
Fritz Haber Institute
ab initio materials simulations:

FHI-aims

All-Electron Electronic Structure Theory
with Numeric Atom-Centered Basis Functions

A Users’ Guide

FHI-aims team
with many contributors around the world.

August 12, 2022

2

Contents

How to use this manual 8

Introduction 9

1 Getting started with FHI-aims 12

1.1 First step: Installation . 12

1.2 Prerequisites (libraries and software) you’ll need 14

1.3 Managing the build process with CMake 15

1.3.1 Example CMake usage . 15

1.4 CMake variables . 17

1.4.1 MPI parallelization . 18

1.5 Running FHI-aims . 19

1.6 Compiling faster versions of FHI-aims on specific platforms 22

1.7 Finding the other FHI-aims developers and users (talk to us!) 22

2 Input Files: Basic Handling 24

2.1 The mandatory input files: control.in and geometry.in 25

2.2 Defaults for chemical elements: species_defaults 28

2.3 A very quick guide to ensuring numerical convergence with FHI-aims . . 32

2.3.1 Basis set . 32

2.3.2 Hartree potential . 34

2.3.3 Integration grid . 35

2.4 Why does my calculation take too long? 38

2.5 Stopping a run: Files abort_scf and abort_opt 41

3 The Full Monty: All Keywords and Capabilities 42

Contents 3

3.1 Usability (convenience) . 43

3.2 Physical model: Geometry, charge, spin, etc. 47

3.3 Electronic structure: Exchange, correlation (incl. DFT+U), and excited
states . 53

3.4 Specifying the basis (functions, empty sites, k-points, ...) 68

3.5 Integration, grids, and partitioning . 84

3.6 Electron density update . 95

3.7 Electrostatic (Hartree) potential . 97

3.7.1 Non-periodic Ewald method . 98

3.8 Kinetic energy, scalar relativity, spin-orbit coupling, and full relativity . . 109

3.9 Eigenvalue solver and (fractional) occupation numbers 116

3.10 SCF Cycle: Initialization, density mixing, preconditioning, convergence . . 132

3.10.1 Visualizing the convergence of the s.c.f. cycle 133

3.11 Energy derivatives (forces, stress) and geometry optimization 157

3.12 Molecular dynamics . 174

3.12.1 Path integral molecular dynamics and advanced types of dynamics 183

3.12.2 Running FHI-aims with i-PI over TCP/IP Sockets 184

3.13 Thermodynamic Integration . 186

3.14 Electronic constraints . 190

3.15 Embedding in external fields . 198

3.16 QM/MM Embedding . 202

3.17 Continuum Solvation Methods . 206

3.17.1 MPE Implicit Solvent Model . 206

3.17.2 SMPB Implicit Electrolyte Model 219

3.18 Hubbard corrected DFT (DFT+U) . 225

3.18.1 DFT+U correction as it is implemented in FHI-aims 226

3.19 C6/R6 corrections for long-range van der Waals interactions 232

3.20 Many-Body Dispersion (MBD) method 236

3.21 Calculating nonlocal correlation energy within density functional approach 239

3.21.1 Monte Carlo integration based vdW-DF 239

3.21.2 Analytic integration scheme for non-selfconsistent and self-consistent
vdW-DF . 244

3.22 Hartree-Fock, hybrid functionals, GW , et al.: All the details 246

4 Contents

3.23 Hartree-Fock and hybrid functionals, including periodic systems 267

3.24 Periodic GW in FHI-aims . 272

3.25 TDDFT - linear response . 275

3.26 Real-Time TDDFT . 279

3.27 Bethe-Salpeter equation: BSE . 295

3.28 DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields . 297

3.29 Calculating polarization of solids with FHI-aims 318

3.30 Molecular Dynamics with Electronic Friction 323

3.31 Linear macroscopic dielectric function and Kubo-Greenwood transport . . 331

3.32 Electronic Transport . 338

3.33 ESP charges . 342

3.34 Magnetic Response . 350

3.35 Large-scale, massively parallel: Memory use, sparsity, communication, etc. 362

3.36 Fragment molecular orbital DFT calculations 370

3.37 Symmetry . 379

3.38 Output options . 385

3.39 Deprecated keywords . 426

4 Running FHI-aims: Guides to specific tasks 433

4.1 Ground state DFT: Total energies and relaxation 434

4.2 Heavy elements (Z &30): Modifications for scalar relativity 440

4.3 k-point sampling in the Brillouin zone for semiconductors 442

4.4 Plotting the band structure and density of states of a solid 446

4.5 Visualizing charge densities and orbitals 449

4.6 Computation of vibrational and phonon properties 452

4.6.1 Perl script: aims.vibrations.*.pl (non-periodic systems) 452

4.6.2 Python script: get_vibrations.py (non-periodic and periodic (Γ-
point only) systems) . 457

4.6.3 Vibrations and Polarizability by DFPT within FHI-aims (non-
periodic systems) . 460

4.6.4 Phonons via FHI-vibes and Phonopy (periodic systems) 461

4.6.5 Phonons by DFPT within FHI-aims (periodic systems) 462

4.7 Restarting FHI-aims calculations . 464

Contents 5

4.7.1 General restart procedure . 464

4.7.2 Mixing variants - the "force_single_restartfile" option 465

4.7.3 Comments on the ’restart’ starting point and on self-consistency . 465

4.7.4 Rotating the FHI-aims wavefunction 465

4.8 Finding Transition States: the aimsChain 470

4.8.1 Installation . 470

4.8.2 A Quick Start . 471

4.8.3 Configuration . 473

4.8.4 Preparation before running . 483

4.8.5 Running the script . 487

4.8.6 Tips & Guides On Running . 489

4.9 Plugin for free-energy calculations with molecular dynamics: PLUMED . . 491

4.9.1 Usage . 491

4.10 Script based parallel tempering (a.k.a. replica exchange) 493

4.10.1 Usage . 493

4.10.2 Output . 495

4.11 Formation energies of charged defects 497

5 The AITRANSS package 499

5.1 Source code and supporting materials 500

5.2 Compiling the aitranss module . 500

5.3 How to set-up and run transport calculations 501

5.3.1 FHI-aims run: input and output 501

5.3.2 What to be aware of before running aitranss module 501

5.3.3 How to create a mandatory file tcontrol 503

5.3.4 How to submit a transport calculation and its output 505

5.3.5 Further option: local density of states 506

5.4 Keywords of file tcontrol . 506

A Trouble-shooting 513

A.1 Format flags required by some compilers 513

A.2 FHI-aims aborts with a segfault at the beginning of the first test run. . . 514

A.3 Use of FHI-aims with multithreaded BLAS (e.g., Intel’s MKL) 515

6 Contents

A.4 Parallel runs across different file systems 515

A.5 I’m running a calculation for a large system, and it exits abrutply. What’s
going on? . 516

A.6 What do I do if I run out of memory? 516

A.7 Nearly singular basis sets: Strange results from small-unit-cell periodic
calculation with many k-points . 517

A.8 No convergence of the s.c.f. cycle even after many iterations 518

B Structure of the code 521

B.1 Flow of the program . 521

B.2 Commenting and style requests . 525

C Debug Manager 526

D XML output 527

E Optional Libraries to be Linked into FHI-aims 528

E.1 Adding Optional Libraries into FHI-aims: Stubs 528

E.2 Spglib . 529

E.3 Libxc . 530

E.4 cffi — Python 2/3 interface to FHI-aims 530

F Multiple Instances of FHI-aims 536

G GPU Acceleration of FHI-aims 537

G.1 Introduction . 537

G.1.1 Overview of GPU Acceleration Philosophy in FHI-aims 537

G.1.2 Current State of GPU Acceleration in FHI-aims 538

G.2 Prerequisites . 540

G.3 Installation . 540

G.3.1 Example initial_cache.cmake file for GPU Acceleration . . . 540

G.4 Running FHI-aims with GPU Acceleration 541

G.4.1 Memory Usage with GPU Acceleration 543

H More on CMake 544

H.1 The build process . 544

Contents 7

H.2 All CMake variables . 546

H.3 CMake for developers . 550

I Building FHI-aims with a make.sys 553

I.1 A more measured approach to building FHI-aims 556

I.1.1 Cross-Compiling with a C Compiler 557

I.2 Compilation options beyond the standard Makefile 557

Bibliography 575

Index 575

8

How to use this manual

If you are reading this introduction, you are likely reading the manual for the first time.
In that case, please read on. There is, however, a strategy to use this manual most
effectively to find keywords used in the input files to FHI-aims. This is it:

• Open the manual (pdf)

• Go to the table of contents

• At the bottom of the table of contents, click on “Index”

• Find the keyword you are looking for in the index

• Click on it.

Using the manual in this way may greatly reduce the barrier to looking up what a keyword
actually does.

To first build FHI-aims, please also read this manual. You cannot simply type ’make’.
Chapter 1, particularly sections 1.1–1.3, are what you need to read.

And now, for the actual ...

9

Introduction

FHI-aims (“Fritz Haber Institute ab initio molecular simulations”) is a computer program
package for computational materials science based only on quantum-mechanical first
principles. The main production method is density functional theory (DFT) [106, 125, 56]
to compute the total energy and derived quantities of molecular or solid condensed
matter in its electronic ground state. In addition, FHI-aims allows to describe electronic
single-quasiparticle excitations in molecules using different self-energy formalisms (e.g.,
GW and MP2), and wave-function based molecular total energy calculation based on
Hartree-Fock and many-body perturbation theory (e.g., MP2, RPA, SOSEX, or the more
encompassing renormalized second-order perturbation theory, RPT2).

The basic physical algorithms in FHI-aims concerning ground state DFT and applications
are described in

Volker Blum, Ralf Gehrke, Felix Hanke, Paula Havu, Ville Havu, Xinguo Ren,
Karsten Reuter, and Matthias Scheffler, Computer Physics Communications
180, 2175-2196 (2009).

A copy of this paper can also be obtained from our web site:
http://www.fhi-berlin.mpg.de/aims/ .
Please cite this reference if you use FHI-aims.

However, FHI-aims is not just a product of this basic reference. Many more developments
make this code a reality. For each individual FHI-aims run, a list of references describing
the specific methods used is given at the end of the FHI-aims standard output. Please
give credit in your publications if you can. FHI-aims is a scientific code, written by and
for scientists. The primary recognition for their work is credit in the form of appropriate
reference to their work.

Some particularly important papers (also worth reading!) follow below. When making
use of / reference to scalability, please refer to and cite

Ville Havu, Volker Blum, Paula Havu, and Matthias Scheffler, Journal of
Computational Physics 228, 8367-8379 (2009).

and also to the large-scale eigenvalue solver ELPA:

A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A. Hei-
necke, H.-J. Bungartz, and H. Lederer, The Journal of Physics: Condensed
Matter 26, 213201 (2014).

http://www.fhi-berlin.mpg.de/aims/

10 Contents

Any application making use of functionality beyond LDA, GGA, or mGGA – i.e., Hartree-
Fock, hybrid functionals, MP2, RPA, GW , etc. – should please refer to and cite

Xinguo Ren, Patrick Rinke, Volker Blum, Jürgen Wieferink, Alex
Tkatchenko, Andrea Sanfilippo, Karsten Reuter, and Matthias Scheffler,
New Journal of Physics 14, 053020 (2012).

Further methodological publications for specific methods in FHI-aims can also be found
at

https://aimsclub.fhi-berlin.mpg.de/aims_publications.php

Finally, we’re quite proud that FHI-aims performed extremely well in the precision
benchmark of 15 leading electronic structure codes known as the “Delta Project”,
https://molmod.ugent.be/deltacodesdft – see Reference [143] in Science Magazine for
details. Numerical reliability – high precision – in everyday applications, applicable up
to very large production problems – continues to be a top priority and is, in fact, one of
the key reasons why FHI-aims was written in the first place.

In the present documentation, we do not repeat the basic physical algorithms; rather,
the focus is on the actual use of the methods in FHI-aims for a given task, including a
full description of all input and output possibilities.

The rest of this document is organized as follows:

• In Chapter 1, a “quickstart” description attempts to give you all the necessary
(but not more) information to get FHI-aims up and running on your own computer
system, up to the first test run.

• Chapter 2 explains the basic input files and input philosophy very briefly. Some
important remarks on choosing the numerical accuracy are summarized here.

• Chapter 3 gets into the gory details, summarizing all available input keywords and
their meaning, sorted roughly by their expected use.

• A large chapter 4 is dedicated to some frequently required “meta-tasks” of elec-
tronic structure theory: Not just setting up a specific set of input files for a given
run, but actually extracting some of the frequently required information from those
runs. For the more complex tasks (e.g., a transition state search), we attempt to
provide scripts that perform a series of well-defined runs automatically, the use of
an external visualization tool, etc.

• In chapter 5 we provide a description of the aitranss (ab initio transport simu-
lations) package which is a project under continuous development at the Institute
of Nanotechnology of the Karlsruhe Institute of Technology (KIT), Germany, since
2002. When combined with FHI-aims, aitranss provides a post-processor mod-
ule that enables calculation of the electron transport characteristics of molecular
junctions based on a Landauer formalism in a Green’s function formulation.

• In the appendices, we suggest further reading, more on building the code from
source, and we also address some issues (“troubleshooting”) that are either beyond

https://aimsclub.fhi-berlin.mpg.de/aims_publications.php

Contents 11

our control (operating-system related issues come to mind), or simply require some
level of experience to address.

Electronic structure theory (and FHI-aims) is extremely versatile but many of the most
interesting applications require complex workflows. We cannot possibly document them
all on our own. Please consider sending us hands-on descriptions of any complex work-
flows that worked for you, and we would gladly include them in this manual (obviously,
we’ll happily include references to your work).

In any case, we hope that this manual will be helpful for your specific purposes. We
welcome feedback, in particular regarding issues from production settings that we might
not yet have thought of / experienced ourselves. In any event: Happy computing with
FHI-aims!

12

Chapter 1

Getting started with FHI-aims

1.1 First step: Installation

FHI-aims comes as a gzipped tar archive that can be extracted in any directory of your
choice, e.g., by typing

gzip -d fhi-aims.tar.gz
tar -xvf fhi-aims.tar

at the command line of any current Unix-like system.

Note: You cannot simply type ’make’. To find out what to do for a successful build, please
look at sections 1.3-1.4, which will tell you what to do. There are a few performance
related decisions that we cannot make for you on an unknown computer system, and
the description below will hopefully help you make those decisions.

Before you ask: FHI-aims is designed to run on any current Unix-based or
Unix-like system, such as Linux or Mac OS X. However, we do not support
FHI-aims on Windows at this point. It is certainly possible to make it run
on a Windows platform using the appropriate tools, but not simply out-of-
the-box.

The full package then extracts itself into a directory ./fhi-aims, with the following sub-
directories:

• bin/ : Location for any FHI-aims binaries built using the standard Makefile

• doc/ : Contains possible further documentation.

• species_defaults/ : Grids, basis sets and other defaults for chemical elements 1-
102. These can be copy-pasted as “species” into the FHI-aims input file control.in.
FHI-aims provides three levels of standard species defaults: “light”, “tight”, and
“really_tight” (see Sec. 2.2). In addition, some further preconstructed special-
purpose species defaults are provided in a “non-standard” subdirectory.

1.1. First step: Installation 13

• src/ : This directory, and its subdirectories, contain all of FHI-aims source code
files.

• testcases/ : Simple examples to test and illustrate the basic functioning of the
code. The input files provided here may also be used as templates for any new
electronic structure calculations, rather than assembling them from scratch.

• utilities/ : Some simple scripts to extract basic information from the standard
output of FHI-aims: Visualization of geometries using the .xyz format, extracting
a series of geometries during relaxation as a movie, or extracting the development
of energies and forces during relaxation. There is also some more sophisticated
infrastructure here: Script-based ab initio replica exchange molecular dynamics
(Luca Ghiringhelli) and a basin-hopping framework to predict the structure of
small clusters from scratch (Ralf Gehrke).

• regression_tests/ : This directory contains a set of small standard test cases that
can be run automatically using a script, regressiontools.py – when run without
any flags, it will provide its own self-documentation. Unfortunately, running this
script on a given platform and queueing system is not always trivial. If you can
figure this out, we do recommend running and checking the regression tests on
any new machine on which FHI-aims was installed. We have encountered rare
but non-zero instances of compiler options (outside the control of FHI-aims) that
produce correct numbers almost always – except for specific methods where the
compiler has a bug. The regression tests will catch such issues before they strike
in a production run. They will allow to check the compiled FHI-aims binary a
little more extensively, but they are not strictly necessary to run FHI-aims. In
particular, please do not view the input files of the regression tests as FHI-aims
best practices. Follow the manual, not simply the regression tests. In many cases,
they are not. Rather, what is tested may be a corner case that can be handled
differently (better) in normal practical scenarios.

• benchmarks/ : This directory contains specific example runs of calculations, in-
cluding output files and specific timings, illustrating how FHI-aims should perform
and scale on a current high-performance computer. They also include some es-
sential practices to get high performance and memory efficiency in FHI-aims for
large runs on very large computers. We highly recommend trying to run these
benchmarks after successfully building FHI-aims on a parallel machine with suf-
ficiently many CPUs. These benchmarks will give you an indication of whether
you are achieving the expected performance of the code. This depends not only
on building FHI-aims correctly, but also on the correct setup of the computing
environment itself (not trivial). Running actual benchmarks is the best way to find
out.

A README file in that directory contains some of the quickstart information given here
in condensed format.

14 Chapter 1. Getting started with FHI-aims

1.2 Prerequisites (libraries and software) you’ll need

Since FHI-aims is distributed in source code form, the first task is to compile an exe-
cutable program. For this, the following mandatory prerequisites are needed:

• A working Fortran 2003 (or later) compiler. A good example for x86 type com-
puters is Intel’s ifort compiler. A free but significantly slower compiler for all
platforms is gfortran from the GNU compiler collection (http://gcc.gnu.org/
fortran) or the g95 compiler (http://www.g95.org). Do not underestimate
this slowdown, though – a factor of three or so is possible.

• A compiled version of the lapack library, and a library providing optimized basic
linear algebra subroutines (BLAS). Standard commercial libraries such as Intel’s
mkl or IBM’s essl provide both lapack and BLAS support. lapack can also be
found at http://www.netlib.org/lapack/.
Having an optimized BLAS library for YOUR specific computer system(s) is critical
for the performance of FHI-aims. Very good free implementations include ATLAS
(http://math-atlas.sourceforge.net/).

You should also have a version of GNU Make and CMake for compiling FHI-aims. If
CMake is not present, it is also possible to work with just GNU Make, but it is worth the
effort to obtain CMake. Typically, GNU Make will already be present on your system,
either as make, or possibly as gmake. CMake should be available in the official repository
of your Linux distribution.

The next two prerequisites are optional, but absolutely essential for any current use of
FHI-aims: Support for parallel architectures, and (separately) support for fully parallel
linear algebra. Thus, you will also need:

• A version of MPI libraries for parallel execution, often already present on a par-
allel system (if not, http://www.open-mpi.org/ provides one of several free
implementations). Our experience is that Intel’s MPI library is a very worthwhile
investment on x86 platforms (better performance).

• Compiled versions of the scalapack library, and basic linear algebra communi-
cation subroutines (BLACS). Capable implementations can be found at http:
//www.netlib.org/, but are often provided already in the numerical libraries of
many vendors (e.g., Intel MKL on Linux).

Finally, the default compilation builds an executable which includes some parts of the
code that are written in C. This may be turned off (see below), but we highly recommend
compiling with C support as it introduces a number of useful features. You need:

• A C compiler – available on every Unix platform.

The creation of a complete, MPI-, scalapack-, and C-enabled binary is effort
well spent. This should be the goal when compiling FHI-aims for any produc-
tion purposes. This means that you should ultimately aim to build FHI-aims
with the USE_MPI and USE_SCALAPACK CMake options enabled (see below).

http://gcc.gnu.org/fortran
http://gcc.gnu.org/fortran
http://www.g95.org
http://www.netlib.org/lapack/
http://math-atlas.sourceforge.net/
http://www.open-mpi.org/
http://www.netlib.org/
http://www.netlib.org/

1.3. Managing the build process with CMake 15

To create an actually working FHI-aims build, please read sections 1.3, 1.4 and (for much
more information) perhaps appendix H. Please also ask and consider helping out others
by sharing settings that work on a given platform. This can be done via the FHI-aims
slack channel, via the “aimsclub”, via the FHI-aims gitlab server – please see Section
1.7 below for ways to reach us.

1.3 Managing the build process with CMake

Building of FHI-aims is managed by CMake, which is a free and open-source build
system generator. A build system generator is a tool that does not build anything by
itself. Instead, it generates build scripts for a particular build system, e.g., Make, which
are then used for the actual building. The build scripts, e.g., makefiles, are generated
based on the user’s environment and it is the job of CMake to ensure that the generation
stage is as straightforward and failsafe as possible. In principle, CMake is completely
platform agnostic (the C stands for cross-platform). The focus of the present is on
supporting FHI-aims in a Linux or Unix environment.

CMake was released in 2000 and is currently used in a large number of projects (including
some big ones like HDF5, KDE, mySQL, and Netflix). One of the motivators for FHI-
aims was a push from the ESL (Electronic Structure Library) project to adopt CMake
as the build management standard. ESL is a collection of electronic structure codes
with the aim of avoiding duplication of functionality by connecting different electronic
structure codes with each other with minimal effort. That is one of the reasons to use
CMake as it makes it relatively easy to include other CMake projects into a given project.

1.3.1 Example CMake usage

Here is a typical example to get started with CMake.

1. Go to the root directory of FHI-aims (the top-level directory of the FHI-aims git
repository or the distributed version of FHI-aims - i.e., one level above src/) and
create a build directory:

mkdir build && cd build

2. Create a file called initial_cache.cmake in the build directory or make a copy
of initial_cache.example.cmake which is in the root directory. The following
is example contents for that file,

################
Fortran Flags
################
set(CMAKE_Fortran_COMPILER "mpif90" CACHE STRING "" FORCE)
set(CMAKE_Fortran_FLAGS "-O3 -ip -fp-model precise" CACHE STRING ""FORCE)
set(Fortran_MIN_FLAGS "-O0 -fp-model precise" CACHE STRING "" FORCE)

16 Chapter 1. Getting started with FHI-aims

################
C Flags
################
set(CMAKE_C_COMPILER "icc" CACHE STRING "" FORCE)
set(CMAKE_C_FLAGS "-O3 -ip -fp-model precise -std=gnu99" CACHE STRING "" FORCE)

################
Libraries
################
set(LIB_PATHS "/opt/intel/mkl/lib/intel64" CACHE STRING "" FORCE)
set(LIBS "mkl_intel_lp64 mkl_sequential mkl_core
mkl_blacs_intelmpi_lp64 mkl_scalapack_lp64" CACHE STRING "" FORCE)

################
Optional Flags
################

Switch on/off use of mpi; default: ON
set(USE_MPI ON CACHE BOOL "" FORCE)
Switch on/off use of scalapack; default: ON
set(USE_SCALAPACK ON CACHE BOOL "" FORCE)
set(USE_HDF5 OFF CACHE BOOL "" FORCE)

which you can edit to reflect your environment. The FORCE flag at the end of
the set command tells CMake to overwrite existing entries. We recommend it as
default. If you remove it, CMake will not change entries, once they have been ini-
tialized. When using the Intel C compiler, the -std=gnu99 flag (CMAKE_C_FLAGS
flags) is currently needed for the C sources of ELPA and i-PI (this would not be
the case with gcc, which also works fine together with Intel Fortran).
As is evident, setting the correct values for these flags requires knowledge of several
things: The Fortran and C compilers to be used, the Fortran and C compiler
optimizations (or, correspondingly, flags for parts of the code that should not be
optimized), the mathematical and MPI libraries to be used and their locations.
Note that these are few items, but their choice is important for the performance
of the code on a given computer. There are many different setups and automated
tools do not always get these choices right. In the file above, we here identify
those specific pieces where we feel that a user decision is necessary. Please ask for
assistance (FHI-aims forums or slack channel) if needed.

3. Issue

cmake -C initial_cache.cmake ..

from the build directory to configure. In this example, the “..” directory is used. In
general, the directory given in this command should point to the directory where
the ”CMakeLists.txt” file provided with FHI-aims is located.
And yes – it has to be “-C” (capital C). “-c” (lowercase) will NOT work but will
produce an error message that is not, unfortunately, helpful. So, if cmake refuses

1.4. CMake variables 17

to get to work at all, double-check the exact spelling of the above line first (and
make sure that the “initial_cache.cmake” file is in place and that “..” indeed points
to the correct directory).
If you encounter any other errors during this step, we recommend correcting your
initial_cache.cmake file, saving it, then deleting the build directory and restart-
ing from the first step.

4. Issue

make -j [number]

to build. An executable whose name starts with aims is created in the same
directory.
The value of [number] should be the same or less than the number of physical
CPU cores available on your computer. Choosing sufficiently many cores speeds up
the build process but on shared computers with multiple users (e.g., the login node
of a cluster) it is typically nice to use only as many as you need, not necessarily
the full node.

5. Move the newly generated FHI-aims binary to a directory where your binary files
are typically collected. For example, if your FHI-aims top level directory contains
a subdirectory bin/, use:

mv aims.<version> ../bin

In that command, replace the placeholder <version> with the actual completion
of the name of the FHI-aims binary that you had just created.

For more details on how to use CMake, see Sec. H.

1.4 CMake variables

Here are some of the commonly used CMake variables.

• CMAKE_Fortran_COMPILER — Name of the Fortran compiler executable. Use a
full path if location not automatically detected.

• CMAKE_Fortran_FLAGS — Compilation flags that control the optimization level
and other features that the compiler will use.

• LIB_PATHS — List of directories to search in when linking against external libraries
(e.g., “/opt/intel/mkl/lib/intel64”)

• Fortran_MIN_FLAGS — Compilation flags only for files that should not be opti-
mized because optimization is not needed. For example, the source file “read_control.f90”
only controls how the input file control.in is read - but some compilers spend
excessive amounts of time compiling this file if a different optimization level than
“-O0” is specified.

18 Chapter 1. Getting started with FHI-aims

• LIBS — List of libraries to link against
(e.g., “mkl_blacs_intelmpi_lp64 mkl_scalapack_lp64”)

• USE_MPI — Whether to use MPI parallelization when building FHI-aims. This
should always be enabled except for rare debugging purposes. (Default: automat-
ically determined by the compiler)

• USE_SCALAPACK — Whether to use Scalapack’s parallel linear algebra subroutines
and the basic linear algebra communications (BLACS) subroutines. It is recom-
mended to always use this option. In particular, large production runs are not pos-
sible without it. The Scalapack libraries themselves should be set in LIB_PATHS
and LIBS. (Default: automatically determined by LIBS)

• CMAKE_C_COMPILER — C compiler.

• CMAKE_C_FLAGS — C compiler flags.

• USE_LIBXC — Whether additional subroutines for exchange correlation function-
als, provided in the LibXC library, should be used. By default, this is ON, i.e. LibXC
will be compiled into the executable. It is advised to always use this. Please respect
the open-source license of this tool and cite the authors if you use it.

• USE_SPGLIB — Whether the Spglib library for symmetry handling will be used.
By deafult, this is ON, i.e. Spglib will be compiled into the executable. Please
respect the open-source license of this tool and cite the authors if you use it.

For all CMake variables, see Sec. H.2.

For a detailed step-by-step cmake tutorial, please visit: https://aims-git.rz-berlin.
mpg.de/aims/FHIaims/-/wikis/CMake%20Tutorial

1.4.1 MPI parallelization

On current computers, there is never a reason to compile FHI-aims without support for
MPI in productions. Nevertheless, for testing purposes, it may sometimes be useful to
compile without MPI support. We therefore cover this possibility here, also exemplifying
how to manipulate CMake in a slightly more refined way.

In order to force MPI to be disabled, put

set(USE_MPI OFF CACHE BOOL "")

into the initial cache file. In order to force MPI to be enabled, use

set(USE_MPI ON CACHE BOOL "")

instead. If you want to enable/disable MPI support after the first configuration, issue

ccmake ~build

https://aims-git.rz-berlin.mpg.de/aims/FHIaims/-/wikis/CMake%20Tutorial
https://aims-git.rz-berlin.mpg.de/aims/FHIaims/-/wikis/CMake%20Tutorial

1.5. Running FHI-aims 19

where ∼build is the build directory. Move cursor to the field USE_MPI and hit enter.
This toggles its state between ON/OFF. Hit ’c’ to configure, ’g’ to generate the build
files, and rebuild the project.

1.5 Running FHI-aims

As a simple test run to establish the correct functioning of FHI-aims and also to familiarize
yourself with the basic structure of the input and output files, we suggest you change
directories to the testcases/H2O-relaxation/ directory. The test run provided there
relaxes a simple H2O molecule from an initial (distorted) structure to the stable one,
and computes total energies, eigenvalues etc. along the way. Notice that the key
convergence settings (basis sets and grids) in this example are chosen to be fast. The
results (particularly the relaxed geometry) are still trustworthy, but we encourage you
already here to explore more stringent convergence settings later. In fact, always explore
the impact of critical convergence settings on the accuracy of key results in your own
project.

In the testcases/H2O-relaxation/ directory, type

../../bin/aims.version < /dev/null | tee H2O_test.own

at the command line. For “version”, you must insert the code version stamp that was
actually downloaded and built (for example, 171221 or whichever code version you are
building).1 For faster execution, you should use the appropriate binary including the
necessary mpi command instead. On many (but not all) platforms, that command will
be mpirun, and will also require you to specify the number of processors to be used by
a flag. For 20 CPU cores, this could look like

mpirun -np 20 ../../src/aims.version < /dev/null | tee H2O_test.own

The result will be an output stream on your computer screen (created by “tee”) which
is also captured in an output file H2O_test.own. Any critical information regarding
computational settings, results (total energies, forces, geometries, ...), errors etc. should
be contained in this file, which we encourage you to look at (yes, it is meant to contain
human-readable and useful explanations). Any other output files are only written if
requested, and will be covered in the later sections of this text.

The standard output stream or file contains any and all output that
FHI-aims writes by default. For later use, you must save this output
stream to disk in some way, using standard Unix redirections such as
the tee command above or a simple redirect.

Apart from the first expression given above, such redirections might look like this:

mpirun ../../bin/aims.version.scalapack.mpi.x < /dev/null > H2O_test.own

1The FHI-aims version stamp can be modified to whatever you wish in version_stamp.txt in
the src/ directory.

20 Chapter 1. Getting started with FHI-aims

or even like this:

nohup mpirun ../../src/aims.version < /dev/null > H2O_test.own 2>&1 &

The latter version decouples the FHI-aims run completely from your current login shell
and additionally saves any system error messages to the standard output file as well. With
the above command sequence, you may safely log out from the computer in question,
the code should keep running in the background.

Take care to monitor your running processes using the ps Unix command. For instance,
it is highly unadvisable to run ten instances of FHI-aims at once in the background
on a single CPU and expect any reasonable performance of the computer at all. The
above hints are just examples of general Unix command-line sequences. For a complete
treatment, we recommend that beginners read a separate Unix textbook, or—often
feasible—learn by doing and Google.

If successful (otherwise, consider the warnings three paragraphs below), you may wish
to compare your results to those contained in our own output from this run, which is
contained in the file H2O.reference.out. You should obtain exactly the same total
energies, forces, and geometries as given in this file. Any information regarding timing
is, of course, specific to your computer environment, and not necessarily the same.

The directory testcases/H2O-relaxation/ contains two more files, control.in and
geometry.in. These are the sole two input files required by FHI-aims, and are the most
important files to learn about in the rest of this documentation. In brief, geometry.in
contains any information related directly to a system’s geometry – normally, this will
be atomic positions (in Å) and perhaps lattice vectors for periodic calculations, but no
more. Any other, method-related, input information is part of control.in.

In practice, we attempt to strike a balance between the information needed by
control.in, and information set to safe defaults unless specified explicitly. For exam-
ple, you must specify the level of theory (e.g., the fact that PBE exchange-correlation
is used) and also the basis set and other numerical settings employed. While it is highly
useful to have this relevant information openly accessible, this would also create the need
to personally edit a large amount of input before ever tackling the first run. For any
information tied to the actual element (or “species”; arguably the most complex informa-
tion required), we therefore provide ready-made template files for all elements (1-102) in
the species_defaults directory. They are ready for copy-paste into control.in. These
files will still benefit from some adjustment to your personal needs (for instance, the
provided integration grids are set rather on the safe side, at the expense of more CPU
time), but should greatly simplify the task.

Two final, important warnings regarding the execution of FHI-aims that are beyond our
direct control:

• FHI-aims requires that the execution stack size available to you be large enough
for some initial internal operations. Spare us the details (ample explanation of
the meaning of the “stack” in Unix can be found elsewhere), but for reasons
unbeknownst to us, some vendors limit the default user stack size to ≈5 MB at
a time when the typical available system memory per processor is 2 GB or more.
If too little stack is available, your FHI-aims run will segfault shortly after the

1.5. Running FHI-aims 21

command was launched. To avoid this, always type:

ulimit -s unlimited

(when using the bash shell or similar), or

limit stacksize unlimited

(when using the tcsh or similar).

echo $SHELL

will tell you which shell you are using. Ideally, this same setting should be specified
in your .profile, .bashrc, or .cshrc login profiles. If “unlimited” is prohibited by
your computer (e.g., on MacOS), try setting a large value instead, e.g., ulimit
-s 500000.

• An important system settings for parallel execution is the environment variable

export OMP_NUM_THREADS=1

(the syntax is correct for the bash shell). When using Intel’s mkl, you should
additionally set MKL_NUM_THREADS to 1 and MKL_DYNAMIC to FALSE.

• Do not try to use OpenMP with FHI-aims unless you know exactly why you are
doing this. FHI-aims is very efficiently MPI-parallelized and large portions of the
code do not support OpenMP at all. (And they do not need to – MPI is simple
as effective or more effective on practically all platforms in our experience.)

After startup, the first messages contain information about your computer’s environment:
Code version, compiler information, host names, environment variables which turned out
to be useful and which should be set on your system (e.g. OMP_NUM_THREADS), etc. The
complete input files control.in and geometry.in are also repeated verbatim. Any
FHI-aims run should thus be completely reproducible based on the standard output
stream alone.

Should you encounter further issues, consider also the troubleshooting information doc-
umented in Appendix A.

All this said, after successfully running the test run, you should now be ready to go with
FHI-aims. The remainder of this document is about the details – available options, how
to run aims most efficiently, etc. Happy computing!

22 Chapter 1. Getting started with FHI-aims

1.6 Compiling faster versions of FHI-aims on
specific platforms

FHI-aims is intended to be a Fortran-only code, which – for most of the code – means
that building the “fastest” version of FHI-aims on a given computer architecture is “only”
a matter of finding the right Fortran compiler and compiler options for that processor.
For some architectures, specific compiler options are collected in the FHI-aims club wiki
– please check there and please add any useful information that you may find.

That said, one particular performance-critical area for large systems is the Kohn-Sham
eigenvalue solver. In FHI-aims and on parallel computers, this problem is solved by
the ELSI infrastructure and the ELPA library. ELPA, in fact, allows its users to specify
specific, platform-optimized so-called linear algebra “kernels.” By default, FHI-aims uses
a generic kernel which will compile with any Fortran compiler and will give reasonable
speed. However, if one knows which specific computer chip one is using, it is possible
to substitute this kernel with an architecture specific kernel and compile a faster version
of ELPA into FHI-aims. This is possible, for example, for the BlueGene/P, BlueGene/Q,
Intel AVX and several other Intel architectures. For standard Intel x86 chips, there is
even an “assembler” based kernel that will get fast performance regardless of the Fortran
compiler above.

Note that this choice can matter. For example, the “generic” ELPA kernel will produce
fast code for the Intel Fortran compiler, but much slower code with certain versions of
the PGI Fortran compiler (often found on Cray machines).

At this time, please ask (see below) about the most effective strategy to link against
the “best” ELSI and ELPA libraries. Ideally, this will require a user to build a separate
(standalone) instance of ELPA and of ELSI first. This can be very worthwhile.

1.7 Finding the other FHI-aims developers and
users (talk to us!)

It can be surprisingly useful (and more fun) to find others who work with FHI-aims – to
help find out who might already have solved a specific problem, how a given problem
might be solved, exchange experiences, devise new and cool functionality that could take
electronic structure theory to the next level, and so on. Some of us also simply like to
have a cup of coffee with others (see below). FHI-aims only functions as a code and
science tool because of the community around it, and we’re always happy to meet new
users, developers, and generally find out how to do better science together.

At the time of writing, we have a number of active communication channels. Anyone
using or developing with FHI-aims is encouraged to frequent one or all of them:

• The forums and wiki at aimsclub, https://aimsclub.fhi-berlin.mpg.de/ .
This is a place where questions can be asked, answered, and looked up, and
anyone is welcome and encouraged to share their experiences there. Additionally,

https://aimsclub.fhi-berlin.mpg.de/

1.7. Finding the other FHI-aims developers and users (talk to us!) 23

wiki entries are also encouraged. If nothing else, the wiki is a place to let the rest
of the world know of successful build settings for FHI-aims on different platforms.

• An active slack channel (chat) at https://fhi-aims.slack.com/ . This is a
place where a number of developers and users hang out and can be easily reached
for questions in public semi-private and private conversations. Pretty effective. To
join, you’ll need an invitation from one of the slack channel owners, which we’ll hap-
pily provide. Just ask, for example via aimsclub or by email (volker.blum@duke.edu
is one of the owners, and there are several others as well).

• Monthly FHI-aims video meetings for anyone with an interest, usually announced
on aimsclub and on the slack channel.

• FHI-aims Users’ and Developers’ meetings, which we hold roughly every two years.

• For those who use the FHI-aims mainline (development) version – everyone with an
FHI-aims license is welcome and encouraged to ask for access to this usually very
stable version – there is a “buildbot” that shows the current status of FHI-aims’
regression tests for a variety of platforms, compilers, and other choices at any given
time. The buildbot can be accessed at http://www.theo.ch.tum.de/bbot/#/
.

• Finally, for those who are shy, you are also welcome to email us:
At aims-coordinators@fhi-berlin.mpg.de or (for those who are even more shy) email
Volker, the lead developer, at volker.blum@duke.edu . Email is a productive avenue
and Volker answers to the best of his abilities and available human time. However,
bear in mind that one of the above channels will also reach Volker and, in addition,
the many others who make FHI-aims happen and who might already have solved
a problem and have an answer ... although you’d never have thought anyone did.

In short – please feel welcome and encouraged to talk to us if useful. FHI-aims is about
science, and we’re accessible. And if you’re new to all this and someone helped you out
especially, feel free to send them a Starbucks gift card (no one has ever done that, but
hey, you could be the first :) or, even better, to cite their contribution to FHI-aims.

https://fhi-aims.slack.com/
http://www.theo.ch.tum.de/bbot/#/

24

Chapter 2

Input Files: Basic Handling

2.1. The mandatory input files: control.in and geometry.in 25

Geometry for water -- needs to be relaxed as the water molecule
described here has a 90degree bond angle and a
1 Angstrom bond distance ...
atom 0.00000000 0.00000000 0.00000000 O
atom 0.70700000 -0.70700000 0.00000000 H
atom -0.70700000 -0.70700000 0.00000000 H

Figure 2.1: Example input file geometry.in, provided with the simple test case (relaxation
of H2O) described in Sec. 1.5.

2.1 The mandatory input files: control.in and
geometry.in

As discussed in Sec. 1.5, FHI-aims requires exactly two input files—control.in and
geometry.in—located in the same directory from which the FHI-aims binary is invoked.
To start FHI-aims, no further input should be needed.1

Figures 2.1 and 2.2 show as examples the geometry.in and control.in files used
for the simple test case (relaxation of a water molecule) described in Sec. 1.5. The
philosophy of their separation is simple:

• geometry.in contains only information directly related to the atomic structure for
a given calculation. This obviously includes atomic positions, with a description of
the particulars of each element (or species) expected in control.in. In addition,
lattice vectors may be defined if a periodic calculation is required. Any other
information is only given here if it is directly tied to the atom in question, such as
an initial charge, initial spin moment, relaxation constraint etc. The order of lines
is irrelevant, except that information specific to a given atom must follow after
the line specifying that atom, and before any following atom is specified.

• control.in contains all other runtime-specific information. Typically, this file
consists of a general part, where, again, the particular order of lines is unimportant.
In addition, this file contains species subtags that are references by geometry.in.
Within the description of a given species, the order of lines is again unimportant,
but all information concerning the same species must follow the initial species tag
in one block.

In both files, the choice of units is Å for length parameters, and eV for energies; derived
quantities are handled accordingly. Lines beginning with a # symbol are treated as com-
ments, and empty lines are ignored. Finally, each non-comment line has the following,
free-format structure:

keyword value <value> <value>
1A few specific keywords (e.g., a restart of an existing calculation from an earlier wave function

or density matrix) may require additional input that simply can not be included in user-edited file.
Such input files will be described with the appropriate tasks.

26 Chapter 2. Input Files: Basic Handling

###
#
Volker Blum, 2017 : Test run input file control.in for simple H2O
#
###
#
Physical model
#

xc pbe
spin none
relativistic none
charge 0.

#
Relaxation
#

relax_geometry bfgs 1.e-2
#
##
#
FHI-aims code project
VB, Fritz-Haber Institut, 2009
#
Suggested "light" defaults for H atom (to be pasted into control.in file)
Be sure to double-check any results obtained with these settings for post-processing,
e.g., with the "tight" defaults and larger basis sets.
#
##

species H
global species definitions

nucleus 1
mass 1.00794

[...]

Figure 2.2: Excerpts from the example input file control.in, provided with the simple
test case (relaxation of H2O) described in Sec. 1.5. A section of general (system-wide)
run-time settings is separate from individual sections that describe settings specific to
certain species (chemical elements).

2.1. The mandatory input files: control.in and geometry.in 27

Generally, all keywords and values are case sensitive: Do not expect FHI-aims to under-
stand an “XC” keyword if the specified syntax is “xc”.

It is the objective of the next chapter, Chapter 3, to list all legitimate keywords in
FHI-aims, and to describe their function.

28 Chapter 2. Input Files: Basic Handling

2.2 Defaults for chemical elements:
species_defaults

FHI-aims requires exactly two input files, located in the same directory where a calcula-
tion is started: control.in and geometry.in. Both files can in principle be specified
from scratch for every new calculation, using the keywords listed in Chapter 3. However,
choosing the central computational settings consistently for series of calculations greatly
enhances the accuracy of any resulting energy differences (error cancellation).

In FHI-aims, the key parameters regarding computational accuracy are actually subkey-
words of the species keyword of control.in, controlling the basis set, all integration
grids, and the accuracy of the Hartree potential. These settings should of course not be
retyped from scratch for every single calculation; on the other hand, they should remain
obvious to the user, since these are the central handles to determine the accuracy and
efficiency of a given calculation.

FHI-aims therefore provides preconstructed default definitions for the important subkey-
words associated with different species (chemical elements) from Z=1-102 (H-Md).
These can be found in the species_defaults subdirectory of the distribution, and are built
for inclusion into a control.in file by simple copy-paste.

For all elements, FHI-aims offers three or four different levels of species_defaults:

• light : Out-of-the-box settings for fast prerelaxations, structure searches, etc.
In our own work, no obvious geometry / convergence errors resulted from these
settings, and we now recommend them for many household tasks. For “final”
results (meV-level converged energy differences between large molecular structures
etc), any results from the light level should be verified with more accurate post-
processing calculations, e.g. tight.

• intermediate : This level is presently only available for a few elements, but can
play an important role for large and expensive calculations, especially for hybrid
functionals. Intermediate settings use most of the numerical settings from tight,
but includes basis functions between light and tight. The cost of hybrid functionals
scales heavily with the number of basis functions found on a given atom. Full tight
settings, which were designed with the much cheaper semilocal functionals in mind,
can be prohibitively expensive for large structures and hybrid density functionals.
Hybrid DFT results from intermediate settings are typically completely sufficient for
production results, much cheaper, and we hope to produce intermediate defaults
for a wider range of elements in coming years.

• tight : Regarding the integration grids, Hartree potential, and basis cutoff po-
tentials, the settings specified here are rather safe, intended to provide meV-level
accurate energy differences also for large structures. In the tight settings, the basis
set level is set to tier 2 for the light elements 1-10, a modified tier 1 for the slightly
heavier Al, Si, P, S, Cl (the first spdfgd radial functions are enabled by default),
and tier 1 for all other elements. This reflects the fact that, for heavy elements,
tier 1 is sufficient for tightly converged ground state properties in DFT-LDA/GGA,

2.2. Defaults for chemical elements: species_defaults 29

but for the light elements (H-Ne), tier 2 is, e.g., required for meV-level converged
energy differences. For convergence purposes, the specification of the basis set
itself (tier 1, tier 2, etc.) may still be decreased / increased as needed. Note that
especially for hybrid functionals, tight can already be very expensive and specific
reductions of the number of radial functions may still provide essentially converged
results at a much more affordable cost (see intermediate settings).

• really_tight : Same basis sets (radial functions and cutoff radii) as in the tight
settings, but for the other numerical aspects (grids, Hartree potential), settings
that are strongly overconverged settings for most purposes. The idea is that re-
ally_tight can be used for very specific, manual convergence tests of the basis set
and other settings – if really needed.
Note that the “tight” settings are intended to provide reliably accurate results
for most DFT production purposes; and they are not cheap. The absolute total
energies for tight and DFT are in practice converged to some tens of meV/atom
for most elements. To go beyond, take the really_tight settings and increase the
basis set or other numerical aspects step by step. (Radial function by radial func-
tion may often be a good strategy to go.) We emphasize that the really_tight
settings should only ever be needed for individual, specific tests. They should not
be needed for any standard production tasks unless you have seriously too much
CPU time to spend.
Specific differences between tight and the unmodified really_tight settings: The
basis_dep_cutoff keyword is set to zero, a prerequisite to approach the con-
verged basis limit. Regarding the Hartree potential, l_hartree is set to 8,
and the maximum number of angular grid points per radial integration shell is
increased to 590.
Note that there can still be corner cases where you may want to test some nu-
merical setting beyond really_tight. Mostly, these are custom scenarios or things
beyond standard FHI-aims calculations of DFT total energies. Examples include:
The confinement radius for surface work functions (should be checked), use of very
extended or extremely tight Gaussian-type orbital basis functions (e.g., from very
large Dunning-type basis sets – the density of the radial and angular grids should
be checked), or RPA and MP2 calculations, which can need very different and
often much larger basis sets (again, radial and angular grids should be checked).

The FHI-aims species defaults light, tight, intermdiate, tight, and really_tight are
shipped in two versions in the folder species_defaults:

• defaults_2010

• defaults_2020

We recommend to use the re-worked defaults_2020. The updates of the light, tight,
and really_tight defaults compared to the defaults_2010 version are the results of a
careful analysis of the Delta-Code DFT (DCDFT) Test (71 solids). So the updates
should improve the accuracy of an element for the material class (insulator or metal)
that is present in the DCDFT Test (e.g., the Be crystal is metallic in the test, but may
be an ion for some other systems).

30 Chapter 2. Input Files: Basic Handling

These are the current updates for the version defaults_2020 :

• light_spd : The former light species defaults of default_2010 for the elements 13-
17, 31-35, and 49-53. These settings are of use for simulations, where the former
defaults were sufficient and very light computational settings are needed (e.g. MD
simulations).

• light: Be(+3p), Al-Cl(+4f), K(radial_base,cut_pot), Co-Ni(+ionic 4p), Ga-Br(+4f),
Kr-Sr(radial_base,cut_pot), In-I(+4f), Xe-Ba, Rn(radial_base,cut_pot)

• intermediate: now, complete set of elements 1-86.

• tight: Mn(+3d function), Zn-Kr(+5g function), In-Xe(+5g function)

• really_tight: Zn-Kr(+5g function), In-Xe(+5g function)

A separate group of species defaults for light elements (H-Ar) is available especially for
calculations involving explictly correlated methods (methods other than semilocal and
hybrid density functionals):

• NAO-VCC-nZ : NAO type basis sets for H-Ar by Igor Ying Zhang and coworkers
[232]. These basis sets are constructed according to Dunning’s “correlation consis-
tent” recipe. Their intended application is for methods that invoke the continuum
of unoccupied orbitals explicitly, for instance MP2, RPA or GW . Note that they
were constructed for valence-only correlation (hence “VCC”, valence correlation
consistent), i.e., they work best in frozen-core correlated approaches following a full
s.c.f. cycle (core and valence) to generate the orbitals. While NAO-VCC-nZ can
be used for “normal” density functional theory (LDA, GGA, or hybrid functionals),
the normal “light”, “intermediate”, “tight” and “really_tight” species defaults are
more effective in those cases. The advantage of NAO-VCC-nZ over GTO basis
sets such as the Dunning “cc” basis sets is that with NAOs, both the behaviour
near the nucleus as well as that for the tails of orbitals far away from atoms is
much more physical. This means that we can use more efficient integration grids
than for GTO basis sets to obtain systematic convergence of the unoccupied state
space.

The NAO-J-n basis sets are designed for the calculation of indirect spin-spin coupling
constants (J-couplings):

• NAO-J-n : The basis sets are available for most light elements from H to Cl. Since
these are more expensive (tighter grids) than other basis sets, they should only be
used for J-couplings. Even then, they should only be placed on atoms of interest,
while cheaper basis sets can be used on other atoms. They are constructed by
adding tight Gaussian orbitals to the NAO-VCC-nZ basis sets. In order to describe
the Gaussian orbitals correctly near the nucleus, tighter grids than normally are
required (with radial_multiplier 8 and l_hartree 8, among other
parameters). Other stages of the calculation, such as geometry relaxation, should
be performed with basis sets more suitable for the particular task (using, e.g., the
default tight settings).

2.2. Defaults for chemical elements: species_defaults 31

In addition, the species_defaults directory contains a few more sets of species defaults
for special purposes. These can be found in the non-standard subdirectory and include:

• gaussian_tight_770 : Species defaults that allow to perform calculation with
some standard published Gaussian-type orbital (GTO) basis sets for elements H-Ar
(including basis sets due to Pople, Dunning, Ahlrichs and their coworkers). These
species defaults are meant to allow for exact benchmarks against GTO codes
such as NWChem. The other numerical settings (especially grids) are thus much
tighter than needed for “normal” NAO-type calculations. Note that FHI-aims is
not optimized for GTO basis sets. We recommend NAO-type basis sets, not GTO
basis sets, for production calculations – NAO-type basis sets are much easier to
handle with our techniques and give better accuracy at lower cost. That said – the
grid settings in the gaussian_tight_770 species defaults are rather overconverged
for benchmark purposes. One could create much more efficient species defaults
for GTO basis sets – but GTOs still would not be as efficient as NAO basis sets
(at the same level of accuracy).

