

- $k \to 0$, i.e., $\lambda \to \infty$. This is the cut-off that we already got for $B_0 = 0$. A cut-off corresponds to *reflection* of the EM wave
- $k \to \infty$, i.e., $\lambda \to 0$. This is called a *resonance*, and here the wave can be absorbed.

How do cut-offs and resonances look for the X-wave?

Cut-offs and resonances of the X-wave

Resonance:

- $k \to \infty$ when $\omega \to \omega_h$
- Resonance occurs at a point in the plasma where $\omega^2 = \omega_h^2 = \omega_p^2 + \Omega_e^2$ But this dispersion relation we know: *electrostatic 'waves' across* B_0 !
- → When an EM wave approaches a point in a plasma where $ω → ω_h$, both v_{ph} and v_{gr} go to zero and the wave is converted into *upper hybrid oscillations*!
- Cut-off:

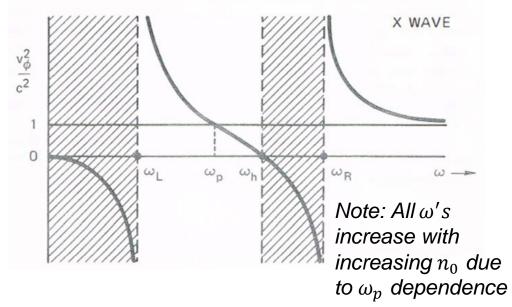
•
$$k \to 0 \text{ when } 1 = \frac{\omega_p^2}{\omega^2} \frac{\omega^2 - \omega_p^2}{\omega^2 - \omega_h^2} = \frac{\omega_p^2}{\omega^2} \left[1 - \frac{\Omega_e^2}{\omega^2 - \omega_p^2} \right]^{-1}$$
 \longrightarrow $\omega^2 \mp \Omega_e \omega - \omega_p^2 = 0$

Stop bands for X-wave

HW → 2 cut-off frequencies:

$$\omega_R = \frac{1}{2} \left[\sqrt{\Omega_e^2 + 4\omega_p^2} + \Omega_e \right]$$

$$\omega_L = \frac{1}{2} \left[\sqrt{\Omega_e^2 + 4\omega_p^2} - \Omega_e \right]$$



The resonance and cut-off frequencies divide the dispersion diagram into propagation and non-propagation zones.

→ X-wave has two regions of propagation, separated by a 'stop band' where it cannot propagate.

The new dispersion diagram

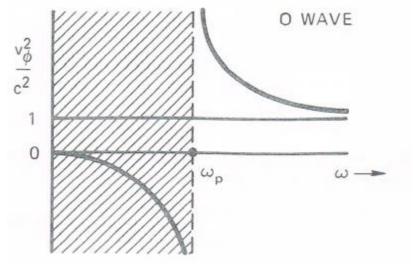
Note: the dispersion diagram for the X-wave was no longer of the type $\omega = \omega(k)$.

The reason is that we do not have simple enough functional dependence between ω and k.

→ Plotting $\frac{\omega}{ck} = \frac{v_{ph}}{c}$ as a function of ω has proven to be enlightening.

Stop band for the O wave?

Simpler:
$$\omega^2 = \omega_p^2 + c^2 k^2$$



- → No resonances
- igoplus One cut-off: $k \to 0$ when $\omega = \omega_p$ (as was discovered already \odot)

Electromagnetic waves with $B_0 \neq 0$ $k \parallel B_0$

How about waves parallel to B_0 ?

Now $k \parallel B_0 \Rightarrow k = k\hat{z}$, and from electron motion we can expect $E_1 = E_x \hat{x} + E_y \hat{y} \Rightarrow$ we can use the wave equation from X wave with the substitutions $k = k\hat{x} \rightarrow k\hat{z} \Rightarrow$

$$(\omega^2 - c^2 k^2) E_{\chi} = \alpha \left(E_{\chi} - \frac{i\Omega_e}{\omega} E_{y} \right), \quad \text{where } \alpha = \frac{\omega_p^2}{1 - \Omega_e^2 / \omega^2}$$
$$(\omega^2 - c^2 k^2) E_{\chi} = \alpha \left(E_{\chi} + \frac{i\Omega_e}{\omega} E_{y} \right)$$

Again we have a coupled set of equations \rightarrow use det = 0 \rightarrow

$$\omega^2 - c^2 k^2 - \alpha = \pm \alpha \frac{\Omega_e}{\omega}$$

Wave names by polarization

We then obtain two waves propagation along the B field:

• R-wave:
$$\frac{c^2 k^2}{\omega^2} = 1 - \frac{\omega_p^2}{\omega^2} \left[1 - \frac{\Omega_e}{\omega} \right]^{-1}$$

• L-wave:
$$\frac{c^2 k^2}{\omega^2} = 1 - \frac{\omega_p^2}{\omega^2} \left[1 + \frac{\Omega_e}{\omega} \right]^{-1}$$

Reason for names:

The E_1 vector of the R-wave rotates clockwise in time as viewed in the direction of propagation \rightarrow right-hand circularly polarized wave Vice versa for the L-wave.