• Tier2_aug2 : Example, pioneered by Jan Kloppenburg, of basis sets that merge
FHI-aims’ tier2 basis sets with a very reduced set of Gaussian augmentation func-
tions taken from Dunning’s augmented correlation-consistent basis sets. This
prescription appears to provide a remarkably accurate but affordable foundation to
compute neutral (optical) vertical molecular excitation energies by linear-response
time-dependent density functional theory, as well as (thanks to Chi (Garnett) Liu)
the Bethe-Salpeter Equation.

• light_194 : This is just an example of how to tune down the normal “light” basis
sets of FHI-aims by reducing the integration grid even further. For things like fast
molecular-dynamics type screening of many structures, this is a perfectly viable
approach. Examples are provided for H-Ne. Obviously, do test the impact of such
modifications for your own purposes.

For calculations that involve the excited state spectrum directly (this includes GW ,
MP2, or RPA, among others), the numerical settings from tight still perform rather well
if a counterpoise correction is performed (i.e., for energy differences). Still, the basis
set size and/or cutoff radii must be converged and carefully verified beyond the settings
specified in tight.

To extrapolate the absolute total energy of methods which rely on the unoccupied state
continuum explicitly, e.g., RPA or MP2, we recommend using the NAO-VCC-nZ basis
sets. These basis sets are presently available for light elements (H-Ar). A popular
completeness-basis-set extrapolation scheme is two-point extrapolation:

E[∞] = E[n1]n3
1 − E[n2]n3

2
n3

1 − n3
2

where “n1” and “n2” are the indicies of NAO-VCC-nZ. This 1/n3 formula was originally
proposed for the correlation energy, but was also used directly for the total energy.

32 Chapter 2. Input Files: Basic Handling

2.3 A very quick guide to ensuring numerical
convergence with FHI-aims

FHI-aims is programmed and set up to allow efficient all-electron calculations for any type
of system. During the writing of FHI-aims, a key goal was to always ensure that such
efficiency does not come at the price of some irretrievable accuracy loss. Results obtained
by FHI-aims should be the answer to the physical question that you asked (provided that
the functionality is there in FHI-aims) - not some arbitrary approximation.

The species_default levels provided by FHI-aims, light, intermediate, tight, and (if ever
needed!) really_tight, should provide such reliable accuracy as they come. The NAO-
VCC-nZ basis sets provide additional functionality specifically for correlated methods
(MP2, RPA, GW , etc.) and light elements. However, in all species_default files, all
important accuracy choices are deliberately kept out in the open and available: They
can—and sometimes should!— be explicitly tested by the user to check the convergence
of a given calculation.

Such a convergence test may sometimes be geared at simply ensuring numerical conver-
gence explicitly, but equally, it is possible that some default settings are too tight for a
specific purpose, and can be relaxed in a controlled way to ensure faster calculations for
some large problem.

In the following, we explain the most important species default settings explicitly, and
comment on how to choose them. We use the light defaults for Oxygen as an example.

2.3.1 Basis set

The key physical choice to ensure converged results in FHI-aims is the list of radial
functions (and their angular momenta) that are used in FHI-aims. Beyond the minimal
basis of free-atom like radial functions, we always recommend to add at least a single
set of further radial functions that are optimized to describe a chemical bond efficiently.
These basis functions can be found as a list (line by line) at the end of each species
defaults file. For Oxygen / light, the list reads like this:

"First tier" - improvements: -699.05 meV to -159.38 meV
hydro 2 p 1.8
hydro 3 d 7.6
hydro 3 s 6.4

"Second tier" - improvements: -49.91 meV to -5.39 meV
hydro 4 f 11.6
hydro 3 p 6.2
hydro 3 d 5.6
hydro 5 g 17.6
hydro 1 s 0.75
"Third tier" - improvements: -2.83 meV to -0.50 meV
ionic 2 p auto
hydro 4 f 10.8

2.3. A very quick guide to ensuring numerical convergence with FHI-aims 33

hydro 4 d 4.7
hydro 2 s 6.8
[...]

Obviously, only a single set of radial functions (one for each angular momentum s, p, d)
is active (not commented!) beyond the minimal basis. Since the minimal basis already
contains one additional valence s and p function, this choice is often called “double
numeric plus polarization” basis set in the literature (where d is a so-called polarization
function as it does not appear as a valence angular momentum of the free atom). We
call this level “tier 1”.

In order to increase the accuracy of the basis, further radial functions may be added,
simply by uncommenting more lines in order ! We recommend to normally proceed in
order of full “tiers”, not function by function, but adding specific individual functions on
their own can sometimes capture the essence of a problem at lower cost. For example,
tier 2 may be added by uncommenting:

"First tier" - improvements: -699.05 meV to -159.38 meV
hydro 2 p 1.8
hydro 3 d 7.6
hydro 3 s 6.4

"Second tier" - improvements: -49.91 meV to -5.39 meV
hydro 4 f 11.6
hydro 3 p 6.2
hydro 3 d 5.6
hydro 5 g 17.6
hydro 1 s 0.75

"Third tier" - improvements: -2.83 meV to -0.50 meV
ionic 2 p auto
hydro 4 f 10.8
hydro 4 d 4.7
hydro 2 s 6.8
[...]

tier 2 is the default choice of our tight settings for O, but may be very expensive for
hybrid functionals. Look to the intermediate settings for a more economical choice in
that case.

Beyond the choice of the radial functions itself, a critical parameter is the choice of
the confinement radius that all basis functions experience. Ensuring that each radial
function goes to zero in a controlled way beyond a certain, given value is critical for
numerical efficiency, but on the other hand, you do not want to reduce this confinement
radius too much in order to preserve the accuracy of your basis set.

By default, the confinement radius of each potential is specified by the following line:

cut_pot 3.5 1.5 1.0

This means (see also the CPC publication on FHI-aims, Ref. [26]) that each radial
function is constructed with a confinement potential that begins 3.5 Å away from the

34 Chapter 2. Input Files: Basic Handling

nucleus, and smoothly pushes the radial function to zero over a width of 1.5 Å. The full
extent of each radial function is thus 5 Å.

Of course, this setting is chosen to give good total energy accuracy at the light level, but
the convergence of the confinement potential must still be tested, especially in situations
where a strong confinement may be unphysical. Such questions include:

• Accurate free atom calculations for reference purposes: choose 8 Å or higher for
the onset of the confinement, or something similarly high—for a single free atom,
the CPU time will not matter, and you will get all the tails of your radial functions
right without much thinking.

• Surfaces— e.g., low electron densities above the surface for STM simulations must
not be abbreviated by the onset of the confinement potential—even if the total
energy is not affected by this confinement any more.

• Neutral alkali atoms, or any negatively charged ions. Those are tricky—the out-
ermost electon shell may decay very slowly to zero with distance, and explicit
convergence tests are required.

As the corresponding tight setting, we use:

cut_pot 4.0 2.0 1.0

Although the modification does not seem large, CPU times for periodic systems are
significantly affected by this change of the full extent of each radial function from 5 Å
to 6 Å. For example, in a densely packed solid, the density of basis functions per volume
increases as R3 with the full extent of each radial function, and thus the time to set
up the Hamiltonian matrix should increase as R6. Very often, the effect on the total
energy is completely negligible, but again, explicit convergence tests are always possible
to make sure.

Finally, there is the line

basis_dep_cutoff 1e-4

If this criterion is set above zero (10−4 in our light settings), all radial functions are
individually checked, and their tails are cut off at a point where they are already near
zero.

You should note that the basis_dep_cutoff criterion usually does not matter at all,
but for very large systematic basis set convergence studies (going to tier 3, tier 4, etc,
and/or testing the cutoff potential explicitly), this value should be set to zero—as is
done in the really_tight settings, for example.

2.3.2 Hartree potential

The Hartree potential in FHI-aims is determined by a multipole decomposition of the
electron density. The critical parameter here is the order (highest angular momentum)
used in the expansion (all higher components are neglected). This value is chosen by:

2.3. A very quick guide to ensuring numerical convergence with FHI-aims 35

l_hartree 4

Energy differences with this choice are usually sub-meV converged also for large systems,
but total energy differences, vibrational frequencies at the cm−1 level etc may require
more. Our tight settings,

l_hartree 6

provide sub-meV/atom converged total energies in all our tests, but you may simply
wish to test for yourself ...

2.3.3 Integration grid

FHI-aims integrates its Hamiltonian matrix elements numerically, on a grid. However,
this is an all-electron code: Performing integrations on an even-spaced grid (as is done in
many pseudopotential codes) would provide terrible integration accuracy near the nucleus
(sharply peaked, deep Coulomb potential and strongly oscillating basis functions).

Instead, we use what is a standard choice also in other codes: Each atom gets a series
of radial spheres (shells) around it, and we distribute a certain number of actual grid
points on each shell. Obviously, increasing the number of grid points (“angular” points)
on each shell will improve the integration accuracy, but at the price of a linear increase
in computational cost.

The fact that the integration spheres will overlap does not matter—we remedy this fact
automatically by choosing appropriate integration weights (partitioning of unity, see CPC
paper).

The number and basic location of radial shells is chosen by

radial_base 36 5.0
radial_multiplier 1

which means that we here choose 36 grid shells, and the outermost shell is located at
5 Å (this happens to be the outermost radius of each basis function, as dictated by the
confinement potential).

The radial_base tag allows to increase the radial grid density systematically by
adding shells inbetween those specified in the radial_base line. For example, we choose

radial_multiplier 2

in our tight species defaults (for all practical purposes, this is converged), which means
that we add one shell between the zero and the (former) first shell, one between the
first and second, etc., and finally one between the (former) outermost shell and infinity
... two times 36 plus one shells total.

For an illustration of the effect of the radial_multiplier keyword on the density
of the radial grid shells, go to Ref. [232] (http://iopscience.iop.org/1367-2630/

http://iopscience.iop.org/1367-2630/15/12/123033/article
http://iopscience.iop.org/1367-2630/15/12/123033/article

36 Chapter 2. Input Files: Basic Handling

15/12/123033/article, open access) and look at Figure A.1 and the accompanying
explanation.

The distribution of actual grid points on these shells is done using so-called Lebedev
grids, which are designed to integrate all angular momenta up to a certain order l
exactly. They come with fixed numbers of grid points (50, 110, 194, etc). As a rule,
fewer grid points will be needed in the inner grid shells, and more will be needed at the
(more extended) faraway grid shells. We specify the increase the number of grid points
per radial shell in steps, by writing:

angular_grids specified
division 0.2659 50
division 0.4451 110
division 0.6052 194

division 0.7543 302
division 0.8014 434
division 0.8507 590
division 0.8762 770
division 0.9023 974
division 1.2339 1202
outer_grid 974

outer_grid 194

This example pertains to the light_194 settings (and very light elements), and means
that only 50 points will be used on all grid shells inside a radius of 0.2659 Å, 110 grid
points are used on all shells within 0.4451 Å, 194 grid points will be used on all shells
inside 0.6052 Å—and that’s it! No more division tags are uncommented, and all shells
outside 0.6052 Å also get 194 grid shells, as given by the uncommented outer_grid
tag.

We note that the form of the increase of the number of points per radial shell near the
nucleus, as well as the maximum number of angular grid points used outside a given
radius are critical for the numerical accuracy in FHI-aims. When suspecting numerical
noise anywhere in the calculations, the specification of the angular grid points should
be checked first. This can be done by uncommenting further division tags with larger
numbers of grid points, as well as a suitably increased outer_grid value. In particular,
the choice of only 194 grid points max. per radial shell (only for the lightest elements!)
is a rather aggressive choice, but in our experience still enables very reasonable geometry
relaxations, structure searches or molecular dynamics for most purposes. However, the
first thing to check in order to provide better convergence would be to set outer_grid
to 302 (regular light settings). If this produces a noticeable change of the quantity you
are calculating, be careful.

Of course, one can always introduce the denser grids provided in the tight settings,
which (for reference) are

angular_grids specified
division 0.1817 50
division 0.3417 110

http://iopscience.iop.org/1367-2630/15/12/123033/article
http://iopscience.iop.org/1367-2630/15/12/123033/article

2.3. A very quick guide to ensuring numerical convergence with FHI-aims 37

division 0.4949 194
division 0.6251 302
division 0.8014 434

division 0.8507 590
division 0.8762 770
division 0.9023 974
division 1.2339 1202
outer_grid 974

outer_grid 434

These grids alone are roughly twice as expensive as the light_194 ones above, and should
provide reasonable accuracy for pretty much any purpose. Nonetheless, of course one
can still go and check explicitly, simply by increasing the number of grid points per shell
by hand.

38 Chapter 2. Input Files: Basic Handling

2.4 Why does my calculation take too long?

This is, indeed, an excellent question to ask. Understanding what the code spends its
time on, and why, is often the best first approach to understanding what is actually being
calculated – and thus, to learn something about the scientific problem to be solved.

Many calculations take as long as they do, simply because getting an accurate result for
many atoms can take some time.

That said, if calculations that seemed simple start taking excessive amounts of time, it
may be a very good idea to question your input settings. It may also be a very good
idea to actually read the output of the code. It tells you a lot about what the code does.
Some suggestions for different scenarios:

• Do invest the time to compile a scalapack enabled binary and actually use scala-
pack. Most architectures today are parallel, and using those efficiently is perhaps
the single biggest technical strength of FHI-aims. Never ask for the use of a la-
pack eigenvalue solver (the serial version, i.e., the eigenvalue solver that only uses
a single CPU) explicitly unless you are testing. The code sets the correct default
automatically if needed. But if you ask for the serial eigenvalue solver explic-
itly, you may find 999 of your 1000 CPU cores doing nothing. (See the keyword
KS_method . Most importantly, never set this keyword explicitly if there is no
reason to do so.)

• Look at the timing output at the end of each s.c.f. iteration – not(!) just the final
timings. These timings summarize the time spent for each of the physical steps
of your calculation, and can tell you a great deal about what is going on. Here’s
an example where something went wrong:

End self-consistency iteration # 1 : max(cpu_time) wall_clock(cpu1)
| Time for this iteration : 219.302 s 219.900 s
| Charge density update : 16.121 s 16.162 s
| Density mixing & preconditioning : 1.084 s 1.099 s
| Hartree multipole update : 0.088 s 0.090 s
| Hartree multipole summation : 4.440 s 4.489 s
| Integration : 0.980 s 0.986 s
| Solution of K.-S. eqns. : 196.568 s 197.023 s
| Total energy evaluation : 0.004 s 0.016 s

The key times to look for here are the wall clock times. This is the physical time spent
by the code on each task. The individual sub-timings of each task should roughly add
up to the total time, which is given first.

The “CPU time”, on the other hand, is measured internally, without accounting for times
when the CPU is in fact idle. The CPU time is only given here since large deviations
between wall clock time and internally measured CPU time are a good way to indicate
an inefficient computer system setup. In case of doubt, however, wall clock time is the
relevant measure for the real cost of the calculation

2.4. Why does my calculation take too long? 39

Typically, the time for the density update should be approximately the same (within a
single-digit factor) as for the creation of the Hamiltonian integrals. (All these numerical
steps are explained in the FHI-aims CPC paper, Ref. [26].) The fact that this is not the
case indicates some kind of a problem.

However, the bulk of the time is spent in what is called “Solution of K.-S. eqns.”, which
here means the simple solution of a matrix eigenvalue problem. This is simple linear
algebra. This step scales formally as O(N3) with system size N , while all other steps
scale roughly as O(N).

This means that the eigenvalue problem should become the dominant part of the calcu-
lation time only for rather large systems (100s or 1,000s of atoms, depending on whether
heavy or light elements are used, whether the system is non-periodic or periodic, etc.).
The fact that the eigenvalue problem takes up so much time above warrants at least a
question.

In the case shown above, a periodic calculation was conducted, with a total of 64 k-
points, i.e., a total of 64 independent eigenvalue problems to be solved. Asking for
many k-points is obviously a good reason why the solution of eigenvalue problems could
dominate.

In the case considered here, however, the number of basis functions (the matrix di-
mension) was only a few thousand.2 As a rule of thumb, this should not have been a
problematic matrix size yet. (Several ten thousand basis functions or, perhaps, a few
thousand k-points are typically what is needed to make a single eigenvalue solution
become relevant, even on a large number of CPU cores.)

What happened above is that the calculation was in fact conducted in parallel on ≈500
CPU cores, but erroneously enforced a serial eigenvalue solver in the control.in file.
This means that about 450 CPU cores idled while the eigenvalue problem was solved on
only a few others.

The point of this example is: It helps to check and question the timing output. Another
common problem is the fact that the calculation of forces costs far more than just the
calculation of the electron density. Thus, the FHI-aims code by default only computes
forces once the s.c.f. cycle is otherwise converged. If, however, your s.c.f. convergence
criteria are set inadequately, you might see ten s.c.f. iterations per geometry step com-
puting forces. The code has no way to foresee this, but as a user, you may be able to
check after the fact, and prevent this behavior for the future.

• Mixing factor and occupation broadening. These are again values that decid-
edly depend on the system type to be computed, which is difficult to foresee
from the perspective of the code. The default values for charge_mix_param
and occupation_type are set somewhat automatically by the adjust_scf
keyword, according to whether or not the system is estimated to have a HOMO-

2It is truly a system-dependent question what constitutes “many” k-points. For example, a
metallic system with a single atom per unit cell should not have much trouble with, say, 243

k-points. On the other hand, a 1,000 atom supercell should probably not use more than a single-
digit number of k-points. In the specific case considered above, 64 k-points did not happen to be
a particularly large number.

40 Chapter 2. Input Files: Basic Handling

LUMO gap. However, tweaking these values is possible. For instance, for metals,
occupation_type 0.1 eV is often very reasonable.

• There are (obviously) the numerical convergence parameters of the preceding sec-
tion that should be heeded. For example, “tight” settings can be much more
costly than “light” settings. Obviously, “tight” settings are needed for accurately
converged final numerical results in many cases. However, this does not mean
that, e.g., a long pre-relaxation has to be done with “tight” settings – prerelaxing
with “light” settings and switching to “tight” settings only then is usually the way
to go. Also, consider the “intermediate” settings where available, especially for
hybrid density functionals.

• Exchange-correlation methods beyond LDA and GGA typically take much more
time. Here, the key bottleneck is the evaluation of the two-electron Coulomb
Operator and its manipulations later. Even then, it pays to spend time learning
about the respective settings, for instance, the RI_method to be used, the
internal thresholds that go with it, or whether it is possible to reduce the number
of s.c.f. steps in some other way.

2.5. Stopping a run: Files abort_scf and abort_opt 41

2.5 Stopping a run: Files abort_scf and abort_opt

Sometimes, you may wish to stop a running FHI-aims calculation prematurely, but in an
organized way.

Of course, with any running instance of FHI-aims, there is always the option to stop a
run by invoking the Unix ’kill’ command on every single running ’aims’ process, and this
will normally end the run right where it is.

To obtain a slightly more civilized stop (to allow the code to finish in a defined location
and stop after writing some more output), you may instead create one of two specific
files:

1. abort_scf

2. abort_opt

The code simply checks for the existence of either of these files periodically. No input
is needed. Thus, simply change to the directory in which the code is running, and type
(at the command line)

touch abort_scf

or

touch abort_opt

After a while, the run will stop.

The existence of abort_scf will stop the code after the current s.c.f. iteration is
finished, i.e., the solution of the Kohn-Sham equations will not be self-consistent even
for the present geometry.

The existence of abort_opt will stop the code after the current s.c.f. cycle is
converged during a geometry relaxation, i.e., the electronic structure will be converged
for the present geometry, but the forces will not be zero.

In either case, the stop of FHI-aims will not happen immediately. Depending on the
nature of the run, it may take quite some time until the ’abort’ takes effect, since the
code needs to reach the appropriate state first. If you are interested in an immediate
stop, the Unix ’kill’ command is still your best bet.

One can also envision numerous refinements or alternative scenarios where an ’abort’ file
could be useful. If you really need such a case, please create the appropriate check where
you need it. If it does the trick for you, we will be happy to incorporate the change into
the mainline version of FHI-aims.

42

Chapter 3

The Full Monty: All Keywords and
Capabilities

The present chapter aims to give a comprehensive overview and summary of all input
options (keywords) that are available in FHI-aims: a full listing of keywords according
to their intended use. In each of the following sections, keywords related to a given
class of tasks are grouped together, and then listed according to whether they belong
into geometry.in, the general section of control.in, or the species subsection(s) of
control.in.

FHI-aims is a computer code under active development. Aside from established, stable
and well-tested features, you may also find features that someone is still working on.
Such features are marked as “experimental”. If you are interested in using one or more
of those features, contact us, and we will try to be of assistance as much as we can.

For the truly curious: All input and output options are managed by the subroutines
read_control.f90, read_geo.f90, and read_species_data.f90. In cases of doubt,
those subroutines are the ultimate place to determine a keyword’s exact invocation and
function.

3.1. Usability (convenience) 43

3.1 Usability (convenience)

This section is only intended for functionality that fits none of the other categories (which
are all scientifically / technically motivated). These files and keywords affect the general
user convenience / experience for FHI-aims.

As an exception, this section also lists any files which may be used to interact with a
running instance of FHI-aims. Currently, only two such files exist, but in principle, more
could be envisioned.

Files that interacting with the running code:

Tag: abort_scf (file)

Usage: At the command line, use the Unix command touch abort_scf in
the current working directory of a running instance of FHI-aims to trigger a
controlled stop of the run later.
Purpose: If the file abort_scf is found in the current working directory
of FHI-aims, the present run will be aborted after the next s.c.f. iteration is
complete (but importantly without achieving self-consistency).

This functionality allows FHI-aims to stop in a controlled fashion, but not instantly. If
you are interested in an instant stop, the Unix ’kill’ command (or its equivalent in the
queueing system of a production machine) is the best way to proceed. See Sec. 2.5 for
some further remarks.

Tag: abort_opt (file)

Usage: At the command line, use the Unix command touch abort_opt in
the current working directory of a running instance of FHI-aims to trigger a
controlled stop of the run later.
Purpose: If the file abort_opt is found during a geometry relaxation in the
current working directory of FHI-aims, the present run will be aborted after the
next s.c.f. cycle is complete (i.e., afer achieving self-consistency for the present
geometry, but without fully optimizing the structure).

This functionality allows FHI-aims to stop in a controlled fashion, but not instantly. If
you are interested in an instant stop, the Unix ’kill’ command (or its equivalent in the
queueing system of a production machine) is the best way to proceed. See Sec. 2.5 for
some further remarks.

Tag: control.update.in (file)

44 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: Allowed content of this file is a fairly limited subset of what is allowed
and parsed in control.in . Details below.
Purpose: FHI-aims checks for presence of this file in the current working directory
at the end of each individual iteration of the SCF cycle. If the file is found, it
is parsed, and found settings are updated. Note that if you do not remove the
file manually, it will be parsed after each iteration. But with the current limited
functionality, this should not pose any problems.

This file allows to modify some of the parameters of a calculation during runtime of
FHI-aims. At present, this is limited to the settings of the convergence of the SCF
cycle, namely: sc_accuracy_rho , sc_accuracy_eev , sc_accuracy_etot ,
sc_accuracy_potjump , sc_accuracy_forces , sc_accuracy_stress .

3.1. Usability (convenience) 45

Tags for general section of control.in:

Tag: check_cpu_consistency (control.in)

Usage: check_cpu_consistency flag

Purpose: In parallel runs, determines whether the consistency of geometry-related
arrays is verified explicitly between different MPI tasks.
flag is a logical string, either .false. or .true. Default: .true.

This flag is introduced as default purely to monitor and possibly undo errors that should
not happen. Theoretically, all MPI tasks of a given FHI-aims run should have the same
atomic coordinates and lattice vectors. In practice, it appears that certain hardware
and/or compilers/libraries introduce bit flips between different instances of what is for-
mally the same variable on different CPUs.

If check_cpu_consistency is .true., the code checks for deviations.

If the discrepancy is numerically negligible (below the value set by the tolerance param-
eter cpu_consistency_threshold , the code will work based on the assumption
that the observed discrepancy is a platform-dependent artifact, will set all instances of
the geometry to that stored on MPI task myid=0, and continue the run. Nonetheless,
a warning will be printed in the output file and near the end of the output.

If the discrepancy is larger than the tolerance parameter cpu_consistency_threshold
, the code will stop and inform the user.

Tag: cpu_consistency_threshold (control.in)

Usage: cpu_consistency_threshold tolerance

Purpose: In parallel runs, determines the degree to which inconsistencies of
geometry-related arrays will be tolerated between different MPI tasks.
tolerance : A small real numerical value, positive or zero. Default: 10−11.

See keyword check_cpu_consistency . If check_cpu_consistency is .true.,
then keyword cpu_consistency_threshold determines the maximum value to
which discrepancies of geometry-related quantities between different MPI tasks will be
tolerated (they will, however, be set to identical values even if the run continues).

Tag: check_stacksize (control.in)

Usage: check_stacksize flag

Purpose: Determines whether a check of stack size is performed.
flag is a logical string, either .false. or .true. Default: .true.

By default, FHI-aims checks that unlimited allocation on stack are allowed by the oper-
ating system. This option allows to disable this check.

46 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: dry_run (control.in)

Usage: dry_run

Purpose: If set in control.in, the FHI-aims run will only pass through all
preparatory work to ensure the basic consistency of all input files, but will stop
before any real work is done.

This keyword is useful to check the consistency of input files with the same exact binary
that may later be used in a series of (perhaps queued) production runs. If there are trivial
errors in the input files, no need to wait for the queue. The same effect can be achieved
by building a ’parser’ binary, but this version saves the recompilation. The price is that
one must not forget to comment out the dry_run option in the actual, queued input
files.

Subtags for species tag in control.in:

species sub-tag: cite_reference (control.in)

Usage: cite_reference string

Purpose: Triggers the addition of a specific citation to the end of the FHI-aims
standard output for a given run.
string is a string that identifies the reference in question.

This feature is useful, e.g., to make sure that the literature reference for a given basis
set (encoded in the species_defaults input file) is available at the end of an FHI-aims
run.

Each citation must, however, be coded into the FHI-aims source code in module applicable_citations.f90
to ensure that the requested output is actually available. Note that the practical format
for such references can vary widely – from a simple string (explanation who did the work)
all the way to the more usual case of a journal reference.

At the time of writing, species-related legitimate values of string are:

• NAO-VCC-2013 for reference [232], describing the NAO-VCC-nZ basis sets for
valence-correlated calculations of elements H-Ar (useful for basis set extrapolation
for many-body perturbation methods, e.g., MP2, RPA, RPT2, or GW).

3.2. Physical model: Geometry, charge, spin, etc. 47

3.2 Physical model: Geometry, charge, spin, etc.

The present section summarizes all keywords in FHI-aims that are directly concerned
with the physical model of the problem to be tackled. Importantly, this includes some
specific subtags that you cannot ignore, because they define the physical question that
you are trying to address – and no one else but you can do that. The present section
thus includes such things as atomic positions or unit cells, but also the level of theory
to be used (exchange-correlation, relativistic treatment), or a potential charge of the
system.

Tags for geometry.in:

Tag: atom (geometry.in)

Usage: atom x y z species_name

Purpose: Specifies the initial location and type of an atom.
x, y, z are real-valued numbers (in Å) which specify the atomic position.
species_name is a string descriptor which specifies the chemical element (or,
more broadly, atomic species type) at this atomic position; it must match one of
the species descriptions defined in control.in.

Tag: atom_frac (geometry.in)

Usage: atom_frac f1 f2 f3 species_name

Purpose: Specifies the initial location and type of an atom in fractional
coordinates.
fi is a real-valued multiplier to lattice_vector i. species_name is a string
descriptor which specifies the chemical element (or, more broadly, the atomic
species type) at this atomic position; it must match one of the species
descriptions defined in control.in.

Fractional coordinates are only meaningful in periodic calculations.

Conversion of fractional atomic positions into cartesian coordinates, RI , is achieved by

RI =
3∑
i=1

fi · ai, (3.1)

where ai is a unit cell vector specified by the lattice_vector keyword.

Tag: lattice_vector (geometry.in)

48 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: lattice_vector x y z

Purpose: Specifies one lattice vector for periodic boundary conditions.
x, y, z are real numbers (in Å) which specify the direction and length of a unit
cell vector.

If up to three lattice vectors are specified, FHI-aims automatically assumes periodic
boundary conditions in those directions. Note that the order of lattice vectors matters,
as the order of k space divisions (given in control.in) depends on it!

3.2. Physical model: Geometry, charge, spin, etc. 49

Tags for general section of control.in:

Tag: charge (control.in)

Usage: charge q

Purpose: If set, specifies an overall charge in the system.
q is a real number that specifies a positive or negative total charge in the system.

For most normal systems, this definition is unambiguous (sum of all nuclear charges in
geometry.in minus number of electrons in the system). Note specifically that the same
definition continues to hold also in systems with external embedding charges (specified
by keyword multipole in geometry.in). The charges of the external embedding
charges are in addition to the charge keyword in control.in, and not included.

Tag: fixed_spin_moment (control.in)

Usage: fixed_spin_moment value

Purpose: If set, allows to enforce a fixed overall spin moment throughout the
calculation.
value : real-valued number, specifies the difference of electrons between spin
channels, 2S = Nup −Ndown.

Meaningful only in the spin-polarized case (spin collinear in control.in).

This keyword replaces the earlier keyword multiplicity . Note that the value that
must be given for fixed_spin_moment is 2S, which corresponds to a multiplicity
(2S + 1) —i.e., the values are not the same. Keyword fixed_spin_moment works
for periodic and cluster systems alike, and uses two different chemical potentials (Fermi
levels) for the spin channels.

Tag: species (control.in)

Usage: species species_name

Purpose: Defines the name of a species (element) for possible use with atoms in
geometry.in

species_name is a string descriptor (e.g. C, N, O, Cu, Zn, Zn_tight, ...).

Every species_name used in an atom descriptor in geometry.in must correspond to
a species given in control.in. Following the species tag, all sub-tags
describing that species must follow in one block. (No particular order is enforced within
that block). For example, the choice of the basis set, the atom-centered integration grid,
or the multipole decomposition of the atom-centered Hartree potential are all specified
per species .

Tag: spin (control.in)

50 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: spin type

Purpose: Specifies whether or not spin-polarization is used.
type is a string, either none or collinear, depending on whether an unpolarized
(spin-restricted) or spin-polarized (unrestricted) calculation is performed.

In the collinear case, defining the moments used to create the initial spin density
is required (see the beginning of Sec. 3.10 for an explanation). This means that
an overall default_initial_moment (in control.in), or at least one individ-
ual initial_moment tag in geometry.in, or both, must be set. Else, the code will
stop with a warning. (It is not necessary to specify initial_moment for every atom
in geometry.in. A single one will do.) Choosing the right initial spin density can be
performance-critical, and critical for the resulting physics. FHI-aims should not make
this choice for you.

Warning: It is not a good idea to run each and every calculation with spin collinear
just because that seems to be the more general case. In a system that will safely be non-
magnetic, using something other than spin none will roughly double the CPU time
needed in the best case, and it will most likely lead to much worse s.c.f. convergence
(i.e., more iterations needed to find the self-consistent electronic solution). There is no
fundamental problem with running spin collinear, but again: just doing this out
of some sense of impartiality may not be a wise use of resources.

This keyword is completely independent of spin-orbit coupling, which is applied as a
post-processed correction after the SCF cycle has converged. The two keywords can be
used together, e.g., to obtain spin-orbit coupled versions of the energy band structure
of an open-shell system (see the supporting material of Ref. [109] for an example of the
spin-polarized band structure of fcc Ni). For more information on spin-orbit coupling,
please see the include_spin_orbit keyword and the discussion in the associated
chapter.

3.2. Physical model: Geometry, charge, spin, etc. 51

Subtags for species tag in control.in:

species sub-tag: mass (control.in)

Usage: mass M

Purpose: Atomic mass
M is a real number that specifies the atomic mass in atomic mass units (amu).

This tag is used only for molecular dynamics. The preconstructed species_defaults
files supplied with FHI-aims contain the mass average over the different isotopes of each
natural element.

species sub-tag: nucleus (control.in)

Usage: nucleus Z

Purpose: Via the nuclear charge defines the chemical element associated with
the present species.
Z is a real number (the nuclear charge).

Z is usually an integer number. However, partial (non-integer) charges are also possible.

Fractional Z can be useful, for example, for a stoichiometric hydrogen-like termination of
a compound semiconductor slab (e.g., in a III-V compound, the valence of the connecting
element would be mimicked by a fractionally charged H of charge 0.75 or 1.25).

If the difference between the specified nuclear charge and the nearest integer is greater
than 0.34, keyword element may be needed to be set explicitly in the species definition
to designate an unambiguous chemical identity.

Fractional Z can also be useful to distribute a compensating charge for an electronically
charged periodic supercell calculation. In electronic charged periodic systems, a compen-
sating background charge is always implicit. This is often accomplished by introducing
an implicit homegeneous charged background density. However, the choice of such a
jellium background is often anything but ideal. For instance, in a surface slab calculation,
part of this compensating charge will be located in the vacuum. In such cases, it may
be better to place the compensating charge in the system explicitly and “by hand”. One
good way to do this is to place the compensating charges on certain nuclei.[191]

If you add a fractional Z to a species_default, you will have to take care to modify the
valence tags to reflect the exact opposite charge, creating an overall neutral spherical
free atom as far as the valence occupation numbers in the species definition go.

species sub-tag: element (control.in)

52 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: element symb

Purpose: Chemical element associated with the species.
symb is a string (max. 2 characters) that corresponds to the symbol of the
chemical element. Default: see below.

The purpose of this tag is to specify the chemical identity of a species in the rare cases
when it cannot be determined from Z because it has been set to a non-integer value.
In particular, when Z is more than 0.34 from the nearest integer number, the species
element must be set with the element tag. Currently, this value is used only by the
van der Waals routines, but the requirement above must be satisfied for any calculation.

3.3. Electronic structure: Exchange, correlation (incl. DFT+U), and excited states 53

3.3 Electronic structure: Exchange, correlation
(incl. DFT+U), and excited states

A key choice required in every electronic structure calculation is the treatment of the re-
quired electronic structure: Exchange, correlation, and potentially quasiparticle energies,
e.g., after a GW correction.

We here summarize the general options available regarding the choice of the electronic
structure method. In addition, an important question is which electrons in the structure
are treated at which level. For most practical purposes, FHI-aims treats all electrons in
an equivalent way, but for some special cases, frozen-core treatments may be useful: at
present, one may compute the correlation energy of only the valence but not the core
electrons in second-order Møller-Plessett (MP2) perturbation theory.

For any method requiring the two-electron Coulomb operator explicitly (these include
hybrid functionals, Hartree-Fock, MP2 or RPA perturbation theory, GW corrections,
etc.) we note that an auxiliary basis is required to expand the Coulomb matrix (four
basis functions ≡ O(N4) matrix elements) into a two-center Coulomb matrix, leading
instead to O(N3) additional overlap matrix elements. The choice of this auxiliary basis
(“product basis”) is described in more detail in Sec. 3.22 and Ref. [187].

A note on “post-s.c.f” RPA-based methods

The algorithms for post-DFT methodologies as implemented in FHI-aims are detailed in
Ref. [187]. Here we only briefly recapitulate the key ingredients behind the increasingly
popular “RPA and beyond” methods as implemented in FHI-aims. The standard RPA
total energy is computed as follows:

ERPA
tot = EDFT

tot − EDFT
xc + EEX

x + ERPA
c . (3.2)

EDFT
tot is a pre-computed self-consistent DFT total energy obtained from LDA, GGA, or

hybrid functional calculations. EDFT
xc is the corresponding exchange-correlation contribu-

tion. EEX
x and ERPA

c are the exact-exchange energy, and the RPA non-local correlation
evaluated using the pre-determined Kohn-Sham or generalized Kohn-Sham eigenorbitals
and eigenenergies.

Recently, several correction schemes to RPA have been proposed. FHI-aims currently
provides the (renormalized) single excitation (SE) correction [189] and the second-order
screened exchange (SOSEX) correction [82]. The renormalized SE (rSE) and SOSEX
corrections can be combined. The combined scheme is called “renormalized 2nd-order
perturbation theory” (rPT2) [188],

ErPT2
tot = ERPA

tot + ESOSEX
c + ErSE

c . (3.3)

The “RPA+SE”, “RPA+rSE”, and “RPA+SOSEX” total energies can be computed
similarly by combining the corresponding terms.

A note on “DFT plus U”

In the DFT method with local or semi-local approximations of the XC-functional, (LDA,
GGA, etc.) strongly correlated systems like transition metal oxides are poorly described.

54 Chapter 3. The Full Monty: All Keywords and Capabilities

The “DFT plus U” method offers an ad hoc correction for strongly correlated systems
at negligible computation cost [8].

The present implementation of “DFT plus U” in FHI-aims should be considered exper-
imental, and is not complete in some respects. Please keep this in mind when using
the method. That said, it should give physically sensible results. Simply take some care
when using it, and please give us feedback if the method works for you (obviously, also
if it does not for some reason).

• DFT+U total energies can be obtained in combination with any functional (typ-
ically LDA or GGA), by simply adding appropriate plus_u tags to the corre-
sponding species.

• Total energy gradients (“forces”) are not provided.

• The implementation does not yet offer self-consistent determination of the U pa-
rameter, so this needs to be supplied by hand.

• Finally, the orbitals on which we project are the somewhat extended free-atom like
orbitals, defined with the usual cutoff potential of the remaining calculation. While
somewhat arbitrary, it would be useful to be able to project onto more localized
orbitals, but this option is not implemented yet.

Tags for general section of control.in:

Tag: frozen_core (control.in)

Usage: frozen_core first_orbital

Purpose: Allows to compute the MP2 correlation energy without the contribution
arising from low-lying occupied orbitals.
first_orbital is the integer number of the first molecular orbital that is
included in the computation of the MP2 correlation energy.

This keyword applies only to the calculation of the MP2 correlation energy (if
requested). It does not imply a frozen-core treatment anywhere else.

In a nutshell, this is a simple way to exclude the large contribution from certain core
electrons to the MP2 correlation energy. This contribution is mostly systematic, and
therefore tends to cancel in energy differences. However, it is also the hardest to compute
unless specialized basis sets are invoked that “know” about core correlation; it may thus
be the source of a large systematic error that also cancels if excluded from the beginning.
For consistency between different calculations, the number of excluded “core” orbitals
must be readjusted between calculations with different numbers of atoms.

Tag: frozen_core_postscf (control.in)

3.3. Electronic structure: Exchange, correlation (incl. DFT+U), and excited states 55

Usage: frozen_core_postscf valence_shell_number

Purpose: Alternative way to specify the valence shells in the frozen-core
algorithm for MP2, RPA and rPT2 methods. This keyword is valid for elements
from H (1) to Rn (86).
valence_shell_number is the number of valence shells which are taken into
account in the frozen-core MP2, RPA or rPT2 calculations.

Compared to the keyword frozen_core , frozen_core_postscf is more friendly,
especially for large systems, as you don’t need to count by hand which is the first valence
orbital in the frozen-core algorithm.

For example, valence_shell_number=2 means that at most two outer shells are taken
as valence shells in the frozen-core calculations:

element core shells valence shells
H, He – 1s
Li-Ne – 1s2s2p
Na-Ar 1s 2s2p3s3p
K-Kr 1s2s2p 3s3p3d4s4p

Tag: hybrid_xc_coeff (control.in)

Usage: hybrid_xc_coeff value

Purpose: If set, will modify the (Hartree-Fock) exact exchange mixing parameter
in a given hybrid XC functional. No effect if specified with a simple LDA / GGA
type functional.
value is a real number (usually between zero and one) that specifies the degree
of exact exchange admixture.

If (and only if) a hybrid functional is specified using the xc keyword, hybrid_xc_coeff
allows to change the Hartree-Fock mixing parameter to a different, given value. For
example, the mixing parameter in pbe0 could be specified away from its literature value,
α=0.25. No effect for xc functionals that do not have any Hartree-Fock exchange
admixed in the first place.

Obviously, this option is only useful for test purposes and does change the definition of
any functional away from its literature value. Handle with care.

Tag: hse_unit (control.in)

Usage: hse_unit character

Purpose: Required clarification of units for the hse06 xc functional.
value is a character, either ’a’ or ’A’ (for Å−1) or ’b’ or ’B’ (for [bohr radius]−1).

The hse06 functional comes with a screening parameter ω which must be specified

56 Chapter 3. The Full Monty: All Keywords and Capabilities

explicitly (see the xc keyword for a detailed explanation). Unfortunately, different
codes and authors appear to have adopted different conventions for ω – either Å−1 or
[bohr radius]−1. To avoid any possible confusion when using HSE06 in FHI-aims, we
therefore only run hse06 if the unit has been explicitly specified, using the above keyword.
We apologize for the inconvenience, but the risk of an innocent misunderstanding is
rather high in the present case.

Tag: lc_dielectric_constant (control.in)

Usage: lc_dielectric_constant value

Purpose: If set, will modify the amount of exact exchange in the hybrid XC
functional LC-ωPBEh.
value is a real number (larger or equal to one) that specifies the degree of exact
exchange admixture in the long-range part. default=1.0

Tag: plus_u_petukhov_mixing (control.in)

Usage: plus_u_petukhov_mixing mixing_factor

Purpose: Experimental—only for DFT+U. Allows to fix the mixing factor
between AMF and FLL contribution of the double counting correction [180].
mixing_factor is a floating point value, specifying the mixing ratio between
0.0 and 1.0. A value of 0.0 selects the Around Mean Field (AMF) contribution.
A value of 1.0 selects the Fully Localized Limit (FLL). If unspecified, the value
is determined self-consistently according to Ref. [180].

There are two common schemes for dealing with the double counting problem in DFT+U:
The AMF method assumes that the effect of the DFT+U term on the actual occupations
remains small, so that the occupations can be assumed to be equal within each shell for
the purpose of the double counting correction. The FLL method, on the other hand,
assums a maximal effect of the DFT+U term on the occupation numbers, handling
double counting correctly in the case that all orbitals with in the shell are either fully
occupied or empty. The self consistent mixing of both limits improves the handling of
the intermediate range (see Ref. [180]).

Tag: qpe_calc (control.in)

Usage: qpe_calc selfenergy-type

Purpose: If set, specifies which self-energy should be used for a quasiparticle
correction of single-particle eigenvalues.
selfenergy-type is a keyword (string) which specifies the selfenergy approxi-
mation used.

Note that quasiparticle corrections (GW , MP2) are currently possible only for cluster

3.3. Electronic structure: Exchange, correlation (incl. DFT+U), and excited states 57

geometries (no periodic boundary conditions).

After the normal self-consistency cycle for a given exchange-correlation functional (set
using the xc keyword) is complete, qpe_calc can be used to specify a perturbative
quasiparticle correction to be applied as a post-processing step. Valid self-energy options
selfenergy-type are:

• gw : Perturbative G0W0-type self-energy, where both the Green’s function G0
and the screened Coulomb interaction W0 are computed only once, based on the
self-consistent DFT or Hartree-Fock ground state eigenvalues and eigenfunctions.

• ev_scgw Perturbative G0W0-type self-energy, where self-energy is evaluated with
partial self-consistency in the eigenvalues. The eigenvalues are iterated in G and
W . Molecular orbitals are kept unchanged from the preliminary calculation. This
scheme is often abbreviated as evGW in literature. For true self-consistent GW ,
see the sc_self_energy further below.

• ev_scgw0 Perturbative G0W0-type self-energy, where self-energy is evaluated with
partial self-consistency in the eigenvalues. The eigenvalues are iterated only in
G, but not in W . Molecular orbitals are kept unchanged from the preliminary
calculation as in ev_scgw. This scheme is often abbreviated as evGW0 in literature.
For true self-consistent GW , see the sc_self_energy further below.

• mp2 : Perturbative MP2-type self-energy, based on the self-consistent DFT or
Hartree-Fock ground state eigenvalues and eigenfunctions.

For more details on differentGW flavors (G0W0, partially and fully-selfconsistent schemes)
see review article [75].

Tag: sc_self_energy (control.in)

Usage: sc_self_energy self-consistent-scheme

Purpose: If set, specifies the scheme adopted for the self-consistent calculation
of the many-body self-energy.
selfenergy-type is a keyword (string) which specified the self-consistent
approach used in the calculation.

Note that self-consistent GW calculation (sc-GW , sc-GW0) are currently possible only
for cluster geometries (no periodic boundary conditions).

After the normal self-consistency cycle for a given exchange-correlation functional (set
using the xc keyword) is complete, sc_self_energy can be used to spec-
ify a self-consistent scheme for the calculation of the GW self-energy. The output
consists of the total energy calculated from the Galitskii-Migdal formula, an output file
(spectrum_sc.dat for spin unpolarized, spectrum_sc_up.dat and spectrum_sc_do.dat
for spin up and down respectively in the case of spin polarized calculation) containing
the spectral function calculated from the self-consistent Green’s function. At the end of
the calculation, the output include the dipole moment evaluated from the self-consistent
density.

58 Chapter 3. The Full Monty: All Keywords and Capabilities

Currently implemented self-consistent methods are:

• scgw : Calculate the Green’s function by solving until full self-consistency the
Dyson’s equation by using a self-energy in the GW approximation.

• scgw0 : Solve self-consistently the Dyson’s equation with the self-energy in the
GW0 approximation. Differently from fully self-consistent GW , in this case the
screened Coulomb interaction is kept fixed at the RPA level.

Tag: scgw_mix_param (control.in)

Usage: scgw_mix_param α

Purpose: Define the linear mixing coefficient α, for the mixing of the Green
function at each iteration of the self-consistent GW calculation. This keyword
only produces an effect if sc_self_energy is set.

Tag: scgw_it_limit (control.in)

Usage: scgw_it_limit N

Purpose: Set the maximum number N of iteration of the Dyson equation in
a self-consistent GW calculation. The default value is set to N = 30. This
keyword only produces an effect if sc_self_energy is set.

Tag: scgw_print_all_spectrum (control.in)

Usage: scgw_print_all_spectrum

Purpose: Enables the print out of the spectral function each iteration of the self-
consistent GW calculation. The spectrum is printed to the file sp_ImG<N>.dat,
where <N> is number of iteration of the Dyson equation. This keyword only
produces an effect if sc_self_energy is set.

Tag: rpa_along_ac_path (control.in)

Usage: rpa_along_ac_path rpa_along_ac_path_grid

Purpose: Calculate the RPA-approximated potentials along the adiabatic-
connection path.
rpa_along_ac_path_grid is the number of potentials you want to sampling
along the adiabatic-connection path.

The standard RPA method is a adiabatic-connection advanced DFT method, which in-
tegrates the contribution along the adiabatic-connection path analytically. This keyword
rpa_along_ac_path allows you to unpack the adiabatic-connection path in the RPA
approximation in detail.

3.3. Electronic structure: Exchange, correlation (incl. DFT+U), and excited states 59

Tag: printout_dft_components (control.in)

Usage: printout_dft_component given_dft_method

Purpose: Evaluate the XC contributions of a given DFT method based on SCF
converged KS (or HF) orbitals.
given_dft_method is the name of the DFT method you want to investigate.
At present, only two GGA methods (PBE and BLYP) are avaiable.

This keyword printout_dft_components is repeatable in the contril.in allowing to
inspect several DFT methods in one task.

Tag: scs_mp2_parameters (control.in)

Usage: scs_mp2_parameters pT pS

Purpose: For MP2 correlation energies, allows to perform spin-component scaled
MP2.
pT is the scaling parameter for the spin-up-spin-up (triplet) contribution.
pS is the scaling parameter for the spin-up-spin-down (singlet) contribution.

The MP2 correlation energy (total_energy_method mp2 or xc mp2) can be
separated into a sum of triplet (spin-up-spin-up) and singlet (spin-up-spin-down) two-
electron terms:

Ecorr,MP2 = ET + ES . (3.4)

Grimme [81] pointed out that empirical scaling factors pT and pS can be introduced and
fitted to improve the accuracy of MP2 results compared to quantum-chemical benchmark
methods:

ESCS,MP2 = pTET + pSES . (3.5)

For example, pT=1/3 and pS=6/5 are employed to obtain the reaction energies of Table
I in Ref. [81].

Tag: total_energy_method (control.in)

Usage: total_energy_method type

Purpose: If set, specifies an exchange-correlation method for post-processing
only, after the scf cycle is complete.
type is a keyword (string) which specifies the chosen post-processing exchange-
correlation method.

After the regular scf cycle is complete for a given exchange-correlation method as given
by the xc tag, the resulting Kohn-Sham orbitals and eigenvalues are used to recalculate
only the exchange-correlation energy, and only once (i.e., perturbative post-processing).

All LDA, GGA and meta-GGA DFT functionals listed under xc can be used with
total_energy_method , including those implemented through LibXC and dfauto; See

60 Chapter 3. The Full Monty: All Keywords and Capabilities

the relevant section of xc options for more detail. Hybrid-DFT functionals are also
available, with the exception of range-separated or long-range corrected approaches.

Other valid post-processing options type are:

• C6_coef : Molecular C6 dispersion coefficients at the MP2 / RPA level will be cal-
culated after the s.c.f. calculation. (This functionality is somewhat experimental,
be sure to check for consistency.)

• hf or HF: Calculate Hartree-Fock exchange on the given orbitals.

• ll_vdwdf : The nonlocal part of correlation energy is calculated using the van der
Waals density functional proposed by M. Dion et al. [55] and the total correlation
energy will be re-evaluated as proposed in their paper. For details about additional
Tags needed for the calculation, please visit Sec. 3.21. Note that an alternative
implementation by the Helsinki group is available as well, the present keyword is
not your only option.

• mp2 : The correlation energy is calculated in second-order Møller-Plesset pertur-
bation theory (MP2), with Hartree-Fock added for the exchange part. Note added
in March 2016: A periodic implementation of MP2 is available but, at the time of
writing, computationally extremely expensive. If you decide to use it, please keep
in mind that the periodic version is included here as a matter of protocol but is
not yet optimized to be fully usable in production calculations.

• pbe_vdw : Evaluates the van der Waals density functional proposed by M. Dion
et al. [55] with the methodology of Sec. 3.21.2. (Uses PBE exchange.) This is
not the Tkatchenko-Scheffler correction [215]. If you are looking for Tkatchenko-
Scheffler, please use the keyword vdw_correction_hirshfeld instead.