Cut-offs and resonances for L and R?

Resonances:

- R-wave: $k \to \infty$ @ $\omega = \Omega_e$, giving a resonance. Physics of the resonance: polarization allows the E field to be in sync with the electron gyration \Rightarrow wave dumps its energy to electrons \Rightarrow electron cyclotron resonance heating (ECRH)
- *L*-wave: no resonance found. (would exist if ion motion were included)

Cut-offs:

- R-wave: $k \to 0$ @ $\omega = \omega_R$.
- L-wave: $k \to 0$ @ $\omega = \omega_L$.

The names of the frequencies make sense! ©

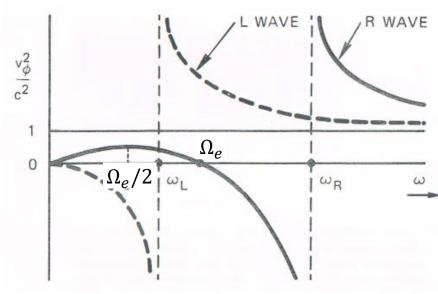
Stop bands for R and L waves

The L-wave

• Has a stop band at low- $\omega \rightarrow$ behaves like an O-wave except with replacement $\omega_p \rightarrow \omega_L$

The R-wave

- Has a stop band between $[\Omega_e, \omega_R]$
- The low-frequency band, $\omega < \Omega_e$, has an interesting history and relevance
- → HW: *Food for Thought*



Summary of EM waves in plasmas

Along the B field:

Right-hand (R) and left-hand (L) circularly polarized waves

Across the B-field:

 plane-polarized ordinary (O) wave and elliptically polarized extraordinary (X) wave

Magnetohydrodynamic waves

What is different now?

- Until now we have always been aware that plasma consists of ions and electrons → we have made choices of which dynamics to include.
- In magnetohydrodynamics, the plasma is just a fluid
- → in MHD, the waves are supported/carried by plasma fluid, where the ion and electron species have just as much to say as oxygen and hydrogen have in regular *hydro*dynamics.

We shall now apply our procedure to the MHD equations ...

Linearized MHD equations

Do the linearization procedure for the MHD equations -

$$\frac{\partial \rho_1}{\partial t} + \rho_0 \nabla \cdot \mathbf{V_1} = 0$$

$$\rho_0 \frac{\partial \mathbf{V_1}}{\partial t} + \nabla p_1 - \frac{(\nabla \times \mathbf{B_1}) \times \mathbf{B_0}}{\mu_0} = 0$$

$$-\frac{\partial \mathbf{B_1}}{\partial t} + \nabla \times (\mathbf{V_1} \times \mathbf{B_0}) = 0$$

$$\frac{\partial}{\partial t} \left(\frac{p_1}{p_0} - \frac{\gamma \rho_1}{\rho_0} \right) = 0$$

here ρ is the fluid density

"Plane wave" solution ...

Now take the harmonic approximation and assume that each perturbed quantity is a sum of plane waves w/ given k and ω :

$$-\omega \rho_{1} + \rho_{0} \mathbf{k} \cdot \mathbf{V}_{1} = 0 \Rightarrow \rho_{1} = \rho_{0} \frac{\mathbf{k} \cdot \mathbf{V}_{1}}{\omega}$$

$$\omega \mathbf{B}_{1} + \mathbf{k} \times (\mathbf{V}_{1} \times \mathbf{B}_{0}) = 0 \Rightarrow \mathbf{B}_{1} = \frac{(\mathbf{k} \cdot \mathbf{V}_{1}) \mathbf{B}_{0} - (\mathbf{k} \cdot \mathbf{B}_{0}) \mathbf{V}_{1}}{\omega}$$

$$-\omega \left(\frac{p_{1}}{p_{0}} - \frac{\gamma \rho_{1}}{\rho_{0}}\right) = 0 \Rightarrow p_{1} = \gamma p_{0} \frac{\mathbf{k} \cdot \mathbf{V}_{1}}{\omega}$$

$$-\omega \rho_{0} \mathbf{V}_{1} + \mathbf{k} p_{1} - \frac{(\mathbf{k} \times \mathbf{B}_{1}) \times \mathbf{B}_{0}}{\mu_{0}} = 0$$

4 equations, 4 unknowns!

Substitute the expressions for B_1 and $p_1 \rightarrow$ equation for V_1 :

$$\left[\omega^{2} - \frac{(\mathbf{k} \cdot \mathbf{B}_{0})^{2}}{\mu_{0}\rho_{0}}\right] \mathbf{V}_{1} =$$

$$\left\{ \left[\frac{\gamma p_{0}}{\rho_{0}} + \frac{B_{0}^{2}}{\mu_{0}\rho_{0}}\right] \mathbf{k} - \frac{(\mathbf{k} \cdot \mathbf{B}_{0})}{\mu_{0}\rho_{0}} \mathbf{B}_{0} \right\} (\mathbf{k} \cdot \mathbf{V}_{1})$$

$$- \frac{(\mathbf{k} \cdot \mathbf{B}_{0}) (\mathbf{V}_{1} \cdot \mathbf{B}_{0})}{\mu_{0}\rho_{0}} \mathbf{k}$$

Get real(istic) ...

Time to fix the space:

- Align the coordinate system so that $\mathbf{B}_0 = B_0 \mathbf{z}$, $\mathbf{k} = k_x \mathbf{x} + k_z \mathbf{z}$,
- Angle θ defined to be the angle between k and B_0

Write the linearized equation of motion in (x, y, z) components:

→ Matrix equation

$$\begin{pmatrix} \omega^2 - k^2 V_A^2 - k^2 V_S^2 \sin^2 \theta & 0 & -k^2 V_S^2 \sin \theta \cos \theta \\ 0 & \omega^2 - k^2 V_A^2 \cos^2 \theta & 0 \\ -k^2 V_S^2 \sin \theta \cos \theta & 0 & \omega^2 - k^2 V_S^2 \cos^2 \theta \end{pmatrix} \begin{pmatrix} V_{1x} \\ V_{1y} \\ V_{1z} \end{pmatrix} = 0,$$

Here $V_A^2 = \frac{B_0^2}{\mu_0 \rho_0}$ is the so-called *Alfvén speed*, and $V_S^2 = \frac{\gamma p_0}{\rho_0}$ is the sound speed

Non-trivial ($\neq 0$) solutions only for det = 0

→ Product of three terms (easiest by using either middle row or middle column)

$$\left(\omega^2 - k^2 V_A^2 \cos \theta\right) \left[\omega^4 - \omega^2 k^2 \left(V_A^2 + V_S^2\right) + k^4 V_A^2 V_S^2 \cos^2 \theta\right] = 0$$

- \rightarrow 3rd order equation for ω^2
- → Different kinds of Alfvén waves ...

Shear Alfvén wave

$$\omega^2 - k^2 V_A^2 \cos^2 \theta = 0$$

This corresponds to $\mathbf{k} \cdot \mathbf{V}_1 = 0$

→ No density or pressure perturbation associated with the wave

Also
$$V_1 \cdot B_0 = 0$$

→ Motion only perpendicular to the magnetic field

Compressional Alfvén wave

The other two roots: $\omega = kV_+$, where

$$V_{\pm} = \left\{ \frac{1}{2} \left[V_A^2 + V_S^2 \pm \sqrt{(V_A^2 + V_S^2)^2 - 4V_A^2 V_S^2 \cos^2 \theta} \right] \right\}^{1/2}$$

These are the fast and slow *magnetosonic* waves – or *fast* and *slow* waves between friends.

- In the cold plasma limit $(p \to 0)$, the *fast* wave becomes the so-called *compressional Alfven wave*: $\omega = kV_A$ and slow wave dies.
- For $V_A \ll V_S$ the *fast* wave becomes a sound wave, modified by the presence of the magnetic field: $\omega = kV_S$

Hannes Alfvén (1908 – 1995)

Gravitational systems are the ashes of prior electrical systems.

— Hannes Alfven —

- developed the MHD theory
- was the first to discover these wave motions within MHD
- Nobel prize 1970

Alfvén waves can be used to diagnose the plasma (especially in space, but also in laboratory plasmas)