• revpbe_vdw : As pbe_vdw but uses revpbe instead of pbe for the exchange.
This is also not the Tkatchenko-Scheffler correction [215]. If you are looking for
Tkatchenko-Scheffler, please use the keyword vdw_correction_hirshfeld
instead.

• nlcorr : Only the non-local correlation term of the pbe_vdw or revpbe_vdw is
calculated and added to the total energy. And this is still not the Tkatchenko-
Scheffler correction [215]. If you are looking for Tkatchenko-Scheffler, please use
the keyword vdw_correction_hirshfeld instead.

• rpa : The RPA total energy as defined in Eq. (3.2) will be calculated. When
this option is specified, the SE and rSE corrections to RPA are also evaluated.
The total enegies computed with the RPA, RPA+SE, and RPA+rSE schemes are
listed in items “RPA total energy”, “PRA+SE total energy”, and “RPA+rSE
(full) total energy” respectively in the output file.

• rpa+2ox : Just RPA plus second-order exchange (not screened). Likely only useful
for testing / benchmarking, use rpt2 for completeness.

• rpa+sosex : Just RPA plus second-order screened exchange. Likely only useful
for testing / benchmarking, use rpt2 for completeness.

3.3. Electronic structure: Exchange, correlation (incl. DFT+U), and excited states 61

• rpt2 : The rPT2 total energy as defined in Eq. (3.3) will be calculated. When this
option is specified, the “RPA+SOSEX” total energy without the rSE correction
will also be printed out in the output file.

• xyg3 : “XYG3” double-hybrid functional[?], which is defined only for a self-
consistent B3LYP reference, i.e., xc b3lyp is mandatory. Note that double-
hybrid functionals include MP2 components. When using the tier basis sets, you
must use a counterpoise correction of energy differences to get reliable results.

• xdh-pbe0 : “xDH-PBE0” double-hybrid functional[233], which is defined only for
a self-consistent PBE0 reference, i.e., xc pbe0 is mandatory. Note that double-
hybrid functionals include MP2 components. When using the tier basis sets, you
must use a counterpoise correction of energy differences to get reliable results.

Note that some of the correlation methods available here are only supported for cluster
geometries at this time. Note also that when advanced correlation methods (e.g. rpa,
rpt2, xyg3, xdh-pbe0 and mp2) are used for binding energy calculations, a counterpoise
correction should always be performed with the default NAO basis sets in FHI-aims to
get reliable results, since the basis set superposition error (BSSE) for these correlation
methods is significant. For these advanced correlation methods, the sequence of NAO
valence-correlation consistent basis sets (NAO-VCC-nZ [232]) is a better choice, which
reduces the basis set incompleteness error, including BSSE, with increasing the basis
size, and especially enables to approach the completeness-basis-set limit with the aid of
extrapolation scheme.

Tag: use_2d_corr (control.in)

Usage: use_2d_corr bool

Purpose: Specifies whether to use the efficient 2D distribution of the MO based
three index arrays where possible. Otherwise, stick to the old 1D distribution in
all cases.
Default: .true.

Tag: xc (control.in)

Usage: xc xc-type [value]
Purpose: Specifies the exchange-correlation approach used for self-consistent
DFT / Hartree-Fock. See also xc_pre .
Default: pw-lda
xc-type is a keyword (string) which specifies the chosen exchange-correlation
functional.
value is a real parameter needed only for some functionals (e.g., hse06).

FHI-aims provides a wide range of current exchange-correlation options, ranging from
local-density and generalized-gradient approximations (LDAs and GGAs) via hybrid func-
tionals and Hartree-Fock to two-electron treatments of the correlated many-body system,

62 Chapter 3. The Full Monty: All Keywords and Capabilities

such as second-order Møller-Plesset (MP2) theory and the random-phase approximation
(RPA). The following choices for the xc-type option are currently available:

• Local-density approximation (different parameterizations):

– pw-lda : Homogeneous electron gas based on Ceperley and Alder [38] as
parameterized by Perdew and Wang 1992 [174]. Recommended LDA param-
eterization.

– pz-lda : Homogeneous electron gas based on Ceperley and Alder [38], as
parameterized by Perdew and Zunger 1981 [175].

– vwn : LDA of Vosko, Wilk, and Nusair 1980 [224].
– vwn-gauss : LDA of Vosko, Wilk, and Nusair 1980, but based on the random

phase approximation [201]. Do not use this LDA unless for one specific
reason: In the B3LYP implementation of the Gaussian code, this functional
is allegedly used instead of the correct VWN functional. It is therefore now
present in many reference results in the literature, and also available here for
comparison.

• Generalized-gradient approximations:

– am05 : GGA functional designed to include surface effects in self-consistent
density functional theory, according to Armiento and Mattsson [10]

– blyp : The BLYP functional: Becke (1988) exchange [19] and Lee-Yang-Parr
correlation [141].

– pbe : GGA of Perdew, Burke and Ernzerhof 1997 [172].
– pbeint : PBEint functional of Ref. [63]
– pbesol : Modified PBE GGA according to Ref. [178].
– rpbe : The RPBE modified PBE functional according to Ref. [88].
– revpbe : The revPBE modified PBE GGA suggested in Ref. [235].
– r48pbe : The mixed functional containing 0.52*pbe and 0.48*rpbe according

to Ref. [165]
– pw91_gga : GGA according to Perdew and Wang, usually referred to as

“Perdew-Wang 1991 GGA”. This GGA is most accessibly described in Refer-
ences 26 and 27 of Ref. [173]. Note that the often mis-quoted reference [174]
does not(!) describe the Perdew-Wang GGA but instead only the correlation
part of the local-density approximation described above.

• Meta-generalized gradient approximations:

– m06-l : Truhlar’s optimized meta-GGA of the “M06” suite of functionals.
[238]

– m11-l : Truhlar’s optimized range-separated local meta-GGA of the “M11”
suite of functionals. [182]

– revtpss : Meta-GGA revTPSS functional of Ref. [176, 177].

3.3. Electronic structure: Exchange, correlation (incl. DFT+U), and excited states 63

– tpss : Meta-GGA TPSS functional of Ref. [214]
– tpssloc : Meta-GGA TPSSloc functional, thanks to E. Fabiano and F. Della

Sala. L.A. Constantin, E. Fabiano, F.Della Sala, Ref. [47].
– scan or SCAN: “Strongly Constrained and Appropriately Normed Semilocal

Density Functional,” i.e., the SCAN meta-GGA functional by Sun, Ruzsinszky,
and Perdew.[210]

• Hartree-Fock and hybrid functionals (including non-local exchange): Please also
see Secs. 3.22 and 3.23 for related keywords and technical hints.

– b3lyp : “B3LYP” hybrid functional as allegedly implemented in the Gaus-
sian code (i.e., using the RPA version of the Vosk-Wilk-Nusair local-density
approximation, see Refs. [224, 201] for details). Note that this is therefore
not exactly the same B3LYP as originally described by Becke in 1993.

– hf : Hartree-Fock exchange only.
– hse03 : Hybrid functional as used in Heyd, Scuseria and Ernzerhof [100, 101].

In this functional, 25 % of the exchange energy is split into a short-ranged,
screened Hartree-Fock part, and a PBE GGA-like functional for the long-
range part of exchange. The remaining 75 % exchange and full correlation
energy are treated as in PBE. As clarified in Refs. [132, 101], two different
screening parameters were used in the short-range exchange part and long-
range exchange part of the original HSE functional, respectively:
Screened Hartree-Fock exchange: ωHF = 0.15/

√
2

Screened PBE-like exchange: ωPBE = 0.15× 21/3

Following the notation of Ref. [132], the ’hse03’ functional in FHI-aims
reproduces these original values exactly.

– hse06 : Hybrid functional according to Heyd, Scuseria and Ernzerhof [100],
following the naming convention suggested in Ref. [132]. In this case, the ad-
ditional option value is needed, representing the single real, positive screen-
ing parameter omega (ω) as clarified in Ref. [132]. In this functional, 25 %
of the exchange energy is split into a short-ranged, screened Hartree-Fock
part, and a PBE GGA-like functional for the long-range part of exchange.
The remaining 75 % exchange and full correlation energy are treated as in
PBE.
In the literature, the unit for ω is either Å−1 or (bohr radius)−1, depending on
the code, authors, and their favorite convention. To avoid any confusion, a
separate keyword hse_unit must be specified in control.in, specifying
either Å−1 (’A’) or bohr−1 (’b’). The code will no longer run without this
explicit clarification. A correct calling syntax example is therefore:
xc hse06 0.11
hse_unit bohr-11

or similar.
A few comments on typical choices for ω in the earlier literature:
The original value of 0.15 bohr−1 by Heyd, Scuseria and Ernzerhoff 2003

1The hse_unit flag reads only the first character. Thus this is equivalent to hse_unit b (case
insensitive).

64 Chapter 3. The Full Monty: All Keywords and Capabilities

[100] was never true - see their 2006 erratum. In FHI-aims, the ’hse03’ func-
tional implements their actual choice.
Krukau, Vydrov, Izmaylov and Scuseria 2006 [132] clarify the distinction be-
tween ’hse03’ and ’hse06’ (in addition to the Erratum mentioned above).
Their conclusion is that omega=0.11 bohr−1 is a reasonable choice.
Vydrov, Heyd, Krukau and Scuseria in 2006 [171] appear to favor omega=0.25
bohr−1, but with a mixing parameter (keyword hybrid_xc_coeff) of 0.5
for the short-range exchange. (The default for hybrid_xc_coeff in
FHI-aims is 0.25, i.e., only a quarter of HF-like exchange.)
You get the idea. As much as we would like to, we can not specify a single
omega parameter for hse06 by default – the choice is up to you. Apologies
for the inconvenience.

– pbe0 : PBE0 hybrid functional [1], mixing 75 % GGA exchange with 25 %
Hartree-Fock exchange.

– pbesol0 : Hybrid functional in analogy to PBE0 [1], except that the PBEsol
[178] GGA functionals are used, mixing 75 % GGA exchange with 25 %
Hartree-Fock exchange.

– lc_wpbeh : Range separated hybrid functional LC-ωPBEh using 100 %
Hartree-Fock exchange in the long-range part and ωPBE [171] in the short-
range part. The full correlation energy is treated as in PBE. The hse_unit
must be specified as in hse06!
Syntax:
xc lc_wpbeh ω α

ELC-ωPBEh
xc = αESR

xx + (1− α)ESR
xωPBE

+
(1
ε

)
ELR
xx +

(
1− 1

ε

)
ELR
ωPBE + EcPBE

(3.6)
∗ ε can be the dielectric constant. The default value is 1. One might
change this parameter with the keyword lc_dielectric_constant

∗ If α = 0 the functional is also known as LC-ωPBE [71]
∗ α = 1 would correspond to a PBE0 calcuation with 100 % Hartree-Fock
exchange

• Hybrid Meta-generalized gradient functionals (including non-local exchange): Please
also see Secs. 3.22 and 3.23 for related keywords and technical hints. Currently
the non-local exchange contribution is fixed in all implementations due to the
parameterised nature of these density functionals.

– m06 : Truhlar’s optimized hybrid meta-GGA of the “M06” suite of functionals;
with 27% exact exchange. [237]

– m06-2x : Truhlar’s optimized hybrid meta-GGA of the “M06” suite of func-
tionals, with double contribution (54%) from the hartree-fock exact ex-
change. [237]

– m06-hf : Truhlar’s optimized hybrid meta-GGA of the “M06” suite of func-
tionals, with 100% exact exchage contribution. [236]

3.3. Electronic structure: Exchange, correlation (incl. DFT+U), and excited states 65

– m08-hx : Truhlar’s optimized hybrid meta-GGA of the “M08” suite of func-
tionals, with 52.23% contribution from the hartree-fock exact exchange.
[239]

– m08-so : Truhlar’s optimized hybrid meta-GGA of the “M08” suite of func-
tionals, with 56.79% contribution from the hartree-fock exact exchange.
[239]

– m11 : Truhlar’s optimized range-separated local meta-GGA of the “M11”
suite of functionals [181]. The range-separation variable is also hardcoded in
this implementation with ω = 0.25 bohr−1.

• A substantial further range of functionals is available through the LibXC library
[142], of which v4.0.2 is distributed with FHI-aims. The implementation covers
spin paired and polarised calculations for LDA, GGA and meta-GGA approaches
(excluding those meta-GGAs on the laplacian of the density), as well as hybrid-
DFT, in equivalence to functionality with canonical functionals (energy, forces and
stress). The general syntax is xc libxc <name> where <name> is using the LibXC
nomenclature (available at https://www.tddft.org/programs/libxc/functionals/),
and exchange and correlation density functionals can be combined using a "+" sign.
As an example, the LibXC call for PBE would be xc libxc GGA_C_PBE+GGA_X_PBE.

• Alternative implementations of some XC functionals via the dfauto program [208].
These implementations are generated automatically from Maple definitions that
are located in xc_dfauto/. The general syntax is xc dfauto <name> where
<name> can be one of (case-insensitive):

– dfauto pw-lda|pbe|pbe0|tpss : This is practically identical to specifying
directly xc <name>, and essentially provides alternative implementations of
those functionals for testing purposes.

– dfauto scan : This is the meta-GGA functional SCAN [210].
– dfauto rscan : This is a Revision of the meta-GGA functional SCAN

(rSCAN) [16].
– dfauto scan0 : This is the meta-GGA hybrid functional SCAN0 [110], which

mixes SCAN with 25% of exact exchange.

• Double-hybrid functionals (including non-local exchange and correlation): Double-
hybrid functionals are emerging quickly in the last decade. “double-hybrid” here
means that the exchange functional mixes LDA(and/or GGA) exchange with “Hartree-
Fock like exact exchange”. Meanwhile, the correlation functional is composed of
both conventional LDA(and/or GGA) correlation and second-order perturbation
energy. Doubly-hybrid functionals are “semi-empirical”, generally including several
empirical parameters determined by optimizing against one or several well-chosen
databases. Double-hybrid functionals show a remarkable improvement over con-
ventional (hybrid-)GGAs in the description of heats of formation, bond dissociation
enthalpies, reaction barrier heights and weak interactions of the main group ele-
ments. Doulbe-hybrid functionals have become new leading actors in the field of
computational chemistry.

66 Chapter 3. The Full Monty: All Keywords and Capabilities

– xyg3 : Double-hybrid functional XYG3, containing 80.33% Hartree-Fock
exchange and 32.11% second-order perturbation energy [234].

– xdh-pbe0 : Double-hybrid functional xDH-PBE0, containing 83.51% Hartree-
Fock exchange and 52.42% opposite-spin second-order perturbation correla-
tion [233].

• Some specific correlated methods: Only a subset. For many correlated methods
that can be used as non-selfconsistent perturbative post-processing methods after
an initial s.c.f. calculation, see the total_energy_method keyword. Most of
these are not available for periodic geometries, or, if at all, in a very experimental
state.

– mp2 : Self-consistent Hartree-Fock, followed by a second-order Møller-Plesset
perturbative addition of the correlation energy. Note that the frozen_core
keyword can be used to specify if and which low-lying states should be ex-
cluded from the correlation energy. For spin-component scaled MP2 [81], see
keyword scs_mp2_parameters .
Note that when mp2 is used for binding energy calculations, a counterpoise
correction should always be performed to get reliable results, since the basis
set superposition error (BSSE) for these correlation methods is significant.
Note added in March 2016: A periodic implementation of MP2 is available
but, at the time of writing, computationally extremely expensive. If you de-
cide to use it, please keep in mind that the periodic version is included here as
a matter of protocol but is not yet optimized to be fully usable in production
calculations.

– screx : experimental! Self-consistent, screened Hartree-Fock exchange only.
The Coulomb operator is screened as:

1
r − r′

→ 1
ε(r, r′) ·

1
r − r′

(3.7)

ε(r, r′) is the non-local microscopic dielectric function, obtained in the ω →0
frequency limit of the random-phase approximation (RPA). See Ref. [92] for
details.

– cohsex : experimental! Self-consistent screened exchange plus Coulomb-
hole (COH) correlation. See Ref. [92] for details.

• Method of non-local correlation using the “van der Waals density functional” (vdw-
DF) as presented by Dion and coworkers in Ref. [55]. Two options are available
for the exchange part:

– pbe_vdw : the functional with pbe exchange
– revpbe_vdw : the functional with revpbe exchange

Note that this keyword is not the correction due to Tkatchenko and Scheffler
2009 [215]. To activate the Tkatchenko-Scheffler correction instead, use the
vdw_correction_hirshfeld keyword. The functional by Dion et al. is a very
different functional. As implemented here, it is also much more expensive than

3.3. Electronic structure: Exchange, correlation (incl. DFT+U), and excited states 67

the Tkatchenko-Scheffler correction. To use the functional by Dion et al., please
review the numerical options described in Sec. 3.21.2.

Note that our version of the Coulomb operator (which is the basis for Hartree-Fock
exchange also in hybrid functionals, as well as MP2 theory) is based on an auxiliary basis
in what is known as resolution of the identity (Refs. [30, 3, 221, 61] and others). While
our default settings should be safe, you may wish to consult Sec. 3.22 for particulars
regarding this auxiliary basis.

Note also that some different perturbative exchange-correlation treatments for post-
processing (after a self-consistent DFT or HF calculation is complete) may be invoked
using the tag total_energy_method . Likewise, perturbative postprocessing for
single-quasiparticle energies through a self-energy formalism (e.g., GW) is reached by
specifying the qpe_calc tag and its options.

Right now, the correlated beyond-hybrid and beyond-meta methods are not implemented
on top of the HSE03 or HSE06 functionals.

Subtags for species tag in control.in:

species sub-tag: plus_u (control.in)

Usage: plus_u n l U

Purpose: Experimental—only for DFT+U. Adds a +U term to one specific shell
of this species.
n the (integer) radial quantum number of the selected shell.
l is a character, specifying the angular momentum (s, p, d, f, ...) of the selected
shell.
U the value of the U parameter, specified in eV.

This implementation of DFT+U is based directly on the basis functions available within
FHI-aims. This option selects one specific atomic shell of this species and adds the
a rotationally invariant term with the specified fixed prefactor U to the Hamiltonian.
The implementation follows the prescription in Ref. [90], based on the dual occupation
numbers. The double counting term is handled through the mixed term proposed by
Petukhov (see plus_u_petukhov_mixing).

68 Chapter 3. The Full Monty: All Keywords and Capabilities

3.4 Specifying the basis (functions, empty sites,
k-points, ...)

Among the technical choices in FHI-aims, the choice of the basis set is by far the most
important one, both regarding the efficiency and the desired accuracy of a calculation.
The shape and details of the basis sets used are thus kept as obvious as possible to the
user. At the same time, nobody should be required to type in an entire basis set plus
additional specifications from scratch just to run a production calculation.

As described in Ref. [26], the basis functions of FHI-aims take the format

φ(r) = u(r)/r · Ylm(θ, φ) (3.8)

in spherical coordinates (r, θ, φ) with respect to a given atomic center. Each radial
function u(r) is numerically tabulated on a dense logarithmic radial grid, and evaluated
as a cubic spline function in other parts of the code. Finally, most radial function types
are subject to a cutoff potential of radial with w, ensuring that u(r)=0 for r > rcut =
ronset + w.

In periodic calculations, the full basis specification additionally includes the k-point grid
for Bloch functions in the first Brillouin zone. Unlike in many other implementations, this
is not a performance-critical setting in FHI-aims, and should be set to a well converged
value if possible.

The recommended approach to basis sets in FHI-aims is twofold:

• First, obtain the basic description of each required element by copy-pasting one of
the preconstructed species_default files into your control.in file. The pre-
constructed species_default files address all standard specifications associated
with a single species , including the integration grids, the Hartree potential,
and most importantly the basis set.

• Second, edit the copy-pasted species_defaults file to match your specific
accuracy and efficiency requirements. For the basis set, this is done by adjust-
ing the species-dependent keywords described below. Most importantly, com-
plete basis sets are listed at the end of each species_default file. You can
increase/decrease the basis set accuracy by successively uncommenting / com-
menting tiers of the basis set. Note that each higher tier must only be used if all
lower tiers are active. For example, it does not make sense to use all tier 2 basis
functions if the first tier is not used.

In addition to our own case studies,[26] the accuracy of the “tier” (sometimes called
“FHI-aims-2009”[232]) preconstructed basis sets for semilocal and hybrid DFT calcula-
tions was established in several benchmark assessments.[143, 115]

For beyond-DFT methods like MP2, GW , the random-phase approximation, etc., basis
set convergence is very different and absolute convergence is often not possible. In
the case of beyond-DFT methods, we recommend to ascertain basis set convergence
by performing specific convergence tests for any important results. For total-energy

3.4. Specifying the basis (functions, empty sites, k-points, ...) 69

differences between different structures, a counterpoise correction can often be employed
(using the empty keyword to create sites which have basis functions but no atoms).
For beyond-DFT calculations for light elements (H-Ar), the NAO-VCC-nZ basis sets[232]
are additionally available among the species defaults and provide reliable convergence
for total-energy methods (see Ref. [232] for details).

Finally, we can also use different approaches to create the free-atom-like core and valence
basis functions that are included in the so-called “minimal basis” of the NAO basis sets
provided with FHI-aims (unless explicitly excluded using the include_min_basis
keyword). If semilocal density functionals are used in the overall calculation, these
atomic radial functions are created for the same exchange-correlation functional as re-
quested by the xc keyword of the control.in file. For hybrid density functionals,
FHI-aims has historically used LDA- or GGA-derived free-atom-like basis functions by
default (still current as of August 2017, but slated to be changed in the future), but the
definition of the “minimal basis” can be changed in a limited way using the keywords
atomic_solver_xc or atomic_solver . See, for instance, Figure 7 in Ref. [187] for
the effect of changing the mimimal basis definition by keyword atomic_solver_xc
on total energy convergence for a simple example.

70 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of geometry.in:

Tag: empty (geometry.in)

Usage: empty x y z species_name

Purpose: Specifies the initial location and type of a site where only the basis
functions (but not the nucleus) of a given species are placed.
Restriction: Currently not functional with periodic boundary conditions. The use
of this option should be avoided for physical reasons if a structure relaxation is
requested.
x, y, z are real numbers (in Å) which specify the atomic position.
species_name is a string descriptor which names the element on this atomic
position; it must match with one of the species descriptions given in control.in.

This allows to place extra basis functions at specified locations outside the actual atoms,
e.g., allowing for a counterpoise correction of basis set superposition errors.

3.4. Specifying the basis (functions, empty sites, k-points, ...) 71

Tags for general section of control.in:

Tag: atomic_solver (control.in)

Usage: atomic_solver string

Purpose: Changes the atomic solver library that generates the free-atom-like
radial functions (or free-ion-like radial functions) used, e.g., in the minimal basis
part of the NAO basis sets.
string is the name of the solver to be used, either sratom or atom_sphere.
Default: sratom

The definition of free atom radial functions used as the “minimal basis” of FHI-aims
affects the absolute convergence of total energies calculated by FHI-aims. The radial
shape of the free-atom core and valence functions towards the nucleus is nearly exact
also for bonded structures if the same exchange-correlation functional is used and thus,
e.g., using DFT-PBE generated radial functions when using xc pbe will improve the
convergence of total energies. (Other quantities, such as atomization energies or other
energy differences, will often exhibit better convergence than the total energy, since the
effect of the exact shape of the minimal basis functions near the nucleus often cancels to
a reasonable extent. See, e.g., Ref. [115] for a study of these effects for Gaussian-type
and NAO basis sets compared to accurate reference values.)

Options for string:

sratom: FHI-aims’ default solver for the electronic structure of spherical free atoms on a
dense logarithmic grid, called “sratom” (for “scalar relativistic atom”) is the same solver
as used in the Fritz Haber Institute 1998 pseudopotential generation code by Martin
Fuchs and coworkers, reference [70]. It was modified by Timo Jacob to incorporate
ZORA scalar relativity when needed. This solver can handle semilocal density functionals
but not exact exchange. Thus, for hybrid density functionals in FHI-aims, the “minimal
basis” radial functions produced by sratom are semilocal DFT, not hybrid functional
basis functions. This leads to a slower convergence of absolute total energies with
hybrid functionals in FHI-aims (the error in atomization energies cancels to a good
extent). See Figure 7 in Ref. [187] for the magnitude of this effect for the example of
the convergence of Hartree-Fock calculations for Au2 with an LDA-generated minimal
basis compared to the same calculation, but with a minimal basis derived using the
Krieger-Li-Iafrate (KLI) approximation [129, 130, 131] to the exact-exchange optimized
effective potential. “sratom” is the current default solver for radial functions in FHI-aims.

atom_sphere: This solver for spherical free atoms was developed in Stefan Goedecker’s
group for many years (beginning with Ref. [73]) and includes support for semilocal
and hybrid density functionals. In FHI-aims, “atom_sphere” is used as a library under
the Lesser General Public License (LGPL). As of this writing (August 2017), only non-
relativistic calculations are supported by “atom_sphere”. In this case, the resulting total
energies for hybrid density functionals converge precisely as well as their semilocal DFT
equivalents, as shown, e.g., in Ref. [115]. “atom_sphere” will only work if support for
libxc was compiled into the FHI-aims binary used.

72 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: atomic_solver_xc (control.in)

Usage: atomic_solver_xc string

Purpose: Changes the exchange-correlation functional used to generate the
free-atom-like radial functions in the minimal basis part of the NAO basis sets.
Restriction: This keyword only has an effect if atomic_solver sratom is
used.
string is the name of the exchange-correlation functional to be used for the
free-atom solution. Default: Internal defaults (no specific option).

There is currently only one specific option for this keyword:

KLI

for the Krieger-Li-Iafrate (KLI) approximation [129, 130, 131] to the exact-exchange
optimized effective potential. Figure 7 in Ref. [187] is an example of the effect of the
choice of different minimal basis functions on the convergence of the total energy of a
Hartree-Fock calculation for a heavy element. In that case, the KLI approximation is
closer to the converged result since the radial behavior of the minimal basis functions
towards the nucleus is closer to the Hartree-Fock result, and because the radial function
behavior of the free atom near the nucleus is nearly identical to the near-nuclear behavior
of the Kohn-Sham orbitals in the bonded structures. In other words, for Hartree-Fock,
KLI represents the nuclear cusp better than the local-density approximation (which is
the present default choice of minimal basis radial functions for Hartree-Fock).

In all cases where atomic_solver_xc is not specified, the choice of the exchange-
correlation functional for free atoms varies with the chosen setting for the xc keyword,
but is not necessarily identical. For local and semilocal density functionals, the choice
of functional for the minimal basis is generally identical to keyword xc , but for hybrid
functionals, the choice may vary and is currently “best” documented in the source code
(in subroutine get_free_atoms.f90).

Tag: calculate_atom_bsse (control.in)

Usage: calculate_atom_bsse flag

Purpose: Allows calculation of the basis set superposition error (BSSE) corrected
atomization energy.
flag is a logical string, either .false. or .true. Default: .false.

This keyword automates a specialized version of the counterpoise correction and should
only be used with great care. A general counterpoise correction for molecules can
be implemented manually and in separate steps using the empty keyword. The
atomization BSSE correction implemented above, if used, must be checked very carefully
to ensure that all single-atom reference calculations carried out in the process reached
the exact same atomic reference state. Many important atoms have more than one self-
consistent solution, and mixing different self-consistent solutions may produce completely

3.4. Specifying the basis (functions, empty sites, k-points, ...) 73

erratic results. Our recommendation therefore to carry out any counterpoise correction
manually instead, by doing separate single-point FHI-aims calculations with different
molecular fragments and different basis definitions.

The atomization BSSE correction for a molecular structure is defined as:

∆ac =
∑
x

[Ex(x)− Ex(sys)] (3.9)

where Ex(x) is the energy of the atom x calculated using only its basis set and Ex(sys)
is its energy calculated with the basis set of the whole structure. The BSSE corrected
total energy is then

EBSSE = Esys(sys) + ∆ac (3.10)

The atomization BSSE correction is usually small in the case of the LDA/GGA func-
tionals, but can become significant for methods with explicit correlation like RPA and
MP2.

The BSSE corrected atomization energy implemented here, on the other hand, is

EBSSE
at = Esys(sys)−

∑
x

Ex(sys) (3.11)

In the case where relative energies between different conformations of the same molecule
are needed, (EBSSE

at)rel ≡ (EBSSE)rel.

If the calculation of the full system is performed without spin polarization, the total
energy of each atom will also be calculated without spin polarization (and vice versa).
In this case, specially when performing the scf cycle with HF, symmetry breaking of
the electronic configuration of certain atoms may occur, which might lead to wrong
conclusions.

The keyword is currently implemented for use with cluster geometries only. Both RPA
and MP2 as the total_energy_method are supported.

Tag: hydro_cut (control.in)

Usage: hydro_cut flag

Purpose: Determines whether or not hydrogenic functions are subject to a
numerical cutoff potential.
flag is a logical expression, either .true. or .false. Default: .true.

This tag should be kept at the default value unless for testing purposes (e.g., comparing
to other codes).

Tag: k_grid (control.in)

74 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: k_grid n1 n2 n3

Purpose: Sets up an evenly split k-points grid along the reciprocal lattice vectors
of a periodic calculation
n1, n2, n3 : integer numbers defining the number of k-point splits along the
first, second and third reciprocal axis of the first Brillouin zone, respectively

Note that the order of n1, n2, n3 must directly correspond to the order in which the
lattice_vector s are listed in geometry.in, through the definition and order of the
reciprocal lattice. By default, the resulting k_grid is centered around the Γ-point,
but can be shifted using the k_offset keyword below.

The keyword symmetry_reduced_k_grid now allows to make use of time-reversal
symmetry to reduce the number of k points by a factor of nearly two. This option is the
default.

Tag: k_grid_density (control.in)

Usage: k_grid_density density

Purpose: Sets up an evenly split k-points grid along the reciprocal lattice vectors
of a periodic calculation based on kpoint density.
density : float number in units of 1/Å−1 defining the density of k-point splits
along the reciprocal axis of the first Brillouin zone

Tag: k_offset (control.in)

Usage: k_offset f1 f2 f3

Purpose: Defines a possible non-Γ offset for the k-point grid in periodic boundary
conditions.
f1, f2, f3 : Fractional coordinates (between zero and one) of a k-point offset ,
in units of the reciprocal lattice vectors. Default: (0., 0., 0.).

Can be used to shift the grid off-Γ for better k-space sampling. For example, (0.5, 0.5,
0.5) together with even ni for k_grid defines a Monkhorst-Pack [162] type grid. See
Sec. 4.3 for details.

The k_offset cannot be used with Hartree-Fock or hybrid density functionals as the
current implementation assumes a Γ-centered grid.

Tag: k_points_external (control.in)

Usage: k_points_external

Purpose: Instead of an internally specified k-point grid, allows to specify an
externally read k-grid from a file k_list.in .

3.4. Specifying the basis (functions, empty sites, k-points, ...) 75

This option is useful to specify an uneven special k-point set [43], etc.

The k_points_external keyword cannot presently be used with Hartree-Fock or
hybrid density functionals as the current implementation the presence of the k_grid
keyword and information in control.in.

If specified, k_points_external expects a separate input file k_list.in to be
provided in the same working directory as all other input files. The format of k_list.in
is as follows:
line 1: n1 n2 n3
line 2: Nk
lines 3 - Nk+2 : k1 k2 k3 weight

All lines are read as free format.
n1, n2, n3 are integers, specifying the descriptors of a 3D k-point grid. During s.c.f.,
these values are for reference only. However, they may be used for postprocessing after
the s.c.f. cycle is complete, e.g., for keyword output postscf_eigenvalues ,
where the external k-point list k_list.in is not supported.
Nk is the (integer) number of k-points following in the file.
For each k-point, a separate line is expected, including via k1, k2, k3 the coordinates
of this point in units of the reciprocal lattice vectors, and via weight the integration
weight of this k-point in all Brillouin zone integrals.

Tag: onsite_accuracy_threshold (control.in)

Usage: onsite_accuracy_threshold threshold

Purpose: Issues a warning if the onsite integral of a basis function on the ’radial’
integration grid differs from the same onsite integral on the more accurate
logarithmic grid by more than threshold.
threshold is given in eV. Default: 0.03 eV.

See keyword output onsite_integrands for the integrals that are actually
evaluated.

For “light” settings, you can most likely ignore the associated warning. Possibly, treat
it as a reminder to check final results with “tight” settings or similar, just in case.

FHI-aims writes the respective onsite integral values for all its radial functions side by
side after the setup of all radial functions is complete. Too large deviations between
the calculated values on the radial and logarithmic grids can indicate accuracy problems,
which is a particular concern for high-accuracy benchmark calculations. In particular,
Gaussian-type orbital basis sets of the Dunning type that are used for high-level reference
calculations need grids that are far more accurate than normal NAO basis sets, due to
the unphysical wiggles that contracted Gaussian functions with high exponents introduce
near the nucleus.

If the associated warning strikes, the grid accuracy can be improved either using the
radial keyword or (simpler) the radial_multiplier keyword.

76 Chapter 3. The Full Monty: All Keywords and Capabilities

However, if onsite_accuracy_threshold triggers a warning for “light” settings,
most likely you can safely ignore the warning. With light settings, the point may be to
do a reduced-accuracy calculation, which should still be safe for its original purposes.
Just check the radial grid when in doubt.

If the flag override_integration_accuracy is toggled to .false., however, FHI-
aims does stop whenever it encounters a radial function whose onsite integrals are not
deemed accurate enough by the onsite_accuracy_threshold criterion.

Tag: override_integration_accuracy (control.in)

Usage: override_integration_accuracy flag

Purpose: If set to false, FHI-aims stops calculations for which the onsite
integral of any radial function is less accurate than prescribed by keyword
onsite_accuracy_threshold .
flag can be .true. or .false. Default: .true.

Tag: symmetry_reduced_k_grid (control.in)

Usage: symmetry_reduced_k_grid flag

Purpose: Determines whether or not to make use of time-reversal symmetry.
flag is a logical expression, either .true. or .false. Default: .true.

Tag: wave_threshold (control.in)

Usage: wave_threshold threshold

Purpose: Determines the outer radius beyond which a radial function is consid-
ered zero.
threshold is a small positive number. Default: 10−6. Lowered to 10−8 by
default if output i s requested.

A radial function is considered zero (not evaluated) beyond the radius where u(r) and
its first and second derivatives become smaller than threshold. The default is chosen
such as to not affect any results at all.

For electron densities or orbitals plotted for visualization using cube files (output f
unctionality), a too high value of wave_threshold can sometimes lead to small but
visible discontinuities. Thus, the default threshold is lowered to 10−8 if output i
s requested.

3.4. Specifying the basis (functions, empty sites, k-points, ...) 77

Subtags for species tag in control.in:

species sub-tag: basis_acc (control.in)

Usage: basis_acc threshold

Purpose: Technical cutoff criterion for on-site orthonormalization of radial
functions
threshold is a small positive real threshold. Default: 10−4.

Before any calculation, all radial functions for a single species are Gram-Schmidt or-
thonormalized. If the norm of the function after orthonormalization is smaller than
threshold, that function is omitted.

species sub-tag: basis_dep_cutoff (control.in)

Usage: basis_dep_cutoff threshold

Purpose: Basis function dependent adjustment of the confinement potential for
this species
threshold is either a positive real number, or can be explicitly set .false..
Default: 10−4.

If not .false., the onset of the basis confining potential (see cut_pot tag below)
is adjusted separately for each basis function, such that the norm of this basis function
outside ronset is smaller that threshold. The maximum possible onset radius is still
given by the value explicitly specified by the cut_pot tag.

species sub-tag: confined (control.in)

Usage: confined n l radius

Purpose: Adds a confined free-atom like radial function to the basis set.
n is the (integer) radial quantum number.
l is a character, specifying the angular momentum (s, p, d, f, ...).
radius is the onset radius of the confining potential (in atomic units, 1 a.u.
= 0.529177 Å). If the word auto is specified instead of a numerical value, the
default onset radius given in the cut_pot tag is used.

The defining potential for this basis function type consists of the non-spinpolarized, self-
consistent spherical free-atom potential (possibly itself confined, using the cut_free_atom
tag), and a confining potential. The shape of the confining potential is the same for all
basis functions of a given species, and set using the cutoff_type and cut_pot
subtags.

species sub-tag: core (control.in)

78 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: core n l

Purpose: Defines the top “core” shell of the species for this angular momentum.
n is the (integer) radial quantum number.
l is a character, specifying the angular momentum (s, p, d, f, ...).

Currently not needed for production calculations, but listed here because the “core”
infrastructure is currently being reworked and may see useful additions in the near future.
This flag defines which electrons of the species are considered “core” electrons, and which
enter as explicit valence electrons.

species sub-tag: core_states (control.in)

Usage: core_states number

Purpose: Independent determination of the number of states that are core states
in the current species.
number is an integer number (to be multiplied by 2 for the number of core
electrons). Default: 0.

Experimental at present, not needed for any production purposes. See also the core
keyword. The core_states keyword should interact with the core keyword,
but does not yet, since any associated functionality is still under development. Both
keywords are listed here for future reference only.

species sub-tag: cut_atomic_basis (control.in)

Usage: cut_atomic_basis flag

Purpose: Only relevant to decide whether the basis_dep_cutoff keyword
also applies to atomic-type (minimal) radial functions.
flag is a logical expression, either .true. or .false. Default: .false.

This keyword applies only to the setting specified by keyword basis_dep_cutoff
. Do not enable it routinely without thorough testing.

By default, the minimal basis functions in FHI-aims are subject to the cutoff potential
with the fixed onset specified by the cut_pot keyword. However, the more restrictive
basis_dep_cutoff keyword does not apply to the minimal basis by default.

This can be changed by setting cut_atomic_basis to .true., but the associated
total energy changes are significantly larger than for other basis functions. By default,
we therefore do not recommend adding a tighter cutoff to the minimal basis functions
at this time. It is, however, possible that this effect is mainly a systematic error between
the core states, and after further testing, we may yet choose to enable this keyword if
we can guaranteed that its use is safe.

species sub-tag: cut_pot (control.in)

3.4. Specifying the basis (functions, empty sites, k-points, ...) 79

Usage: cut_pot onset width scale

Purpose: Specifies the numerical parameters for the general (default) confine-
ment potential vc(r) for all basis functions of this species.
onset specifies the default onset radius of the cutoff potential, in Å (vc(r)=0
for r < ronset).
width specifies the radial width w of the cutoff potential, in Å (vc(r)=∞ for
r > ronset + w).
scale is a scaling parameter to increase or decrease the numerical value of vc.

This tag is mandatory, since it specifies onset, a critical parameter that allows to
tune the efficiency of a calculation for a given target accuracy. Unless reduced by the
basis_dep_cutoff tag, onset is the default onset radius used to construct all valence
(minimal) and hydrogen-like basis functions of this species. In addition, any confined
free-atom or free-ion like radial functions use this onset radius if auto is used in their
specification.

Notes: The functional form of vc(r) can be selected using the cutoff_type keyword,
and width and scale apply to this shape. Modifying these latter parameters is usually
not necessary for a production calculation, but the onset value should be verified at
least as a quick numerical check.

species sub-tag: cutoff_type (control.in)

Usage: cutoff_type identifier

Purpose: Specifies the functional form of the confinement potential associated
with this species.
identifier is a string that selects a given confinement potential shape as
specified in the code. Default: exp(1_x)_(1-x)2.

All confinement potentials in FHI-aims are characterized by the rigorous boundaries
vc(r)=0 for r < ronset and vc(r)=∞ for r > rcut = ronset + w, where ronset may depend
on the basis function, and w is the width specified by the cut_pot tag. In addition,
each shape contains a scaling parameter s, also specified via the cut_pot tag.

Available confinement potential shapes (identifier) for ronset < r < rcut = ronset +w
are:

• exp(1_x)_(1-x)2 :

vc(r) = exp(w

r − ronset
) · 1

(r − rcut)2

(the default in FHI-aims)

• junquera :
vc(r) = exp(w

r − ronset
) · 1

(r − rcut)
(the form originally suggested by Junquera et al. [117])

80 Chapter 3. The Full Monty: All Keywords and Capabilities

• x2_(1-x2)

vc(r) = (r − ronset)2 · 1
(r − rcut)2

species sub-tag: gaussian (control.in)

Usage: gaussian L N [alpha]
[alpha_1 coeff_1]
[alpha_2 coeff_2]
[...]
[alpha_N coeff_N]

Purpose: Adds a Gaussian-based radial function to the basis set.
Restriction: This basis function type is not subject to a cutoff potential. It may
therefore require a wider radial_base integration grid than the standard
NAO’s in FHI-aims.
L is an integer number, specifying the angular momentum
N is an integer number, specifying how many primitive Gaussians comprise the
present radial function
alpha : If N=1, this is the exponent defining a primitive Gaussian function [in
bohr−2].
alpha_i coeff_i : If N>1, i = 1, . . . , N additional lines specify exponents αi
and expansion coefficients gi for a non-primitive linear combination of Gaussians.

FHI-aims allows to use Gaussian-based radial functions to compare to existing popular
Gaussian-based implementations of quantum chemistry. These functions can either be
primitive Gaussians,

u(r) = 1
Norm rL+1 · exp(−αr2), (3.12)

or non-primitive linear combinations.

u(r) = 1
Norm rL+1 ·

i=N∑
i=1

gi exp(−αir2). (3.13)

In existing quantum chemistry codes, Gaussian basis functions can be defined either as
spherical Gaussians [Eq. (3.12) above], or as cartesian Gaussians,

φ(r) = xkymzn exp(−αr2), where k +m+ n = L. (3.14)

This behavior can be mimicked using the pure_gauss tag (see below). Finally, note
that in order to use an exclusively Gaussian-based basis set, you must prevent the use of
the minimal free-atom like NAO basis functions using the include_min_basis tag.

species sub-tag: hydro (control.in)

3.4. Specifying the basis (functions, empty sites, k-points, ...) 81

Usage: hydro n l z_eff

Purpose: Adds a hydrogen-like radial function to the basis set.
n is the (integer) radial quantum number.
l is a character, specifying the angular momentum (s, p, d, f, ...).
z_eff scales the radial function as an effective nuclear charge in the defining
Coulomb potential zeff/r.
By default, hydrogen-like basis functions in FHI-aims are subject to the numerical
confinement potential given by cutoff_type and cut_pot . Optionally,
analytical hydrogen-like functions (no confinement) can be requested using the
global hydro_cut tag.

species sub-tag: include_min_basis (control.in)

Usage: include_min_basis flag

Purpose: Allows to exclude the minimal basis of numerically tabulated free-atom
basis functions (core and valence) from the basis set.
flag is a logical expression, either .true. or .false. Default: .true.

This flag is normally only useful to compare explicitly with basis sets from other methods,
usually Gaussian basis sets.

With Gaussian basis sets and any other basis sets that should not include any radial func-
tions of the numeric atom-centered orbital spherical free atom, include_min_basis
must be set to .false.

If include_min_basis is set to .true., the basis set will additionally include
the numerical spherical free-atom radial functions. For our standard FHI-aims numeric
atom-centered orbital basis sets, this behavior is desired and part of their definition.
However, if these basis functions are added to a standard Gaussian-type basis set, then
total energies and other computed quantities will not be the same as, say, with a pure
Gaussian-type orbital code.

Note that, due to the presence of the free-atom radial functions, our numeric atom-
centered basis sets usually give lower total energies for DFT than standard Gaussian
basis sets, because the description of the region near the nucleus is more precise. This
is demonstrated quantitatively, including figures, in the appendix of Ref. [232].

species sub-tag: ion_occ (control.in)

82 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: ion_occ n l occupation

Purpose: Specifies the shell occupation of a radially symmetric, non-spinpolarized
free ion that defines any ionic basis functions.
Restriction: Only one type of ion can be used to define ionic basis functions for
a given species.
n is the (integer) radial quantum number.
l is a character, specifying the angular momentum (s, p, d, f, ...).
occupation is the number of electrons in the topmost occupied valence shell of
this ion.

This tag defines an ionic configuration, but does not actually add any ionic functions
to the basis used in the present calculation. Actual basis functions are added by the
ionic keyword.

Only the topmost valence shell of each angular momentum channel of the ion is specified.
All lower-lying shells are assumed to be completely filled for the self-consistent spherical
free-ion calculation.

species sub-tag: ionic (control.in)

Usage: ionic n l radius

Purpose: Adds a free-ion like radial function to the basis set.
n is the (integer) radial quantum number.
l is a character, specifying the angular momentum (s, p, d, f, ...).
radius is the onset radius of the confining potential (in atomic units, 1 a.u.
= 0.529177 Å). If the word auto is specified instead of a numerical value, the
default onset radius given in the cut_pot tag is used.

species sub-tag: pure_gauss (control.in)

Usage: pure_gauss flag

Purpose: If .true., any gaussian basis functions for this species will be
purely spherical Gaussians.
flag is a logical string, either .false. or .true. Default: .true.

See keyword gaussian for the distinction between spherical and cartesian Gaussian
functions. In short, cartesian and spherical Gaussian functions are equivalent except that
for a given L, cartesian Gaussians add a so-called angular momentum contamination.
If pure_gauss is specified, this angular momentum contamination is mimicked by
FHI-aims.

Consider the simple (textbook!) three-dimensional harmonic oscillator in quantum me-
chanics. This can be solved either in cartesian coordinates, or in spherical coordinates.
If solves in cartesian coordinates, you will find that there are six degenerate solutions
for the principal quantum number 2, five of which correspond to l=2 (d channel), but

3.4. Specifying the basis (functions, empty sites, k-points, ...) 83

one of which corresponds to l=0 (s channel). This is the exact angular momentum
contamination exhibited by the cartesian definition of a Gaussian basis function.

species sub-tag: valence (control.in)

Usage: valence n l occupation

Purpose: Specifies the shell occupation of the radially symmetric, non-
spinpolarized free atom that defines the minimal basis.
n is the (integer) radial quantum number.
l is a character, specifying the angular momentum (s, p, d, f, ...).
occupation is the number of electrons in the topmost occupied valence shell of
this ion.

Only the topmost valence shell of each angular momentum channel of the atom is
specified. All lower-lying shells are assumed to be completely filled for the self-consistent
spherical free-atom calculation. The valence occupation must be defined explicitly for
each species .

The self-consistent free-atom potential generated by this calculation is used to generate
all minimal and confined basis functions used for this species, after the confining
potential is added.

The self-consistent free-atom calculation can itself be confined by a different confining
potential, the onset of which is specified by the cut_free_atom keyword.

For DFT-LDA/GGA, the same xc functional that is used in the full three-dimensional
calculation is also used to define the self-consistent free atom. For any methods involving
Hartree-Fock exchange (e.g., hybrid functionals), the free atom is generated using the
pw-lda LDA functional.

The self-consistent free atom density generated here is also used in the construction of
partition functions for the Hamiltonian integrals and the Hartree potential, as well as to
build the initial charge density (unless otherwise requested!) and the reference charge
density subtracted before constructing the Hartree potential.

species sub-tag: sto (control.in)

Usage: sto n l zeta

Purpose: Adds a Slater-type orbital to the basis set.
Notes: This basis function type is not subject to a cutoff potential.
n is an integer which plays the role of the principal quantum number for the STO
l is an integer specifying the STO angular momentum
zeta is a double precision number specifying the STO exponent, which plays the
role of the effective nuclear charge

84 Chapter 3. The Full Monty: All Keywords and Capabilities

3.5 Integration, grids, and partitioning

The next single most important set of specifications required for FHI-aims are the settings
regarding the numerical grids used in many contexts. Details regarding the shape and
physical motivation behind these grids are given in Refs. [26, 91], and we do not repeat
them here.

Notice that the actual required grids may depend on the context of the calculation, for
example whether Hartree-Fock, hybrid functionals, and or GW calculations are required.
In these cases, some specific settings may require tightening, and some defaults may
automatically be chosen differently depending on whether or not those techniques are
used.

Specifically, the present section deals with the following topics:

• the 1D logarithmic grid infrastructure required for atomic / free-atom like calcu-
lation

• radial and angular grids for all three-dimensional integrals

• shaping the partition functions used to split the full three-dimensional integrals
into effective atom-per-atom pieces

• Splitting the grids into different batches for localization / parallelization efficiency

While many of the settings below take safe defaults for standard FHI-aims calculations
and need not be modified, it is particularly important to verify the accuracy and effi-
ciency of all three-dimensional integration grids (radial_base , angular_grids
, and associated tags), since these determine the performance of the code. In the
species_defaults files, (very) safe settings for DFT-LDA/GGA are provided, but for
many tasks, may be reduced at very little accuracy loss.

3.5. Integration, grids, and partitioning 85

Tags for general section of control.in:

Tag: batch_size_limit (control.in)

Usage: batch_size_limit value

Purpose: Hard upper bound to the number of points in an integration batch.
Restriction: Applies to the maxmin and octree grid_partitioning_method
.
value is an integer number. Default: 200.

See grid_partitioning_method and Ref. [91] for details regarding integration
batches.

Tag: force_lebedev (control.in)

Usage: force_lebedev type

Purpose: Allows to switch between Delley’s [53] angular grids (17 digits) and
the original angular grids tabulated by Lebedev and Laikov [138, 139, 140] (12
digits). And also, the ESTD and D6h grid are supported here.
type is a keyword (string), either original or Delley or estd or d6hgrid.
Default: Delley.

This option need not be changed (or invoked) in any normal runs, since there is no
quantitative difference between integrals with Delley’s and Lebedev’s tabulated grids to
our knowledge.

Lebedev’s grids may be explicitly invoked when denser angular grids than 1202 points
(already very dense!) per radial integration shell around each species are required. In
detail, grids with the following numbers of grid points are provided:

• Delley : 6, 14, 26, 50, 110, 194, 302, 434, 590, 770, 974, 1202

• Lebedev : 6, 14, 26, 38, 50, 86, 110, 146, 170, 194, 302, 350, 434, 590, 770,
974, 1202, 1454, 1730, 2030, 2354, 2702, 3074, 3470, 3890, 4334, 4802, 5294,
5810

These numbers of grid points can be invoked in the subtags of the angular_grids
specified description for fixed angular grids (the default in the preconstructed species_defaults
files), and in further tags such as angular or angular_min .

Tag: grid_partitioning_method (control.in)

86 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: grid_partitioning_method method

Purpose: Allows to switch between different methods to partition the full (3D)
integration grids into batches for individual operations.
method is a string, charactrizing one of the different methods outlined below.
Default: serial–maxmin, parallel–parallel_hash+maxmin

Partitioning the integration grid properly can be performance-critical for the expensive
grid-based Hamiltonian integration and charge density update steps. Details on these
methods are given in Ref. [91]. In particular, we support:

• maxmin : The default for serial computations: the “grid-adapted cut-plane”
method described in Ref. [91]

• parallel_hash+maxmin : The default for all parallel runs. We first hash the grid
points to tasks by the geometric location and then run a maxmin algorithm locally
in each task.

• parallel_maxmin : Memory-parallel implementation of the maxmin method.
However, the exact implementations requires rather much communication, and
has been superseded by parallel_hash+maxmin.

• octree : The “octree” method described in Ref. [91]

• parallel_octree Parallel version of the “octree” method described in Ref. [91].
Only useful for research purposes—superseded by parallel_hash+maxmin for all
practical applications.

• octant Simple partitioning of the grid into “octants” of each radial integration
shell arround each atom.

Note that additional parameters may be invoked to specify details for these methods,
most importantly batch_size_limit and points_in_batch .

We mention for completeness that FHI-aims supports further, experimental grid batching
methods, including the possibility to link to external libraries. The associated method
strings are tetgen+metis, qhull+metis, nearest+metis, and group. As discussed
in Ref. [91], the conceptually simpler maxmin method performs as well or even better
than these “bottom-up” type approaches, and should be preferred.

Tag: min_batch_size (control.in)

Usage: min_batch_size value

Purpose: Sets the minimum number of points allowed in an integration batch.
Restriction: Affects the octree grid_partitioning_method method only.
value is an integer number. Default: 1.

No need to tweak for standard production calculations. See grid_partitioning_method
for details regarding integration batches.

3.5. Integration, grids, and partitioning 87

Tag: partition_acc (control.in)

Usage: partition_acc threshold

Purpose: If the partition function norm for 3D integrals and the Hartree potential
is below threshold, that integration point is ignored.
threshold is a small positive real number. Default: 10−15.

See Ref. [26] for details regarding “partitioning of unity” of the charge density in inte-
grations and the Hartree potential. The partition functions pat(r) are only calculated if
their denominator (the norm; e.g. ∑at ρat/|r −Rat|2 is greater than value, else that
integration point is ignored.

Notice that this type of partitioning is strictly rigorous for integrands that extend no
further than the free-atom like densities used to define our partition functions. This is
always true for DFT-LDA/GGA, with NAO’s but if you suspect (e.g., with very diffuse
Gaussian basis functions) some kind of integration noise, reducing threshold may be
a good first test.

Tag: partition_type (control.in)

Usage: partition_type type

Purpose: Specifies which kind of partition table is used for all three-dimensional
integrations.
type : A string that specifies which kind of partition table is used. Default:
stratmann_sparse

Usually, this tag need not be modified from the default. See the Computer Physics
Communications description of FHI-aims for a description of the numerical integration
technique used in FHI-aims.

In brief, each extended three-dimensional integrand is broken down into atom-centered
pieces, using a set of localized, atom-centered partition functions:

pat(r) = gat(r)∑
at′ gat′(r) . (3.15)

where gat(r) is an atom-centered weight function. The following options for type are
available:

• rho_r2 : gat(r) = nfreeat (r)/r2

(first suggested by Delley [52]).

• rho_r : gat(r) = nfreeat (r)/r

• rho : gat(r) = nfreeat (r)

• fermi : Deprecated—do not use. A Fermi-function like approach, requires two
additional parameters.

88 Chapter 3. The Full Monty: All Keywords and Capabilities

• stratmann: The shape suggested by Stratmann et al., Ref. [209]. This saves≈10-
20 % of the numerical effort compared to rho_r2. More importantly, however, our
recent testing shows that stratmann is also significantly accurate in some corner
cases where the effects of integration accuracy even make a difference. Note
the properly bounded “stratmann_smoother” default function below. Straight
“stratmann” should not be used.

• stratmann_smooth: Partial update to guarantee a smooth edge at the “outer
radius” or atoms.

stratmann_smoother: Corrected version of the stratmann partition table. The
following explanation refers to the prescription given in Eqs. (8), (11), and (14)
of Ref. [209]. The actual (normalized) partition function is given by Eq. (10). At
each grid point, it depends on a product of cell functions Eq. (9) over potentially all
atoms in the system—unless its cell function is equal to one, a faraway atom may
contribute to the partition function at a given grid point. Through the definition
of µik in Eq. (4) of Ref. [209] and the limitation of the cell function to unity
for µik < a = 0.64 through Eqs. (11) / (14), the distance from which an atom
can contribute is restricted, but potentially to a very large radius indeed. This
becomes a problem for periodic systems (in our case, a theoretical radius of 25 Å
would have resulted even for light settings and the farthest grid points from each
atom, set to 5 Å for light settings).
To avoid an overly large volume of contributing atoms, we restrict the list of
contributing atoms to only those whose free-atom charge density would not be
zero at the integration point in question. To that end, Eq. (8) of Ref. [209]
is additionally multiplied with a function that smoothly interpolates between the
original s of Stratmann and coworkers and unity. The interpolation is done only
for atom distances between 0.8 and 1.0 times their free-atom radius, and uses a
[1−cos(2x)]-like interpolating function. The bottom line is that we get the benefits
of both the Stratmann table and a restricted atom list without any discontinuities
or wiggles as a function of atomic positions or unit cell vectors — which is as it
should be.

•• stratmann_sparse: This version of the Stratmann partition table is the same
as stratmann_smoother, but it stores the relevant interatomic distances in a
memory saving form.

Note that the free atom electron density nfreeat (r) still determines the extent of many
partition function types. This is controlled by the cut_free_atom keyword. See
also the hartree_partition_type keyword, which presently must have the same
setting as the partition_type keyword.

Tag: points_in_batch (control.in)

3.5. Integration, grids, and partitioning 89

Usage: points_in_batch value

Purpose: Target number of grid points per integration batch.
Restriction: Applies to the maxmin and octree grid_partitioning_method
.
value is an integer number. Default: 100 for most calculations. When GPU
acceleration is used for tasks involving the batch integration scheme, this value
is raised to 200.

See grid_partitioning_method and Ref. [91] for details regarding integration
batches.

90 Chapter 3. The Full Monty: All Keywords and Capabilities

Subtags for species tag in control.in:

species sub-tag: angular (control.in)

Usage: angular limit

Purpose: For self-adapting angular integration grids, the maximum allowed
number of points per radial shell.
Restriction: This flag has no effect for species where angular_grids is
explicitly specified (the default in our species_default files).
limit is the maximum allowed number of integration points per radial shell.

This option is only meaningful for self-adapting angular grids, which are not the recom-
mended default for production calculations with FHI-aims – (i) because these grids are
often rather dense, and (ii) because they are meaningful only for cluster-type geometries.
In order to specify self-adapting angular grids anyway, you must also set the keywords
angular_min and angular_acc .

The available values of integration points in given angular grids are listed with the
keyword force_lebedev .

species sub-tag: angular_acc (control.in)

Usage: angular_acc threshold

Purpose: For self-adapting angular integration grids, specifies the desired
integration accuracy for the initial Hamiltonian and overlap matrix elements.
Restriction: Use only for cluster-type geometries.
threshold is a small positive real number; if 0., no adaptation is performed.
Default: 0.

If threshold is not zero, this option invokes the self-adaptation of all angular integration
grids, within the limits given by angular_min and angular . The adaption criteria
are the initial Hamiltonian / overlap matrix integrals.

In all preconstructed species_default files, we specify reliable angular integration grids
for all elements for DFT. No adaptation is required. For the curious, our own grids are
adapted for symmetric dimers at a tight bond distance, using threshold = 10−8.

species sub-tag: angular_grids (control.in)

Usage: angular_grids method

Purpose: Indicates how the angular integration grids (in each radial integration
shell) for this species are determined.
method is a string, either auto or specified.

The standard species_default files provided with FHI-aims provide specified angu-

3.5. Integration, grids, and partitioning 91

lar grids (on the safe side, i.e., rather dense) for each radial_base integration shell
around an atom. The line:
angular_grids specified

must be immediately followed by a series of lines with
division [...]
outer_grid [...]
tag(s). These contain the actual grid specification.

If method auto is given, appropriate specifications for self-adapting grids should be
included in control.in (keywords angular , angular_min , angular_acc).

species sub-tag: angular_min (control.in)

Usage: angular_min value

Purpose: specifies the minimum number of angular grid points per radial
integration shell
value is the minimum number of grid points per shell.

For specified angular_grids , acts as a lower bound for the number of points per
radial shell (specified grids will be increased accordingly).

For self-adapting angular grids, use together with the angular and angular_acc
keywords.

In practice, value will be reduced to the next-highest available Lebedev integration grid
(see force_lebedev tag for possible values).

species sub-tag: cut_free_atom (control.in)

Usage: cut_free_atom type [radius]
Purpose: Adds a cutoff potential to the initial, non-spinpolarized free-atom
calculation that yields free-atom densities and potentials for many basic tasks.
type : A string, either finite or infinite. Default: finite for DFT-
LDA/GGA and for RI_method LVL; infinite for Hartree-Fock, hybrid
functionals, GW , etc. if RI_method V is used.
radius : A real number, in Å: Onset radius for the cutoff potential, as defined
in the cut_pot tag. Default: For DFT-LDA/GGA, ronset as given by the
onset parameter in cut_pot .

Although this is a technical parameter (ideally, no influence on self-consistent, converged
results), it has important implications for a variety of numerical tasks in the code:

• It influences (slightly) the basis-defining potential for the minimal basis, and for
confined basis functions.

• It limits the radius of the free-atom density, which in turn limits the extent of the
default integration partition table. For DFT-LDA/GGA, this extent need must not

92 Chapter 3. The Full Monty: All Keywords and Capabilities

be smaller than the radius of the most extended basis function, but it also need
not be larger, since all integrands are zero outside anyway. This is not the case
for the two-electron Coulomb operator, which is needed for Hartree-Fock, hybrid
functionals, GW , etc, in which case the default is currently infinite (no cutoff
potential applied).

• It also limits the extent of the partition table used for the Hartree potential.Especially
in periodic calculations, it is vital that the real-space part of the Hartree potential
is kept small. In that case, it is thus critical to keep radius as small as possible.

Usually, the default specified in the code should be accurate for all requirements. If,
however, you suspect some kind of integration noise which is not related to the grid,
increasing the cut_free_atom value may be a good test.

species sub-tag: division (control.in)

Usage: division radius points

Purpose: For specified angular_grids , the number of angular points on
all radial shells that are within radius, but not within another, smaller division.
Restrictions: Meaningful only in a block immediately following an
angular_grids specified line.
radius : Outer radius (in Å) of this division.
points : Integer number of angular points requested in this division (see
force_lebedev tag for possible values).

Use the outer_grid tag to specify the number of angular grid points used outside
the outermost division radius.

species sub-tag: innermost_max (control.in)

Usage: innermost_max number

Purpose: Monitors the quality of the radial integration grid.
number is an integer number, corresponding to a radial grid shell. Default: 4.

If, after on-site orthonormalization, a radial function’s innermost extremum is inside the
radial grid shell number, counting from the nucleus, that radial function is rejected in
order to prevent inaccurate integrations.

species sub-tag: logarithmic (control.in)

3.5. Integration, grids, and partitioning 93

Usage: logarithmic r_min r_max increment

Purpose: Defines the dense one-dimensional “logarithmic” grid for the direct
solution of all radial equations (free atom quantities, Hartree potential).
r_min is a real number (in bohr); the innermost point of the logarithmic grid is
defined as r(1)=r_min/Z, where Z is the atomic number of the nucleus of
the species . Default: 0.0001 bohr.
r_max is a real number (in bohr), the outermost point of the logarithmic grid,
r(N). Default: 100 bohr.
increment is a real number, the increment factor α between successive grid
points, r(i) = α · r(i− 1). Default: 1.0123.

The number of logarithmic grid shells, N , is uniquely determined by r_min, r_max, and
increment. Specifying a dense logarithmic grid is not performance-critical.

species sub-tag: outer_grid (control.in)

Usage: outer_grid points

Purpose: For specified angular_grids , the number of angular points on
all radial shells outside the largest division .
Restrictions: Meaningful only in a block immediately following an
angular_grids specified line.
points : Integer number of angular points (see force_lebedev tag for
possible values).

Use the division tag to specify the number of angular grid points used for radial
shells within specified radii.

species sub-tag: radial_base (control.in)

Usage: radial_base number radius

Purpose: Defines the basic grid of radial integration shells according to Ref. [14]
number is an integer number (the total number of grid points, N).
radius is a positive real number which specifies the outermost shell of the basic
grid, router, in Å.

The location of the number radial shells is given by

r(i) = router ·
log{1− [i/(N + 1)]2}
log{1− [N/(N + 1)]2} (3.16)

With this prescription, shell i=0 would be located exactly at r(i) = 0, and shell i=N+1
would be located exactly at r(i) =∞, i.e., this provides an exact mapping of the interval
[0,∞].

The FHI-aims species_default files provide values for number according to the for-
mula N=1.2×14(nucleus +2)1/3, as determined empirically in Ref. [14]. These
“basic” grids are can then be augmented by adding uniform subdivisions, using the

94 Chapter 3. The Full Monty: All Keywords and Capabilities

radial_multiplier keyword described below.

species sub-tag: radial_multiplier (control.in)

Usage: radial_multiplier number

Purpose: Systematically increases the radial integration grid density.
value is an integer, number specifying the number of added subdivisions per
basic grid spacing. Default: value = 2

The basic grid of N radial shells (see radial_base definition) is evenly subdivided
number-1 times, to yield number·(N +1)−1 shells in the actually used integration grid.
Thus, the radial_multiplier tag allows to systematically increase the number
of radial shells (by factors). For example, number=2 (the default) would yield 2N + 1
shells total.

Note that some all-electron Gaussian basis sets contain either very high or very low expo-
nents. If such basis sets are used for test purposes, it may be necessary to test the con-
vergence of the radial integration grid directly by increasing the radial_multiplier
.

The effect of the radial_multiplier is explained in Ref. [232] (open access at
http://iopscience.iop.org/1367-2630/15/12/123033/article) Look at Figure
A.1 and the accompanying explanation in that reference.

http://iopscience.iop.org/1367-2630/15/12/123033/article

3.6. Electron density update 95

3.6 Electron density update

In FHI-aims, the first step of a new iteration is the update of the electron density based
on the output Kohn-Sham orbitals produced by a previous step.

The present section covers only the actual density update. Techniques relevant for the
self-consistent convergence of the whole calculation (electron density mixing, precondi-
tioning, etc.) are covered separately in Sec. 3.10.

96 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: density_update_method (control.in)

Usage: density_update_method type

Purpose: Governs the selection of the density update type.
Restriction: For periodic boundary conditions, only the density-matrix based
electron density update is supported.
Default: Cluster case: automatic. Periodic case: density_matrix

Choices for type:

• orbital : Use Kohn-Sham orbitals based update

• density_matrix : Use density-matrix based update method. Required for peri-
odic systems.

• automatic : Selects the best update method automatically, based on the expected
amount of work.

• split_update_methods : Charge density is updated via Kohn-Sham orbitals and
force is updated via density-matrix

If not specified, default for cluster geometries is the automatic selection of the density
update method.

See Ref. [26] for details regarding density update mechanisms. In general, FHI-aims
offers an electron density update based on Kohn-Sham orbitals [O(N2) with system
size, but faster for finite systems up to ≈100-500 atoms depending on basis size], and
an O(N) rewrite based on the density matrix. This should be used for large systems,
and is the default for periodic systems.

For the non-periodic case, the current code version determines the switching point
between the orbital-based update and the density-matrix based update automatically
through some heuristics. This procedure guarantees that accidental O(N2) calcula-
tions will not happen for very large systems, but the optimum cross-over point may not
always be exactly found. If you are planning long runs of essentially the same geome-
try (molecular dynamics trajectories are a good example), you may save some time by
performing some explicit benchmarks first. You can then specify the optimum density
update method for your own case, instead of relying on our heuristics.

3.7. Electrostatic (Hartree) potential 97

3.7 Electrostatic (Hartree) potential

This section describes the method used to compute the electrostatic (Hartree) potential
in FHI-aims. For a more exhaustive description, please refer to Ref. [26].

Some central equations are repeated here in detail since, as a result, the calculation of
the Hartree potential can be heavily customized by many analytically available accuracy
/ cutoff thresholds, given below.

For production calculations, it is important to note that our standard accuracy thresholds
in the Hartree potential are numerically sound, and usually do not require an explicit cus-
tomization. The only parameter which should be explicitly set is the angular momentum
up to which the atom-centered partitioned charge density is expanded, l_hartree
below.

As pointed out in Ref. [26], our experience is that energy differences are usually well
converged for lhartree=4, and total energy convergence at the level of a few meV is reached
at lhartree=6. Only in exceptional cases should different settings be required.

—

At the beginning of a calculation, we first compute the electrostatic potential associated
with the initial superposition of free-atom densities, ∑at n

free
at (|r −Rat|):

ves,free(r) =
∑
at
ves,freeat (|r −Rat|) (3.17)

This is the largest part of the Hartree potential, but is always accurately known from
the solution of spherical free atoms on a dense logarithmic grid.

For a given electron density n(r) during the s.c.f. cycle, we then only ever compute the
electrostatic potential associated with the difference to the superposition of free atoms,
δves(r), based on

δn(r) = n(r)−
∑
at
nfreeat (|r −Rat|) (3.18)

δn(r) is first split up into a sum of partitioned, atom-centered charge multipoles,

δñat,lm(r) =
∫
r=|r−Rat|

d2Ωatpat(r) · δn(r) · Ylm(Ωat) (3.19)

(the sum of all partition functions at every point is always unity). Due to the finite
extent of δn(r) and pat(r) (both are controlled by the cut_free_atom keyword),
the range of each component δñat,lm(r) is also bounded.

The Hartree potential components δṽat,lm(r) are then determined on a dense, one-
dimensional logarithmic grid, using classical electrostatics. The resulting δṽat,lm(r) are
then numerically tabulated, and evaluated elsewhere using cubic spline interpolation.

For cluster systems, it is important to note that the finite extent of δñat,lm(r) implies
that the numerically tabulated part of δṽat,lm(r) can also be kept finite. Outside this
“multipole radius”, δñat,lm(r)=0, and δṽat,lm(r) falls off analytically as

δṽat,lm(r) = mat,lm/r
l+1 . (3.20)

98 Chapter 3. The Full Monty: All Keywords and Capabilities

Instead of a spline evaluation, faraway atoms can thus be analytically accounted for using
tabulated, constant multipole moments mat,lm. High-l components can be analytically
cut off as they approach zero at large distances.

In this approach, the effort to create the complete Hartree potential on the entire grid
is determined by tabulating the contribution from every atom on every grid point,

ves(r) = ves,free(r) +
∑
at,lm

δṽat,lm(|r −Rat|)Ylm(Ωat) . (3.21)

The scaling is thus close to O(N2) with system size, albeit reduced by high-l multipole
components falling off towards large distances.

For periodic systems, essentially the same equations hold, except that the Hartree poten-
tials associated with the atom-centered charge densities δñat,lm(r) are here additionally
split into a short-ranged real-space part, and a smooth, long-ranged reciprocal-space
part (Ewald’s method), by splitting

1
r

= erf(r/r0) + erfc(r/r0)
r

(3.22)

(and similar for components of higher angular momentum). The summation of long-
range tails thus happens in reciprocal space, using Fourier transforms. As a result, the
scaling of this effort is no longer O(N2), but rather approaches O(N lnN) in Fourier
transforms.

The parameter r0 can be very important to determine the efficiency of the actual eval-
uation of the Hartree potential in periodic systems; it can be set in control.in using
the Ewald_radius keyword. The keyword is adaptive to some extent but espe-
cially for slab systems or 2D systems with large vacuum regions, specifying the value of
Ewald_radius by hand can lead to significant performance improvements. (FHI-aims
can accommodate very large vacuum regions, e.g., 100 Å, efficiently if this parameter is
set correctly.)

The cutoff reciprocal space momentum for the Fourier part of the electrostatic potential,
|Gmax|, is estimated using a small threshold parameter η:

|Gmax|l
es
max−2 · 1

G2
max
· exp(−r

2
0G

2
max

4) = η

10 · 4π . (3.23)

Our default choice for η (in atomic units, i.e., those used internally in the code) is
η = 5·10−7, but this is somewhat overconverged, and a larger threshold value is probably
sufficient for most situations. Note that Eq. (3.23) is slightly modified compared to the
version given in Ref. [26].

3.7.1 Non-periodic Ewald method

For large, finite systems (more than 200 atoms) it is possible to use the so-called ‘non-
periodic Ewald method’ in aims (keyword use_hartree_non_periodic_ewald).
The basic idea of this method is to use interpolation to reduce the effort for calculting

3.7. Electrostatic (Hartree) potential 99

the Hartree term. Specifically, the method consists in computing the electrostatic po-
tential not on the fine interpolation grid points but firstly on a coarse Cartesian grid.
Subsequently, the values of the potential on the coarse grid are interpolated to the fine
integration grid. If the Cartesian grid is suffiently coarse, time is saved because of the
reduced number of potential computations.

We use an envenly spaced, Cartesian grid with a certain grid width. Due to this fixed
grid width, special attention has to be paid to the near-atom regions where the electron
density and hence also the potential oscillates strongly. This problem can be solved
by using the Ewald decomposition which was originally developed for periodic systems.
Ewald’s method aims at separating large and small scales by adding and subtracting
charge spheres with Gaussian radial shape to a lattice of monopoles. In terms of the
potential, this yields q̄/r = [q̄/r−Ω(r)]+Ω(r) for each monopole, where q̄ := q/(4πε0)
and q is the monopole charge. The function Ω(r) = q̄ erf(r/r0)/r is the potential of a
Gaussian charge sphere with width parameter r0. The first part of the decomposition
q̄/r−Ω(r) decays quickly with increasing r so that this part is calculated in real space,
while the second part Ω(r) decays quickly in Fourier space so that it is calculated there.
The two parts are often referred to as ‘short range’ and ‘long range’ part. However, this
is somewhat misleading because the second part is actually defined in whole space. For
this reason, we call the first part ‘localized’ and the second part ‘extended’.

We can translate the classical Ewald decomposition to our case of a finite system by
calculating the smooth extended part Ω(r) on the coarse Cartesian grid, with subsequent
interpolation to the fine integration grid points. In addition, we have to calculate the
localized part in the vicinity of the nuclei where we cannot save any computational time
[actually some time is lost since we have to compute Ω(r) there, too].

In the classical Ewald method, Gaussian spheres are an excellent choice as auxiliary
charges due to the quick convergence of both the localized part in real space and the
extended part in Fourier space. However in our case, where we interpolate in real
space, Gaussian spheres are not necessarily a proper choice. Therefore optimized charge
distributions obtained from a variational method by W. Jürgens are used.

In order to reduce the number of grid points, we allow the Cartesian grid to have arbitrary
orientation. More specifically, we are looking for a rectangular cuboid that covers all
integration grid points but with minimum volume. This problem is solved approximately
by using a common procedure that is based on principle component analysis.

100 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: adaptive_hartree_radius_th (control.in)

Usage: adaptive_hartree_radius_th threshold

Purpose: Determines the distance beyond which an analytical component
δṽat,lm(r) of the periodic (Ewald!) real-space Hartree potential for a given atom
is considered zero.
threshold is a small positive real number. Default: 10−8.

Usually, this tag need not be modified from the default. Long-range multipole com-
ponents δṽat,lm(r) of the real-space (Ewald!) Hartree potential are not evaluated for
distances where δṽat,lm(r) <threshold. This tag provides similar functionality as the
multipole_threshold tag for the cluster case (numerically different due to the ab-
sence of erf(r/r0) in the cluster case).

Tag: compensate_multipole_errors (control.in)

Usage: compensate_multipole_errors flag

Purpose: If true, introduces a compensating normalization and density to
eliminate the effects of small charge integration errors in the long-range Hartree
potential.
flag is either .true. or .false.. Default: .true.. .false. only if a DFPT
calculation (this includes: calculate_friction and magnetic_response
) is requested.

This keyword is especially useful when assessing the electrostatic potential far away from
a structure, e.g., when calculating a surface dipole correction (for asymmetric slabs) or
work function. See use_dipole_correction or evaluate_work_function for
details on these methods.

In general, keyword compensate_multipole_errors makes sure that the long-
range charge components of the Hartree potential are exactly those expected from the
calculated (and normalized) electron density. Any small spurious non-zero components
that are solely due to integration errors on a finite integration grid.

Tag: Ewald_radius (control.in)

Usage: Ewald_radius value

Purpose: Governs the Ewald-type short-range / long-range splitting of the
Coulomb potential in Eq. (3.22).
value : Either a string automatic, or the range separation parameter r0 in Eq.
(3.22) (in bohr). Default: automatic.

May also be specified as hartree_convergence_parameter or ewald_radius .

3.7. Electrostatic (Hartree) potential 101

Necessary for periodic boundary conditions only. May be changed from the default, but
should not be set too small or too large (the compensating Gaussian charge density of
the Ewald method must cancel the actual charge outside a radius that is still inside the
partition table / integration grid for every atom.)

This parameter is performance critical especially for slab calculations (2D material or
surface) with a large vacuum region.

If the string automatic is chosen, then the parameter r0 is set according to an empirically
determined function as follows:

r0 = A0 · (v − A1)1/3 , (3.24)

subject to the limiting conditions 2.5 bohr≤ r0 ≤5.0 bohr. Here, v is the specific volume
(unit cell volume divided by number of atoms), and A0=1.47941 bohr and A1=1.85873
Å3 are empirically determined parameters.

The chosen empirical form was tested and adapted for a slab model of a 2D material with
a vacuum region up to 50 Å. For such systems, this choice entails a significant perfor-
mance improvement; and for larger vacuum regions, even larger choices than r0=5.0 bohr
are possible. However, the same empirical relation may not be optimal for moderately
dense solids (such as GaAs), where smaller choices of r0 can perform better. Overall,
the optimum choice of r0 would be to adapt it on the fly over the course of a given
calculation, but implementing such an adaptive algorithm has not yet been done.

For a yet more refined choice, further testing would be necessary, as well as a dependence
on hartree_fourier_part_th (which is not yet incorporated).

Tag: ewald_radius (control.in)

Usage: ewald_radius value

Purpose: Governs the Ewald-type short-range / long-range splitting of the
Coulomb potential in Eq. (3.22).
value : Either a string automatic, or the range separation parameter r0 in Eq.
(3.22) (in bohr). Default: automatic.

This keyword has exactly the same meaning as the Ewald_radius kewyord.

Tag: hartree_convergence_parameter (control.in)

Usage: hartree_convergence_parameter value

Purpose: Governs the Ewald-type short-range / long-range splitting of the
Coulomb potential in Eq. (3.22).
value : Either a string automatic, or the range separation parameter r0 in Eq.
(3.22) (in bohr). Default: automatic.

This keyword has exactly the same meaning as the Ewald_radius kewyord.

Tag: hartree_fp_function_splines (control.in)

102 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: hartree_fp_function_splines .true. / .false.

Purpose: Switches on the splining of the Greens functions for the long-range
Hartree multipole decomposition in periodic boundary conditions. This acceler-
ates the calculation of the Hartree potential in large unit cells.
Default: .true.

Tag: hartree_fourier_part_th (control.in)

Usage: hartree_fourier_part_th threshold

Purpose: Implicitly determines the required reciprocal space cutoff momentum
|Gmax| for the Fourier summation of the long-range electrostatic potential
(Ewald).
threshold is a real positive small number [η in Eq. (3.23)]. Default: 5·10−7 (in
atomic units) .

See Eq. (3.23). Usually, this tag need not be modified from the default. Necessary for
periodic boundary conditions only.

Tag: hartree_partition_type (control.in)

Usage: hartree_partition_type type

Purpose: Specifies which kind of partition function pat(r) is used to split δn(r)
into atom-centered pieces.
Restriction: Presently, type should have the same value as specified for
integration using the partition_type keyword.
type : A string that specifies which kind of partition table is used. Default:
stratmann_sparse

Usually, this tag need not be modified from the default. The same options are avail-
able as for the partition_type keyword (partition functions for three-dimensional
integrands). See partition_type for details.

Tag: hartree_radius_threshold (control.in)

Usage: hartree_radius_threshold threshold

Purpose: Technical criterion to ensure the inclusion of atoms with a potentially
finite real-space Hartree potential component in periodic boundary conditions.
threshold is a small positive real number. Default: 10−10.

Usually, this tag need not be modified from the default. Necessary for periodic boundary
conditions only. For each atom, determines a safe real space outer radius based on
erf(router/r0) < threshold. This is then used to determine which atoms need be
included in the second term (sum over atoms) of Eq. (3.21).

3.7. Electrostatic (Hartree) potential 103

Tag: legacy_monopole_extrapolation (control.in)

Usage: legacy_monopole_extrapolation flag

Purpose: Specifies how the monopole (l = 0) part of the partitioned charge
density is extrapolated to r = 0 before transforming to a logarithmic grid to
integrate the radial Hartree potential. If .true., use the legacy variant, and an
improved extrapolation otherwise.
flag is a Boolean. Default: .false..

The effect is generally very small, but for light grids, this can have some impact on
total energies.

Tag: l_hartree_far_distance (control.in)

Usage: l_hartree_far_distance value

Purpose: Sets a maximum angular momentum beyond which the components of
the analytic long-range Hartree potential will not be computed.
value is an integer number. Default: 10.

Usually, this tag need not be modified from the default. In Eq. (3.20), the multipole
moments mat,lm are determined by an explicit integration of the finite real-space density
component δñat,lm(r). However, for very high l, even spuriously small density compo-
nents (10−10 or lower) may be artificially weighted up in mat,lm; on a finite integration
grid, mat,lm becomes prone to numerical noise. Capping the evaluation of such high-l
components increases stability, but can be undone through l_hartree_far_distance
if required.

Tag: multip_moments_threshold (control.in)

Usage: multip_moments_threshold threshold

Purpose: Implicitly defines the maximum angular momentum for which the
analytical multipole components are non-zero at all.
threshold is a small positive real number. Default: 10−10.

Usually, this tag need not be modified from the default. Used only in the periodic case.
If mat,lm/rmp <threshold for all l ≥ lthr, all analytical components beyond lthr are
considered zero in the real-space and Fourier parts of the long-range potential. rmp is
the radius determined by multip_radius_threshold .

Tag: multip_moments_rad_threshold (control.in)

104 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: multip_moments_rad_threshold threshold

Purpose: Defines the outer radius of the density components δñat,lm(r) for the
purpose of determining the far-field moments mat,lm.
threshold is a small positive real number. Default: 10−10.

Usually, this tag need not be modified from the default. The outer radius is set where
|δñat,lm(r)| <threshold. The actual mat,lm are then determined by inward integration
from this point, using the standard relations of classical electrostatics.

Tag: multip_radius_free_threshold (control.in)

Usage: multip_radius_free_threshold threshold

Purpose: Technical criterion to define the outermost charge radius of the
spherical free atom density nfreeat

threshold is a small non-negative real number. Default: 0.0

Usually, this tag need not be modified from the default.

The free-atom radius inside the code is set to the radius where nfreeat (r) becomes smaller
than threshold. Note that the actual extent of the free-atom charge can be influenced
by the cut_free_atom keyword, and has ramifications not just for the electro-
static potential, but also for the initial charge density, and the partition functions for all
integrals.

Tag: multip_radius_threshold (control.in)

Usage: multip_radius_threshold threshold

Purpose: Determines the (per-atom) radius outside of which the analytical
multipoles mat,lm are used to construct the Hartree potential ves(r)
threshold is a small positive real number. Default: 10−12.

Usually, this tag need not be modified from the default. The outer radius is set where all
δñat,lm(r) <threshold for a given atom. At a given integration point r, ves(r) is assem-
bled by evaluating Eq. (3.21). The second part (sum over atoms) is evaluated separately
for each atom, and atoms outside the radius defined by multip_radius_threshold
, the lm summation is performed using the analytical expression.

Tag: multipole_threshold (control.in)

Usage: multipole_threshold threshold

Purpose: Cluster case only – determines the distance beyond which an analytical
component δṽat,lm(r) of the real-space Hartree potential is considered zero.
threshold is a small positive real number. Default: 10−10.

Usually, this tag need not be modified from the default. Long-range Hartree potential
components δṽat,lm(r) are not evaluated for distances where δṽat,lm(r) <threshold.

3.7. Electrostatic (Hartree) potential 105

This tag provides similar functionality as the adaptive_hartree_radius_th tag
for the periodic case (numerically different due to the absence of erf(r/r0) in the cluster
case).

Tag: normalize_initial_density (control.in)

Usage: normalize_initial_density flag

Purpose: If true, normalizes the initial electron density to reproduce the
exact intended number of electrons when integrated on the three-dimensional,
overlapping atom-centered integration grid of FHI-aims.
flag is either .true. or .false.. Default: .true.

This keyword only normalizes the initial density. It should always be an exact subset of
the functionality provided by compensate_multipole_errors . If used in conjunction
with collinear spin and a geometry optimization (or sc_init_iter), no subsequent
renormalizations are performed, except for runs which use a fixed_spin_moment .

The default for normalize_initial_density was set to .false. before August,
2017.

Tag: set_vacuum_level (geometry.in)

Usage: set_vacuum_level z-coordinate

Purpose: Surface slab calculations only – defines a z-axis value that is deeply
within the vacuum layer.
z-coordinate is a z coordinate value in the vacuum layer.

In the case of periodic surface slab calculations, this value defines the reference z coor-
dinate that is used to define the work function (keyword evaluate_work_function)
and/or the location of a dipole correction (electrostatic potential step) to offset a poten-
tial electrostatic dipole formed by a non-symmetric slab (keyword use_dipole_correction
). As a requirement, the surface must be parallel to the xy plane. The chosen
z-coordinate must be located deep in the vacuum, as far away as possible from any
surface.

set_vacuum_level auto can be used instead to determine the vacuum level on its
own.

If use_dipole_correction or evaluate_work_function are specified, omitting
the keyword set_vacuum_level causes FHI-aims to automatically determine a
suitable z.

However, a vacuum plane will only be determined if the nearest atom is more than 6 Å
away from the vacuum level. Determining a surface dipole for distances for which basis
functions or charge densities could overlap might lead to errors. Since FHI-aims does
allow one to use rather large vacuum spacings at low (if any) computational overhead,
the calculation will stop for too small vacuum spacings and alert the user.

106 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: use_dipole_correction (control.in)

Usage: use_dipole_correction

Purpose: Surface slab calculations only – compensates a potential dipole field of
non-symmetric slabs by an electrostatic potential step in the vacuum region.
Restriction: When specified for a charged periodic system, this keyword is
currently disabled (see below).

If set, this option introduces an electrostatic potential step in the vacuum region of
a surface slab calculation, to compensate for a potential surface dipole. The surface
must be parallel to the xy plane (perpendicular to the z direction). The z location of
the surface dipole must be provided by hand, by specifying the set_vacuum_level
keyword.

In practice, the dipole correction calculates the gradient of only the long-range Hartree
potential term of the Ewald sum (which is evaluated in reciprocal space). If the gradients
on both sides of the vacuum level do not agree to better than 10 % (i.e., the potential is
not linear in this range), the dipole correction is not computed, and a warning is issued
instead.

However, it must be possible to find a vacuum plane z, where the surface dipole is
compensated, that is further than 6 Å away from the nearest atom. Otherwise, the
calculation will stop and alert the user.

The reason is that a surface dipole cannot be safely determined for vacuum spacings
for which basis functions or charge densities could overlap. This can lead to errors.
Note that FHI-aims does allow one to use rather large vacuum spacings at low (if any)
computational overhead.

Attention: This keyword is currently disabled for charged periodic systems. The Coulomb
potential of a charged surface slab will reach far into the vacuum, apparently leading to
a completely arbitrary dipole correction as a result. (The dipole correction will simply
flatten out the potential wherever it is asked to do so, but for a charged surface, the
residual Coulomb potential should not be flat.)

In order to alert user to the problem, the code presently stops with a warning. If you
know what you are doing, the pertinent stop (one line) can always be commented out—if
the code is recompiled, the method will be applied, even though the physical relevance of
the result is uncertain. Charged periodic calculations with a vacuum region are physically
questionable for very different reasons in any case; we recommend to find a different
workaround with explicit charges whenever that is possible.

Note that for very large surface slabs, this keyword might cause instabilities in the SCF
cycle. If you suspect this to be the case and remove use_dipole_correction from
your control.in

Tag: use_hartree_non_periodic_ewald (control.in)

3.7. Electrostatic (Hartree) potential 107

Usage: use_hartree_non_periodic_ewald .true.
or: use_hartree_non_periodic_ewald gridspacing value
or: use_hartree_non_periodic_ewald .false.

Purpose: This option is experimental and applies only to non-periodic calcula-
tions. In this case, the Hartree potential is decomposed according to Ewald’s
method.

This method accelerates the calculation of the Hartree term in case of large systems
(more than 200 atoms) by using Ewald’s decomposition combined with spatial interpo-
lation, see section 3.7.1. The method can be switched on by using option “.true.”.
In this case, a default grid spacing of 0.6 Å (= 60 pm) is used for the Cartesian grid.
Other values for the grid spacing can be chosen with option “gridspacing value”. If
this option is used, the method is switched on and the grid spacing is set to value in Å
(= 100 pm). Finally, the method can be switched off with option “.false.”. However,
since this is the default behaviour, it is not necessary to switch off the method explicitely.

108 Chapter 3. The Full Monty: All Keywords and Capabilities

Subtags for species tag in control.in:

species sub-tag: l_hartree (control.in)

Usage: l_hartree value

Purpose: For a given species, specifies the angular momentum expansion of the
atom-centered charge density multipole for the electrostatic potential.
value is an integer number which gives the highest angular momentum com-
ponent used in the multipole expansion of δn(r) into δñat,lm(r) for the present
species. Must be specified.

As pointed out in Ref. [26], our experience is that energy differences are usually well
converged for lhartree=4, and total energy convergence at the level of a few meV is reached
at lhartree=6. Only in exceptional cases should different settings be required.

3.8. Kinetic energy, scalar relativity, spin-orbit coupling, and full relativity 109

3.8 Kinetic energy, scalar relativity, spin-orbit
coupling, and full relativity

For elements beyond approximately Z=30, relativistic effects near the nucleus cannot
be neglected in an all-electron treatment—both for core, and for valence electrons. For
the purposes of “everyday” matter, the full theory is given by Dirac’s four-component
Equation, but in the “practice” of materials physics and chemistry, we still tend to think
in terms of Schrödinger-like objects. The following standard levels of approximation are
available:

• Non-relativistic kinetic energy (one or two collinear spin components of the
Kohn-Sham orbitals)

• Scalar-relativistic kinetic energy expression (one or two collinear spin components).

• Perturbative spin-orbit coupling, a single correction step to the Kohn-Sham eigen-
values based on the Kohn-Sham orbitals from a non-relativistic or scalar-relativistic
s.c.f. cycle. Perturbative spin-orbit coupling in FHI-aims is primarily intended to
obtain qualitatively accurate relativistic corrections for energy band structures and
eigenfunctions. A detailed benchmark of the accuracy of the approach is given in
Ref. [109]. Importantly, changes to the total energy beyond the sum-of-eigenvalues
are not included, and total energy gradients (forces) are also unavailable.

• An essentially fully relativistic treatment of the Kohn-Sham kinetic energy – specif-
ically, the so-called quasi-four-component (Q4C) approximation – is nearing com-
pletion. In physical terms, this includes self-consistent spin-orbit coupling as well
as the so-called “small component” of the Dirac eigenfunctions, where the small
component is based on a free-atom-like approximation. At the time of writing
(March 2020), the Q4C approach is still restricted to total energies and Kohn-
Sham eigenvalues for closed-shell systems at the level of semilocal DFT. The
Q4C implementation is still considered highly experimental and therefore not yet
fully documented. In particular, parallelization is not yet complete, forces are not
available and support for hybrid DFT is not yet available. Please do not use the
approach without contacting Rundong Zhao and Volker Blum.

Scalar relativity and spin-orbit coupling

While the non-relativistic level of theory is exactly defined and will be the same in
any first-principles implementation (at a complete basis set, all-electron level anyway),
there are many different versions of scalar-relativistic approximations which can yield
considerably different total energies for different systems. Their unifying feature is that
any two scalar-relativistic methods should still yield the same energy differences for
properties that concern valence electrons: Binding energies, valence eigenvalues, etc.

The recommended level of scalar relativity in FHI-aims is the so-called “atomic ZORA”
approximation, as defined specifically in Equations (55) and (56) of Ref. [26]. It is

110 Chapter 3. The Full Monty: All Keywords and Capabilities

important to refer to this specific definition since there are other variants of ZORA (“zero-
order regular approximation”) in the literature and in other codes, including variants also
called “atomic ZORA” but following a different mathematical definition.

The keyword needed to use this level of theory is

relativistic atomic_zora scalar

That’s it.

The “atomic ZORA” level of theory as implemented in FHI-aims has held up extremely
well in large, high-accuracy benchmarks of scalar-relativistic total-energy based properties
[143] as well as energy band structures [109]. It works for the right mathematical reasons.
It can, in principle, be used across the entire periodic table (there should be no need to
resort to non-relativistic calculations except for benchmarking purposes).

In addition, a non-selfconsistent treatment of spin-orbit coupling for band structures,
densities of states, absorption properties and for the independent-particle dielectric re-
sponse is also available and can be used in addition to (on top of) scalar relativistic
calculations using the atomic ZORA. This is described in detail in Ref. [109], including
a simple discussion of relativistic treatments in general and of how the “atomic ZORA”
and the spin-orbit coupling formalism on top of it are related.

The keyword to add post-scf spin-orbit coupling is

include_spin_orbit

That’s it. Note that this keyword can be used as a followup to both non-spinpolarized
and spin-polarized scalar-relativistic calculations.

An important fact to keep in mind is that a scalar-relativistic calculation yields two
distinct spin sets of spin states, one for each spin channel. However, after the perturba-
tive spin-orbit coupling treatment, only a single set of states emerges as output, since
spin-orbit coupling mixes the scalar-relativistic spin states and the spin channels are no
longer distinct. Thus, the output files for any quantities derived from spin-orbit coupled
calculations (densities of states, band structures, etc.) are not and cannot be printed as
separate spin channels - only one set of files is written that includes states derived fron
both former spin channels.

More details follow below, but here are three additional important point:

• Never mix results from different scalar relativistic treatments in total-energy differ-
ences. Absolute total-energy differences between different relativistic treatments
can be very large because the deep core state energies change.

• The absolute core level energies in the “atomic ZORA” approximation are far
away from measured core level energies that would appear in experiment or in the
actual Dirac equation. However, the relative core level shifts (differences) between
different chemical systems are still reliable.

• FHI-aims also includes another relativistic treatment called “scaled ZORA” but
this seems to be slightly less accurate and does not have support for forces or

3.8. Kinetic energy, scalar relativity, spin-orbit coupling, and full relativity 111

stresses or any other use cases. We do not recommend to use “scaled ZORA” any
more (“atomic ZORA” simply seems to do the better job).

More details on spin-orbit coupling

Spin-orbit coupling (SOC) is a simple consequence of transforming Dirac’s equation to
a (two-component) Schrödinger-like form. This leads to an approximate “spin-orbit-
coupled” Hamiltonian of the form

Ĥ = t̂SR + v̂ + v̂SOC , (3.25)

where t̂SR is the usual scalar relativistic kinetic energy operator (e.g., atomic ZORA), v̂
is the local or non-local potential, and v̂SOC is the spin-orbit coupling operator,

vSOC = i

4c2σ · pv × p. (3.26)

FHI-aims currently implements a treatment of spin-orbit coupling which adds spin-orbit
coupling corrections to the Kohn-Sham eigenvalues, band structures, and densities of
states in a single evaluation after the scalar-relativistic s.c.f. cycle has converged. This
means that it is a post-processed implementation of spin-orbit coupling. It works in the
Hilbert space of calculated scalar-relativistic eigenstates, as opposed to the “full” space
spanned by the computational basis set, to dramatically reduce the problem size. This is
known as the “second-variational” method. It only calculates and diagonalizes the spin-
orbit-coupled Hamiltonian once; therefore, the resulting spin-orbit-coupled eigenstates
are non-self-consistent.

Full details on the implementation of spin-orbit coupling in FHI-aims, as well as a deriva-
tion of the spin-orbit-coupled Hamiltonian from the Dirac equation and a detailed bench-
mark of the effect of spin-orbit coupling on band structures, may be found in Ref. [109]
When publishing results using spin-orbit coupling in FHI-aims, please remember to cite
this reference.

Applying the SOC operator as a correction to scalar-relativistic eigenvectors is quanti-
tatively accurate (to a few 0.01 eV for valence band structures) for elements below Xe
(Z=54) when combined with atomic ZORA. For heavy elements (approximately Au and
beyond) this level of theory is only qualitatively accurate. It captures the majority of
the SOC effect, but quantitative deviations above 0.1 eV for band structures must be
expected. Similarly, the corrections for any core levels would require one to go beyond
non-self-consistent SOC.

Since this implementation of spin-orbit coupling operates in the Hilbert space spanned by
the calculated scalar-relativistic eigenvectors, for accurate high-lying bands one must in-
clude sufficiently many unoccupied states. This may be done by setting empty_states
to a higher value or, if you are feeling particularly paranoid, setting the
calculate_all_eigenstates keyword to include all possible eigenstates. It is the
opinion of the authors that this is only relevant for materials containing Au and heavier
elements.

112 Chapter 3. The Full Monty: All Keywords and Capabilities

Which Parts of FHI-aims Support Spin-Orbit Coupling?

The current spin-orbit coupling implementation started in 2014. FHI-aims has been in
development since 2004. While we are actively working on enhancing support for spin-
orbit coupling and relativistic schemes beyond throughout FHI-aims , due to the sheer
size of the code base some of the functionality in FHI-aims does not have spin-orbit
coupling support. Enabling the SOC keyword will do nothing for functionality that has
not been modified to support SOC, and the code will return scalar-relativistic values.
A partial list of functionality that does support SOC and will output spin-orbit-coupled
values is

• Band structure calculations

• Densities of state calculations, both interpolated and non-interpolated

• Mulliken analyses

• Atom/species-projected densities of state

• Dielectric functions and absorption coefficients

• Orbital cube plotting

In general, spin-orbit coupling can be applied both for non-spinpolarized and spin-
polarized scalar-relativistic input. However, after spin-orbit coupling is applied, only
one set of states remains since the spin channels are no longer separated (spin-orbit
coupling mixes the formerly separate spin channels).

The best way to determine whether a particular method supports spin-orbit coupling is
to look at its manual entry.

One advantage of post-processed SOC is that one still has access to scalar-relativistic
values, as the spin-orbit-coupled values are generated from the scalar-relativistic values.
Physical insight may be gained by comparing scalar-relativistic and spin-orbit-coupled
values against one another. For example, strong spin-orbit splitting of eigenstate is a
dead giveaway that it contains p-orbitals for a heavy species. When spin-orbit coupling
is enabled, FHI-aims will output both scalar-relativistic and spin-orbit-coupled values
whenever this is computationally feasible. For methods supporting spin-orbit coupling
that output results to files, the files containing the scalar-relativistic values will have an
additional suffix ".no_soc" to distinguish them from the spin-orbit-coupled values.

Another advantage of post-processed SOC is, simply, computational efficiency. Particu-
larly hybrid DFT calculations are already extremely demanding at the non-spin-polarized,
scalar-relativistic level of theory. The ability to pursue SOC corrections after, rather than
during a self-consistent scalar-relativistic allows us to access significantly larger problem
sizes than would otherwise be possible.

3.8. Kinetic energy, scalar relativity, spin-orbit coupling, and full relativity 113

Tags for general section of control.in:

Tag: include_spin_orbit (control.in)

Usage: include_spin_orbit method

Purpose: Include the effects of spin-orbit coupling, when supported, in
post-processed features of FHI-aims. When using spin-orbit coupling in your
calculation, please cite Ref. [109]
method The method for including spin-orbit coupling. At present, only type
non_self_consistent is suitable for production-level calculations.

Note: While FHI-aims also prints out a corrected total-energy expression based on the
SOC-corrected eigenvalues, do not use this value. It is experimental.

Tag: compute_kinetic (control.in)

Usage: compute_kinetic

Purpose: Experimental - for test purposes, allows to compute the kinetic energy
via the product of the kinetic energy matrix and the density matrix

This flag is presently kept for test purposes only (the electronic kinetic energy is separately
computed and printed for each scf iteration anyway) but may be useful for some future
modifications.

Tag: override_relativity (control.in)

Usage: override_relativity flag

Purpose: If explicitly set, allows to override the stop enforced by the code when
physically questionable relativistic settings are used.
flag is a logical expression, either .true. or .false. Default: .false.

For example, this will allow you to run a physically incorrect calculation of heavy ele-
ments (think Au) with Schrödinger’s expression for the kinetic energy, instead of a scalar
relativistic treatment. The results will be wrong, so this flag should only be set for test
purposes. When set, the code assumes that the user must know what they are doing.

Tag: relativistic (control.in)

114 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: relativistic r-type s-type [threshold]
Purpose: Specifies the level of relativistic treatment in the calculation.
r-type is a string, specifying the basic approximation made.
s-type is a string, specifying whether a scalar treatment is desired (currently,
only the scalar option is supported).
threshold is a small positive real number, allowing to reduce some integration
effort.

Detailed expressions for the scalar relativistic treatments available here are given in Ref.
[26]. We here only repeat the salient options and expressions. Possible options for
r-type are:

• none : Non-relativistic kinetic energy. In this case, s-type and threshold need
not be provided.

• atomic_zora : Atomic ZORA approximation as described in Ref. [26]. threshold
need not be provided. This is the currently recommended option for energy differ-
ences and valence and unoccupied eigenvalues.

• zora The ZORA approximation is used throughout the s.c.f. cycle, followed by a
“scaled ZORA” [222] post-processing step (rescaling of all eigenvalues). WARN-
ING: Do not rely on intermediate, simple ZORA total energies, but only on the
final, rescaled total energies instead! ZORA (unscaled) is not the same as “atomic
ZORA” and cannot be trusted. We also no longer recommend scaled ZORA values
since there is no clear advantage. Just use atomic_zora unless there is need to
do otherwise.

Forces are only provided for none and atomic_zora.

Remember to never take energy differences between calculations performed
with different “relativistic” settings.

We recommend to simply use atomic_zora for all calculations, unless there is a partic-
ular need to stay with relativistic none.

If you really do want to use scaled ZORA (the case of zora keyword), the threshold
option is required. It specifies the threshold value above which the difference between
the sum-of-free-atoms ZORA expression and that for the actual potential during the
s.c.f. cycle will be calculated. In areas of shallow potentials, where both expressions are
substantially similar, this saves the extra integration effort associated with ZORA. For
(very!) safe settings, threshold may be set to 10−12; in our experience, also 10−9 does
not lead to any noticeable accuracy loss.

Default is none if all elements in the structure have Z <20 (no heavier than Ca). For all
heavier elements, an explicit relativistic setting is required. For 11< Z <20, the
setting none will be accepted, but a warning will be issued. For Z>20, choosing none
will cause the code to stop with an error message in order to avoid accidental calculations
with incorrect relativity. If a non-relativistic calculation is still desired, for example for
test purposes, this “stop” can be disabled by setting the flag override_relativity
—but use this only if you know what you are doing.

3.8. Kinetic energy, scalar relativity, spin-orbit coupling, and full relativity 115

Future version of FHI-aims will simply employ atomic_zora as the default level of
relativity.

Tag: use_spin_texture (control.in)

Usage: use_spin_texture Estart Eend

Purpose: Calculate the spin texture of the bands fall in the designated energy
range.

This flag is presently based on the perturbative spin-orbit coupling method. Therefore,
you should in the same time set:

relativistic atomic_zora scalar

include_spin_orbit

Spin texture is defined as the expectation value of the vector of Pauli matrices. By
triggering on this flag, the code will calculate the expectation values for three components
(x, y, and z), which can help understand the spin polarization behaviour of individual
bands. The values are printed out in separate files named spin_texture.out and
spin_texture.dat which contain the same kind of data but simply in different formats.

116 Chapter 3. The Full Monty: All Keywords and Capabilities

3.9 Eigenvalue solver and (fractional) occupation
numbers

With an updated Hamiltonian matrix hij and overlap matrix sij available at the end of
an s.c.f. iteration (i, j run over all basis functions), or in the post-processing step of the
calculation, FHI-aims updates the Kohn-Sham orbitals l (wave function coefficients cjl)
by solving the following eigenvalue problem:∑

j

hijcjl = εl
∑
j

sijcjl . (3.27)

In periodic boundary conditions, this eigenvalue problem is solved at every k-point, and
k is implictly included in the eigenstate index l above.

FHI-aims now uses the open-source ELSI infrastructure http://elsi-interchange.
org – and most often the efficient, massively parallel ELPA eigensolver (http://elpa.
mpcdf.mpg.de) – to handle all aspects of this problem.

Since the basis size needed even for meV-converged accuracy in FHI-aims is rather
small, and this size determines the dimension of hij and sij, the recommended eigen-
value solver(s) in FHI-aims are customized conventional solvers (publicly available as
the ELPA library since 2011), employing the same basic algorithms as LAPACK or the
parallel ScaLAPACK implementation, but with significant scalability enhancements. Al-
though these solvers scale strictly as O(N3) with system size, their application becomes
dominant only for systems above ≈1000 atoms (light elements) or ≈500 atoms (heavy
elements, e.g. Au) in our experience. For large systems, there are alternative methods
available through the ELSI library, including the orbital minimization method (libOMM),
the pole expansion and selected inversion method (PEXSI), the shift-and-invert parallel
spectral transformation eigensolver (SLEPc-SIPs), and the density matrix purification
algorithms using sparse matrix linear algebra from the NTPoly library. Note that PEXSI
and SLEPc-SIPs are not installed with FHI-aims by default.

The present section describes the available eigensolvers and density matrix solvers and
relevant options in FHI-aims, including the determination of a Fermi level and occupation
numbers for all orbitals following the process. Keywords starting with a prefix elsi_
are ELSI-specific. The key ideas of using ELSI and its supported solvers are briefly
introduced here. For more information, please refer to the ELSI documentation available
at http://elsi-interchange.org.

FHI-aims also offers the possibility to solve a constrained eigenvalue problem, e.g., in
order to restrict the number of spin-up or spin-down electrons in the basis functions of
a given set of atoms. Since this functionality is experimental and for experienced users
only, it is documented separately in Sec. 3.14.

Finally, we emphasize that the basis set in FHI-aims is non-orthogonal. For all practical
production settings, this is not a problem, and in fact taken care of through the overlap
matrix sij in Eq. (3.27) above. It is, however, still possible to generate an overcomplete,
nearly ill-conditioned basis set in practical calculations, usually by specific, deliberate user
action. The signature of such ill-conditioning are near-zero eigenvalues of sij (e.g., 10−5

and below). Possible reasons include: systematically constructed, deliberately overcon-

http://elsi-interchange.org
http://elsi-interchange.org
http://elpa.mpcdf.mpg.de
http://elpa.mpcdf.mpg.de
http://elsi-interchange.org

3.9. Eigenvalue solver and (fractional) occupation numbers 117

verged basis sets for non-periodic calculations (not easy); excessively large cutoff radii in
dense periodic structures together with very large basis sets (the density of non-zero basis
functions per volume element increases as r3

cut); or, badly integrated, very extended basis
functions (diffuse Gaussian basis functions without increasing radial_multiplier
appropriately).

FHI-aims does include a number of safeguards against an ill-conditioned overlap matrix,
most importantly the basis_threshold keyword that projects out the eigenvectors
of the overlap matrix that correspond to its smallest eigenvalues, usually enabling a
meaningful calculation anyway. However, to alert every user to the fact that their chosen
basis set may be ill-conditioned, the code now stops when it encounters an overlap
matrix with too low eigenvalues— unless the keyword override_illconditioning
is deliberately set, indicating that the user knows what they are doing and wishes to
continue regardless.

118 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: basis_threshold (control.in)

Usage: basis_threshold threshold

Purpose: Threshold to prevent any accidental ill-conditioning of the basis set.
threshold is a small positive threshold for the eigenvalues of the overlap matrix.
Default: 10−5.

Since NAO basis functions are situated at different atomic centers in a structure, they
form a non-orthogonal basis set by construction. Usually, this is not a problem, since
the non-orthogonality is naturally accounted for by inserting the overlap matrix sij into
the Kohn-Sham eigenvalue problem, Eq. (3.27). For very large basis sets, this can lead
to accidental ill-conditioning (some basis functions may be exactly expressable as linear
combinations of some others).

This behavior is detected by directly inverting the overlap matrix, and computing its
eigenvalues. If one or more eigenvalues are smaller than threshold, the corresponding
eigenvectors are projected out of the basis before solving the Kohn-Sham eigenvalue
problem, and the latter is solved after transforming to the reduced eigenbasis-set of the
overlap matrix.

Important change: Even when basis_threshold is set, FHI-aims will automatically
stop when a near-singular overlap matrix is detected. The user can still override this
safeguard by setting the override_illconditioning keyword in control.in
explicitly, but we do now do our best to alert the user to this condition.

Tag: elpa_settings (control.in)

Usage: elpa_settings setting

Purpose: Allows to determine the exact algorithm used in the ELPA eigensolver
by hand.
setting is a descriptor (string) that selects certain aspects of ELPA. Default:
auto

If the parallel ELPA eigensolver is used (see keyword KS_method), a number of choices
are made automatically by default. The elpa_settings keyword allows to set some
of these aspects by hand. Allowed choices for setting are:

• auto : The default. ELPA makes all its choices on the fly.

• one_step_solver : Only the one-step tridiagonalization (and corresponding back
transformation) are used. This is usually the slower choice, but not always ...

• two_step_solver : Only the two-step tridiagonalization (and corresponding back
transformation) are used. This is usually the faster choice, but not always ...

3.9. Eigenvalue solver and (fractional) occupation numbers 119

The elpa_settings keyword is particularly useful
(i) if you already know what the faster choice is, and you wish to eliminate the extra
test of the slower solver from your calculations, or
(ii) if you suspect that one of the two solvers links to a buggy external(!) library. LAPACK
and BLAS implementations (still used in ELPA) come from many vendors, they are often
precompiled, and of course they always work—the computer vendor hopes so, after all.
We have seen our share of bugs in external libraries (outside the control of FHI-aims),
and sometimes, switching the algorithm to change the exact subroutines used can be a
helpful backup check.

Tag: empty_states (control.in)

Usage: empty_states number

Purpose: Specifies how many Kohn-Sham states beyond the occupied levels are
computed by the eigensolver.
number is the integer number of empty Kohn-Sham states per atom to be
computed beyond the occupied levels.

For DFT-LDA/GGA, typically only a small (but non-zero) number of empty states is
required to allow a complete determination of the Fermi level.

By default, (l+1)2+2 states are added for each atom in the structure, where l is the
maximum valence angular momentum in the valence of that atom (l=0 for hydrogen,
but l=3 for f -electron atoms and beyond).

For correlated methods including excited states (MP2, RPA, GW , ...), all available
states should be included. To achieve this, set empty_states to a large number
(safely larger than your basis set) or use the calculate_all_eigenstates keyword.

Tag: calculate_all_eigenstates (control.in)

Usage: calculate_all_eigenstates

Purpose: Specifies that all possible eigenstates obtainable from the basis set
used (after ill-conditioning has been accounted for) should be calculated and
stored.

This keyword instructs FHI-aims to calculate and store all possible eigenstates obtainable
from the solution of the Kohn-Sham eigenvalue problem. It functions identically to
setting the empty_states value to a large number, but makes the input file prettier.

Only users that know exactly what they’re doing should use this option alongside an
ill-conditioned basis set. Strange output may occur in this case, which may either be
spurious or a symptom of a deeper problem. (This is true of ill-conditioning in general;
this keyword only exposes it more openly.)

Tag: fermi_acc (control.in)

120 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: fermi_acc tolerance

Purpose: The precision with which the Fermi level for occupation numbers will
be determined.
tolerance : Tolerance parameter for the zero point search of the equation∑
i focc[εF](εi)− nel = 0. Default: 10−20.

Usually, this tag need not be modified from the default. Within the (standard) Brent’s
method search for the Fermi level, tolerance has more than one function. Leave
untouched unless problems arise.

Tag: initial_ev_solutions (control.in)

Usage: initial_ev_solutions number

Purpose: Experimental! Number of initial eigenvalue solutions using direct
methods before switching on the lopcg-solver. Applies for both LAPACK and
ScaLAPACK variants of the solver.
number is a positive integer. Default: 5.

Tag: KS_method (control.in)

Usage: KS_method KS_type

Purpose: Algorithm used to solve the generalized eigenvalue problem Eq. (3.27).
KS_type is a keyword (string) which specifies the update method used for the
Kohn-Sham eigenvectors or density matrix in each s.c.f. iteration. Default:
serial or parallel, depending on available number of CPUs.

Important change : The naming scheme of the supported options has changed. Notably,
the lapack and scalapack keywords are superseded by serial and parallel, respec-
tively. The reason is that lapack and scalapack have indicated other linear algebra
than custom (Sca)LAPACK in FHI-aims for a long time. For example, the scalapack
option actually employed the ELPA eigenvalue solver, currently called through the ELSI
infrastructure. The new naming scheme indicates linear algebra default options that may
develop further over time, but these default options will not necessarily be tied to one
and the same library going forward.

Available options for the eigensolver, KS_type, are:

• serial : Default serial eigensolver implementation. Currently the serial
eigensolver in ELSI, based on LAPACK and ELPA, will be employed.

• lapack_fast : Synonymous with serial.

• lapack_2010 : LAPACK-based, and similar to the divide&conquer based standard
solver provided by LAPACK itself.

• lapack_old : Expert solver provided by standard LAPACK. This is stable and not

3.9. Eigenvalue solver and (fractional) occupation numbers 121

a bottleneck in most standard situations.

• lapack : Disabled now.

• parallel : Default parallel eigensolver implementation. Currently the ELPA
eigensolver will be called through the ELSI interface.

• elsi : Synonymous with parallel.

• elpa : Synonymous with parallel.

• elpa_2013 : Same functionality as scalapack_old, however, substantially rewrit-
ten for an overall speedup and much improved scalability. See the elpa_settings
keyword for some ELPA internals (usually determined automatically, but who
knows).
Note that you must set the shell variable OMP_NUM_THREADS=1 prior to running
FHI-aims on some platforms. (see Appendix A)

• scalapack_fast : Synonymous with parallel.

• scalapack_old : Fully memory-parallel implementation of the eigenvalue solver
based on ScaLAPACK itself, scales much worse than our own scalapack_fast.

• scalapack : Disabled now.

• svd : Effectively the same as lapack_old.

• lopcg : Experimental – under development Iterative, locally optimal precondi-
tioned conjugate gradient eigensolver. Potentially useful for very large systems
where lapack becomes a bottleneck. However, implementation without any seri-
ous testing—contact us if interested.

• scalapack+lopcg : Experimental – under development. Same as lopcg, but
parallel with ScaLAPACK-type memory distribution.

The parallel eigensolvers are only available if ScaLAPACK support has been compiled
into the FHI-aims binary—see the Makefile for more information.

In fact, the default parallel eigensolver in FHI-aims is the “ELPA” solver through the
ELSI interface, which uses some ScaLAPACK infrastructure but has been rewritten from
the ground up for much improved parallel scalability.

Note that a (separate) parallelization over k-points will be performed in periodic systems
in any case.

KS_method parallel allows calculations without explicitly collecting the resulting
eigenvectors to each thread after the eigensolution is complete. This improves the
memory efficiency especially in large-scale / massively parallel situations and is the default
where possible. For details, see keyword collect_eigenvectors .

Prior to the solution of Eq. (3.27) using the serial or parallel solvers, the overlap
matrix sij is checked for ill-conditioning (see basis_threshold keyword). For very
large basis sets or periodic calculations with many k-points, this criterion may trigger. In

122 Chapter 3. The Full Monty: All Keywords and Capabilities

that case, the Hamiltonian matrix is transformed to the “safe” set of eigenvectors of sij,
and the transformed eigenvalue problem is solved. If you suspect ill-conditioning to be a
problem, it may sometimes be helpful to increase the density of the 3D integration grids
in order to minimize any numerical noise in sij and hij. That said: In our experience,
ill-conditioning is not a problem with accurate basis sets in standard calculations; see
Appendix A for some additional comments.

Tag: elsi_method (control.in)

Usage: elsi_method method

Purpose: Determines the usage of eigensolvers or density matrix solvers in ELSI.
Must be compatible with the density_update_method keyword (see Sec.
3.6).
method is a keyword (string). Default: ev.

Available options for method are:

• ev : Use eigensolvers to solve the wave functions explicitly through ELSI. Sup-
ported serial solver is LAPACK. Supported parallel solvers are ELPA and SLEPc-
SIPs (if compiled in). Compatible with all options of density_update_method
.

• dm : Use density matrix solvers to directly compute the density matrix without
explicitly solving the eigenproblem in Eq. (3.27). Note that this will not work
with any post-processing that requires the wave functions. Supported solvers
are ELPA, libOMM, PEXSI, SLEPc-SIPs, and NTPoly. Only compatible with
density_update_method density_matrix.

Tag: elsi_solver (control.in)

Usage: elsi_solver solver

Purpose: Specifies the eigensolver or density matrix solver to use.
solver is a keyword (string). Default: elpa.

Available options for solver are:

• elpa : Direct, dense eigensolver ELPA (EigensoLvers for Petaflop Applications).
Scales as O(N3) with respect to system size. Fast for systems of small and medium
sizes (up to hundreds of atoms).

• omm : Density matrix solver libOMM (the Orbital Minimization Method). Scales
as O(N3). No support for metallic systems. Not recommended for now.

• pexsi : Density matrix solver PEXSI (the Pole EXpansion and Selected Inversion
method). Scales as O(N2) for 3D systems, O(N1.5) for 2D systems, and O(N)

3.9. Eigenvalue solver and (fractional) occupation numbers 123

for 1D systems. Fast when solving a large system with sufficiently many MPI tasks
(a thousand or more). PEXSI is not compiled with FHI-aims by default. To use
it, either enable the compilation of PEXSI when building FHI-aims wiht CMake,
or link FHI-aims against a precompiled ELSI library with PEXSI support.

• eigenexa : Experimental Direct, dense eigensolver EigenExa. The pentadiago-
nalization eigensolver eigen_sx in EigenExa can be faster than ELPA when solving
the full eigenspectrum. Requires an externally compiled EigenExa library. No sup-
port for complex-valued problems. Therefore, in periodic calculations the number
of k-points in any direction cannot be greater than 2.

• sips : Experimental Sparse eigensolver SLEPc-SIPs (the Shift-and-Invert Parallel
spectral transformation method). Requires externally compiled SLEPc and PETSc
libraries. Not recommended for now. No support for complex-valued problems.
Therefore, in periodic calculations the number of k-points in any direction cannot
be greater than 2.

• ntpoly : Density matrix purification algorithms implemented in the NTPoly library.
For sufficiently large systems, scales as O(N). Only competitive for thousands of
atoms.

• magma : Experimental GPU-accelerated direct, dense eigensolvers in MAGMA.
Drop-in enhancement to the eigensolvers in LAPACK. Requires an externally com-
piled MAGMA library.

Tag: elsi_elpa_solver (control.in)

Usage: elsi_elpa_solver solver

Purpose: Specifies the eigensolver used in ELPA.
method is an integer. Default: 2.

Available options for solver are:

• 1 : One-stage tridiagonalization eigensolver.

• 2 : Two-stage tridiagonalization eigensolver.

Tag: elsi_elpa_n_single (control.in)

Usage: elsi_elpa_n_single n_single

Purpose: Specifies the number of s.c.f. steps in which the eigenproblems Eq.
(3.27) are solved using single precision ELPA solvers.
n_single is an integer. Default: 0.

Tag: elsi_elpa_gpu (control.in)

124 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: elsi_elpa_gpu gpu

Purpose: Switches on the usage of GPU (CUDA) acceleration in ELPA.
gpu is an integer. Default: 0.

Tag: elsi_omm_n_elpa (control.in)

Usage: elsi_omm_n_elpa n_elpa

Purpose: When using libOMM, specifies the number of s.c.f. steps in which the
eigenproblems Eq. (3.27) are solved explicitly using ELPA. As an iterative solver,
libOMM’s performance heavily depends on the quality of the initial guess. By
default, random numbers are used as inital guess. The eigensolution computed
by ELPA proves to be a better choice.
n_elpa is an integer. Default: 6.

Tag: elsi_omm_flavor (control.in)

Usage: elsi_omm_flavor flavor

Purpose: Specifies the flavor of libOMM to be used.
flavor is an integer. Default: 0.

Available options for flavor are:

• 0 : Directly minimizes the OMM energy functional without transforming the gen-
eralized eigenproblem to the standard form before minimization. This is usually
faster than flaver 2 if using several ELPA steps before switching to libOMM.

• 2 : Before OMM minimization, first transforms the generalized eigenproblem to
the standard form using the Cholesky decomposition of the overlap matrix.

Tag: elsi_omm_tol (control.in)

Usage: elsi_omm_tol tolerance

Purpose: Specifies the convergence criterion of the OMM energy functional
minimization.
tolerance is a small positive real number. Default: 10−12.

Tag: elsi_pexsi_np_symbo (control.in)

3.9. Eigenvalue solver and (fractional) occupation numbers 125

Usage: elsi_pexsi_np_symbo np_symbo

Purpose: Specifies the number of MPI tasks assigned for the symbolic factoriza-
tion step in PEXSI.
np_symbo is a positive integer. Default: 1.

Parallel symbolic factorization with more than 1 MPI task is not always stable, hence
the default. Increasing np_symbo might accelerate the symbolic factorization, however
might also cause a segfault. Note that the symbolic factorization step needs to be
performed only once per s.c.f. cycle. Unless facing a memory bottleneck, using the
default value is recommended.

Tag: elsi_eigenexa_method (control.in)

Usage: elsi_eigenexa_method method

Purpose: Specifies the eigensolver used in EigenExa.
method is an integer. Default: 2.

Available options for solver are:

• 1 : One-stage tridiagonalization eigensolver.

• 2 : One-stage pentadiagonalization eigensolver.

Tag: elsi_sips_n_slice (control.in)

Usage: elsi_sips_n_slice n_slice

Purpose: Specifies the number of slices used in SLEPc-SIPs. Note that the total
number of MPI tasks must be a multiple of the number of slices. In practice,
setting n_slice to be equal to the number of nodes seems to work well. The
default value should always work, but by no means leads to the best performance.
type is a positive integer. Default: 1.

Tag: elsi_sips_n_elpa (control.in)

Usage: elsi_sips_n_elpa n_elpa

Purpose: Specifies the number of s.c.f. steps to be solved with ELPA. The
performance of SIPs relies on a decent knowledge on the eigenvalue distribution,
which is key to an efficient spectrum slicing. This can be calculated by ELPA in
the first n_elpa s.c.f. steps.
type is an integer. Default: 0.

Tag: elsi_ntpoly_method (control.in)

126 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: elsi_ntpoly_method method

Purpose: Specifies the purification algorithm used in NTPoly.
method is an integer. Default: 2.

Available options for method are:

• 0 : Canonical purification.

• 1 : Trace-correcting purification.

• 2 : 4th order trace-resetting purification.

• 3 : Generalized canonical purification.

Tag: elsi_ntpoly_tol (control.in)

Usage: elsi_ntpoly_tol tolerance

Purpose: Specifies the convergence criterion of the density matrix purification.
tolerance is a small positive real number. Default: 10−4.

Tag: elsi_ntpoly_filter (control.in)

Usage: elsi_ntpoly_filter threshold

Purpose: Specifies the threshold smaller than which the matrix elements will be
discarded in the process of density matrix purification.
tolerance is a small positive real number. Default: 10−8.

Tag: elsi_magma_solver (control.in)

Usage: elsi_magma_solver solver

Purpose: Specifies the eigensolver used in MAGMA.
method is an integer. Default: 1.

Available options for solver are:

• 1 : One-stage tridiagonalization eigensolver.

• 2 : Two-stage tridiagonalization eigensolver.

Tag: frozen_core_scf (control.in)

3.9. Eigenvalue solver and (fractional) occupation numbers 127

Usage: frozen_core_scf boolean

Purpose: Enables the frozen core approximation to reduce the dimension of the
Kohn-Sham eigenproblem. Atomic basis functions whose eigenvalue is lower than
frozen_core_scf_cutoff will be treated as core states. Useful for systems
consisting of heavy elements. This keyword applies only to the solution of the
Kohn-Sham eigenproblem. It does not imply a frozen core treatment anywhere
else. See also frozen_core and frozen_core_postscf , which control
the use of frozen core in other parts of the code.
boolean is either .true. or .false.. Default: .false.

Tag: frozen_core_scf_cutoff (control.in)

Usage: frozen_core_scf_cutoff cutoff

Purpose: Determines the number of core states when the frozen core approx-
imation is enabled by frozen_core_scf . Atomic basis functions whose
eigenvalue is lower than cutoff (eV) will be treated as core states.
cutoff is a negative number. Default: -13605.5 (eV, which is about -500 Ha)

Tag: frozen_core_scf_core_correction (control.in)

Usage: frozen_core_scf_core_correction boolean

Purpose: Provides better accuracy for the frozen core states when the frozen
core approximation is enabled by frozen_core_scf .
boolean is either .true. or .false.. Default: .true.

Tag: frozen_core_scf_valence_correction (control.in)

Usage: frozen_core_scf_valence_correction boolean

Purpose: Provides better accuracy for the unfrozen valence states when the
frozen core approximation is enabled by frozen_core_scf .
boolean is either .true. or .false.. Default: .true.

Tag: lopcg_adaptive_tolerance (control.in)

128 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: lopcg_adaptive_tolerance flag

Purpose: Experimental! Allows the lopcg-algorithm to dynamically adjusts its
convergence tolerance as max {0.01 |δn|, lopcg_tolerance } where δn is
the change in the electron density as recorded in the self-consistency cycles.
flag is a logical expression. Default: .false.

Tag: lopcg_block_size (control.in)

Usage: lopcg_block_size number

Purpose: Experimental! The maximal size of a block in lopcg-iteration.
number is a positive integer. Default: 1.

Tag: lopcg_auto_blocksize (control.in)

Usage: lopcg_auto_blocksize flag

Purpose: Experimental! Selects if the lopcg algorithm tries to find automatically
a better blocksize than the maximal one by grouping close eigenvalues together.
flag is a logical expression. Default: .false.

Tag: lopcg_preconditioner (control.in)

Usage: lopcg_preconditioner type

Purpose: Experimental! For KS_method lopcg, specifies the preconditioner
used.
type is a string, either diagonal (diagonal preconditioning matrix) or
ovlp_inverse (use inverse of the overlap matrix for preconditioning).

Tag: lopcg_start_tolerance (control.in)

Usage: lopcg_start_tolerance tolerance

Purpose: Experimental! Sets the tolerance for starting the lopcg-solver using
the change in the sum of eigenvalues as a criterion. The lopcg-solver is activated
as set in initial_ev_solutions latest, but lopcg_start_tolerance
may trigger it earlier.
tolerance is a double precision real. Default: 0.0

Tag: lopcg_tolerance (control.in)

3.9. Eigenvalue solver and (fractional) occupation numbers 129

Usage: lopcg_tolerance tolerance

Purpose: Experimental! Sets the convergence tolerance for the lopcg-solver.
tolerance is a double precision real. Default: 10−6.

Tag: max_lopcg_iterations (control.in)

Usage: lopcg_tolerance number

Purpose: Experimental! Sets the maximal number of iterations for one block in
the the lopcg-solver.
number is an integer. Default: 100.

Tag: mu_determination_method (control.in)

Usage: mu_determination_method type

Purpose: Specifies the algorithm used to search for the Fermi level.
type is a descriptor (string) which specifies the desired algorithm to determine
the Fermi level. Default: bisection

Available options are:

• bisection : Standard bisection algorithm. Usually robust to reach an accuracy
of 10−13 in terms of electron count. If a desired accuracy cannot be reached
by the bisection iteration, e.g., due to the limit of the machine precision, the
remaining error (very small) will be arbitrarily cancelled out. Not compatible with
the integer occupation_type .

• zeroin : Standard Brent’s method. Not compatible with the cubic or the cold
occupation_type .

Tag: max_zeroin (control.in)

Usage: max_zeroin number

Purpose: Number of iterations allowed in Brent’s method to find the Fermi level.
number is an integer number. Default: 200.

Usually, this tag need not be modified from the default. This limits the number of allowed
iterations for the (standard) Brent’s method search for the Femi level. Leave untouched
unless problems arise. Note that changing the values given for occupation_type or
empty_states may be the true fixes if the search for a Fermi level really ever fails.

Tag: occupation_acc (control.in)

130 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: occupation_acc tolerance

Purpose: Accuracy with which the sum of calculated occupation numbers for a
given Fermi level reproduces the actual number of electrons in the system.
tolerance is a small positive real number. Default: 10−13.

Usually, this tag need not be modified from the default. Determines the target accuracy
for the Fermi level (calculated vs. actual number of electrons in the system). Note that
changing the values given for occupation_type or empty_states may be the
true fixes if the search for a Fermi level really ever fails.

Tag: occupation_type (control.in)

Usage: occupation_type type width [order]
Purpose: Determines the broadening scheme used to find the Fermi level and
occupy the Kohn-Sham eigenstates.
type is a string which determines the desired broadening function. Default:
gaussian
width specifies the width of the broadening function [in eV]. Default: 0.01 eV.
order is an integer, and only required to specify the order of type
methfessel-paxton.

Based on the eigenvalues εl of each s.c.f. iteration, the selected occupation_type
determines the Fermi level εF and occupies all Kohn-Sham states with fractional occu-
pation numbers fl(εF) for the following electron density update. Detailed discussions
can be found in Ref. [26] or other standard literature [128]. We only briefly list the
available options for the occupation type here:

• gaussian : Gaussian broadening function [67]

fl = 0.5 · [1− erf(εl − εF
width

)]

• methfessel-paxton : Generalized Gaussian-type distribution functions of Meth-
fessel and Paxton (see Ref. [159] for details). In practice, any order beyond 1 is
not recommended, and is not supported if bisection is chosen for the keyword
mu_determination_method .

• fermi : Formally correct finite-temperature broadening scheme [158]

fl = 1
1 + exp[(εl − εF)/width]

However, to be useful in practice, width must take on values significantly greater
than kT at room temperature, and therefore mostly loses its physical meaning. In
practice, fermi broadening seems to lead to faster-increasing total energy inaccu-
racies than gaussian broadening, which is why the latter is preferred in FHI-aims.

• integer : Forces the occupation numbers to be integers.

3.9. Eigenvalue solver and (fractional) occupation numbers 131

• cubic : Experimental Cubic polynomial broadening.

• cold : Cold smearing technique proposed by Marzari and Vanderbilt.

For metallic systems / systems with small HOMO-LUMO gap, the availability of an
occupation scheme with finite width (e.g., 0.1 eV) is critical to guarantee the stable
convergence of the s.c.f. cycle. Especially for metallic systems, FHI-aims outputs an
extrapolated total energy, which estimates the total energy for zero broadening based
on the entropy of the electron gas [128, 72, 226]. This extrapolated total energy must
only be used for metallic systems, not, e.g., for atoms with a decidedly discrete density
of states.

For non-metallic systems / systems with appreciable HOMO-LUMO gap, the broadening
width must be finite in order to guarantee the existence of a formal Fermi level, but not
so large as to lead to any actual fractional occupation numbers. In our experience, the
default width of 0.01 eV performs well for this purpose.

Tag: override_illconditioning (control.in)

Usage: override_illconditioning flag

Purpose: Allows to override a built-in stop and run with a nearly singular overlap
matrix.
flag is a logical flag, either .true. or .false. Default: .true.

If the overlap matrix sij has an eigenvalue below basis_threshold or below 10−5

(whichever is larger), FHI-aims will stop and warn the user of a potentially ill-conditioned
basis set. Usually this situation can still be resolved by setting an appropriate value of
basis_threshold, but anyone relying on this functionality should first check whether
their “ill-conditioning” condition is not also due to another, inadvertent choice, such as
an insufficient integration grid for very extended functions, or an excessively large cutoff
radius in dense periodic systems (is it really necessary?).

In other words: By all means, override if you wish, but check first whether all computa-
tional settings are actually intentional and appropriate.

132 Chapter 3. The Full Monty: All Keywords and Capabilities

3.10 SCF Cycle: Initialization, density mixing,
preconditioning, convergence

The preceding tasks (charge density update, Hartree potential, Hamiltonian and eigen-
value solver) are all methodologically simple, with well-defined standard choices, since
they all relate to the densities and potentials within a single s.c.f. iteration of the
Kohn-Sham equations only.

However, in order to run a complete, self-consistent Kohn-Sham or generalized ground
state calculation, many such cycles must be performed. Beginning with well-defined ini-
tial criteria, self-consistency of the charge density and orbitals must be reached, and must
be reached within a rather finite number of iterations. This is a non-linear optimization
problem and not always trivial.

The most important keywords related to this problem in FHI-aims are adjust_scf ,
which is set by default and automates the process with a choice of s.c.f. settings that is
often safe. The key parameters that can be manually adjusted are charge_mix_param
and occupation_type . Many more keywords are described below, but usually, these
are the relevant choices.

For many standard problems in electronic structure theory–especially systems with a
large, well-defined HOMO-LUMO or band gap—reaching self-consistency today presents
essentially no problem, and is achieved to great accuracy already within ≈10 or so
iterations.

However, in cases where the band structure is metallic, different charge or spin states are
close to one another or in competition, there may be several self-consistent solutions,
depending on the exact chosen initialization. Even worse, in such cases reaching even a
single one of potentially several different self-consistent solutions can be problematic.

It is very important to remember that different stationary densities for the exact same
atomic geometry and for the exact same density functional are a real and not always
unrealistic possibility in DFT. A simple example are antiferromagnetic vs. ferromagnetic
spin states in some systems. In such cases, the true ground state in a DFT sense is
the stationary density that yields the lowest energy. It can be found by way of a global
search for different stationary densities, usually by varying the initial density guess.

The present section summarizes all available options in FHI-aims to facilitate the self-
consistent solution of any given problem in FHI-aims in as few iterations as possible,
including:

• Initialization of the s.c.f. cycle

• Criteria for the convergence of the self-consistency solution

• Electron density mixing

• Electron density preconditioning

Please refer to Ref. [26] for a more exhaustive discussion of the physics / mathematics
behind the individual choices laid out below.

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 133

Important note: The following settings are made or required by default.

• The initial spin density must be specified in a spin-polarized calculation. In spin-
polarized systems, the choice of a good initial spin density can be critical for good
convergence. For example, for a free atom, you might wish for a high-spin initial
density according to Hund’s rules. In a ferromagnetic Fe crystal, you might want
to use a default_initial_moment of 2 (far lower than the Hund’s rule value)
to obtain fast convergence. In an antiferromagnetic Cr crystal, a ferromagnetic
default initialization might do no good at all. And in a molecule with a single
magnetic atom enclosed, you might want a spin-polarized initial moment only for
that atom, but not for the surrounding molecule. In short, FHI-aims can not
and should not guess the spin initialization for you. The program will stop if no
initial moments of any kind are provided by the user. Setting either an overall
default_initial_moment (in control.in), or (better!) at least one individual
initial_moment tag in geometry.in, or both will allow you to run.

• Use of the Kerker preconditioner for periodic systems. This option can greatly im-
prove the s.c.f. convergence especially of large periodic systems (see preconditioner
for more details). At the very least, it does not appear to do much harm, and is
therefore now used by default in any periodic calculation. However, for very large
systems the Kerker preconditioner can cost significant amounts of time – see
the detailed timing output that is written by the code at the end of each s.c.f.
iteration. You may try to switch it off. Should you encounter any difficulties,
either turn the preconditioner off by hand, or play with associated screening
momentum, q0 (default: q0=2.0 bohr−1).

• The keyword sc_init_iter sets the number of s.c.f. iterations after which
the Pulay mixer resets itself from scratch. This can significantly help in cases of
bad convergence. If you have real mixer trouble, please consider this keyword.

Regarding options to converge the self-consistency cycle, note that one further important
parameter is not covered here but instead in Sec. 3.9: The “broadening” of (fractional)
occupation numbers around the Fermi level. Especially in metallic systems, this broad-
ening must be large enough to prevent oscillations around the Fermi level, independent
of the methods laid out below.

For further suggestions to improve s.c.f. convergence, see Sec. A.8.

3.10.1 Visualizing the convergence of the s.c.f. cycle

There is a simple tool that can be used to visualize the s.c.f. convergence behavior
of FHI-aims graphically for a given run. Preferably do this analysis on your desktop
computer (i.e., copy over the necessary files). This is what you need to do:

• Install the Grace 2D visualization program (http://plasma-gate.weizmann.ac.il/Grace/)
on your computer.

• Go to the directory with the FHI-aims output file you wish to analyze.

134 Chapter 3. The Full Monty: All Keywords and Capabilities

• From the FHI-aims utilities directory, copy over the file scf_convergence_template.agr
.

• At the commandline, call the FHI-aims utility
plot_scf_convergence.pl [FHI-aims output file]
to visualize the s.c.f. convergence behavior of the FHI-aims output file. plot_scf_convergence.pl
can be found in the FHI-aims utilities directory and must (of course) be called with
the correct directory path preceding the file name.

If successful, this procedure will assemble and open a graphical representation of the
s.c.f convergence of FHI-aims.

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 135

Tags for geometry.in:

Tag: initial_charge (geometry.in)

Usage: initial_charge charge

Purpose: Allows to place an initial charge on an atom in file geometry.in.
charge is a real number. Default: 0.

The initial_charge keyword always applies to the last atom previously spec-
ified in input file geometry.in. The charge is introduced by using an ionic instead of
neutral spherical free-atom density on that site in the initial superposition-of-free-atoms
density. Note that initial charge densities are generated by the functional specified with
xc for DFT-LDA/GGA, but refer to pw-lda densities for all other functionals (hybrid
functionals, Hartree-Fock, ...).

Tag: initial_moment (geometry.in)

Usage: initial_moment moment

Purpose: Allows to place an initial spin moment on an atom in file
geometry.in.
moment is a real number, referring to the electron difference N↑ − N↓ on that
site. Default: Zero, unless default_initial_moment is set explicitly.

The initial_moment keyword always applies to the last atom previously specified
in input file geometry.in. The moment is introduced by using a spin-polarized instead
of an unpolarized spherical free-atom density on that site in the initial superposition-
of-free-atoms density. Note that initial charge densities are generated by the functional
specified with xc for DFT-LDA/GGA, but refer to pw-lda densities for all other
functionals (hybrid functionals, Hartree-Fock, ...).

136 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: adjust_scf (control.in)

Usage: adjust_scf frequency number

Purpose: Adjusts key parameters that govern the s.c.f. cycle based on a rough
estimate of the system’s band gap.
frequency is a keyword, once, never, or always. Default: once.
number is an integer number (zero or greater). Default: 2.

This keyword decides whether key s.c.f. convergence parameters will be adjusted au-
tomatically during the s.c.f. cycle, based on a simple estimate of the system character
according to its approximate HOMO-LUMO gap or band gap.

The number keyword determines in which iteration of the s.c.f. cycle the adjustment
will be attempted. A zero value corresponds to the initial s.c.f. cycle; values of 1, 2,
etc. correspond to an update after the first, second, etc. s.c.f. iterations are almost
complete and their eigenvalue spectra known.

The frequency keyword determines for which full s.c.f. cycle (i.e., for which geometry
step) an adjustment will be made:

• once means that an adjustment of the s.c.f. parameters will only be made in the
first geometry in a geometry relaxation or MD run.

• always indicates that an adjustment will be made for every new s.c.f. cycle, i.e.,
for every new geometry in a run.

• never indicates that no adjustment will be attempted.

Parameters will only be adjusted if they are not explicitly set by a keyword in control.in.
Any parameter that is included in control.in will not be modified by the adjust_scf
keyword. For frequency once or always, the following parameters may be adjusted:

• The initial default value of charge_mix_param for mixer pulay will be set
to 0.05 (i.e., an overall cautious value). For frequency never, the default value
of the charge_mix_param keyword remains at its usual default value 0.2 (for
many metallic or spin-polarized systems, this is a fairly aggressive value).

• In s.c.f. iteration number, the current estimated value of the HOMO-LUMO gap
(for solids, the band gap) is checked. If the system shows fractional occupation
numbers or if the estimated gap has a value of less than 0.2 eV at this point, the
system is likely near-degenerate or metallic and the s.c.f. cycle could be diffcult
to converge. In this case, the charge_mix_param is set to 0.02 – a cautious
value but, in conjunction with the Pulay mixer , still surprisingly effective.
The broadening of the occupation numbers near the Fermi level is increased to
occupation_type option 0.05 [eV].

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 137

• If, instead, the gap is found to be equal or greater than 0.2 eV in s.c.f. iteration
number, the rather aggressive default charge_mix_param 0.2 is kept for the
Pulay mixer, and the default broadening value (suitable for non-metallic systems)
occupation_type option 0.05 [eV] is also kept.

Tag: allow_restart_xc_pre (control.in)

Usage: allow_restart_xc_pre flag

Purpose: This keyword will safeguard against xc_pre being accidentally set
together with elsi_restart (they can still be set together on purpose if this
keyword is .true.)
flag is a logical variable (.true. or .false.). Default: .false.

The keywords xc_pre and elsi_restart both allow one to specify a non-standard
(and usually faster) initialization of the electronic structure that is later calculated self-
consistently for the exchange-correlation method specified by the usual xc keyword.

One frequent problem is that they can be accidentally set togethe. In that case, the
initialization using xc_pre can undo the often highly valuable initialization already
present from the elsi_restart information. For example, xc_pre can replace
the highly expensive information from a previous hybrid DFT run and replace it with the
much less suited information from, say, a PBE pre-initialization.

This is, ostensibly, a user error, but can cost immense amounts of CPU time especially
for the highest-value calculations. Therefore, we safeguard against this possibility.

When the xc_pre keyword is set, elsi_restart can still be used at the same
time – but only if no elsi_restart restart files are actually available to read (i.e.,
if all that elsi_restart would do is write). If elsi_restart actually does have
information to initialize the calculation, keyword xc_pre will only be allowed to be
used if allow_restart_xc_pre is explicitly set to be true. If it isn’t, then the code
will stop and explain to the user that the two should not be used together.

The allow_restart_xc_pre keyword has no effect when used together with the
older restart keyword.

Tag: charge_mix_param (control.in)

Usage: charge_mix_param value

Purpose: Parameter for simple linear mixing of electron densities of previous and
present s.c.f. iterations
value is a real number between 0. and 1. Default: Depends on chosen mixer
algorithm. Now set by the adjust_scf keyword.

See Ref. [26] for details regarding the available density mixing algorithms. In the simplest
case of a linear mixer , value specifies a constant value Ĝ1 to mix the output
density of the Kohn-Sham Equations in iteration number µ, n(µ)

KS , with the (already

138 Chapter 3. The Full Monty: All Keywords and Capabilities

mixed) input density that defined those equations, n(µ−1):

n
(µ)
dmp = n(µ−1) + Ĝ1(n(µ)

KS − n(µ−1)) . (3.28)

If a preconditioner is specified, charge_mix_param defines an additional linear
factor to that preconditioner. In case of a pulay mixer , all density residuals are
mixed with this factor.

In general, the best choice for value is system-dependent, and also depends on the
chosen mixer algorithm. In general, please also see Appendix A.8, since several
keywords can be used to alleviate s.c.f. mixing instabilities.

• In principle, a linear mixer will always converge with a sufficiently small value.
In easy cases, we recommend value=0.1-0.2, but in difficult cases, “sufficiently
small” can mean one to three orders of magnitude(!) lower, i.e., the process can
be apallingly slow.

• For a straight pulay mixer , our default value is adjusted according to the
adjust_scf keyword, depending on the estimated band gap / HOMO-LUMO
gap. For non-metallic systems, we choose a conservative value of 0.2. In metal-
lic systems or systems that are otherwise problematic, the default value set by
adjust_scf is value=0.02. Note that this small value does not necessarily cor-
respond to slow mixing since the Pulay mixer will learn over time and accelerate
the mixing process.

• In metallic systems, density oscillations can occur from one iteration to the next
(charge sloshing). This can be alleviated by a preconditioner . With a
preconditioner and pulay mixer specified together, value is still important
and may be chosen around 0.05 .

See also the mixer and preconditioner keywords.

Tag: relative_fp_charge_mix (control.in)

Usage: relative_fp_charge_mix value

Purpose: Parameter for under-relaxation of the fixed point part of s.c.f. cycle
with the broyden mixer

value is a real number between 0. and 1. Default: 0.05

relative_fp_charge_mix determines the under-relaxation of the fixed point part of
the Broyden mixer s.c.f. cycle together with charge_mix_param . relative_fp_charge_mix
and charge_mix_param are multiplicative, and if no history is included the effective
under-relaxation is relative_fp_charge_mix times charge_mix_param .

Tag: default_initial_moment (control.in)

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 139

Usage: default_initial_moment moment

Purpose: For spin-polarized calculations, sets the default initial moment of the
spin-polarized atoms that make up the initial electron density.
moment is either a string or a number that defines the desired initial number of
electrons, N↑ −N↓. Default: hund for isolated atoms. Zero otherwise.

Sets the default initial spin moment for all atoms whose initial_moment s are not
specified explicitly in geometry.in.

If there is at least a single initial_moment keyword specified in geometry.in,
the default_initial_moment will be zero for all other atoms, for which no
initial_moment is specified explicitly.

If no initial_moment is included in geometry.in at all, the default_initial_moment
must be specified explicitly by the user for the code to run at all.

For most (bonded) systems, it is advisable to set the default_initial_moment
to a numerical value close to what most atoms in the structure will do. For example,
ferromagnetic Fe would be close to 2, whereas a large non-magnetic molecule would be
better served with something close to zero.

For isolated free-atom calculations, default_initial_moment hund can be used.
This will result in the usual high-spin atom initialization characteristic of free atoms.

Note that at least one moment in the system must be set to a non-zero value in order to
reach any spin-polarized state at all. If the initial spin polarization is zero, the final s.c.f.
result will also not be spin-polarized, no matter how magnetic the system is in reality.

Warning. It is not advisable to set a blanket default_initial_moment hund for any
structures other than free atoms. The result can be enormous convergence difficulties
because the calculation begins from a bad starting point – a high-spin state that is
completely unrealistic for most bonded structures. A calculation will converge much
better if the initial spin moment is realistic for each individual atom in the structure.

One more warning: It is not advisable to set a default_initial_moment other
than zero in structures in which only a few atoms actually carry spin (such as a large
molecule with a few transition metal atoms). Rather, a good choice would be to set a
zero default_initial_moment and then set finite initial_moment values for
individual atoms in geometry.in.

And again: Setting default_initial_moment to zero and not specifying any
initial_moment values in geometry.in will lead to a zero spin state in the final
result, simply because the system is never given any indication which way to break its
symmetry. So one does need to set a finite moment somewhere if a finite-spin converged
solution is expected in the calculation.

The upshot is: It pays to think about the right spin initialization. There may be multiple
different self-consistent solutions, and in spin-polarized systems, this can happen for very
natural reasons (e.g., ferromagnetic vs. antiferromagnetic states). Similar to geometry
optimization, starting from a very bad initial guess can cause problems. Conversely, a
good starting point may greatly simplify a calculation.

140 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: force_potential (control.in)

Usage: force_potential type

Purpose: Determines how far / with which potential the Kohn-Sham equations
are solved.
type is a string that determines the potential used. Default: sc

This option is not required under normal circumstances. It is mainly useful to produce /
test a fast, non-self-consistent solution for a superposition-of-atoms potential that yields
only the sum of eigenvalues as a result. If a non-self-consistent total energy is needed
(correct only for the non-spinpolarized free-atom density!), running a normal calculation
with sc_iter_limit =0 is the better way.

Options for type are:

• sc: Self-consistent Kohn-Sham potential in each s.c.f. iteration

• superpos_pot: Superposition of free-atom potentials, evaluation only once (no
self-consistency cycle). Restriction: This method works only for self-adapting
angular_grids (i.e., angular_acc not equal zero for at least one species
). This also means that the option will not perform well in periodic boundary
conditions. A fix is simple, contact us if needed.

• superpos_rho: Superposition potential created from sum of free-atom densities;
evaluation only once (no self-consistency cycle)

• non-self-consistent: Same as superpos_rho.

Tag: ini_linear_mixing (control.in)

Usage: ini_linear_mixing number

Purpose: If mixer is pulay, specifies simple linear mixing for a number of
initial iterations.
number is the integer number of iterations for which linear mixing is done.
Default: 0 .

Try only if the standard / preconditioned pulay mixer definitely fails. Keywords
ini_linear_mix_param , ini_spin_mix_param can be used to specify separate
mixing parameters for the initial linear mixing.

Tag: ini_linear_mix_param (control.in)

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 141

Usage: ini_linear_mix_param value

Purpose: Separate parameter for simple linear mixing of electron densities for
ini_linear_mixing .
value is a real number between 0. and 1. Default: same as charge_mix_param
.

ini_linear_mixing should only be tried if the standard algorithms provably fail. In
that case, value should be relatively small.

Tag: ini_spin_mix_param (control.in)

Usage: ini_spin_mix_param value

Purpose: For spin-polarized calculations, separate parameter to mix the spin
density during ini_linear_mixing .
value is a real number between 0. and 1. Default: same as spin_mix_param

ini_spin_mix_param should only be tried if the standard algorithms provably fail. In
that case, value should be relatively small.

Tag: mixer (control.in)

Usage: mixer type

Purpose: Specifies the electron density mixing algorithm used to achieve fast
and stable convergence towards the self-consistent solution.
type specifies the density mixing algorithm used and can be set to either
linear, pulay, or broyden. Default: pulay.

FHI-aims provides three mainstream density mixing algorithms across the s.c.f. cycle,
type linear, pulay, and broyden. We here only give a brief summary of options,
please see Ref. [26] for further references and for the exact mathematical details.

For most practical purposes (non-pathological systems), Pulay’s DIIS mixing algorithm
[184] is robust and fast, and should be the algorithm of choice. For this algorithm,
n_max_pulay n determines the number of past iterations µ−k (k=1,...,n) to be mixed
with the Kohn-Sham output density of iteration µ. charge_mix_param determines
an additional (system-dependent) linear factor that is multiplied with the output density
change of the Pulay mixer. Normally, this (and perhaps a preconditioner) is all
you need to do to ensure convergence.

In some pathological cases, reaching self-consistency is a more tricky problem. Broadly
speaking, these are systems with a small HOMO-LUMO gap (band gap) and/or several
competing possibilities for a self-consistent solution. Specifically, these difficult cases
include:

• Large metallic systems (e.g., slabs), where charge may “slosh” from one end
of the system to another before reaching self-consistency. In that case, the

142 Chapter 3. The Full Monty: All Keywords and Capabilities

pulay mixer may be used together with a large charge_mix_param and a
preconditioner (see that keyword) to dampen the resulting oscillations. Also
make sure that occupation_type is set to a sufficiently large broadening of
occupation numbers near the Fermi level in metallic systems.

• Spin-polarized systems with competing spin states. A classic. If problems arise,
playing with ini_linear_mixing , the charge_mix_param and spin_mix_param
and further options listed in this section may help. Likewise, setting a specific
fixed_spin_moment may be helpful. Finally, different initial_moment set-
tings may easily switch between different metastable self-consistent spin states
(e.g., ferromagnetic vs. antiferromagnetic), and should be tested separately if
different competing spin states are suspected.

• Systems near a level crossing (even dimers, if two or more Kohn-Sham levels of
different symmetry come close for a given binding distance). Apart from the usual
mixing mechanisms, keyword occupation_type with a larger broadening near
the Fermi level may help alleviate this situation.

• Spin-polarized free atoms. The simplest conceivable systems may exhibit unex-
pected problems towards self-consistency, likely because the electron density can
rotate between several fully equivalent spin states. Here, demanding a specific or-
bital occupation using the force_occupation_basis keyword may be useful.

In principle, even in the toughest cases a linear mixer will always converge with a
sufficiently small charge_mix_param . Unfortunately, “sufficiently small” can mean a
charge_mix_param of 10−2-10−4, i.e., the process can be apallingly slow. Playing with
the pulay mixer settings is usually the better strategy, unless a proof of principle is
sought.

The broyden mixer is an improvement on the linear mixer . The broyden
mixer works by effectively dividing the s.c.f. cycle into two separte parts: the space
in which we have local information gained by previous evaluations of the s.c.f. cycle,
and the remaining space in which we do not have information. charge_mix_param
determines the linear factor which under-relaxes the density predicted by the broyden
mixer , n_max_broyden n controls the number of past iterations used to construct
the next estimate, and relative_fp_charge_mix is the additional (multiplicative)
under-relaxation affecting only the step length in the space where we have no further
information.

Note that a modification is needed when going beyond DFT-LDA/GGA (Hartree-Fock,
hybrid functionals, ...). In that case, the density implicitly enters the two-electron ex-
change operator (via the density matrix, n̂ij = ∑

l flcilcjl, where i and j label basis
functions, and l label the Kohn-Sham states), and should also be mixed.

By default, for linear mixing, we do not mix the exchange operator, unless keyword
use_density_matrix_hf is enabled. The latter is the default if the pulay mixer is
selected. Then, the density matrix is submitted to the same Pulay mixing factors as the
normal charge density n(r) before constructing the exchange operator. Note that we do
not have a formal density matrix available that corresponds to the initial superposition

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 143

of free-atom densities, making this form of mixing slightly less efficient than for normal
Kohn-Sham DFT-LDA/GGA.

Tag: mixer_threshold (control.in)

Usage: mixer_threshold keyword threshold

Purpose: Allows to cap the density step between two iterations rigorously by
setting an explicit threshold.
keyword is a string, indicating whether the following is the charge or spin
density threshold.
threshold is a real number, the maximum allowed change in the density norm
(in electrons). Default: no thresholds.

This option is perhaps useful when there are definite convergence problems with the
standard mixing algorithms, but can otherwise safely be ignored.

Tag: n_max_pulay (control.in)

Usage: n_max_pulay number

Purpose: The number of past iterations that the pulay mixer uses for
density mixing.
number is the number of stored iterations used by the mixer. Default: 8

A larger number of stored iterations can sometimes lead to a stabilization of the mixing
process. Choosing number too large (e.g., 20 and above), though, may destabilize the
Pulay matrix, which can become near-singular.

Note that the storage effort associated with Pulay mixing is significant on systems
with few CPUs / low memory. Each additional stored iteration requires the storage
of two charge density residuals, and two times three charge density gradient resid-
ual components. For large systems, low memory, and overall stable mixing, reducing
n_max_pulay may be a way to get a given calculation below the most difficult memory
barriers.

Tag: n_max_broyden (control.in)

Usage: n_max_broyden number

Purpose: The number of past iterations that the broyden mixer uses for
density mixing.
number is the number of stored iterations used by the mixer. Default: 8

A larger number of stored iterations can sometimes lead to a stabilization of the mixing
process. Choosing number too large (e.g., 20 and above), though, may destabilize the
Broyden matrix, which can become near-singular.

Note that the storage effort associated with Broyden mixing is significant on systems
with few CPUs / low memory. Each additional stored iteration requires the storage

144 Chapter 3. The Full Monty: All Keywords and Capabilities

of two charge density residuals, and two times three charge density gradient resid-
ual components. For large systems, low memory, and overall stable mixing, reducing
n_max_broyden may be a way to get a given calculation below the most difficult
memory barriers.

Tag: postprocess_anyway (control.in)

Usage: postprocess_anyway boolean

Purpose: By default, FHI-aims simply stops if the SCF procedure does not
converge. In particular, all desired postprocessing steps are skipped. If you do
want postprocessing to be done anyway, set boolean to .true..
boolean is either .true. or .false.. Default: .false..

Tag: prec_mix_param (control.in)

Usage: prec_mix_param value

Purpose: Possible separate mixing parameter while the preconditioner is on.
value is a real number between 0. and 1. Default: same as charge_mix_param
.

It’s our tentative observation that a larger mixing parameter (0.5-0.8) is sometimes
helpful with the preconditioner , but after the preconditioner is switched
off, a smaller mixing parameter (as set by charge_mix_param) may be desirable.
prec_mix_param can provide the needed separate setting, if desirable.

Tag: preconditioner (control.in)

Usage: preconditioner keyword [type] [value]
Purpose: “Master keyword” that precedes any information related to the
preconditioner. May appear multiple times in control.in, in different contexts.
Restriction: Because it cannot simply be written in a density matrix formulation,
the preconditioner has no effect on the density matrix entering the exchange
operator for Hartree-Fock, hybrid functionals, etc.
keyword : A string, indicating the type of information following.
type : If required by keyword, a string with more details.
value : If required by keyword, a numerical value.

Default values:

• Non-periodic systems: preconditioner kerker off (no preconditioner).

• Periodic systems: preconditioner kerker 2.0 (Preconditioner with a
momentum of q0=2.0 bohr−1).

See Ref. [26] regarding the mathematical definition of the Kerker-type [150, 166, 119]

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 145

preconditioner, which is the currently implemented form.

See keyword precondition_max_l for the angular momentum cutoff specified for
the kerker preconditioner .

keyword can have the following forms, controlling various aspects of the preconditioner:

• kerker :

– if followed by off : No preconditioner used.
– if followed by value : value is a real positive number, indicating the char-

acteristic momentum q0 associated with the Thomas-Fermi type screening
assumed in the preconditioner (in bohr−1). Typical values in the literature
range around 1.0-2.0 bohr−1, but larger values may be useful in small clusters.

• turnoff : To avoid any residual influence on the s.c.f. cycle, the preconditioner
can be switched off at a given level of s.c.f. convergence, leaving the remaining
convergence to a pure pulay mixer . Possible types of turnoff criteria are:

– charge : value refers to the root-mean-square deviation between n(µ−1) (the
mixed and preconditioned input density to the Kohn-Sham Equations) and
n

(µ)
KS (the unmixed output density from the Kohn-Sham Equations). Default:

sc_accuracy_rho .
– energy : value refers to the total energy difference between two successive

iterations [in eV].
– sum_ev : value refers to the difference in the eigenvalue sums between two

successive iterations [in eV].

All requested convergence criteria for the preconditioner must be fulfilled. If
no explicit turnoff criterion is set, the preconditioner turnoff charge,
energy and sum_ev defaults to the same values as sc_accuracy_rho ,
sc_accuracy_etot , and sc_accuracy_eev , respectively.

• dielectric : The inverse of the microscopic dielectric function, ε−1(r, r′; 0) is
used to precondition the density. This option is experimental and computationally
expensive but the the dielectric function can be theoretically justified to be a good
preconditioner. Works only for non-periodic systems.

• none or off : No preconditioner used.

Tag: precondition_max_l (control.in)

Usage: precondition_max_l value

Purpose: Angular momentum cutoff used in the partitioned atom-centered
real-space form of the kerker preconditioner .
value is an integer number, specifying an angular momentum. Default: 0.

We use a partitioned atom-centered multipole rewrite of the Kerker preconditioner in

146 Chapter 3. The Full Monty: All Keywords and Capabilities

angular momentum space, similar in spirit to the Hartree potential (see Ref. [26] for de-
tails). In principle, precondition_max_l is thus the equivalent of the l_hartree
angular momentum cutoff for the expansion. However, since we here precondition a
density difference (which reduces to zero as we approach self-consistency), and since we
are combatting charge sloshing across potentially faraway parts of the systems, precon-
ditioning the atom-centered monopole component of the density difference (value=0)
is often all that is needed for the preconditioner to work. This is also the numerically
most efficient way of running the preconditioner.

Tag: kerker_factor (control.in)

Usage: kerker_factor value

Purpose: value is a real positive number. Additional empirical factor for the last
step of the kerker precondioner. Best results were achieved by choosing value as
the characteristic momentum (q0 − 0.5) associated with the Thomas-Fermi type
screening assumed in the kerker preconditioner (kerker preconditioner).

This keyword is experimental and derived fully empirically. For notorious cases the
keyword may help to achieve convergence (faster). For q0 = 1 the method is identical
to the standard kerker preconditioner.

Tag: restart (control.in)

Usage: restart file

Purpose: Saves and reads the final wave function or density matrix of each
scf-cycle to/from file.
file is a string, corresponding to the desired restart filename.

Note: A more generic restart functionality is provided by the elsi_restart – please
see that keyword for a description. The elsi_restart keyword is the supported
restart functionality going forward unless you have special reasons to prefer the simple
restart keyword.

The restart keyword summarizes a set of different cases for which the electronic
structure information in FHI-aims can be saved and then later used to restart a calculation
from that point. restart comes in many internal variants and, for example,
restarting a calculation with more MPI tasks than a previous run is not possible. The
alternative elsi_restart keyword (which uses a different storage format than the
restart keyword) is much more flexible and may be the better choice.

If file is not yet present, the calculation simply writes that file during the run. If
file is already present, it is read and the wave function contained therein is used to
restart the calculation, instead of a fresh superposition of free atoms initialization. Mind
that restart is currently not supported for keywords load_balancing and
use_local_index so that file will not be written or read when either keyword is set.

It is important to note that the restart infrastructure corresponds to a restart
from the last Kohn-Sham orbitals, not from the last density. In practice, this means

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 147

that the code will restart from the last unmixed Kohn-Sham density, not from the last
mixed density. When restarting from a non-self-consistent starting point, this can lead
to unexpected jumps in the calculated non-self-consistent total energy. Only the self-
consistent total energy is truly meaningful and this (the self-consistent) total energy
should be the same for the same stationary density. (Note also that some systems
may exhibit several different self-consistent stationary densities – a simple example are
antiferromagnetic vs. ferromagnetic spin states in some systems. In such cases, the true
ground state in a DFT sense is the one with the lowest energy and must be found by
varying the initial density guess.)

In parallel runs, there is one file for each process, numbered as fileXXX. See also
restart_read_only and restart_write_only . There are limited checks on
whether or not the restart file provided is actually from the same system, but ensuring
that a given restart file works is mainly the user’s responsibility. See also MD_restart
for more information on the separate restarting process for molecular dynamics.

A much more complete overview of the restart infrastructure in FHI-aims can be found
in the dedicated Section 4.7.

Tag: restart_read_only (control.in)

Usage: restart_read_only file

Purpose: reads the final wave function of the last scf-cycle in a preceding
calculation from file.
file is a string, corresponding to the desired restart filename.

Similar to keyword restart , but does not overwrite file at any time (this may
facilitate another restart from the same file later on).

Note: A more generic restart functionality is provided by the elsi_restart , described
further below. We recommend to use elsi_restart unless you have special reasons
to prefer the simple restart keyword.

Tag: restart_write_only (control.in)

Usage: restart_write_only file

Purpose: writes the final wave function of the last scf-cycle to file for a later
restart.
file is a string, corresponding to the desired restart filename.

Similar to keyword restart , but does not read the restart file in case it already
exists.

Note: A more generic restart functionality is provided by the elsi_restart , described
further below. We recommend to use elsi_restart unless you have special reasons
to prefer the simple restart keyword.

148 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: restart_save_iterations (control.in)

Usage: restart_save_iterations number

Purpose: writes restart information every number scf-iterations or at the end of
each cycle.
number is the integer number of s.c.f. iterations after which the restart
information is rewritten.

See also restart .

Tag: force_single_restartfile (control.in)

Usage: force_single_restartfile .true.

Purpose: Forces FHI-aims to always write a single, wavefunction based restart
file if possible.

Only relevant when using keyword restart . For technical and efficiency reasons
FHI-aims uses different types of restartfiles depending on the eigenproblem solver (see
Section 4.7 for details). In cases where the wavefunction is needed (e.g. for external
post-processing, . . .), the default restart handling might make it difficult to do so.

This option only works for cluster (non-periodic) and periodic Γ-only calculations.

Tag: elsi_restart (control.in)

Usage: elsi_restart task freq

Purpose: Controls the density-matrix-based restart using parallel matrix I/O
routines provided by the ELSI software. Although they are not known to interfere
with each other, the two restart keywords, restart and elsi_restart ,
should not be requested in the same calculation.
task is a string, specifying the desired restart task.
freq is a positive integer, specifying the frequency of outputting restart info.

Available options for task are:

• write : Writes restart info (in ELSI format) to files. The info will be written to files
in every freq s.c.f. iterations, and will always be written out after a converged cy-
cle. The number of files depends on the choice of elsi_restart_use_overlap
.

• read : Reads restart info from files and uses it (instead of free atom superpositions)
as the initial guess of an s.c.f. cycle. The code will search for files written by the
write option. If relevant files do not exist, the code will abort. freq is not used
for this option. The restarted run can use any number of MPI tasks, i.e., not
necessarily the same number as used in the original run.

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 149

• read_and_write : Performs what the write and read options do. Note that if
the restart files do not exist, the code will still proceed normally.

Restarting hybrid functional calculations from the density matrix obtained using a dif-
ferent (i.e. less expensive) functional may reduce the number of SCF steps taken by
the hybrid calculation. However, hybrid functional calculations currently require that the
symmetry_reduced_k_grid be set to .false.. If you are planning to restart a calcula-
tion with a hybrid functional from a less-expensive functional, first use elsi_restart
combined with symmetry_reduced_k_grid .false. for initial SCF convergence
with the less expensive functional, then restart your calculation with the hybrid func-
tional.

Note that the elsi_restart keyword – when it has actual past restart information
available to read – cannot be used together with the xc_pre keyword, unless explicitly
allowed using the allow_restart_xc_pre (see there for more information). We
do this to prevent unintended duelling inializations. The two keywords can still be used
together if all that elsi_restart would do is write information, not read it.

Tag: elsi_restart_use_overlap (control.in)

Usage: elsi_restart_use_overlap boolean

Purpose: By default, elsi_restart uses density matrices as its restart info.
The number of density matrix files is equal to the number of k-points times
the number of spin channels. The density matrix files can be used to restart a
calculation of the same geometry. elsi_restart_use_overlap should be
used to initialize a calculation with the density matrices obtained from a different
structure. When this keyword is set to .true., the code writes overlap matrix
files in addition to density matrix files. The number of overlap files is equal to
the number of k-points. The stored overlap matrices are used to extrapolate the
stored density matrices.
boolean is either .true. or .false.. Default: .false..

Tag: calc_dens_superpos (control.in)

Usage: calc_dens_superpos .true.
Purpose: When reinitializing the SCF cycle, fall back to the superposition of free
atoms density for the initial guess (instead of using the guess from the previous
converged cycle).

Tag: sc_abandon_etot (control.in)

150 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: sc_abandon_etot iter threshold

Purpose: If the s.c.f. cycle diverges, abort the s.c.f. cycle after a specified
number of iterations between which the total energy changed by more than a
given threshold.
iter is an integer number of iterations after which the calculation is aborted.
Default: 5 iterations.
threshold is a positive real number - if the total energy keeps changing by
more than this number [in eV], the abort will be triggered. Default: 1000 eV.

This keyword allows to catch obviously ludicrous runs. If it triggers, something went
seriously wrong during the mixing procedure and the settings for mixers, occupation
broadening, preconditioner etc. should all be revisited very carefully.

The alternative setting sc_abandon_etot never switches the abort off, restoring
the previous behaviour.

Tag: sc_accuracy_eev (control.in)

Usage: sc_accuracy_eev value

Purpose: Convergence criterion for the self-consistency cycle, based on the sum
of eigenvalues.
value is a small positive real number [in eV], against which the difference of the
eigenvalue sum between the present and previous s.c.f. iteration is checked.

Very sensitive criterion for s.c.f. convergence. Usually, value=10−3 eV is enough to
indicate a reliable total-energy and force convergence. If value is set to zero or not given,
the sum of eigenvalues will not be used as a convergence criterion.

Tag: sc_accuracy_etot (control.in)

Usage: sc_accuracy_etot value

Purpose: Convergence criterion for the self-consistency cycle, based on the total
energy.
value is a small positive real number [in eV], against which the difference of the
total energy between the present and previous s.c.f. iteration is checked.

The Harris-Foulkes form of the functional is used as the total energy in FHI-aims (see
Ref. [26] for a brief discussion). A typical tight convergence criterion is value=10−6 eV.
If value is set to zero or not given, the total energy will not be used as a convergence
criterion.

Tag: sc_accuracy_forces (control.in)

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 151

Usage: sc_accuracy_forces value

Purpose: Convergence criterion for the self-consistency cycle, based on energy
derivatives (“forces”).
value is EITHER a small positive real number [in eV/Å], against which the
maximum difference of atomic forces between the present and previous s.c.f.
iteration is checked, OR a string, ’not_checked’.
Default: not_checked

Attention: If keyword sc_accuracy_forces is set in control.in, forces are by
default computed, regardless of whether or not they are later needed. The rationale
is that the only way to check a requested force convergence criterion is to compute
the necessary forces, despite the added numerical effort. For single-point calculations
(no relaxation required), sc_accuracy_forces should therefore not be set unless
explicitly needed for some reason.

One can explicitly set the keyword value to the string ’not_checked’. In this case, the
forces are computed in only a single shot, their s.c.f. convergence will not be checked.

In this case, the code now relies on the default convergence criterion for the electron
density itself (sc_accuracy_rho) to be sufficiently tight to guarantee good forces.
This avoids excessive numbers of force evaluations in production runs.

Calculating forces is relatively expensive, so this convergence criterion is either not
checked (default behavior), or it is checked after the purely electronic / energetic cri-
teria, sc_accuracy_eev , sc_accuracy_etot , sc_accuracy_rho , are all
fulfilled. To avoid too many iterations with force computations before the forces are
converged, it is important to set the other criteria (especially sc_accuracy_eev ,
which checks a non-variational quantity) to tight convergence, as indicated above. For
sc_accuracy_forces itself, e.g., value=10−4 eV/Å is a reliable and robust criterion
to avoid noise in geometry relaxations.

For simple structure relaxation, not_checked will often be good enough if the electronic
criteria (especially sc_accuracy_rho) are set reasonably tightly.

For molecular dynamics, however, even slightly underconverged forces may lead to long-
term energy drifts in (nominally) constant-energy runs. Here, it is a good idea to try out
in explicit tests how tightly sc_accuracy_eev must be set to guarantee drift-free
trajectories.

Tag: sc_accuracy_rho (control.in)

152 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: sc_accuracy_rho value

Purpose: Convergence criterion for the self-consistency cycle, based on the
charge density.
value is a small positive real number [in electrons], against which the volume-
integrated root-mean square change of the charge density between the present
and previous s.c.f. iteration is checked.
Default: Between 1d-6 and 1d-3 e/a0

3, depending on number of atoms or if a
forces corrected calculation is taking place (see below).

By default, FHI-aims checks separately the convergence of the charge density and the
spin density, using the same criterion. Specifically, the unmixed output density of the
Kohn-Sham Equations, n(µ)

KS , is checked against the input density n(µ−1) to the same
equations. A typical tight convergence criterion is value=10−5.

sc_accuracy_rho is the most important s.c.f. convergence criterion and must be set.
If the keyword is not set in control.in, the code chooses its initial default as follows:

• Up to 6 atoms in geometry.in: value=10−6/n_atoms

• Between 6 and 60 atoms in geometry.in: value=10−6 ·
√
n_atoms/6

• Above 6000 atoms in geometry.in: value=10−6√1000

Then, in case the keyword force_correction is set to .true. (the default value),
and neither compute_analytical_stress nor output are not used, FHI-aims
multiplies the above values by a factor of 8. This is because, once force_correction
is employed, forces can be computed with a higher accuracy even with relatively a looser
charge density convergence criterion.

Tag: sc_accuracy_stress (control.in)

Usage: sc_accuracy_stress value

Purpose: Convergence criterion for analytical stress.
value is EITHER a small positive real number [in eV/Å3], against which the
maximum difference of the analytical stress components between the present
and previous s.c.f. iteration is checked. A negative number, or simply the string
’not_checked’ results in no convergence check.
Default: not_checked .

Warning. Setting sc_accuracy_stress to a finite non-negative value will
result in a disproportionately large computational cost. In this case, the number
of stress evaluations per relaxation step is at least doubled. This is normally by far the
most expensive part of the calculation. Only set this to a finite value if you have a good
reason to do so.

The default for value is not_checked, i.e. the convergence of the analytical stress will
not be checked. However, you have to ensure that other convergence criteria (especially

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 153

sc_accuracy_eev , which checks a non-variational quantity) are set to tight values, as
indicated above.

Calculating the analytical stress is relatively expensive, so this convergence criterion
is only checked after the purely electronic / energetic criteria, sc_accuracy_eev
, sc_accuracy_etot , sc_accuracy_rho , are all fulfilled. To avoid too many
iterations with analytical stress computations before the analytical stress is converged,
it is important to set the energetic criteria to tight convergence.

Tag: sc_accuracy_potjump (control.in)

Usage: sc_accuracy_potjump value

Purpose: Convergence criterion for the self-consistency cycle, based on the
vacuum level potential shift.
value is a small positive real number [in eV], against which the difference of the
dipole correction potential jump between the present and previous s.c.f. iteration
is checked.

This keyword only makes sense (and is only accepted) for periodic slab calculations with
the option use_dipole_correction set. If you are interested in the work function
or vacuum level shifts explicitly, it is recommended to use this flag. A typical tight
convergence criterion is value=10−4.

Tag: sc_init_factor (control.in)

Usage: sc_init_factor number

Purpose: The sc_init_iter keyword will not trigger if the density
convergence criteria are already within a factor sc_init_factor of the
density convergence criterion, sc_accuracy_rho .
number is an real (double precision) number. Default: 1.d0

See the sc_init_iter keyword for a more complete description of this behavior.

Tag: sc_init_iter (control.in)

Usage: sc_init_iter number

Purpose: If the s.c.f. cycles for the initial geometry of a run fails to converge
within (number) iterations, then FHI-aims will end this s.c.f. cycle and begin a
new one with the exact last wave function as its starting guess.
number is an integer number. Default: 1001

sc_init_iter ends only the s.c.f. cycle for the first geometry of a run. The idea is to do
a step that looks exactly like a new geometry step, but to not alter the geometry. Rather,
reinitializing from the exact orbitals reached after (number) iterations ensures that the
mixer and other parts of the calculation will not drag along some misguided information

154 Chapter 3. The Full Monty: All Keywords and Capabilities

of the original superposition-of-free-atoms initialization. In some cases, such a clean
start can help converge the s.c.f. cycle of a calculation that otherwise has difficulties to
converge at all.

See also the sc_init_factor keyword, which can be used to tune this behavior
further.

Tag: sc_iter_limit (control.in)

Usage: sc_iter_limit number

Purpose: Maximum number of s.c.f. cycles before a calculation is considered
and abandoned.
number is an integer number. Default: 1000

sc_iter_limit is a keyword that should be set in every run. Note: You must ensure
for every run that the self-consistency cycle was actually converged. If this is
not the case, a loud warning is issued in the standard output of FHI-aims at the end of
the s.c.f. cycle, and relaxations, molecular dynamics, and postprocessing may continue
anyway depending on the postprocess_anyway setting.

If the end of the s.c.f. cycle is reached in this way, forces are computed regardless of
whether the electronic convergence was reached.

Tag: spin_mix_param (control.in)

Usage: spin_mix_param value

Purpose: Separate parameter to mix the spin density between different s.c.f.
iterations.
value is a real number between 0. and 1. Default: same as charge_mix_param
.

spin_mix_param may be different from charge_mix_param , but there is not usually
a clear recipe how it should be different. This option is thus only needed if the standard
algorithms provably fail.

Tag: switch_external_pert (control.in)

Usage: switch_external_pert number type

Purpose: May be used as a combined parameter to switch on an artificial
perturbing homogeneous_field only for a given number of iterations.
number is the integer number of s.c.f. iterations before the external perturbation
is switched off.
type is a string. If set to safe, specific settings for the occupation_type
and for the homogeneous_field are enforced (see below).

This is an experimental keyword that allows to switch on an initial homogeneous_field
, e.g., to lock in the symmetry of a free atom in order to enforce smoother s.c.f. con-

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 155

vergence. The field is switched off after number iterations, before self-consistency is
reached.

If type is not safe, the actual value of homogeneous_field and occupation_type
should be set explicitly in geometry.in and control.in, respectively. The default
homogeneous field is 10−3 eV/Å.

If type is set to safe, a homogeneous field of 10−3 eV/Å and a Gaussian occupation
with very small (10−5 eV) broadening are automatically enforced.

This flag is mainly used to artificially break the symmetry of spin-polarized free atoms
with open d and f shells, which are sometimes very hard to converge otherwise (see
special cases listed for mixer). Remember that FHI-aims does not allow to enforce
a given symmetry automatically.

Tag: use_density_matrix_hf (control.in)

Usage: use_density_matrix_hf

Purpose: Technical keyword that states that the density matrix is mixed prior to
constructing the exchange matrix in hybrid functionals, Hartree-Fock, et al.
Default: When possible, use_density_matrix_hf is assumed.

Tag: apply_boys (control.in)

Usage: apply_boys KSminα KSmaxα KSminβ KSmaxβ integer

Purpose: In the cluster case is used to switch on a subspace localization using
the Boys localization algorithm.
KSminα and KSmaxα are the integer KS-state indexes which define the lower and
upper boundary of the subspace which should be included in the transformation.
In calculations without spin, the β parameters are omitted.
integer is an integer and can either be 0, 1, or 2. If set to 0, the localization
is performed at the beginning of the SCF cycle. If set to 1, it is performed
throughout the cycle and if set to 2, it is performed at the end (before writing
the restart information).

This is an experimental keyword that allows to perform a Boys localization on one or
more subspaces of the KS eigenvector. Boys localization is only applicable in non-periodic
calculations. Since each localization requires calculation of the transition dipole matrix,
this adds a considerable overhead in computation time if it is performed in each SCF
cycle. The currently recommended setting is either 0 or 2.

Tag: xc_pre (control.in)

156 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: xc_pre xc-type steps

Purpose: Specifies the exchange-correlation approach used during the initial steps
of a self-consistent DFT / Hartree-Fock.
xc-type is a keyword (string) which specifies the chosen exchange-correlation
functional.
steps is an integer that determines the number of SCF steps performed with this
functional before switching to the functional defined by xc .

One can specify any xc-type from the LDA, GGA and meta-GGA options available as
listed for xc . One can also use the dfauto formalism, i.e. xc_pre dfauto
xc-type steps for non-hybrid XC functionals. See the dfauto section for tag xc for
more detail.

Note that the elsi_restart keyword, when it has actual past restart information
available to read, cannot be used together with the xc_pre keyword, unless explicitly
allowed using the allow_restart_xc_pre (see there for more information). We
do this to prevent unintended duelling inializations. The two keywords can still be used
together if all that elsi_restart would do is write information, not read it.

3.11. Energy derivatives (forces, stress) and geometry optimization 157

3.11 Energy derivatives (forces, stress) and
geometry optimization

With self-consistent Kohn-Sham orbitals, densities and total energies available, one of
the primary tasks of electronic structure theory is to obtain energy derivatives with
respect to the nuclear coordinates Rat. First derivatives (“forces”) allow to find the
optimum structure and molecular dynamics on the Born-Oppenheimer surface. Based
on the structure optimum, second derivatives then enable the calculation of the (Born-
Oppenheimer) zero-point vibrational energy of the nuclei, and of vibrational excitations
(phonons).

The present section deals with the options available in FHI-aims for the computation
of forces in FHI-aims, and with algorithms related to geometry optimization. Specifics
regarding first-principles molecular dynamics are given in Sec. 3.12, and the computation
of second energy derivatives (vibrational frequencies, zero-point energies, and oscillator
strengths) by a finite-difference technique is covered in Sec. 4.6.

Before coming to the full set of related keywords, we give some basic comments below.
Please also consider using (and adding to) the wiki, especially if you encounter any kind
of behavior that is obviously not intended. We would like to know about such cases.

One “most important” rule:

For efficient local structure optimizations, do not simply use “tight” settings from an
arbitrary starting geometry and wait.

It is usually much more effective to use a two-step approach. First, use “light” settings
in a pre-relaxation step to get the rough geometry right quickly. Then, use “interme-
diate” or “tight” settings for post-relaxation or post-processing only, e.g., based on the
“geometry.in.next_step” file that is written out by the code by default (see below).

Basic handling:

For most applications, reliable structure optimizations of atomic coordinates into a local
minumum of the potential energy surface can be obtained by simply setting the keyword
relax_geometry bfgs threshold
threshold denotes the minimum absolute force component in eV/Å acting on any atom.
Typically, a threshold value of 5d-3, i.e., 5·10−3 eV/Å, corresponds to a very tightly
converged structure optimization. Do not use much lower values since you might spend
substantial amounts of CPU time for no measurable gain.

For unit cell optimizations in periodic systems, the keyword relax_unit_cell must
additionally be invoked (otherwise, the unit cell shape will remain fixed).

Finally, individual coordinates or degrees of freedom can be fixed by using the keyword
constrain_relaxation .

Another method to run a constrained relaxation is the combined use of the keywords
symmetry_n_params , symmetry_params , symmetry_lv and symmetry_frac
. When this block is added to a geometry.in and relax_geometry (and optionally
relax_unit_cell) are set in control.in, a geometry relaxation is started that is

158 Chapter 3. The Full Monty: All Keywords and Capabilities

constrained to a parameter reduced space defined by the user. This can be used to enforce
a symmetry-preserving relaxation by providing the exact prototype of the given structure
in its analytic form. It furthermore allows for the introduction of local symmetries or
local symmetry breaking like distortions. Important: When using these constraints
all keywords must be specified for all lattice and atomic degrees of freedom. If you
want to run with these constraints on only the lattice or the atomic positions, add the
other block fixing the coordinates or with 3NLattice or 3Natomic additional parameters
for a free relaxation. Important: The relationship between the full coordinates and
the reduced parameters has to be linear, i.e. there is a transformation matrix A and a
transformation matrix B that can map the flattened 1-dimensional representation of the
lattice cell/atomic positions to the parameter-reduced space. For the monoclinic and
triclinic lattice systems, e.g. do not use c · cos(β) and c · sin(β) but replace them with
independent variables e.g. d and e. It is on the to-do-list to make aims recognize these
cases internally.
Hint: You can create geometry.in’s already containing the required input block for a
symmetry-constrained relaxation using AFLOW as of version 3.1.204. It gives access to
hundreds of structure prototypes in the AFLOW Prototype Library [156, 102] throughout
all spacegroups. Simply add --add_equations to the command. Example:
aflow --proto=AB_cF8_225_a_b --params=5.64 --aims --add_equations

To obtain gradients for a given structure, but without any subsequent structure op-
timization, molecular dynamics run, etc., employ the keywords compute_forces ,
compute_analytical_stress or compute_numerical_stress instead.

relax_geometry bfgs value calls a trust radius enhanced variant of BFGS, also
available as trm. This variant covers all use cases.

The bfgs algorithm can be tweaked by specifying an initial guess for the Hessian matrix,
which can influence the performance. The default is the model Hessian matrix by Lindh
and coworkers,[146] which leads to reliable and fast optimizations in the vast majority
of scenarios.

If, for any reason, the BFGS algorithm does not perform well for a given structure
initially, a number of options are available. The standard first step should always be
to simply restart the optimization from the updated geometry and Hessian matrix in
geometry.in.next_step (see below). Alternatively, one may preset a simple, diagonal
Hessian using the keyword init_hess diag value (see the actual keyword description
for more details). Finally, the energy_tolerance and harmonic_length_scale
keywords decide when the bfgs algorithm will abort a relaxation because a presumed
deviation between the predicted and the real energy landscape. They can be set to more
forgiving values if needed.

For the relax_geometry bfgs algorithm, the handling of restarting relaxations is
formalized by writing out a file geometry.in.next_step after each relaxation step. By
default, this file contains both the geometry and the current estimate of the Hessian
matrix of the system that are used by the BFGS algorithm. For an organized restart,
simply copy this file to geometry.in, and the stored geometry and Hessian will be used
to reinitialize the BFGS algorithm if the control.in file requests a structure relaxation.
If the keyword distributed_hessian is in use, the current estimate of the Hessian

3.11. Energy derivatives (forces, stress) and geometry optimization 159

matrix will be stored in a separate binary file, which should not be modified by hand.

Use the ’get_relaxation_info.pl’ utility script to monitor the progress of an ongoing or
finished relaxation run. This information can be immensely helpful to make sure that
you are not, e.g., spending your time optimizing the last 10−5 eV out of an already
converged structure relaxation.

To stop an ongoing structure relaxation in an organized way, create the abort_opt
file in the respective directory.

MP2 and RPA total energy derivatives with pz-lda and pbe potential:

For running particle-hole RPA total energy derivatives calculation following tags in con-
trol.in file are necessary: One should set (keyword rpa_force freq_formula_method
or matrix_diag_method) depending on two different approaches. The first one use fre-
quency integral formula for evaluation of correlation energy which scale N4, with N
being the system size. The later one scales N6, comparatively consume more time
as compared to first one. Others additional tags required are as RI_method lvl,
use_2d_corr .false., DFPT vibration or vibration_reduce_memory if doing calcula-
tion with pz-lda, with pbe only use vibration_reduce_memory, total_energy_method
rpa, this is optional does not effect anything. Calculation with bigger Gaussian basis
set, the accuracy is affected with the choice of number of auxiliary basis sets control by
tag prodbas_acc , it is highly recommended to use larger values like 1.E-2. Currently,
MP2 and RPA forces are evaluated for closed shell systems only. For MP2 force, same
(keyword rpa_force mp2_force) invoke. Frozen-core approximation can be invoked
by using additional tag frozen_core_postSCF 1.

Stress tensor:

For unit cell optimization (keyword relax_unit_cell), an analytically computed
stress tensor will be used where available, thanks to work by Viktor Atalla, Christian
Carbogno, and Franz Knuth [124]. For some density functionals, the analytical stress
tensor is not available. In these cases, the unit cell itself can still be relaxed, but the
stress tensor must be computed numerically from finite differences of total energies.

The numerical finite-difference stress tensor is always available as a fallback.

Finally, we note that, in some cases, just optimizing the unit cell shape blindly may not be
what you want. For example, in high-symmetry structures a fit to Murnaghan’s Equation
of state—see the utility provided in the utilities directory—will be more accurate and
give you more information about the system (bulk moduli and, in case of more than one
phase, also access to transition pressures).

Hybrid functionals:

For hybrid functionals, analytic energy gradients and the analytic stress tensor are only
available together with the RI_method LVL_fast version of “resolution of identity”
of the two-electron Coulomb operator.[111]

For perturbative methods (MP2 perturbation theory, RPA and beyond), analytical gra-
dients are not yet available.

160 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for geometry.in:

Tag: constrain_relaxation (geometry.in)

Usage: constrain_relaxation constraint

Purpose: In geometry.in, fixes the position of the last specified atom /
lattice_vector in a structure optimization.
constraint is a string, indicating what exactly will be constrained. Default:
.false.

Allows to relax only parts of a structure, while keeping the rest at fixed positions.
Currently, the following simple options for constraint are possible:

• .true.: All coordinates for this atom will be constrained.

• .false.: The relaxation of this atom will not be constrained.

• x: The x coordinate of this atom is not allowed to move.

• y: The y coordinate of this atom is not allowed to move.

• z: The z coordinate of this atom is not allowed to move.

Attention: If you wish to constrain more than one coordinate, the required constraints
must be specified as separate lines, like this:

atom 0. 0. 0. Fe
constrain_relaxation x
constrain_relaxation y

In contrast, specifying two constraints in one line will not work. The second constraint
would simply be ignored!

Tag: hessian_block (geometry.in)

Usage: hessian_block i_atom j_atom block

Purpose: In geometry.in, allows to specify a Hessian matrix explicitly, with one
line for each 3×3 block. The option block consists of 9 numbers in column-first
(Fortran) order. The 3×3 block corresponding to j_atom, i_atom is initialized
by the transposed of block. The Hessian matrix is input in units of eV/Å2.

If at least one hessian_block line is found in the file, the Hessian is constructed
using this mechanism. So far there is no safe-guard from overriding Hessian blocks with
subsequent lines with equal i_atom, j_atom.

There are two scripts in the utilities directory to automatically construct such Hes-
sian matrix approximations. First, conversions/thess2aims.py converts a Tinker

3.11. Energy derivatives (forces, stress) and geometry optimization 161

generated Hessian matrix. Second, Lindh.py constructs a general purpose model ma-
trix [146]. Please note that the Lindh model matrix is now also directly available with
init_hess Lindh.

Tag: hessian_block_lv (geometry.in)

Usage / purpose: Like hessian_block , but for Hessian matrix elements
between lattice vector degrees of freedom.

Tag: hessian_block_lv_atom (geometry.in)

Usage / purpose: Like hessian_block , but for Hessian matrix elements
between lattice vector degrees of freedom.

Tag: hessian_file (geometry.in)

Usage: hessian_file

Purpose: In geometry.in, this keyword indicates that there exists a
hessian.aims file to be used to construct the Hessian.

If hessian_file is found in geometry.in, the Hessian is constructed using the data
in hessian.aims, which is a binary file generated by geometry optimization calculations
with FHI-aims (please see distributed_hessian). The user should not try to create
such a file by hand.

Tag: trust_radius (geometry.in)

Usage: trust_radius value

Purpose: In geometry.in, allows to specify the initial trust radius value for the
trm relaxation algorithm.

This keyword is a significant exception – it is the only algorithmic keyword found in
the geometry.in file. Conceptually, it would belong into control.in, but since it is
written out as part of the geometry.in.next_step file which can be used to restart a
structure relaxation, we keep it here.

The keyword specifies the initial value of the “trust radius” used to limit structure
relaxation steps determined by the bfgs (synonymous with trm) relaxation algorithm.

The default is set to 0.2 Å. It will be overridden by the default value of max_atomic_move
, which can be set in control.in.

Tag: symmetry_n_params (geometry.in)

162 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: symmetry_n_params n_total n_lv n_coords

Purpose: In geometry.in, specifies the number of parameters to be optimized
in a symmetry-constrained relaxation. n_total is the total number of parameters,
n_lv is the number of parameters that define the lattice cell, n_coords is the
number of parameters defining the fractional atomic positions.
n_lv + n_coords = n_total
Example for an orthorhombic cell and no parameters for the atomic positions:
symmetry_n_params 3 3 0

This keyword also serves as a flag, setting use_symm_const_geo_relaxation internally
to True. If n_lv is 0, then no unit cell relaxation is done. For unit cell relaxations make
sure to set relax_unit_cell to full.

Tag: symmetry_params (geometry.in)

Usage: symmetry_params [list of variables for parameters]

Purpose: In geometry.in, list all variables that are used as parameters separated
by blanks. Always list the lattice parameters first. The number of variables used
for parameters has to be equal to n_total specifies in symmetry_n_params .
Example for an orthorhombic cell and no parameters for the atomic positions:
symmetry_params a b c

Tag: symmetry_lv (geometry.in)

Usage: symmetry_lv x , y , z
Purpose: Specifies the analytic form of the lattice vectors. Use exactly the
same cell as given in lattice_vector (same order of lattice vectors, same
orientation), and simply replace entries that are free to relax by their analytic
expression in terms of parameters specified by symmetry_params . Example
for an orthorhombic cell:
symmetry_lv a , 0 , 0
symmetry_lv 0 , b , 0
symmetry_lv 0 , 0 , c

Note the comma between the components of the lattice vectors.

Tag: symmetry_frac (geometry.in)

Usage: symmetry_frac n1 , n2 , n3

Purpose: Specifies the analytic form of the fractional atomic positions. Use
exactly the same form as given in atom_frac (same order atoms), and simply
replace entries that are free to relax by their analytic expression in terms of
parameters specified by symmetry_params .
Example:
symmetry_frac 0.0 , 0.0 , x1
symmetry_frac 1./2 , 1./2 , x1 + 1./2

3.11. Energy derivatives (forces, stress) and geometry optimization 163

Note the comma between the fractional coordinates of the atoms and that no species
entry is needed.

164 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: aggregated_energy_tolerance (control.in)

Usage: aggregated_energy_tolerance tolerance

Purpose: Sets the energy amount by which the energy across an entire relaxation
trajectory may ever go uphill, based on the lowest known energy so far.
tolerance is a positive real number, in eV. Default: 5·10−3 eV.

Small uphill steps of a relaxation trajectory are allowed up to the keyword energy_tolerance
, but a relaxation trajectory should never go uphill for an extended number of steps in
small uphill increments. The keyword aggregated_energy_tolerance sets an over-
all cap for any accepted uphill steps across an entire relaxation trajectory. The default
is much larger than the allowed energy_tolerance in a single step and should,
in principle, never be breached. If the aggregated_energy_tolerance criterion
triggers, please contact us.

Tag: calc_analytical_stress_symmetrized (control.in)

Usage: calc_analytical_stress_symmetrized flag

Purpose: If .false., calculates all 9 components of the analytical stress tensor.
If .true. calculates only the upper triangle (6 components) of the tensor and
copies the result to the lower triangle.
flag is a logical string, either .true. or .false. Default: .true.

Generally, it is sufficient to calculate the upper triangle of the tensor. This flag is mainly
for debugging purposes.

Tag: clean_forces (control.in)

Usage: clean_forces type

Purpose: Can remove small unitary force components (rotation and translation
of the whole structure due to residual numerical noise) in relaxations.
type is a string, specifying whether and how any overall rotations / translations
are removed.

The default for type depends on the exact circumstances (see below). The following
choices exist:

• none : No removal of residual rotations and translations. This is the default if
any external embedding fields or charges are specified in geometry.in.

• sayvetz : Non-periodic structures: Removal of rotations and translations by a
formal projection [60, 199]. In periodic systems, only translations are removed.

• fixed_plane : experimental Simple alternative algorithm by constraining three

3.11. Energy derivatives (forces, stress) and geometry optimization 165

atoms into a plane (implicitly constraining all others).

Tag: compute_analytical_stress (control.in)

Usage: compute_analytical_stress flag

Purpose: If .true., switches on the computation of the analytical stress tensor.
flag is a logical string, either .true. or .false.

Default: .true. if a unit cell relaxation was requested and computation is possible.
Otherwise, .false.

This flag allows to request an explicit analytical stress tensor computation for an other-
wise explicit single-point calculation.

The calculation of the analytical stress is limited to LDA, GGA, Meta-GGA and hybrid
functionals and is not possible with load_balancing . The vdW correction based on
Hirshfeld partitioning (vdw_correction_hirshfeld) is included into the analytical
stress tensor.

Tag: compute_forces (control.in)

Usage: compute_forces flag

Purpose: If .true., switches on the computation of forces.
flag is a logical string, either .true. or .false.

Default: .true. if a geometry optimization or molecular dynamics run was requested,
or if the sc_accuracy_forces convergence criterion was set. Otherwise, .false.

This flag allows to request an explicit force computation for an otherwise explicit single-
point calculation. This is necessary for use with external tools that require forces, such
as a finite-difference calculation of vibrational frequencies (see Sec. 4.6) or a transition
state search (see Sec. 4.8). In these cases, keyword final_forces_cleaned should
also be set.

Tag: compute_numerical_stress (control.in)

Usage: compute_numerical_stress flag

Purpose: If .true., switches on the computation of the numerical stress tensor
based on central finite differences.
flag is a logical string, either .true. or .false.

Default: .true. if a unit cell relaxation was requested and the computation of the
analytical stress is not possible. Otherwise, .false.

If not further specified (by delta_numerical_stress) the default value for the
scaling factor delta is set to 10−4.

166 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: delta_numerical_stress (control.in)

Usage: delta_numerical_stress value

Purpose: Specifies the scaling factor delta in the computation of the numerical
stress tensor (compute_numerical_stress).
value is a dimensionless real number > 0. Default: 10−4.

Tag: distributed_hessian (control.in)

Usage: distributed_hessian flag

Purpose: If .false., each MPI task holds a complete copy of the Hessian
matrix. If .true., the Hessian matrix is distributed across tasks.
flag is a logical string, either .true. or .false.. Default: .true. if both
MPI and ScaLAPACK are available, .false. otherwise.

This keyword is particularly useful when relaxing a large structure. Please note that
it only works if FHI-aims is built with both MPI and ScaLAPACK. If init_hess
reciprocal_lattice is found in control.in, distributed storage of the Hessian will
be automatically turned off.

Tag: energy_tolerance (control.in)

Usage: energy_tolerance tolerance

Purpose: Sets the energy amount by which a relaxation step can move upwards
and is still accepted.
tolerance is a small positive real number, in eV. Default: 5·10−4 eV.

Small upward steps during relaxation may occur as a result of a slightly mis-guessed bfgs
Hessian matrix somewhere along the path, or as a result of some residual numerical noise
that leads to a discrepancy between energies and forces. In the present code version,
such noise is always safely below the default energy_tolerance for reasonable settings.
However, be sure to check that the total energy does not go up across several successive
steps in a relaxation run. For the trm optimizer, also see harmonic_length_scale .

Tag: external_force (geometry.in)

Usage: external_force x y z

Purpose: Experimental – Applies an external force to the atom previous to this
keyword.
x,y,z are the force components in eV/Å applied to the atom in x, y, z direction.

When an external force is applied it is necessary to contstrain the relaxation of at least on
other atom to avoid a constant shift of the geometry. Also the value has to be reasonably
chosen. Tear apart geometries can result in very flat energy landscapes, which take a

3.11. Energy derivatives (forces, stress) and geometry optimization 167

large amount of time to optimize. Typically this feature should be used in cases where
a small external force, e.g. a STM-tip is applied on an atomic layer and the geomtry
response of this external force is of interest.

This feature is experimental since no extensive testing was done for it.

Tag: external_pressure (control.in)

Usage: external_pressure value

Purpose: Experimental – Applies external pressure to the unit cell.
value is the pressure in eV/Å3 applied to the unit cell.

In the periodic case, it is possible to apply hydrostatic pressure to the unit cell. To
actually see the effect of the external pressure, a unit cell relaxation is required (see
relax_geometry and relax_unit_cell). The crystal is then relaxed with the
external pressure added to the stress tensor.

This feature is experimental since no extensive testing was done for it.

Tag: final_forces_cleaned (control.in)

Usage: final_forces_cleaned flag

Purpose: Decides whether spurious unitary transformations of the complete
system (translations and rotations) are removed before the final output.
flag is a logical string, either .true. or .false. Default: .true.

This option affects directly the long-format (15 decimal) output of total energies and
forces at the end of the s.c.f. cycle in the standard output file. If flag is .true.,
the final output forces are “cleaned” using the sayvetz [60, 199] mechanism of key-
word clean_forces (removal of translations and rotations for cluster geometries;
only translations removed for periodic systems).

final_forces_cleaned .true. should be set for use with external tools that require
forces, such as a finite-difference calculation of vibrational frequencies (see Sec. 4.6) or
a transition state search (see Sec. 4.8).

Tag: force_correction (control.in)

Usage: force_correction flag

Purpose: When computing the forces, determines whether or not to include
the Hartree potential force correction term. Consideration of this keyword can
be helpful to speed up processes such as geometry relaxations or a molecular
dynamics run.
flag is a logical string, either .true. or .false. Default: .true.

As described elsewere[22, 44], omission of this term is one of the main reasons why the
Hellmann-Feynman forces require a high level of self-consistency before their values can

168 Chapter 3. The Full Monty: All Keywords and Capabilities

be trustworthy. In fact, this term is only equal to zero at full self-consistency.

Because this correction is only meaningful at a low level of self-consistency, for an appro-
priate use of this keyword, sc_accuracy_rho must also be set within a reasonable
value, i.e., a too tight threshold for the density can lead to an insignificant correction to
the forces. Therefore, unless specified by the user, FHI-aims lowers the default value of
sc_accuracy_rho accordingly if a calculation involves force_correction .

Although force_correction and sc_accuracy_forces can be used together
inside a particular calculation, its joint use is strongly discouraged due to the considerably
high cost that each forces computation imply.

It should be noted that currently, in case of relax_unit_cell or any kind of
analytical stress computation, as well as usage of ouput , force_correction
becomes ineffective in determining the default value of sc_accuracy_rho .

Tag: harmonic_length_scale (control.in)

Usage: harmonic_length_scale length
Purpose: The trm/bfgs algorithm of relax_geometry judges a step by its
energy gain. Usually, one simply uses the energy difference. For very short steps
and rather light grids, however, it turns out that the qualitiy of the energy is
inferior to the quality of the forces. For steps shorter than length, do not look at
the energy but use the harmonic approximation −∆Ẽ = (X2−X1) ·(F2 +F1)/2
as an estimate for the energy gain. If this procedure willfully accepts a step
which increases the energy by more than energy_tolerance , the code stops
to warn the user about the inconsistency between energy functional and forces.
length is a length scale in Å. Default: 0.025

Effectively, this flag switches from a real energy minimizer to a search for a stable zero
of the force field for short step lengths.

Tag: hessian_to_restart_geometry (control.in)

Usage: hessian_to_restart_geometry flag
Purpose: Exports the current approximation to the Hessian matrix to
geometry.in.next_step during a relaxation restart using hessian_block
or hessian_file .
flag is a logical string, either .true. or .false. Default: .true.

Note: The geometry.in.next_step file is written out by default when the relax_geometry
bfgs algorithm is used.

Tag: init_hess_lv_diag (control.in)

3.11. Energy derivatives (forces, stress) and geometry optimization 169

Usage: init_hess_lv_diag value

Purpose: In a geometry relaxation with a unit cell optimization, allows to specify
the initial Hessian matrix elements used to estimate relaxation steps that are
associated with the lattice vector degrees of freedom.
length is a length scale in eV/Å2. Default: 25 ev/Å2

See the init_hess keyword for more information on the initial Hessian matrix used
during a structure optimization.

Tag: init_hess (control.in)

Usage: init_hess type [value]
Purpose: Defines the initial Hessian matrix that is used by the bfgs structure
relaxation algorithms (synonymous with trm) of the relax_geometry
keyword.
type: Presently supported options are diag [value], Lindh [value].
Default: init_hess Lindh 2. unless a specific Hessian is given in the
geometry.in file.

If no explicit initial Hessian matrix is given in the geometry.in file, the keyword init_hess
can be used to specify the initial Hessian matrix used in a structure optimization.

With the option diag, a diagonal initial Hessian matrix is assumed. Then, the number
given by the value option sets the diagonal elements between all atomic coordinates
directly. The default is 25 eV/Å2. Larger values lead to a more conservative start, smaller
values lead to more aggressive initial relaxation steps.

With Lindh the Lindh model matrix [146] is used to initialize the Hessian between all
atomic coordinates (usually a very efficient guess). For stability reasons, add-value
(in eV/Å2, defaults to 2.0 eV/Å2) is added to all matrix elements on the diagonal. The
parameter thres (default: 15.0) can be used to specify the accuracy of the Lindh matrix;
only terms estimated to be larger than e−thres are taken into account. If you are planning
a large number of complex unit cell optimizations of a similar type, we do recommend
to check whether this default value is any good.

If a unit cell relaxation is additionally requested, the Hessian for the lattice degrees
of freedom is set to be the square of the reciprocal lattice matrix and normalized to
25 eV/Å2. This mimics a diagonal initial Hessian if strain coordinates for the represen-
tation of the lattice would be used. [183]

If the initial Hessian is specified explicitly by hessian_block or hessian_file in
geometry.in, this explicit hessian overrides any information requested by the init_hess
keyword.

Tag: max_atomic_move (control.in)

170 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: max_atomic_move value

Purpose: Maximum allowed step length taken during relaxation.
value is a real positive upper bound for the maximum allowed change in single
atomic coordinate, in Å. Default: 0.2 Å.

If the bfgs-predicted change in an atomic coordinate exceeds max_atomic_move ,
the length of the entire step (all coordinates) will be scaled down to not exceed the
maximum allowed displacement.

Tag: max_relaxation_steps (control.in)

Usage: max_relaxation_steps number

Purpose: A structure optimization will be aborted after exceeding a prescribed
maximum number of steps.
number is the prescribed maximum step number. Default: 1000 .

Tag: numerical_stress_save_scf (control.in)

Usage: numerical_stress_save_scf flag

Purpose: Controls if constrain_relaxation directives are used to determine
implicitly if a component of the numerical stress has to be calculated. This
greatly accelerates unit cells with high symmetries (e.g. orthorhombic).
flag is a logical string, either .true. or .false. Default: .true.

Tag: orthonormalize_eigenvectors (control.in)

Usage: orthonormalize_eigenvectors flag

Purpose: Specifies whether or not the wave function coefficients from the
previous geometry will be re-orthonormalized before initializing a new relaxation
step.
flag is a logical string, either .true. or .false. Default: .true.

The orthonormalize_eigenvectors keyword allows to reorthnormalize the con-
verged self-consistent Kohn-Sham orbitals cjl after a relaxation step. These are then
used to reinitialize the electron density for the next relaxation step.

Due to the change in atomic positions, the wave function coefficients cjl for the earlier
geometry are no longer orthonormal after the relaxation step. The consequence is an
initial electron density which no longer satisfies the correct electron count (i.e., the system
may appear to be charged immediately after a relaxation step, although a neutral system
was requested). In principle, this does not matter for the outcome of a calculation, since
the self-consistent solution will be independent of the starting point. In many cases, there
is no clear benefit in terms of the s.c.f. convergence duration from orthonormalizing the

3.11. Energy derivatives (forces, stress) and geometry optimization 171

cjl prior to the reinitialization; however, some cases with unstable s.c.f. convergence
may benefit significantly.

Tag: relax_geometry (control.in)

Usage: relax_geometry type tolerance

Purpose: Specifies if a structure optimization (geometry relaxation) is requested,
and which.
type specifies the type of requested structure optimization. Default: none.
tolerance: Specifies the maximum residual force component per atom (in
eV/Å) below which the geometry relaxation is considered converged.

Finds the nearest minimum of the Born-Oppenheimer potential energy surface for the
nuclei.

For periodic calculations: If you are looking to relax not just atomic coordinates but
also the unit cell shape (lattice vectors), you do need to specify an additional keyword:
relax_unit_cell .

The presently supported options for type are none and trm (synonymous with bfgs),
as well as trm_2012 for reference with older FHI-aims versions.

• bfgs or trm is the recommended default. It uses a trust radius method enhanced
version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm
(see Ref. [168], which was the basis for Jürgen Wieferink’s code effort in this
area). In our tests, this version appears to give the fastest convergence reliably.
As of December 2018, it additionally implements preconditioning of the lattice-
lattice Hessian as explained in init_hess and preserves fractional coordinates
of the atomic positions when predicting a new lattice. This mimics the optimiza-
tion in strain coordinates. [183]

• trm_2012 Implements the former trm method without effective strain coordinates.

A reliable force convergence criterion tolerance for most structures is 10−2 eV/Å or
5·10−3 eV/Å. Do not use significantly smaller values unless you have a specific
reason. Smaller values may cost much computer time for essentially no further
measurable total energy minimization.

Going to a much smaller tolerance value may only be useful for some very specific
purposes, for example, high-accuracy finite difference calculations for vibrational prop-
erties. In other scenarios, if tolerance is set to a too small value by default, 80% or
more of your CPU time may be spent groping around in the last meV of the structure
optimization.

If tighter settings of the tolerance parameter are used, do not forget that tighter
s.c.f. convergence accuracy settings may also be required to get accurate gradients in
the first place. Ideally, use the sc_accuracy_rho keyword for this purpose, not
sc_accuracy_forces or sc_accuracy_stress (see below).

172 Chapter 3. The Full Monty: All Keywords and Capabilities

In other words, use the tolerance criterion for a structure relaxation run wisely – decide
what is the physical quantity you are actually interested in, and then check which value
of the tolerance criterion is safe but still efficient.

The relaxation algorithm can be greatly sped up by using a somewhat intelligent guess
for the Hessian matrix used in the initial step. By default, FHI-aims now sets the general
purpose model matrix due to Lindh and coworkers [146] with a slight modification.
If, for some reason, a particular initial geometry does not appear to play well with the
Lindh Hessian, a simpler, slower, but more resilient diagonal approximation to the initial
Hessian matrix can also be used. For more information see the init_hess keyword
above.

The energy_tolerance and harmonic_length_scale keywords can be set to
more forgiving values if the bfgs algorithm decides to abort relaxations because of a
presumed deviation between the predicted and the real energy landscape.

Another important warning: Evaluating the forces and the stress tensor is much
more expensive than a normal iteration during s.c.f. convergence. The current default
behavior of FHI-aims avoids any double computations of forces and stress tensors, relying
instead on a sufficiently tight convergence criterion sc_accuracy_rho to determine
s.c.f. convergence and only then calculating forces and stresses once per geometry step.

While one can in principle check the s.c.f convergence of forces / stresses explicitly,
the cost of multiple evaluations of forces / stresses for a single geometry can be very
high. Therefore, we recommend to never use the keywords sc_accuracy_forces or
sc_accuracy_stress in a control.in file unless there is a specific need. Do not set
these keywords routinely.

Tag: relax_unit_cell (control.in)

Usage: relax_unit_cell type

Purpose: Relaxes unit cell (lattice vectors) using the structure optimization as
specified in relax_geometry .
type specifies the type of requested unit cell optimization. Presently supported
options: none, full, fixed_angles. Default: none

Allows to optimize the lattice vectors of a periodic calculation, in addition to the normal
atomic coordinates inside the unit cell. This keyword is not on by default, as automati-
cally optimizing the unit cell of (say) a surface calculation could do a lot of unintended
harm. Possible settings:

• none : Unit cell will be kept fixed, no optimization.

• full : All lattice_vector degrees of freedom will be relaxed, except those
affectd by explicit constraints.

• fixed_angles : All angles between lattice vectors will be constrained (kept fixed),
only the lengths of each lattice vector are varied. (This option used to be called
shape, but that is a misunderstandable term. The shape term will be removed
in the future to avoid confusion.)

3.11. Energy derivatives (forces, stress) and geometry optimization 173

This keyword should be used only together with relax_geometry . Individual lattice
vectors or its components can be constrained by using constrain_relaxation .

If the computation of the analytical stress is possible regarding the chosen computational
settings, the analytical stress is used for the unit cell relaxation. Otherwise, the numerical
stress is used. With stress_for_relaxation , one can explicitly choose either
numerical or analytical stress for the unit cell relaxation.

If a unit cell relaxation produces strange results with the analytical stress, here are some
potential remedies:

1. A very possible reason may be because the integration grids are not dense enough.
This could especially well be the case for “light” settings. One remedy is to just
use the integration grids from “tight” and the basis functions from “light”.

2. Another possible remedy is to switch the way the integration weights are calculated
to a slightly slower, non-default version. E.g., change the partition_type to
a spherical one like rho_r2.

3. Finally, you may wish to set the convergence of the analytical stress with sc_accuracy_stress
to an explicit, final value. Only ever set this keyword for test purposes,
though, not routinely. The cost for too many analytical stress evalua-
tions can be disproportionately large.

Tag: stress_for_relaxation (control.in)

Usage: stress_for_relaxation type

Purpose: Use either numerical or analytical stress for unit cell relaxations.
type can be either numerical or analytical. Default: Chosen automatically
based on computational settings.

To perform an actual unit cell relaxation, one has to set relax_unit_cell . If
one chooses analytical but the computation of the analytical stress is not possible,
FHI-aims will abort.

Tag: write_restart_geometry (control.in)

Usage: write_restart_geometry flag
Purpose: During a structure optimization, exports the current geometrys and
approximation to the Hessian matrix to a file geometry.in.next_step.
flag is a logical string, either .true. or .false. Default: .true.

Note: The geometry.in.next_step file is written out by default when the relax_geometry
bfgs algorithm is used.

174 Chapter 3. The Full Monty: All Keywords and Capabilities

3.12 Molecular dynamics

FHI-aims provides the capability to run Born-Oppenheimer molecular dynamics. The
necessary keywords are described in this section. A brief description of the physical
algorithms implemented in FHI-aims can be found in Ref. [26]. For a truly thorough
explanation of the underlying concepts, please refer to the standard literature, e.g., Refs.
[65, 27].

Wave function extrapolation

For molecular dynamics runs within the microcanonical ensemble (“NV E”) or for de-
terministic thermostats, the wave function can be extrapolated in order to reduce the
computational effort to reach self-consistency. This section specifies what quantity is
actually extrapolated and how.

Following the approach of Kühne et al. [133], we extrapolate the contra-covariant density
matrix PS, the product of the ordinary (purely contravariant) one-particle density matrix
P and the overlap matrix S. The contra-covariant density matrix is then used to project
new wave function coefficients from the last iteration cnew = (PS)extracold. As a last
step, the one-particle coefficients are orthonormalized.

�0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
�1.0

�0.5

0.0

0.5

1.0

1.5

p10: f̃(t) =c0

p21: f̃(t) =c1 t+c0

p32: f̃(t) =c2t
2 +c1 t+c0

p31: f̃(t) =c3t
3 +c1 t+c0

Figure 3.1: Different extrapolation schemes. The scheme “pno” refers to an n point scheme
of order o, remaining orders used to fit odd components.

The extrapolation scheme we use is sketched in Fig. 3.1 for the example of an ordinary
function f(t) in a real variable t. For a pno scheme (chosen with wf_extrapolation
polynomial n o) n old iterations f(t0 − k∆t), k = 1, . . . , n are stored. An ansatz
function with n degrees of freedom is then used to fit all of these previous iterations and
evaluated at t0 and the value used to intialize the SCF procedure.

The choice of the fitting function should aim at two targets: accurate extrapolation and

3.12. Molecular dynamics 175

time-reversal symmetry. The parameter o specifies the order of the extrapolation. The
higher o, the better the extrapolation gets with decreasing time stemps ∆t. Time-reversal
symmetry is useful to avoid energetic drifts for not-so-tight SCF accuracy settings. By
adding odd terms (odd with respect to t0 + t ↔ t0 − t), time-reversal symmetry is
enhanced [127].

Therefore, in contrast to [185, 97], the (n − o − 1) remaining degrees of freedom are
not resolved within a least-squares fit but instead to add fitting functions (t − t0)2k+1

to enhance time-reversal symmetry and thus energy conversion. Please note, however,
that time-reversal symmetry itself only enhances energy conservation and not necessarily
dynamical properties of the trajectories.

If you are interested in energy conservation, “p31” is in general a good choice to start
with. If a good initial guess for the SCF procedure is desired, you should give “p32” a try.
Please note that deactivation of extrapolation (wf_extrapolation none) is actually
the same as the “p10” extrapolation (see Fig. 3.1) and simply uses the one-particle
coefficients of the last iteration are to initialize the SCF procedure.

Tags for geometry.in:

Tag: velocity (geometry.in)

Usage: velocity vx vy vz

Purpose: Specifies a velocity for the immediately preceding atom in file
geometry.in.
vx, vy, vz : x, y, and z components of the velocities, in Å/ps.

In geometry.in, the line containing the velocity must follow the line containing the
atom that the velocity refers to. This can be used, e.g., to initialize a molecular
dynamics run, or for analysis purposes later. Note that, for molecular dynamics, the
FHI-aims standard output prints this information in the proper format, as part of a
particular geometry associated with a molecular dynamics trajectory.

176 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: MD_maxsteps (control.in)

Usage: MD_maxsteps N

Purpose: Sets the maximal number of molecular dynamics steps.
N is an integer number. Default: -1 (infinite run).

A negative number signals that the ending criterion is not checked, in fact, the default
setting is N=-1.

Tag: check_MD_stop (control.in)

Usage: check_MD_stop .true. / .false.

Purpose: if .true., an MD calculation ist stopped when a file MD_stop is
generated
Default: .true.

Tag: MD_MB_init (control.in)

Usage: MD_MB_init Temperature

Purpose: Initializes random velocities in a molecular dynamics calculation using
a Maxwell-Boltzmann distribution.
Temperature : Initial temperature in K. Default: No initial velocities.

This keyword is for a rough initialization only, and is overridden by any successful calls
of the MD restarting procedure through MD_restart . The default initialization for
all velocities is zero.

Tag: MD_clean_rotations (control.in)

Usage: MD_clean_rotations .true. / .false.

Purpose: if .true., uses Sayvetz conditions to clean initial velocities from
rotations
Default: .true. for non-periodic systems, .false. for periodic systems or if
relaxation_constraints are used.

This option is useful for non-periodic systems, allowing to weed out some residual nu-
merical noise in the forces. However, seeming rotations of the unit cell can easily appear
in periodic systems for completely normal, physical reasons. Since this led to some con-
fusion, this option is now actively disabled (code stops) for periodic systems. If you have
a good reason to use this option in periodic systems, it can be re-introduced by hand.

3.12. Molecular dynamics 177

Tag: MD_thermostat_units (control.in)

Usage: MD_thermostat_units units

Purpose: To allow user specification of the effective thermostat mass outside of
the internal units.
unit : Unit of the effective mass of the Nosé-Hoover and Nosé-Poincaré ther-
mostats – either amu*bohrˆ2 (mass-oriented specification) or cmˆ-1 (frequency
oriented specification, to allow to connect the thermostat mass to characteristic
frequencies of the system). Default: amu*bohrˆ2 .

Tag: MD_restart (control.in)

Usage: MD_restart option

Purpose: controls the MD initialization from a molecular dynamics restart file.
Restriction: At present, this keyword does not produce proper results when
switching ensembles between runs.
option is a string (see below). Default: .false.

Possible values for option are .true., .false., time_restart, or filename. The
default is .false..

The data for the molecular dynamics integrator is always written to a file aims_MD_restart.dat
after each time step (regardless of whether or not keyword MD_restart is used). If
MD_restart is set, this keyword controls the reading of such data from a previous run
(if that exists), to either

• continue a previous run (.true.), or

• to use previous position / velocity information but reset all timings (time_restart),
or

• to begin a new run from scratch (.false.)

The default file name is used unless the user specifies a specific file filename from
where the input is to be read.

Important: If the starting structure and velocities are taken from the restart
file, any exact positions noted in geometry.in are ignored. However, the species
identification, possible initial charges, and other per-atom information in geometry.in
remain valid and must be present as always. If the option .true. is set, the molecular
dynamics clock is also read from file, in all other restarts the clock is reset to zero.

Tag: MD_restart_binary (control.in)

178 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: MD_restart_binary option

Purpose: controls the format used for the molecular dynamics restart file.
option is a string (see below). Default: .true.

Possible values for option are .true. and .false.. The default is .true.. Use this
flag to switch to the ASCII format in the MD restart file.

Tag: MD_run (control.in)

Usage: MD_run time ensemble [further specifications]
Purpose: Central controls of the physical parameters of a Born-Oppenheimer
molecular dynamics run.
time : Requested MD time in ps.
ensemble : Ensemble specifications for MD_run , listed as subkeywords to
MD_run in a separate section below.
further specifications: See ensemble subkeywords below.

This keyword is the key control for all molecular dynamics. The runtimes time are
specified in ps. There are five different possible ensembles, each of which require different
options - as described in a separate subsection below.

When a schedule of different temperatures, thermostats etc is required within the
same run (e.g., initialization followed by NVE, change of temperature, etc.), use the
MD_schedule keyword instead of MD_run .

Tag: MD_schedule (control.in)

Usage: MD_schedule

Purpose: Must be followed by specific segments of a Born-Oppenheimer
molecular dynamics run.

Must be followed by an arbitrary number of lines MD_segment , where different
temperatures, thermostats, etc. may be specified for each segment of the run.

Tag: MD_segment (control.in)

Usage: MD_segment time ensemble [further specifications]
Purpose: Central controls of the physical parameters of a Born-Oppenheimer
molecular dynamics run.
time : Requested MD time in ps.
ensemble : Ensemble specifications for MD_run , listed as subkeywords to
MD_run in a separate section below.
further specifications: See ensemble subkeywords below.

Keyword MD_segment must only appear in consecutive lines after an MD_schedule
keyword. Instead of a single set of MD thermostats, temperatures etc. throughout the

3.12. Molecular dynamics 179

simulation, this keyword allows to set specific values for only a segment of the full run.

Tag: MD_time_step (control.in)

Usage: MD_time_step deltat

Purpose: Set the time step for a molecular dynamics run, in ps.

Default: 0.001 (this is 1 fs)

Tag: wf_extrapolation (control.in)

Usage: wf_extrapolation extrapolation_type

Purpose: Used to specify the wave function extrapolation. Options are
polynomial n o (an n-point polynomial extrapolation of order o, where
the remaining degrees of freedom are used to enhance time reversibility),
niklasson06 n (an n-point extrapolation as specified by Niklasson et al.
[167]), none (same as polynomial 1 0), linear (polynomial 2 1), and
quadratic (polynomial 3 2).

Default: polynomial 3 1 for NVE, none otherwise.

The option polynomial 3 1 strongly reduces a possible energy drift in NVE runs even
for moderate force accuracy settings and additionally lowers the number of SCF cycles
per time step.

Warning: This feature is experimental. It most probably will not enhance convergence
of metallic systems and is not parallelized. The niklasson06 schemes are not suitable
for long runs of nontrivial physical systems because a regular reinitialization would be
necessary.

Tag: wf_func (control.in)

Usage: wf_func specifications

Purpose: Used to activate the wave function extrapolation with fine grained
control over the basis functions used for extrapolation. Each wf_func
line adds one iteration to the extrapolation scheme and one fitting function.
Options are “constant” (1), “linear” (t), “quadratic” (t2), “cubic” (t3),
“polynomial n” (tn), “sin ω unit” (sinωt), and “cos ω unit” (cosωt).
The unit “unit” is either “cmˆ-1” or “fs”. Additionally, “none” can be used to
add one degree of freedom which is used to stabilize things in a least squares
manner.

The same warning as for wf_extrapolation applies.

180 Chapter 3. The Full Monty: All Keywords and Capabilities

Ensemble specification options for the MD_run and MD_segment
keywords:

When used with a molecular dynamics schedule of time segments with different ther-
mostats, the following subkeywords should appear behind an MD_segment keyword
instead of MD_run .

MD_run sub-tag: NVE (control.in)

Usage: MD_run time NVE

Purpose: Performs molecular dynamics in the microcanonical ensemble.

MD_run sub-tag: NVE_4th_order (control.in)

Usage: MD_run time NVE_4th_order

Purpose: Performs molecular dynamics in the microcanonical ensemble, using a
fourth-order integration method. The integrator used is called SI4 in Ref. [112].
This method is sometimes useful for longer time steps and for very accurate MD.
Note that there are five force evaluations per time step, instead of the usual
single calculation.

MD_run sub-tag: NVE_damped (control.in)

Usage: MD_run time NVE_damped damping_factor

Purpose: Performs microcanonical molecular dynamics, but dampens each
velocity by a factor damping_factor after each time step.
damping_factor is the damping factor between different MD steps.

This option is a useful addition to the structural relaxation, which can be done in principle
with a molecular dynamics run as well. In almost all cases, however, the BFGS algorithm
as called with the relax_geometry keyword is preferable.

MD_run sub-tag: NVT_andersen (control.in)

Usage: MD_run time NVT_andersen Temperature nu

Purpose: Run molecular dynamics with an Andersen stochastic thermostat.
Temperature is the simulation temperature in K.
nu : Probability that a given atom’s velocity will be “reset” to a Maxwell-
Boltzmann distributed value, per picosecond!

Andersen’s [6] simple definition of a thermostat that randomly resets the velocity of
individual atoms to a Maxwell-Boltzmann distributed value with a given frequency. This

3.12. Molecular dynamics 181

is an example of a rather harsh thermostat.

MD_run sub-tag: NVT_berendsen (control.in)

Usage: MD_run time NVT_berendsen Temperature tau

Purpose: Molecular dynamics run using the Berendsen thermostat.
Temperature is the simulation temperature in K.
tau is a relaxation time of the thermostat, in ps.

Note that the Berendsen thermostat does NOT resemble any physical ensemble, but
that it is a useful standard to initialize a molecular dynamics simulation. The relaxation
time tau must be chosen by the user, there is no default. Remember that the special
case τ = ∆t reproduces the correct temperature exactly at every time step and can be
used for a very rough initialization.

MD_run sub-tag: NVT_parrinello (control.in)

Usage: MD_run time NVT_parrinello Temperature tau

Purpose: Molecular dynamics run using the Bussi-Donadio-Parrinello thermostat.
[34]
Temperature is the simulation temperature in K.
tau is a relaxation time of the thermostat, in ps.

This is the Bussi-Donadio-Parrinello thermostat, as described in Ref. [34] It a) properly
samples the canonical distribution and b) preserves time correlations. The relaxation
time tau (in ps) must be chosen by the user, there is no default. The performance of
the thermostat is claimed in Ref. [34] to be practically independent of the value of τ ,
for condensed phases. For clusters, though, a proper tuning of tau might be necessary.
When this ensemble is chosen, the conserved pseudo-Hamiltonian (as described in Ref.
[34]) is printed in the output.

MD_run sub-tag: GLE_thermostat (control.in)

Usage: MD_run time GLE_thermostat Temperature
Number_of_aux_DOF

Purpose: Molecular dynamics run using the colored-noise thermostats based
on the Generalized Langevin Equation, proposed by M. Ceriotti and coworkers
[39, 42, 40].
Temperature is the simulation temperature in K.
Number_of_aux_DOF (integer) is the number of auxiliary degrees of freedom for
this thermostat, that specifies the dimensions of the input matrices

This is a flexible thermostat based on the Generalized Langevin Equation, that adds extra

182 Chapter 3. The Full Monty: All Keywords and Capabilities

degrees of freedom to the equations of motion and has a frequency dependent memory
kernel, so that one can adjust the performance of the thermostat for different degrees of
freedom in the system. It requires also matrices as inputs, for which we refer the reader
to the keywords MD_gle_A and MD_gle_C . Please read references [39, 42, 40] and
references therein before using this. It can be used to sample the canonical ensemble or
to break detailed balance and simulate other conditions, including approximate quantum
effects. It has a conserved quantity in the same spirit of the BDP thermostat.

MD_run sub-tag: NVT_nose-hoover (control.in)

Usage: MD_run time NVT_nose-hoover Temperature Q

Purpose: Run molecular dynamics with a Nosé-Hoover thermostat.
Temperature is the simulation temperature in K.
Q : Effective mass specification of the thermostat in units as specified by
MD_thermostat_units .

Probably the most popular thermostat in the literature.

MD_run sub-tag: NVT_nose-poincare (control.in)

Usage: MD_run time NVT_nose-poincare Temperature Q

Purpose: Run molecular dynamics with a Nosé-Poincaré thermostat.
Temperature is the simulation temperature in K.
Q : Effective mass specification of the thermostat in units as specified by
MD_thermostat_units .

Due to numerical issues, this thermostat has been disabled for the time being.

Tag: MD_gle_A (control.in)

Usage: MD_gle_A entries

Purpose: Required input for GLE_thermostat

entries contains all entries (Number_of_aux_DOF + 1) of one row of the
matrix. One must repeat this flag for each row of the matrix, in order.

Units should be 1/ps, and the matrix can be downloaded from http://epfl-cosmo.
github.io/gle4md/. If you wish to model different dynamics (quantum effects, or
thermalization of PIMD), one can also specify a C matrix with the keyword MD_gle_C
.

Tag: MD_gle_C (control.in)

http://epfl-cosmo.github.io/gle4md/
http://epfl-cosmo.github.io/gle4md/

3.12. Molecular dynamics 183

Usage: MD_gle_C entries

Purpose: Optional input for GLE_thermostat

entries contains all entries (Number_of_aux_DOF + 1) of one row of the
matrix. One must repeat this flag for each row of the matrix, in order.

This matrix is optional for the usage of the GLE thermostats. If sampling the canonical
ensemble it is not needed. Otherwise, it is. Units should be K, and the matrix can be
downloaded from http://epfl-cosmo.github.io/gle4md/.

3.12.1 Path integral molecular dynamics and advanced types of
dynamics

The best way to perform path integral molecular dynamics and other more advanced
dynamics techniques in FHI-aims is through the i-PI python wrapper [41]. This code is
available free of charge and can be downloaded from http://epfl-cosmo.github.io/
gle4md/index.html?page=ipi. Information about the code can be found in http://
ipi-code.org/ and we provide a quick tutorial on how one can make it work with FHI-
aims in the tutorials folder within aimsfiles. Through this interface, one can perform all
types of dynamics (classical or quantum) with a wide range of thermostats, barostats,
and different path integral acceleration techniques. i-PI uses internet sockets for the
communication with the client codes, making it also easy to join different codes in the
same simulation (e.g. a thermodynamic integration), as long as they can all communicate
with i-PI. Note that NPT and NST (constant stress) simulations are currently supported
only for functionals where the analytical stress tensor is available. If you wish to perform
an NPT simulation, please add also compute_analytical_stress .true. to your
control.in file.

The basic keywords that can appear in the control.in file of FHI-aims are listed
below. Examples of how to run FHI-aims bound to i-PI are available in the folder
aimsfiles/examples/ipi with the corresponding i-PI and FHI-aims input files, as
well as a short explanation on how to run the programs. Examples of FHI-aims being
used with i-PI can also be found in the i-PI distribution. Please refer also to the i-PI
manual and contact the developer responsible for the FHI-aims interface (Mariana Rossi)
if you have any doubts about the usage of FHI-aims with this code.

Tag: use_pimd_wrapper (control.in)

http://epfl-cosmo.github.io/gle4md/
http://epfl-cosmo.github.io/gle4md/index.html?page=ipi
http://epfl-cosmo.github.io/gle4md/index.html?page=ipi
http://ipi-code.org/
http://ipi-code.org/
mailto:rossi@fhi-berlin.mpg.de

184 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: use_pimd_wrapper hostaddress portnumber

Purpose: Interfaces FHI-aims to an internet socket based python wrapper code
that does path integral molecular dynamics.
hostaddress accepts a host name or an IP address. If you want to use UNIX
sockets, add ’UNIX:’ before the host address.
portnumber should contain the number of the port that the wrapper is listening
to.

Tag: communicate_pimd_wrapper (control.in)

Usage: communicate_pimd_wrapper quantity

Purpose: Communicates the specified quantity to the i-PI code. Currently i-PI
keeps track of this specified quantity for each step of the dynamics and each
replica of the system (should they exist). They are written on a file created
by i-PI that can be easily parsed for postprocessing purposes. The current
available options are: dipole, polarizability,hirshfeld, workfunction
and friction.

3.12.2 Running FHI-aims with i-PI over TCP/IP Sockets

Using TCP/IP sockets (Internet sockets) is the most straightforward and consistent
way of using the i-PI wrapper with FHI-aims, particularly on HPC systems where UNIX
sockets are unavailable. However, IP/TCP ports are assigned dynamically on a system,
and therefore there can be no guarantee that a previously assigned port in an input file
will be free when the calculation starts. To avoid this problem we recommend using the
utility script get_free_port.py in the utilities directory to set the port to right before
initializing the calculation either locally or inside the submission script on an HPC system.
This script will automatically check if a requested port and change it if it is not free
or find a free port, and update both the relevant information in the i-PI and FHI-aims
input files. To use the script simply, run

> get_free_port.py -x inputs.template.xml \
-ox inputs.xml \
-c control.in \
-oc {system_name_descriptor}/control.in

or for cases when multiple calculators are used

> get_free_port.py -x inputs.template.xml \
-ox inputs.xml \

3.12. Molecular dynamics 185

-c control.in \
-oc {system_1_name_descriptor}/control.in \

{system_2_name_descriptor}/control.in

In cases where you simply want to overwrite the template input files do not set the -ox
or -oc variables. Additionally if you are running a system with a variable IP address, you
can update the hostaddress with the following command:

> get_free_port.py --host HOST_ADDRESS \
-x inputs.template.xml \
-ox inputs.xml \
-c control.in \
-oc {system_name_descriptor}/control.in

where ––host default will set the host to be the default for the system you are on.
For a complete description of the functionality of the script run

> get_free_port.py --help

186 Chapter 3. The Full Monty: All Keywords and Capabilities

3.13 Thermodynamic Integration

Note added to the present manual: Albeit functional, the thermodynamic integration
routines are still classified as “experimental”. Please contact carbogno@fhi-berlin.mpg.de,
if you encounter any problems or if you have suggestions.

FHI-aims provides the capability to compute the anharmonic contributions to the
Helmholtz free energy of a system with the so called “thermodynamic integration”
technique. For a truly thorough explanation of the underlying concepts, please refer to
the standard literature, e.g., Refs [225, 79], since only a basic overview that sheds some
light on the required input is given here.

Theory

In this brief introduction, we will focus on a perfect, periodic crystal, the Helmholtz free
energy F (T, V) of which can be decomposed in three contributions:

F (T, V) = F el(V) + F nu(T, V) = F el(V) + F qh(T, V) + F ah(T, V) . (3.29)
F el(T, V) is the free energy of the electronic system, which can be assessed by Mermin’s
canonical generalization of DFT [158]. For large band gap insulators, the electronic
contribution is approximatively temperature independent and thus equal to the free en-
ergy of the electronic system at zero Kelvin (see occupation_type). F nu(T, V) is
the free energy associated to the nuclear motion on the Born-Oppenheimer energy sur-
face V nu(~R). In the limit of low temperatures, this contribution can be described within
the quasi-harmonic model (see Sec. 4.6), i.e., by only accounting for small elongations ~U
from the equibrium positions ~R0 on the approximative harmonic potential

V qh(~R) ≈ V nu(~R0) + 1
2
∑
L,α

N,M,β

∂2V nu(~R)
∂ (R0,L)α ∂ (RN,M)β

∣∣∣∣∣∣
~R=~R0

(U0,L)α(UN,M)β . (3.30)

The free energy F qh(T, V) associated to the motion on such a potential can be computed
with the FHI-aims code, as discussed in Sec. 4.6. At large temperatures, however,
the quasi-harmonic approximation is no longer justified, since the deviations from the
equilibrium are not minute. In this case, the “thermodynamic integration” technique can
be employed to compute the anharmonic contributions to the free energy

F ah(T, V) = F nu(T, V)− F qh(T, V) . (3.31)

For this purpose, the dynamics of the hybrid system that is characterized by the potential
V λ(~R, λ) = λ V nu(~R) + (1− λ) V qh(~R) (3.32)

is inspected. The parameter λ appearing therein describes the linear interpolation
between the full Born-Oppenheimer potential V nu(~R) and the quasi-harmonic poten-
tial V qh(~R). The free energy F λ(T, V, λ) associated to the motion on this hybrid po-
tential is directly related to the anharmonic contributions via

F ah(T, V) =
1∫

0

dλ

(
∂F λ(T, V, λ)

∂λ

)
, (3.33)

3.13. Thermodynamic Integration 187

as the fundamental theorem of differential and integral calculus shows. The relation [225]

∂F λ(T, V, λ)
∂λ

=
〈
∂

∂λ
V λ(~R, λ)

〉
Vλ

(3.34)

allows to replace the integrand in Eq. (3.33) with a canonical ensemble average 〈·〉Vλ .
If an ergodic thermostat is used (see Sec. 3.12), this ensemble average can then be
substituted with a time average, so that the anharmonic contributions can be eventually
expressed as [225]

F ah(T, V) =
t∫

0

dt′
dλ

dt′

(
∂

∂λ
V λ(~R, λ)

)
. (3.35)

Within this approach it is thus possible to determine the anharmonic contributions to the
free energy from an ab initio MD simulation, in which the parameter λ is adiabatically
varied from zero to unity and/or vice versa.

Tags for MD_schedule section of control.in:

Tag: thermodynamic_integration (control.in)

Usage: thermodynamic_integration λstart λend QH_filename V0

Purpose: Specifies the thermodynamic integration parameters for the immedi-
ately preceding MD_segment in file control.in.
λstart, λstart : Initial and final value for λ in the specific MD_segment .
QH_filename : Name of the file containing the parametrization of the quasi-
harmonic potential V qh(~R).
V0 : Value of the Born-Oppenheimer potential V nu(~R0) in equilibrium ~R0.

In control.in, the line containing the parameters for the thermodynamic integration
must follow the line containing the MD_segment that the thermodynamic integration
refers to. Note that a thermodynamic_integration line must be provided for
all segments (or none) within an MD_schedule section, as shown in the following
example:

MD_schedule
Equilibrate the system for 100 fs at 800 K with lambda = 0
MD_segment 0.1 NVT_parrinello 800 0.0010
thermodynamic_integration 0.0 0.0 FC_file.dat -0.328E+07

Perform the thermodynamic integration over 10 ps
MD_segment 10.0 NVT_parrinello 800 0.0010
thermodynamic_integration 0.0 1.0 FC_file.dat -0.328E+07

188 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for QH_filename:

Note that the file QH_filename can be automatically generated with the methods dis-
cussed in Sec. 4.6. As a reference, the syntax of the file is given here in spite of that.

Tag: lattice_vector (QH_filename)

Usage: lattice_vector x y z latt_index

Purpose: Specifies one lattice vector for periodic boundary conditions.
x, y, z are real numbers (in Å) which specify the direction and length of a unit
cell vector.
latt_index : Sequential integer number identifying the lattice vector.

Lattice vectors associated with the equilibrium geometry. Please note that this input
has to be equal to the specifications in geometry.in.

Tag: atom (QH_filename)

Usage: atom x y z species_name atom_index

Purpose: Specifies the equilibrium location and type of an atom.
x, y, z are real numbers (in Å) which specify the atomic position.
species_name is a string descriptor which names the element on this atomic
position; it must match with one of the species descriptions given in control.in.
atom_index : Sequential integer number identifying the atom.

Equilibrium atom positions. Please note that this input has to be consistent with the
specification in geometry.in (same number of atoms, same order, same species).

Tag: force_constants (QH_filename)

Usage: force_constants FC_x FC_y FC_z atom_j direction atom_i

Purpose: Specifies the force constants, i.e., the change in the forces that occur
if one atom is displaced in the unit cell.
FC_x, FC_y, FC_z are the change in the forces in the respective cartesian
coordinates.
atom_j : is the index of the atom that is displaced.
direction : is the cartesian direction in which atom_j is displaced.
atom_i : is the index of the atom the forces refer to.

Equilibrium atom positions. Please note that this input has to be consistent with the
rest of the specification in QH_filename.

Example for a very basic file QH_filename:

3.13. Thermodynamic Integration 189

lattice_vector 3.987 3.987 0.000 1
lattice_vector 0.000 3.987 3.987 2
lattice_vector 3.987 0.000 3.987 3

atom 0.000 0.000 0.000 Al 1
atom 1.993 1.993 0.000 Al 2
atom 0.000 1.993 1.993 Al 3
atom 1.993 3.987 1.993 Al 4
atom 1.993 0.000 1.993 Al 5
atom 3.987 1.993 1.993 Al 6
atom 1.993 1.993 3.987 Al 7
atom 3.987 3.987 3.987 Al 8

displace atom 1 --
force_constants 5.739e+00 -7.069e-16 6.805e-16 1 1 1
force_constants -1.909e+00 -1.455e+00 -1.324e-16 1 1 2
force_constants 3.692e-01 2.618e-16 3.813e-16 1 1 3
force_constants -1.909e+00 -1.398e-16 1.201e+00 1 1 4
force_constants -1.909e+00 2.040e-16 -1.201e+00 1 1 5
force_constants 3.692e-01 1.423e-16 -7.205e-16 1 1 6
force_constants -1.909e+00 1.455e+00 9.268e-17 1 1 7
force_constants -3.934e-02 4.931e-18 -4.373e-18 1 1 8
force_constants -2.979e-17 5.004e+00 1.698e-15 1 2 1
force_constants -1.016e+00 -1.430e+00 -9.899e-17 1 2 2
..
force_constants 1.675e-19 -3.460e-02 -1.160e-17 1 2 8
force_constants 3.498e-17 2.663e-16 5.373e+00 1 3 1
..
force_constants -2.894e-16 3.914e-16 3.969e-01 1 3 8
end atom 1 ---
displace atom 2 --
force_constants -1.909e+00 -1.455e+00 3.466e-17 2 1 1
..
force_constants -8.873e-17 1.914e-16 3.969e-01 2 3 8
end atom 2 ---
..
..
end atom 7 ---
displace atom 8 --
force_constants -3.934e-02 4.931e-18 -4.373e-18 8 1 1
..
force_constants 3.498e-17 2.663e-16 5.373e+00 8 3 8
#---

190 Chapter 3. The Full Monty: All Keywords and Capabilities

3.14 Electronic constraints

Most production calculations only require the converged ground state of a calculation,
but in some cases, a deliberate deviation from the Born-Oppenheimer surface is desired.
For example it may be desirable to fix the spin state of a spin-polarized calculation using
a defined multiplicity .

More generally, intuitive chemical concepts may suggest the localization of a fixed given
spin moment or number of electrons in one part of a system, and a different spin
moment or number in another part. Examples include enforcing definite charges on ions
in a system, or a desired spin moment on one particular atom.

The latter idea of partitioning different numbers of electrons or spin moments in space
thought of as divided into different atoms is inherently ambiguous. Nonetheless, this is
a classic intuitive picture of chemistry, and, at least in the limit of well-separated system
parts, becomes exact.

For non-periodic geometries, FHI-aims implements the possibility of constrained calcu-
lations to enforce predefined electron numbers in different regions and/or spin channels.
We follow the prescription of Behler et al. [20, 21], which assigns electrons to different
atoms according to a Mulliken-like analysis, i.e., by partitioning the occupied Kohn-Sham
eigenstates according to the occupation of different atom-centered basis functions.

For details regarding the method, we refer to the original references, but we add here a
clear word of caution. The implemented partitioning is well-defined when the relevant
parts of the system are far apart, and/or when relatively small, confined basis sets are
employed. For large, overlapping basis sets, electrons may be spatially located at one
atom even though they are numerically assigned to the basis functions of a different
atom. In other words, the procedure becomes more ambiguous as the basis size and
completeness increase. Contrary to the usual paradigm of electronic structure theory, it
is not meaningful to converge constrained DFT calculations to the basis set limit if the
individual pieces of the system are not very well separated.

To set up an electronic constraint, the only keywords normally required are constraint_region
in geometry.in and constraint_electrons in control.in. The remaining key-
words documented below are normally required only for experimental purposes or trou-
bleshooting.

For the purpose of simulating electronic excitations, either from electronic core levels
(XPS) or from valence levels (UPS), the keywords force_occupation_basis and
force_occupation_projector enforce electron occupations of specific atomic basis
states or Kohn-Sham states, respectively.

3.14. Electronic constraints 191

Tags for geometry.in:

Tag: constraint_region (geometry.in)

Usage: constraint_region number

Purpose: Assigns the immediately preceding atom to the region labelled
number.
number is the integer number of a spatial region, which must correspond to
a region defined by keyword constraint_electrons in file control.in.
Default: 1.

To divide up space into regions for the purpose of enforcing an electronic constraint,
each atom in the structure is included in a constraint_region .

Simple example of an Na-Cl dimer (geometry.in):

atom 0. 0. 0. Na
constraint_region 1

atom 0. 0. 3. Cl
constraint_region 2

assigns Na to the first region and Cl to the second region of a constrained calculation.

The special case of only one region (e.g., for a fixed spin moment calculation) needs
no explicit constraint_region labels. Note that, apart from an explicit setup by
keyword constraint_electrons , the case of an integer fixed spin moment for the
whole system (all atoms) can also be called by the shortcut multiplicity .

192 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: constraint_debug (control.in)

Usage: constraint_debug flag

Purpose: If set, provides extra output that monitors the convergence of the local
constraint potentials used to enforce the requested constraint.
flag is a logical string, either .true. or .false. Default: .false.

Tag: constraint_electrons (control.in)

Usage: constraint_electrons region n_1 [n_2]
Purpose: Fixes the number of electrons to n_1 (in the spin-polarized case, to n_1
in the spin-up channel and n_2 in the spin-down channel) for a given region.
region is an integer number, corresponding to one of the regions listed as
constraint_region in geometry.in.
n_1 is the number of electrons in the corresponding region (the number of
spin-up electrons in the case of a spin-polarized calculation).
n_2 is the number of spin-down electrons in the corresponding region (only
needed in the spin-polarized case).

This is the central keyword that can be used to define a strict constraint on the electron
numbers associated (i) with the orbitals of a given subset of atoms (“region”) and / or
(ii) with a given spin channel. See the multiplicity keyword for a shortcut for
fixed spin moment calculations with an integer spin multiplicity.

Tag: constraint_it_lim (control.in)

Usage: constraint_it_lim number

Purpose: For the determination of the constraint potentials in different
constraint_region s, sets the maximum number of internal iterations before
the search for a converged value is aborted.
number is an integer number. Default: 200.

The method to determine the constraint potentials that enforce the local electron / spin
constraint is set by constraint_mix ; for more than one active constraint_region
, this determination is always iterative. Keyword constraint_it_lim sets the
maximum number of iterations before this search is aborted in case of failed convergence
(or too ambitious accuracy requirements from keyword constraint_precision).

Tag: constraint_precision (control.in)

3.14. Electronic constraints 193

Usage: constraint_precision tolerance

Purpose: Sets the precision with which each requested local constraint on the
electron count must be fulfilled.
tolerance is a small positive real number. Default: 10−6.

Tag: constraint_mix (control.in)

Usage: constraint_mix factor1 [factor2]
Purpose: Mixing factors for the iteratively determined constraint potentials.
factor1 is a mixing factor for the iteratively determined constraint potentials
(for spin-polarized calculations, the spin-up mixing factor).
factor2 is the mixing factor for spin-down constraint potentials in the case of
spin polarized calculations.

Only meaningful for non-standard settings of mixer_constraint , irrelevant for the
standard bfgs case.

Tag: ini_linear_mixing_constraint (control.in)

Usage: ini_linear_mixing_constraint number

Purpose: If keyword mixer_constraint is a Pulay mixer, initial linear mixing
for a few iterations can be requested first.
number is the number of initial linear iterations.

Only meaningful for non-standard settings of mixer_constraint , irrelevant for the
standard bfgs case.

Tag: mixer_constraint (control.in)

Usage: mixer_constraint type

Purpose: Sets the iterative algorithm to determine constraint potentials.
type is a string. Default: bfgs

This flag has nothing to do with electron density mixing or the electronic self-consistency
loop. Instead, this defines the process to determine constraint potentials that enforce
the requested electron number constraints, if the keyword constraint_electrons
was invoked. This process happens in each s.c.f. iteration after the Hamiltonian matrix
is known, in the course of solving the Kohn-Sham eigenvalue problem.

If more than one constraint regions are requested, determining the constraint poten-
tials to enforce the local constraint on the electron numbers is an iterative process.
Technically, FHI-aims supports three different algorithms for type :

• bfgs : The default. A BFGS algorithm that optimizes the constraint potentials to
their nearest local optimum. Nothing else should be used unless for experimental

194 Chapter 3. The Full Monty: All Keywords and Capabilities

purposes.

• linear : Linear mixing algorithm to determine the constraint potentials.

• pulay : Pulay-type mixing algorithm to determine the constraint potentials.

Under normal circumstances, the mixer_constraint keyword should not be needed
explicitly.

Tag: n_max_pulay_constraint (control.in)

Usage: n_max_pulay_constraint number

Purpose: If the pulay mixer is selected for mixer_constraint , sets the
number of iterations to be mixed.
number is the number of mixed iterations. Default: 8.

Only meaningful for non-standard settings of mixer_constraint , irrelevant for the
standard bfgs case.

Tag: force_occupation_basis (control.in)

Usage: force_occupation_basis i_atom spin basis_type basis_n
basis_l basis_m occ_number max_KS_state

Purpose: Flag originally programmed to compute core-hole spectroscopy simula-
tions (for a short how-to cf. force_occupation_projector). In practice,
it constrains the occupation of a specific energy level of an specific atom, being
also able to “break the symmetry” of an atom.
i_atom is the number of the atom on which the occupancy is constrained, as it
is listed in the geometry.in file.
spin is the spin channel (e.g., 1 if only one spin channel).
basis_type is the type of basis which is used to force the occupation of the
orbital (set it to atomic).
basis_n is the main quantum number for the state of interest.
basis_l is the orbital momentum quantum number for the state of interest.
basis_m is the projection of the orbital momentum onto the z-axis (-1, 0, or 1
for a p state).
occ_number is the occupation constraint for the chosen state.
max_KS_state is the number of the highest energy Kohn-Sham state in the
system that will be included in the constraint.

Example:
force_occupation_basis 1 1 atomic 2 1 1 1.3333 6

This choice will constrain the overall occupation of a given basis function (not Kohn-

3.14. Electronic constraints 195

Sham state!) in the system to 1.3333 electrons.

The basis function in question resides on the first atom (number 1) as listed in geometry.in.
The first spin channel is constrained.

Since we are interested in constraining an atomic-like orbital, we choose one that is part
of the minimal basis (type “atomic”).

In fact, we let the constraint act on a 2p level, m=1 (defined by the sequence “2 1 1”).

Only Kohn-Sham orbitals up to the 6th state (counted in the overall system) will be
included in the constraint. In general, it is a good idea to constrain the orbital in question
out of the occupied space, i.e., choose a value for max_KS_state that indicates a state
above the Fermi level.

There is a small problem here: We need to define the occupation of a “basis function,”
but really, we here have a non-orthogonal basis. Strictly speaking, only the Kohn-Sham
states in the system have a well-defined occupation. What to do?

One thing we could use (and we do) are Mulliken occupation numbers of the basis func-
tions. These are formally always well defined. In practice, however, as the overall basis
set becomes larger and larger and approaches (over-)completeness, Mulliken occupations
become less and less meaningful because other basis functions are not exactly orthogonal
to the one used in our projection, and can “restore” the component that was originally
constrained away.

Either way, we use Mulliken occupations, assuming that the atomic core basis functions
are sufficiently compact and practically orthogonal to everything else.

This assumption will work well for localized basis functions such as the 1s levels of most
elements. As a rule, the constraint is expected to be less and less unique if applied to
more delocalized basis functions – there can even be multiple different self-consistent
constrained solutions for the same formal constraint. For instance, Si 2p basis functions
can exhibit this problem if the basis sets on the surrounding atoms – which overlap with
the Si atom – become too large. Here, a smaller basis set (tier 1) can indeed be the
way to keep a qualitatively meaningful Mulliken-type constraint.

Tag: force_occupation_projector (control.in)

Usage: force_occupation_projector KS_state spin occ KS_start
KS_stop

Purpose: This keyword enforces the occupation occ in KS_state of spin
channel spin. Between different SCF steps the overlap of this state with
states KS_start to KS_stop is being checked and the constraint is changed
correspondingly if the main character of the state changes.

Example:
force_occupation_projector 8 1 0.0 6 10
force_occupation_projector 9 2 1.0 6 10

196 Chapter 3. The Full Monty: All Keywords and Capabilities

This enforces 0.0 occupation in state 8 of spin channel 1 and 1.0 occupation for state 9
of spin channel 2. KS states between 6 and 10 are checked for overlap with state 8 and
9 of previous SCF steps. If 8/1 was occupied and 9/2 was unoccupied in the ground
state, this corresponds to a triplet excitation 8→9.

To simulate XPS energies with n inequivalent atoms of the same species (called excitation
centre in the following) a total of n + 1 single runs is required: One ground state
calculation and one force_occupation_basis / force_occupation_projector
calculation for each of the excitation centres.

The ground state calculation should use the restart_write_only or the restart
flag to create a restart file that is needed for the force_occupation_basis or
alternatively the force_occupation_projector run. Therefore the geometry.in
and all other parameters (except the charge) such as basis sets have to match. In
practise it is often beneficial for the interpretation of the XP spectra to use output
cube eigenstate to have an idea of the localization of the different core levels.

For the simulation of the XPS spectra typically a full core hole is introduced at the
excitation centre (for example in ref. [54]). Relying on initial state effects alone (i.e.,
defining the ionization energies using ground state eigenvalues) neglects the screening
of the core hole by valence electrons [147] and is therefore not a good approximation for
XPS. For example, to force the occupation of eigenstate 3 to 1.0, where states 1-4 are
(near-)degenerate or at least very similar in energy and type:

force_occupation_projector 3 1 1.0 1 4

Results in the following occupation (the introduction of the core hole leads to a re-
ordering):

State Occupation Eigenvalue [Ha] Eigenvalue [eV]
1 1.00000 -16.148150 -439.41353
2 2.00000 -14.162982 -385.39434
3 2.00000 -14.162981 -385.39432
4 2.00000 -14.091396 -383.44640

Note that charge was set to 1 to take into account the reduced electron number
and a restart from the ground state run was made using restart .

XPS energies can then be calculated as the difference of the total energy obtained in
the ground state calculation and the total energy of the core-hole excited simulation
(corresponding to the definition of the ionization energy). That means that for each
excitation center an ionization energy is calculated. For the core level shifts only relative
energy differences are relevant, which are already directly reflected in the differences
of total energies of the core-hole excited states. If, however, absolute energies are of
interest, note that experiments are referenced to either the vacuum level or the Fermi
level, and that simulations including an extended surface might differ by the workfunction
from those for isolated molecules. The ionization energies can then by broadened with
Gaussian functions of same amplitude (assuming no preferential direction, especially valid
for 1s spectra) and summed up to obtain the total XPS spectrum.

3.14. Electronic constraints 197

Simulating NEXAFS spectra can be less straightforward as there are different approxi-
mations to account for the core hole and the excited electron. One possibility is to use
the transition potential approach [220], where instead of a full core only half a core hole
is used, i.e., n = 0.5 in one spin channel. Independently from the approximation used
for the core hole: To obtain the dipole matrix elements that give information about the
transition probability the flag compute_dipolematrix needs to be used. Note that
to use this option the FHI-aims binary has to be compiled enabling hdf5, as the output
is a hdf5 container containing eigenvalues and matrix elements. It is recommended to
include additional empty_states , depending on the amount of unoccupied states
you want to probe. In this case the ground state calculation has already to include the
same number of empty states, otherwise a restart is not possible.

Tag: force_occupation_smearing (control.in)

Usage: force_occupation_smearing smearing_width

Purpose: If keyword is set, the occupation constraints are enforced in form of
gaussians with a width of smearing_width instead of delta peaks. This applies
to orbitals within an energy range of -+ 3*smearing_width
Default: No Smearing at all.

Example:
force_occupation_smearing 0.05

This keyword helps to converge systems with state degeneracies, which are constrained
by force_occupation_projector. Specifically when calculating electronic excited states in
the frontier orbital regime, many state degeneracies can occur. If one of two degenerate
states is constrained to a different than the ground state occupation, convergence can
be hindered. If this happens, this keyword can enable convergence for the price of a
minimally different final occupation and therefore also a small error in excitation energy.
One should be very careful with this keyword and only employ it if convergence can not
be reached without.

WARNING: It is very easy to generate reandom numbers when using this keyword. The
smearing value should never exceed 0.15

198 Chapter 3. The Full Monty: All Keywords and Capabilities

3.15 Embedding in external fields

To simulate the effect of external field (for instance, to connect to a QM/MM embedding
formalism), FHI-aims allows to add the effect of a homogeneous electrical field and/or
point charges surrounding the molecule in question.

Note that these embedding charges are in addition to any charge specified in
control.in, and not already included there. charge should equal only to the sum
of charges of all nuclei in geometry.in minus the overall number of electrons in the
system, but does not count any embedding charges specified by keyword multipole .

This functionality is not yet available for periodic systems.

Warning: When using a multipole, e.g., an external charge with no basis
functions etc., you are creating a Coulomb singularity. If this singularity is
inside the radius of a basis function of another atom, it will lead to numerical
noise in integrals, up to near-infinities.

To test and/or overcome this problem, all you need to do is to place an integration grid
on any multipole that is within the radius of a basis function of any atom. This radius
is given by the cutoff radius plus width in the cut_pot keyword of each species .

Such a grid can be placed by creating an empty site with no basis functions (
include_min_basis .false.) and placing this empty site on the same site as the
multipole in question in geometry.in. Simply taking the species defaults for a H atom
(light settings) and adjusting them to have no basis functions should create the necessary
definition of the empty site in question (see Fig.3.2 for an example).

3.15. Embedding in external fields 199

Tags for geometry.in:

Tag: homogeneous_field (geometry.in)

Usage: homogeneous_field E_x E_y E_z

Purpose: Allows to perform a calculation for a system in a homogeneous
electrical field E.
E_x is a real number, the x component of E in V/Å.
E_y is a real number, the y component of E in V/Å.
E_z is a real number, the z component of E in V/Å.

Please note: The electrical field is usually defined to point in the direction of a
force exerted on a positive probe charge. Historically grown, FHIaims uses the
opposite sign convention. Although this behaviour might be considered a bug, we
decided to leave it this way in order not to break any scripts people are already
using.

Tag: multipole (geometry.in)

Usage: multipole x y z order charge

Purpose: Places the center of an electrostatic multipole field at a specified
location, to simulate an embedding potential.
x : x coordinate of the multipole.
y : y coordinate of the multipole.
z : z coordinate of the multipole.
order : Integer number, specifies the order of the multipole (0 or 1 ≡ monopole
or dipole).
charge : Real number, specifies the charge associated with the multipole.

If the order of the multipole is greater than zero (presently, only monopoles or dipoles
are supported), a dipole moment must be specified in addition to the data provided with
the multipole tag itself. To that end, a line must immediately follow the original
multipole line, adhering to the following format:
data m_x m_y m_z

Here, m_x, m_y, m_z are the x, y, and z components of the dipole moment, in e·Å.

Warning: Note that monopoles amount to Coulomb singularities. When inside the basis
function radius of any atom, such monopoles should be covered with an integration grid
in geometry.in, as explained in the beginning of this section.

200 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: full_embedding (control.in)

Usage: full_embedding flag

Purpose: Allows to switch between embedding of the full electronic structure
(affecting the Kohn-Sham equations) or the embedding of an electronic density
that is calculated without knowledge of the embedding potential.
flag is a logical string, .true. or .false. Default: .true.

For most purposes, embedding into an external potential will involve a change to the
electronic structure of the structure which is embedded. However, in some instances
one may wish to embed a given charge density non-selfconsistently, i.e., by calculating
the electron density without an external field and then computing the energy of that
unperturbed electron density in the external field.

This feature is useful if multipoles are located too close to the quantum-mechanical re-
gion of the calculation. These act as Coulomb-like potentials, just like any other potential
in the systems. If there are basis functions that cover the location of that potential, some
electronic charge may artificially become trapped there, creating a bad approximation to
the core / valence electrons of an atom with a nucleus of charge charge. In most cases,
this is clearly undesirable behaviour, and apart from that will create unwanted numerical
noise since the electronic structure near the Coulomb-like singularity of the multipole
will be represented solely by basis functions that are inadequate for this purpose in the
first place.

Tag: qmmm (control.in)

Usage: qmmm

Purpose: Allows to compute Hellmann-Feynman like forces from the quantum-
mechanical part of a structure exerted on the multipoles on an external
embedding field.
Restriction: Works only for external monopole potentials.

For quantum-mechanics / molecular-mechanics (QM/MM) “hybrid” molecular dynamics
simulations, one must evolve both the quantum and classical subsystems with time. In
that case, it is necessary to know the derivatives of the quantum-mechanical total energy
with respect to the positions of the classical multipoles (see keyword multipole),
i.e., the forces on the multipoles that originate from the quantum-mechanical region.

The computation of these forces is switched on by adding the qmmm keyword to
control.in. The actual QM/MM simulation must still be performed using an outside
framework, for example ChemShell [203] that uses the energies and forces provided by
FHI-aims as a “plugin”.

3.15. Embedding in external fields 201

[...]
species empty_site

global species definitions
nucleus 1
mass 1.00794

#
l_hartree 4

#
cut_pot 3.5 1.5 1.0
basis_dep_cutoff 1e-4

#
include_min_basis .false.

radial_base 24 5.0
radial_multiplier 1
angular_grids specified

division 0.2421 50
division 0.3822 110
division 0.4799 194
division 0.5341 302
outer_grid 302

##
#
Definition of "minimal" basis
#
##
valence basis states

valence 1 s 1.
ion occupancy

ion_occ 1 s 0.5
##

[...]

Figure 3.2: Species data for what could be used as an empty site on top of monopole.

202 Chapter 3. The Full Monty: All Keywords and Capabilities

3.16 QM/MM Embedding

Please continue to consider this functionality experimental and contact the maintainers
before using it.

When simulating nanostructured surfaces, it may be favorable to avoid the standard
supercell approach and rather make use of a QM/MM embedding approach. E.g. with
clusters or molecules adsorbed, extensive supercells are required to avoid spurious in-
teraction between the nanostructure and its periodic copies. This makes computations
tedious.

In the QM/MM approach, one embeds a quantum mechanical (QM) region in an ex-
tended monopole field. To avoid spurious charge leakage out of the QM region posi-
tively charged monopoles in the vicinity are replaced by norm-conserving pseudopoten-
tials [122]. Those pseudopotential files can be either generated manually with the open
source program package FHI98PP [70] or downloaded from http://www.abinit.org/
downloads/psp-links/lda_fhi or http://www.abinit.org/downloads/psp-links/
gga_fhi.

Figure 3.3: Example for QM/MM setup: Aun@TiO2. The adsorbed cluster and direct
substrate vicinity defines the QM-region. The far field surrounding (grey particles) pictures
a monopole field with formal charges (4+ for Ti and 2- for O). In the blue region, oxygen
particles are still represented as monopoles, however Ti-cations are described with ionic
pseudopotentials.

The QM/MM approach has the huge advantage ultimately also being capable to effi-
ciently deal with charged systems, which will be a fundamental asset for the description
of surface electrochemistry or photo-induced catalysis.

QM/MM embedding is not applicable for metal substrates for physical reasons.

http://www.abinit.org/downloads/psp-links/lda_fhi
http://www.abinit.org/downloads/psp-links/lda_fhi
http://www.abinit.org/downloads/psp-links/gga_fhi
http://www.abinit.org/downloads/psp-links/gga_fhi

3.16. QM/MM Embedding 203

Tags for geometry.in:

Tag: pseudocore (geometry.in)

Usage: pseudocore x y z species

Purpose: Places the center of a pseudopotential at a specified location.
x : x coordinate of the pseudocore.
y : y coordinate of the pseudocore.
z : z coordinate of the pseudocore.
species : string defining the name of the pseudoized species; this needs to
correspond to name specified in control.in .

The keyword pseudocore should be used for those particles replaced by pseu-
dopotentials, so cations. Anions are to be treated simply as monopoles, employing the
multipole infrastructure.

Tags for general section of control.in:

Only species data concerning the pseudoized species mentioned in geometry.in need
to be appended in the control.in. Accept for some mandatory changes (listed below)
those species data are essentially the same as you can find them in the species_default
folder. E.g. if you want to pseudoize for example titanium, take the Ti default file as
a template. However, the pseudoized species must not have any basis functions
accept for the minimal basis. The minimal basis in needed to construct the integration
weights, however in order to exclude the minimal basis from the actual quantum chemical
calculation, the flag include_min_basis needs to be set to .false..

Although nomenclature is misleading as it is chosen at the moment, you do NOT need
the qmmm in order to make QM/MM embedding work.

Similar to all-electron atom , FHI-aims expects all atom specifications like mass ,
nucleus , information for the integration grid etc. Some additional flags need to be set
that FHI-aims is able to realize them as pseudoized species.

species sub-tag: pseudo (control.in)

Usage: pseudo string

Purpose: Parses the name of file the Kleinman-Bylander pseudopotential is
written in
string name of file

FHI-aims expects the pseudopotential file to be in a specific formatting, namely the
output format *.cpi of the generator program FHI98PP [70]. FHI98PP expects this file
to be in the same folder as control.in and geometry.in.

204 Chapter 3. The Full Monty: All Keywords and Capabilities

species sub-tag: pp_charge (control.in)

Usage: pp_charge value

Purpose: Specifies the charge of the pseudoized ion.
value: any real value is allowed

pp_charge must be the charge which has been set in the generation of the pseudopo-
tential and equals the number of pseudoized valence electrons. This parameter is needed
for the far field extrapolation of the pseudopotential.

species sub-tag: pp_local_component (control.in)

Usage: pp_local_component value

Purpose: Specifies which l-channel of the pseudopotential should act as the local
component. Find a detailed theoretical background in [70].
value: integer value

The choice which l-channel should be the local component is essential for the perfor-
mance of the pseudopotentials. Again, read [70] for further help.

species sub-tag: nonlinear_core (control.in)

Usage: nonlinear_core flag

Purpose: when .true. FHI-aims expects and reads in a partial core density (and
partial core density gradient) from the pseudopotential input file to take account
of nonlocal core correction [148].
flag is a logical expression, either .true. or .false. Default: .false.

3.16. QM/MM Embedding 205

[...]
species Ti_pseudo

global species definitions
nucleus 22
mass 47.867

pseudo Ti.cpi
pp_charge 4.
pp_local_component 1
nonlinear_core .false.

include_min_basis .false.

[...]

Figure 3.4: Species data for a pseudoized titanium atom. Starting from the default species
files only a few flags need to be added and the basis functions (accept the minimal basis)
need to be removed.

206 Chapter 3. The Full Monty: All Keywords and Capabilities

3.17 Continuum Solvation Methods

Continuum or implicit solvation methods provide a fast way the influence of solvents and
electrolytes on chemical reactions. Currently, FHI-aims supports two models which have
different strengths and capabilities which are summarized in Table 3.1. Both models
place a dielectric continuum outside the charge distribution modeling the polarizibility of
the solvent. Differences arise in the solvation cavity definition. The Multipole Expansion
(MPE) implicit solvation method separates the FHI-aims grid into two domains and
couples them via electrostatic boundary conditions. It therefore in fact solves two coupled
Poisson equations with different dielectric permittivities. The Finite ion-size and Stern
layer modified Poisson-Boltzmann (SMPB) method solves a single Poisson equation on
the full FHI-aims integration grid by defining a smooth dielectric permittivity function.
In general, the accuracy of the evaluation of solvation energies is expected to be similar.
In fact, both methods merge into each other if the dielectric transition in the SMPB
model is turned into a sharp step function. On top of this ion-free implicit solvation
model, the SMPB approach also supports the modeling of finite ionic strengths in the
solution.

The MPE solvation model is the faster one of both approaches with only a small overhead
with respect to vacuum calculations. The overhead of both implicit solvation methods
is reduced, when performing expensive hybrid calculations, since the actual time for the
implicit solvation calculations does not vary with the functional.

MPE SMPB
Solvent Parametrizations H2O (N,C) H2O (N,C), CH3OH (N,C)

(more in work)
Dissolved ions/salt no yes (SMPB/LPB)
Salt Parametrizations – Aq. Monoval. Salt Solutions
CPU speed fast moderate
Forces no yes
PBCs no no (in work)
Developers Markus Sinstein Stefan Ringe

Christoph Muschielok, Marvin H. Lechner

Table 3.1: Comparison of the two implicit solvation methods in FHI-aims. Parameter sets
for the MPE method are available in ref. [206], for the SMPB method in ref. [7] and [59]
(parameters for methanol as more solvents in current work). N and C indicate parameter
sets fitted for neutral and charged solutes, respectively.

In the following, both models are summarized and the key input parameters presented.

3.17.1 MPE Implicit Solvent Model

This is an experimental feature which is still under development. Do not rely on properties
calculated by this method! Please contact the authors for further details.

markus.sinstein@mytum.de
mailto:sringe@stanford.edu

3.17. Continuum Solvation Methods 207

This functionality is not yet available for periodic systems.

The current implementation does not have analytical forces yet.

Generally, when combining MPE with other functionality, you should know what you
are doing. No specific interactions with other methods beyond single point DFT are
implemented, so only methods which do not interfere with MPE are safe to use.

The simulation of a solvent in a quantum mechanical calculation can, in principle, be
done in two ways. One way is to include explicit solvent molecules in the calculation.
This straightforward approach usually requires molecular dynamics (MD) simulations in
order to yield thermodynamically meaningful observables as e.g. solvation free energies.

The second way is to average the effect of the solvent and treat it as a continuum which
responds to the electrostatic potential created by the solute, i.e. the entity that is to
be solvated. There are several flavors to this comparatively inexpensive approximation,
e.g. the polarizable continuum model (PCM) [157], the conductor like screening model
(COSMO) [121], the self-consistent continuum solvation (SCCS) model [7], the “SMx”
models [49, 152, 153], or CMIRSv1.1 [230] to name some of the more popular ones.
Statistical sampling then only needs to be performed for the degrees of freedom of the
solute which obviously makes it computationally much cheaper.

In general, the necessary integration of the solvent’s degrees of freedom beforehand leads
to a problem where one now needs to solve a generalized Poisson’s equation,

∇ (ε0ε(r)∇Φ(r)) = −4π%(r), (3.36)

to obtain the electrostatic potential Φ(r) created by the total charge density %(r) which
now accounts for the electrostatic polarization potential of the solvent (often called
“reaction field”). Eq. 3.36 contains a spatially dependent dielectric permittivity function
ε(r) in contrast to the regular Poisson’s equation,

∇ (ε0∇ΦH(r)) = −4π%(r), (3.37)

which is solved in a regular DFT calculation in every step of the SCF cycle to get the
Hartree potential ΦH.

As outlined in more detail in Ref. [206], the multipole expansion (MPE) implicit solvent
model offers an efficient way of solving Eq. 3.36 based on the knowledge of the Hartree
potential ΦH readily available from a splined representation in FHI-aims (cf. Sec. 3.7)
via least-squares fitting instead of integration. The dielectric function ε(r) here needs
to be a step-function in 3D-space where the following boundary conditions apply at the
step (n denotes the normal direction to the interface):

Φ+ = Φ− (3.38a)

n · ε+∇Φ+ = n · ε−∇Φ− (3.38b)

Then, the above equations are discretized in two ways:

• The potentials Φ+ and Φ− are expressed in a truncated multipole series with
expansion orders lmax,R and lmax,O, and

208 Chapter 3. The Full Monty: All Keywords and Capabilities

• equations 3.38a and 3.38b are evaluated at N points on the interface manifold.

Thereby, N is chosen such that the resulting system of linear equations (SLE) is overde-
termined (typically by a factor of two to three).

Tags for general subsection of control.in:

The keywords controlling the MPE module are divided into four categories:

elementary These are the most important keywords—some are even mandatory—which likely
need to be specified for every calculation.

convergence Here, the most important convergence parameters are collected which should be
checked before doing (large scale) production runs.

expert These settings should only be modified by an experienced user as they allow quite
profound modifications.

debug Debug settings are intended to give valuable insight for developers into interme-
diate results.

The authors strongly encourage new users to try out “elementary” and “convergence”
settings first in order to gather some experience with the MPE implementation before
any modifications of other settings are made.

elementary Tag: solvent (control.in)

Usage: solvent method

Purpose: Specifies the desired implicit solvent model.
method is a string which specifies the implicit solvent method; currently, mpe
(the method presented above) and mpb (cf. Sec. 3.17.2) are supported.

Tag: mpe_solvent_permittivity (control.in)

Usage: mpe_solvent_permittivity epsilon

Purpose: Specifies the dielectric constant of the bulk solvent.
epsilon is a positive real number equal to the macroscopic dielectric constant
of the solvent. Default: 1.0

Tag: isc_cavity_type (control.in)

3.17. Continuum Solvation Methods 209

Usage: isc_cavity_type type

Purpose: This keyword controls the model used to sample the implicit solvent
cavity for the MPE method. Depending on type, further flags (or even lines)
might be necessary. Those are explained below.
Options: Currently supported options are overlapping_spheres, rho_free,
rho_multipole_static, and rho_multipole_dynamic.

isc_cavity_type sub-tag: rho_free (control.in)

Usage: isc_cavity_type rho_free rho_iso

Purpose: Constructs the cavity as an iso-density surface of the superposed elec-
tron density of the neutral, free atoms in the solute.
rho_iso is a positive real number specifying the desired iso-density value in units
of eÅ−3 .

isc_cavity_type sub-tag: rho_multipole_static (control.in)

Usage: isc_cavity_type rho_multipole_static rho_iso

Purpose: Constructs the cavity as an iso-density surface of the (multipole-
expanded) converged electron density of the solute in vacuum, keeping the cavity
static throughout the actual MPE calculation.

First, a vacuum calculation (SCF with any MPE related keywords turned off) will
be performed until self-consistency is achieved, then SCF will be restarted, with
specified MPE related keywords turned on and the isodensity cavity constructed
from the converged electron density in vacuum.

rho_iso is a positive real number specifying the desired iso-density value in units
of eÅ−3 .

Caveat: At its outermost tails, the multipole-expanded electron density can have ‘bumps’
and ‘dents’. Therefore, for very small rho_iso (i.e. large cavities), rho_multipole_static
and rho_multipole_dynamic can lead to excessively rough isocavities. The super-
position of free atom densities does not show this behaviour. If there is a reason to use
isovalues significantly smaller than the ones reported in the original publication [206], it
is thus recommended to to use rho_free instead to get a smooth cavity. In case of
doubt, writing the cavity to a .xyz file via the isc_cavity_restart_write keyword
and visual inspection with the molecular visualization program of your choice might help
clarify.

isc_cavity_type sub-tag: rho_multipole_dynamic (control.in)

210 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: isc_cavity_type rho_multipole_dynamic rho_iso

Purpose: Constructs the cavity as an iso-density surface of the self-consistent
(multipole-expanded) electron density of the solute, updating the cavity in each
SCF step.
rho_iso is a positive real number specifying the desired iso-density value in units
of eÅ−3 .

With this method, the cavity is updated to the current electron density in every SCF
step. This also means that the MPE equations have to be solved in every SCF step
making it computationally more expensive.

Also consider Caveat at rho_multipole_static !

isc_cavity_type sub-tag: overlapping_spheres (control.in)

Usage: isc_cavity_type overlapping_spheres type value

Purpose: Constructs the cavity as a superposition of overlapping spheres around
all atoms.
type specifies how the radii of the atomic spheres are determined.

• radius: all spheres have the same radius given by value in units of Å;

• rho: the atomic spheres are iso-density surfaces based on the electron
density of the isolated, neutral atom with an iso-value of value in units of
eÅ−3 .

value is a real number whose meaning and units depend on the choice of
radius (see above).

WARNING : The usage of this cavity type is strongly discouraged! It has been helpful
in the development to analyze the cavity sampling process itself. The resulting cavities,
however, are almost certainly not smooth and were never intended to be used in pro-
duction calculations. When used with the MPE model, the whole calculation is prone to
numerical problems and the results are very often unphysical. Instead, use the rho_free
type that builds the cavity based on the superposition of atomic densities (which is again
smooth) or use other types based on the (self-consistent) electron density of the solute.

Tag: mpe_nonelectrostatic_model (control.in)

Usage: mpe_nonelectrostatic_model model

Purpose: This keyword controls any additional, “non-electrostatic” terms not
included in the purely electrostatic treatment of the solvent. Depending on
model, further flags (or even lines) might be necessary. Those are explained
below.
Options: Currently, only linear_OV is supported.

3.17. Continuum Solvation Methods 211

mpe_nonelectrostatic_model sub-tag: linear_OV (control.in)

Usage: mpe_nonelectrostatic_model linear_OV α β

Purpose: Corrects the total energy term by αO + βV where O is the surface
area of the cavity and V its volume.

α is a real number in units of eVÅ−2. Default: 0.0
β is a real number in units of eVÅ−3. Default: 0.0

This non-electrostatic model is in principle identical to the one proposed by Andreussi et
al. [7]. Note, however, that the surface tension of the solvent is here included in the
parameter α.

convergence Tag: mpe_lmax_rf (control.in)

Usage: mpe_lmax_rf lmax

Purpose: Specifies the expansion order of the polarization potential aka reaction
field inside the cavity.
lmax is a non-negative integer number. Default: 8

This is a critical convergence parameter of the MPE model. You should never forget
to test convergence with respect to this parameter before doing production runs. For
small organic molecules, the largest and successfully tested expansion order so far has
been 14. Note, however, that numerical problems might arise when choosing even larger
values for lmax or when going to larger systems.

Tag: mpe_lmax_ep (control.in)

Usage: mpe_lmax_ep lmax

Purpose: Specifies the expansion order of the polarization potential aka reaction
field outside of the cavity.
lmax is a non-negative integer number. Default: maximum value of l_hartree
for all species.

This parameter is similar to but usually less critical than mpe_lmax_rf . However,
careful convergence tests with respect to this parameter before doing production runs is
advisable since this parameter dictates the size of the MPE matrix equation. Choosing
larger values than the default should usually have little to no impact on the results.

Tag: mpe_degree_of_determination (control.in)

212 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: mpe_degree_of_determination dod

Purpose: Defines the desired ratio of number of rows to columns in left-hand
side matrix of the MPE equation.
dod is a real number ≥ 1.0. Default: 5.0

For the very limited (!) number of applications of the MPE method so far, the default
value of 5.0 has been a save choice. However, you should never forget to test convergence
with respect to this parameter before doing production runs. Note, that the requested
degree of determination can only very approximately be reached. This can lead to an
under- determination of the MPE equations and a subsequent termination of the program
when values for dod very close to 1 are chosen.

Tag: mpe_tol_adjR2 (control.in)

Usage: mpe_tol_adjR2 tol

Purpose: Defines the tolerance for the adjusted coefficient of determination R̄2

of the solved MPE equations. Will abort if R̄2 < 1− tol.
tol is a real number between 0.0 and 1.0. Default: 0.075

The MPE equations are sometimes not solvable in the regular solid harmonic basis used
for the reaction field. This is the case especially for large molecules. A low R̄2 indicates
such a bad solution. In some cases increasing mpe_lmax_rf helps, but there are
pathologic cases where increasing mpe_lmax_rf leads to a perpetual decrease in
∆el

solvG without ever converging.

For R̄2 < 0.925 it is likely that less than 90% of ∆el
solvG are captured. This is how-

ever based on experience from a limited number of cases. Feedback to the developers
(jakob.filser@tum.de) will be appreciated!

Tag: mpe_tol_adjR2_wait_scf (control.in)

Usage: mpe_tol_adjR2_wait_scf bool

Purpose: If .true., will wait until the SCF cycle is converged before it is
checked whether R̄2 < 1− tol.
Default: .false.

Although MPE does not actively try to converge, R̄2 tends to improve during the SCF
procedure. Setting mpe_tol_adjR2_wait_scf can thus help borderline cases con-
verge, at the cost of spending the full computation time of the SCF procedure on a
calculation that might ultimately fail.

expert Tag: mpe_factorization_type (control.in)

mailto:jakob.filser@tum.de

3.17. Continuum Solvation Methods 213

Usage: mpe_factorization_type type

Purpose: Defines the numerical method used to factorize the left-hand side of
the MPE equations as the first step to the numerical solution.
type can be chosen from: qr, qr+svd, and svd. Default: qr+svd

The option qr is temporarily disabled until R̄2 is implemented for this case!

The default behavior is to perform a QR factorization with a singular value decomposition
(SVD) on top. This allows to robustly solve the MPE equation via the pseudo-inverse
of the left-hand side.

Be careful! Using the (non rank-revealing) QR factorization alone can fail when the
left-hand side is rank deficient which can easily happen—especially for large expansion
orders mpe_lmax_rf and/or mpe_lmax_ep ! On the other hand, svd does not
necessarily mean that no QR factorization is performed as this (at least for the parallel
implementation) depends on the (Sca)LAPACK driver routine used.

Tag: mpe_f_sparsity_threshold (control.in)

Usage: mpe_f_sparsity_threshold threshold

Purpose: Can potentially speed up the evaluation of the reaction field on the
integration grid by neglecting all its coefficients smaller than threshold.
threshold is a non-negative real number. Default: 0.0

Speed in this case usually comes at the price of sacrificing accuracy, i.e. it should always
be tested if the results are still sufficiently accurate. Moreover, a large threshold might
cause instabilities in the SCF cycle!

The keyword mpe_f_sparsity_threshold is temporarily disabled until R̄2 is im-
plemented for this case!

Tag: mpe_n_centers_ep (control.in)

Usage: mpe_n_centers_ep n

Purpose: Defines the number of centers used for the expansion of the polarization
potential outside of the cavity.
n is a positive integer number. Default: number of centers for the Hartree
potential expansion (cf. 3.7)

The first n centers defined in geometry.in are used as expansion centers. The default
is to use all of them. Only change this value if you fully understand what you are doing
and why you want to do this!

Tag: mpe_n_boundary_conditions (control.in)

214 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: mpe_n_boundary_conditions nbc

Purpose: Determines the number of boundary conditions imposed at every point
on the cavity interface.
Valid choices for nbc are 2 and 4. Default: 2

As outlined in Ref. [206], there are at least two more boundary conditions other than
Eqns. 3.38a and 3.38b that can be imposed on the electrostatic potential / field / flux at
a dielectric interface. The default is to enforce continuity of the potential and continuity
of the dielectric flux perpendicular to the interface, i.e. nbc equals 2. Furthermore,
continuity of the electric field parallel to the interface can be imposed, i.e. nbc equals 4.
However, this should automatically be satisfied by the former two boundary conditions
and—in the best case—only leads to a higher order correction of the fit. Warning: The
non-default has not been tested thoroughly. Verify your results carefully when using it!

Tag: isc_calculate_surface_and_volume (control.in)

Usage: isc_calculate_surface_and_volume bool

Purpose: Determines whether the surface area and volume of the cavity are
calculated.
bool is of Boolean type. Default: .true.

As the only currently implemented mpe_nonelectrostatic_model linear_OV
requires the calculated measures, this flag is automatically turned on when it has been
turned off but is needed.

Tag: isc_surface_curvature_correction (control.in)

Usage: isc_surface_curvature_correction bool

Purpose: When this flag is turned on, the calculated surface area (and volume)
of the cavity is approximately corrected for the cavity curvature.
bool is of Boolean type. Default: .true.

The effect of this keyword is usually rather negligible. For more details regarding the
correction, please consult Ref. [206].

Tag: isc_rho_rel_deviation_threshold (control.in)

Usage: isc_rho_rel_deviation_threshold threshold

Purpose: Defines the convergence criterion of the cavity generation process: The
walker dynamics simulation is run until the density values for all walkers deviate
from the chosen iso value by at most threshold.
threshold is a small, positive real number. Default: 1× 10−3

This keyword is only applicable for an isc_cavity_type defined by an iso-density
value.

3.17. Continuum Solvation Methods 215

Tag: isc_max_dyn_steps (control.in)

Usage: isc_max_dyn_steps num

Purpose: Determines the maximum number of allowed steps to reach conver-
gence of the walker dynamics simulation in the cavity creation process.
num is a positive integer number. Default: 300

Tag: isc_try_restore_convergence (control.in)

Usage: isc_try_restore_convergence bool

Purpose: When convergence of the cavity creation dynamics run could not be
achieved within the number of allowed steps specified by isc_max_dyn_steps
, this flag allows to enforce convergence by simply deleting all walkers not satisfy-
ing the convergence criterion given by isc_rho_rel_deviation_threshold
.
bool is of Boolean type. Default: .false.

Although a simple check is done to stop the calculation when too many walkers do
not satisfy the convergence criterion, one should always manually checking the resulting
cavity for larger holes that might result from the deletion of walkers which can lead to
a bad estimate of the cavity’s surface area and volume and maybe also have an impact
on the quality of the polarization potential.

Tag: isc_kill_ratio (control.in)

Usage: isc_kill_ratio fraction

Purpose: This keyword can be helpful when the walker dynamics run does not
converge due to trapped walkers by killing the worst fraction of walkers at
each neighbor list update step (also see isc_update_nlist_interval).
fraction is a non-negative real number much smaller than 1. Default: 0.0

As the number of possibly trapped walkers depends a lot on the shape of the elec-
tron density, it is rather difficult to give a recommendation about a sensible value for
fraction. In case walkers get stuck, we propose to use a rather conservative kill ratio
of 1× 10−3 and only increase it if necessary.

Tag: isc_update_nlist_interval (control.in)

Usage: isc_update_nlist_interval num

Purpose: This keyword triggers a re-evaluation of the neighbor lists in the density
walkers dynamics simulation after every num steps.
num is a positive integer number. Default: 50

216 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: isc_dynamics_friction (control.in)

Usage: isc_dynamics_friction fric

Purpose: The value of fric determines how much “kinetic energy” is removed
from the walkers in every step of the simulations via a simple velocity scaling.
fric is a real number between 0 and 1. Default: 0.1

A value of 0 for fric means that no energy is removed from the system which may lead
to a bad convergence behavior. On the other hand, a value of 1 means that all kinetic
energy is removed at each step which tends to slow down the rate of convergence.

Tag: isc_dt (control.in)

Usage: isc_dt delta

Purpose: Determines the “time” step of the walker dynamics simulation.
delta is a positive real number. Default: 0.1

Note: Since this is no actual physical quantity, arbitrary time units are used.

Tag: isc_rho_k (control.in)

Usage: isc_rho_k k

Purpose: Determines the force constant k for the “density” force, i.e. the
harmonic force that pulls the walkers along the density gradient to the specified
iso-density value.
k is a positive real number. Default: 1.0

Note: Since this is no actual physical quantity, arbitrary time units are used.

Tag: isc_rep_k (control.in)

Usage: isc_rep_k k

Purpose: Determines the force constant k for the repulsive interaction between
walkers perpendicular to the density gradient.
k is a positive real number. Default: 0.01

Note: Since this is no actual physical quantity, arbitrary time units are used.

Tag: isc_g_k (control.in)

3.17. Continuum Solvation Methods 217

Usage: isc_g_k k

Purpose: Determines the force constant k for the “gravitational” force that drags
walkers to the center of gravity of the solute in case the local density gradient is
too small.
k is a positive real number. Default: 2.0

Usually this should not happen, but when walkers move too far away from the solute,
the density gradient becomes very small and its direction is unreliable due to numerical
noise (see isc_gradient_threshold). In this case, the walker is dragged to the
center of the solute until the density gradient is again large enough. Note: Since this is
no actual physical quantity, arbitrary time units are used.

Tag: isc_gradient_threshold (control.in)

Usage: isc_gradient_threshold thsq

Purpose: When the squared norm of the electron density gradient at the position
of a walker is less than thsq, this gradient is considered unreliable. Instead, a
simple “gravitational” force towards the center of the solute is applied.
thsq is a positive real number. Default: 1× 10−8

The force constant of the “gravitational” force is determined by isc_g_k .

debug Tag: mpe_xml_logging (control.in)

Usage: mpe_xml_logging filename level

Purpose: Controls the MPE module’s internal XML logging output.
filename specifies the name of the log file to be written. Default:
mpe_interface.xml
level defines the detail of the output. Supported log levels are: off, basic,
medium, and detailed. Default: off

This keyword is intended for debugging purposes. Note: Depending on the log level, the
size of the output can become quite large.

Tag: isc_cavity_restart (control.in)

Usage: isc_cavity_restart filename

Purpose: Read the solvation cavity from restart file (if available) and write new
cavity to same file.
filename is the name of the restart file.

Specifying this keyword is almost equivalent to specifying both isc_cavity_restart_read
and isc_cavity_restart_write with the same filename option except that with
isc_cavity_restart the program does not abort when there is no restart file to read

218 Chapter 3. The Full Monty: All Keywords and Capabilities

from.
Note: This keyword is intended for debugging purposes. Do not rely on the current
structure of the cavity restart file as it might change in the future.

Tag: isc_cavity_restart_read (control.in)

Usage: isc_cavity_restart_read filename

Purpose: Read the solvation cavity from restart file instead of constructing a
new one.
filename is the name of the file (in .xyz format) containing the cavity points
and normal vectors. Additionally, a file <filename>.bin is written which
contains the entire cavity information in not human-readable form. While the
primary purpose of the former is visualization, the latter is the actual restart file.

Note: This keyword is intended for debugging purposes. Do not rely on the current
structure of the cavity restart file as it might change in the future.

Tag: isc_cavity_restart_write (control.in)

Usage: isc_cavity_restart_write filename

Purpose: Write the cavity to the specified restart file once created.
filename is the name of the restart file (in .xyz format). If additionally
<filename>.bin is present, the cavity is read from the latter instead. Note that
the .xyz file has to be present in both cases. While this file itself is sufficient to
create a cavity, only the .bin file allows for a fully deterministic restart.

Note: This keyword is intended for debugging purposes. Do not rely on the current
structure of the cavity restart file as it might change in the future.

Tag: isc_record_cavity_creation (control.in)

Usage: isc_record_cavity_creation filename num

Purpose: Controls the output of snapshots during the cavity generation process.
When num is positive, every num steps an XYZ snapshot of the cavity is written
to file filename. For other choices of num, no output will be generated.
filename is of type string.
num is of type integer. Default: 0

This keyword is intended for debugging purposes. Note that the size of the output file
can become very large!

3.17. Continuum Solvation Methods 219

3.17.2 SMPB Implicit Electrolyte Model

In FHI-aims, implicit solvation effects or electrolyte effects (z:z electrolytes) can be
included by solving the Stern- and finite ion-size Modified Poisson-Boltzmann equation
((S)MPBE) in each SCF step:

∇ · [ε[nel(r)]∇v(r)] = −4πnsol(r)− 4πnMPB
ion (r) , (3.39)

with
nMPB

ion (r) = z
[
cs

+(r)− cs
−(r)

]
, (3.40)

where ε[nel] is a parameterized function of the electron density, v is the electrostatic
potential, nsol is the solute charge density consisting of electrons and nuclei and nMPB

ion
is the ionic charge density modeled as a function of the exclusion function αion[nel]
being parameterized via the electron density and the electrostatic potential v. The
implementation so far supports different kind of models for the ionic charge density,
that is the modified, the linearized or the standard PBE. All models include a model
for the Stern layer by a repulsion of the ions from the solute modeled via αion[nel] and
the size-modified version also a finite ion size a. Parameterizations are needed for the
dielectric function (nmin and nmax) and nonmean-field interaction of solvent with solute
((α + γ) and β) which are readily available for water solvents but have to be obtained
first for other solvents. Ionic parameters (ion size a and Stern layer defining parameters
dαion and ξαion) are not known so far and we are currently working on deriving them.

The energies are outputted in the end of FHI-aims under the header MPBE Solvation
Additional Free Energies:

• Total energy = Electrostatic part of the energy. This does NOT consider yet
any non-electrostatic corrections (see next term)

• Free Energy in Electrolyte = Ω◦ in ref. [192]. Free energy of solute in
electrolytic environment, which is Total energy + Nonelectrostatic Free
Energy + Additional Nonelstatic MPBE Solvation Energy, where Total
energy is the normally outputted energy in Aims (electrostatic part)

• Surface Area of Cavity = quantum surface of solvation cavity

• Volume of Cavity = quantum volume of solvation cavity

• Nonelectrostatic Free Energy = non-electrostatic part of solvation energy
due to solute-solvent interactions, Ωnon−mf in the publication

• Additional Nonelstatic MPBE Solvation Energy = non-electrostatic part
of free energy due to ions. For ion-free calculations this is zero.

For more details see [192, 193]. If you want to do any calculations considering solvent
or ion effects, please contact the authors, we are happy to help and cooperate.

The keywords listed here are the main part of all keywords. Some of the keywords were
left out because they are highly experimental, if one is interested in more options, please
contact the authors.

220 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general subsection of control.in:

Tag: solvent mpb (control.in)

Usage: solvent mpb

Purpose: Switches MPB solvent effects on.
Restriction: Only for cluster systems (no periodic systems).

solvent mpb sub-tag: dielec_func (control.in)

Usage: dielec_func type parameters

Purpose: Define the dielectric function.
type integer describes the type of dielectric function used, type=0 Fattebert &
Gygi[64] or type=1 Andreussi & Marzari[7]
parameters settings for dielectric function, separated by space:
type=0: bulk dielectric constant εs,bulk, β, n0

type=1: bulk dielectric constant εs,bulk, nmin, nmax

Default: 1 78.36 0.0001 0.005[7]

solvent mpb sub-tag: ions_{parameter} (control.in)

Usage: ions_{parameter} parameter

Purpose: Set the parameters defining the ions in the electrolyte. In our recent
publication[193] we explain how to choose these for different monovalent salt
solutions.
parameter {parameter} =

• temp (temperature (K))

• conc (bulk concentration cs,bulk (mol/L))

• charge (z)

• size (lenght of lattice cell a (Å))

• kind (0 for sharp step function, 1 for smooth function)

• mod_alpha (dαion ,ξαion)

Defaults: T = 300K, cs,bulk =1M,z=1,a=5, kind = 1, dαion =0.5,ξαion =1.0

Remarks: The inclusion of a second αion function for the anions is experimental
and should not be used. The use of a sharp cutoff function for αion is not
recommended, not properly implemented and just there for testing purposes.

3.17. Continuum Solvation Methods 221

solvent mpb sub-tag: SPE_{setting} (control.in)

Usage: SPE_{setting} parameter

Purpose: Change numerical parameters of the SPE solver.
parameter {setting} =

• lmax (maximum angular momentum lmax of multipole expansion and of all
species)

• conv (τMERM, η, separated by space)

• cut_and_lmax_ff (distance from atom centers at which far field is turned
on – multipole_radius_SPE, lffmax – maximum angular momentum in the
far field, separated by space)

Defaults: lmax = max(l_hartree), τMERM = 1e-10, η =0.5, lffmax = lmax,
multipole_radius_SPE is per default not used and the species dependent
multipole_radius_free + 2.0 is used as far field cutoff radius.
Remarks: Due to our present tests, we do not recommend to use lffmax < lmax, the
errors in the energies at the normal cutoff radius are too big. τMERM =1e-8 can
be enough in most cases and speed up the calculation. The species dependend
l_hartree can be by implementation not larger than lmax, so it is reduced to
lmax if higher for the SPE solver.

solvent mpb sub-tag: dynamic_{quantity}_off (control.in)

Usage: dynamic_{quantity}_off

Purpose: If these keywords are used, {quantity} is parameterized before the SCF
cycle from the superposition of free energy densities.
{quantity} =

• cavity dielectric function ε

• ions exclusion function αion

Default: both keywords not used by default, so both quantities are calculated
self-consistently by parameterizing it with the full electron density.

solvent mpb sub-tag: delta_rho_in_merm (control.in)

222 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: delta_rho_in_merm

Purpose: Setting this keyword, evaluates the change of the source term
q − 1

4π L̂1δvn+1 during the MERM iteration and solves the SPE for this change
rather than the full source density.
Default: Not used. This keyword is under development and experimental, do not
use it, yet.

solvent mpb sub-tag: nonsc_Gnonmf (control.in)

Usage: nonsc_Gnonmf

Purpose: Setting this keyword, calculates the free energy term Ωnon−mf as a post-
correction after the convergence of the SCF cycle, so no Kohn-Sham correction
is added which would normally arise from this term. This has been proven to give
very similar results for solvation energies like the fully self-consistent calculation
of this term. Since people observed numerical instabilities due to this term,
sometimes it might be better to set this flag.
Default: Not used. Fully self-consistent evaluation of Ωnon−mf

solvent mpb sub-tag: Gnonmf_FD_delta (control.in)

Usage: Gnonmf_FD_delta parameter

parameter ∆ parameter defining the thickness of the cavity
Purpose: Used to calculated the quantum surface S and volume V to evaluate
the free energy contribution Ωnon−mf

Default: 1e-8

solvent mpb sub-tag: not_converge_rho_mpb (control.in)

Usage: not_converge_rho_mpb

Purpose: Setting this keyword, runs a vacuum calculation first and then subse-
quently solves the MPBE once with the vacuum electron density and then outputs
all energetics.
Default: Not used. This could be of interest for either very big systems to get
first approximations without running the Newton method in each SCF step but
only once, but of course then does not involve any self-consistent solution of the
coupled Kohn-Sham and MPB equations. Originally, this feature was introduced
to evaluate electrostatic potentials and compare them to other codes, like e.g.
FEM codes.

solvent mpb sub-tag: solve_lpbe_only (control.in)

3.17. Continuum Solvation Methods 223

Usage: solve_lpbe_only logical

Purpose: Instead of solving the MPBE, solve the linearized version of this, also
called the LPBE. For neutral molecules electrostatic fields are often small, so the
LPBE electrostatic potential is often a good approximation to the true MPBE
potential. The solution of the LPBE can be done directly using the MERM with-
out the Newton method and is therefore faster for most cases.
logical if .True., use the LPB electrostatic potential, but the MPB free en-
ergy expression which contains additional entropic terms compared to the LPB
expression.
Default: By default the MPBE is solved, so this is not used.

solvent mpb sub-tag: MERM_in_SPE_solver (control.in)

Usage: MERM_in_SPE_solver logical

Purpose: Do the MERM iterations inside the SPE_solver.f90 routine without
updating δvn+1 on the full integration grid at each step, but only on the points
where we actually need it to form the source term. By this, we can gain speed,
especially for cs,bulk = 0.
logical

Default: .true. Remark: In general the both options should give exactly the
same result at convergence. If any difficulties arise, one is however recommended
to try the .False. options, since it should be the more stable version of the
solver.

solvent mpb sub-tag: MERM_atom_wise (control.in)

224 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: MERM_atom_wise logical

Purpose: Do the MERM iterations for each atom separately, i.e. we write eq.
(33)[192] (Generalized Poisson or LPB-kind of equation) as:

(
∇ [ε∇]− h2[vn]

)
δvn+1,at = −4πεpatq[vn] (3.41)

δvn+1 =
∑
at
δvn+1,at (3.42)

q[vn] =
∑
at
patq[vn] (3.43)

In order to perform the MERM iterations for each atom, the full grid of the re-
spective atom has to be used, i.e. also the electron density needs to be updated
on points where commonly the partition_tab is vanishing. However, by this
we avoid the cross-update of atomic potentials on the atomic grid of other atoms
as needed in the original method and this is usually most costly in particular for
larger systems. In terms of convergence with the maximum angular momentum
lmax, this method performs a bit worse than the original method, which is why
we recommend to use lmax = 8 for production runs. Still this method should be
faster also with this higher accuracy in the multipole expansion.
logical

Default: .false.
Remark: Using this flag will automatically set MERM_in_SPE_solver =
.True..

solvent mpb sub-tag: set_nonelstat_params (control.in)

Usage: set_nonelstat_params value value

Purpose: Set the parameters for the nonelectrostatic solvent-solute interactions.
value value two real numbers, α + γ (dyn/cm) and β (GPa), separated by
space.
Default: α + γ = 50 dyn/cm, β = −0.35 GPa

3.18. Hubbard corrected DFT (DFT+U) 225

3.18 Hubbard corrected DFT (DFT+U)

Standard semi-local DFT functionals like LDA or GGA suffer from improper self-interaction
error (SIE) cancellation. As a results this functional utterly fail when it comes to the
description of systems which are characterized by localized electron states. One spe-
cific approach cure for this drawback is to use hubbard corrected DFT also known as
DFT+U or LDA+U. In this approach one adds a correction to the LDA or GGA Hamil-
tonian which is inspired by the Hubbard Model [108]. The correction allows to reduce
the self-interaction error in systems, which are characterized by correlated states, sig-
nificantly [9]. Its great strength lies in the simplicity of its corrective term and in the
fact that its computational cost is only marginally higher compared to LDA or GGA.
Thus, the ability to localize electrons and its computational efficiency make DFT+U to
a suitable tool for studying systems in PBC supercell calculations [104].

In the following some of the main features of DFT+U, which are specific to the imple-
mentation in FHI-aims, are addressed.

Incorporation of the Hubbard model into the normal approximate DFT description leads
to the following DFT+U energy functional:

EDFT+U [ρ (r)] = EDFT [ρ (r)] + E0
U [nIm]− Edc [nIm] . (3.44)

Here, EDFT is the standard DFT energy functional on a LDA or GGA level of theory. E0
U

depends on the orbital occupancy nIm of the correlated states at site I and represents
the energy correction according to the Hubbard Hamiltonian. However, by simply adding
E0

U to EDFT, one runs into a double-counting issue of the coulomb interaction, because
all the electron-electron interactions are already taken into account in LDA or GGA.
Furthermore, the DFT Hamiltonian explicitly depends on the charge density, while the
Hubbard Hamiltonian is written in the orbital representation. Therefore, one can not
build a direct link between both descriptions and a simple subtraction of the double-
counting is not possible. As a consequence, the dc functional Edc is not uniquely
defined and different formulations of Edc can lead to different results of the calculation
[229]. Within FHI-aims we offer three different double-counting correction strategies (see
plus_u_petukhov_mixing), the fully-localized limit (FLL), the around mean field
(AMF) approximation and a interpolation scheme where the double counting correction
is calculated in a self-consistent manner [180]. We strongly recommend to choose the
FLL as double-counting correction, as it is the most common one used in literature.

The last two terms on the r.h.s. of eq. 3.44 are usually combined to one energy correction,
EU . One arrives at following expression,

EDFT+U [ρ (r)] = EDFT [ρ (r)] + EU [nIm] . (3.45)

As briefly mentioned, the orbital occupancies nIm are the occupation numbers of local-
ized orbitals, where m is the state index which usually runs over the eigenstates of Lz
for a certain angular momentum l. With other words, nIm are the occupation numbers
of a specific shell of orbitals, located at a certain atom. The definition of a shell is best
explained by using an example. If a DFT+U treatment is requested for the 3d electrons
of a single first row transition metal, then a shell represents the five 3d-orbitals for each
spin type.

226 Chapter 3. The Full Monty: All Keywords and Capabilities

3.18.1 DFT+U correction as it is implemented in FHI-aims

So far this was just a brief sketch of the DFT+U approach in general. In the following
we present the precise definition of DFT+U how it is implemented in FHI-aims. Without
loss of generality we only show the equations with FLL as double-counting correction.

EFLL
U [{nσImm′}] = E0

U [{nσImm′}]− Edc [{nσImm′}]

= 1
2
∑
σ,I

U I
effTr [nσI (1− nσI)]

= 1
2
∑
σ,I

U I
eff [Tr (nσI)− Tr (nσInσI)] . (3.46)

These functional is known as the spherically averaged form of DFT+U. It was first
proposed by Dudarev et al.[57] and it is also rotational invariant. In this formulation, the
effective on-site interactions enter via their spherical atomic averages. This is justified by
the fact, that localized states still have atomic character and hence, spherical symmetry.
In fact, for most materials this definition gives good results.

It should be pointed out, that Ueff can be seen as an effective value of the coulomb
interaction that also includes exchange corrections. This parameter has to be specified
by hand, so far, no possibility is implemented to calculate this parameter self-consistently.
Common to all approaches is that all the calculated results sensitively depend on the
applied Ueff value. This value not only depends on the atom for which DFT+U is applied.
It also depends on the surroundings of the atom, the lattice parameters and physical
conditions. Furthermore, it also depends on the localized basis set of the underlying
quantum DFT code. This limits the comparability of different values in a strong way. In
general, for each DFT+U implementation and system, one should recalculate Ueff .

The most important quantity in equation 3.46 is the so called DFT+U occupation matrix
n. This matrix simply tells us how many electrons are in a certain shell on a certain
atom. The problem here is the inability to break down the total charge density into
atom specific contributions. Or in other words, there is no proper operator for counting
the number of electrons on an atom. Hence, the choice of the occupation matrix will
affect the outcome of a calculation. Within FHI-aims we offer two specific choices: the
on-site representation of the occupation matrix

nσImm′(on− site) = Dσ
Im,Im′ (3.47)

and

nσImm′(dual) = 1
2
∑
Jk

[
Dσ
Im,JkSJk,Im′ + SIm,JkD

σ
Jk,Im′

]
. (3.48)

The latter is known as the dual representation [89]. Within the dual representation
the occupation numbers are calculated in a similar way as in the Mulliken analysis. The
main difference between both is that the on-site version only accounts for overlaps within
a specific sub shell on an certain atom. The dual representation also accounts for the
overlap with the surrounding atoms. It is emphasized that all general aspects of DFT+U
are met by all matrix representations. Furthermore, more detailed studies regarding the

3.18. Hubbard corrected DFT (DFT+U) 227

performance of the occupation matrix for various transition metal oxides revealed that in
principle there is no definition which is clearly the best [211]. Unfortunately, we only offer
forces for the on-site representation. The on-site version is also the default occupation
matrix in FHI-aims and we strongly recommend to use it.

By now, one might have noticed that DFT+U is by far not a black box method and it
gets even worse if one considers in detail how the occupation matrix is constructed. In
general, each occupation matrix can be expressed in terms of a local projector operator,
P̂ σ
Imm′ . The (m,m′)-th element of a occupation matrix at site I is then given by

nσImm′ =
∑
γ

fγ 〈Ψσ
γ |P̂ σ

Imm′ |Ψσ
γ〉 . (3.49)

For example for the on-site projection operator this would lead to

P̂ σ
Imm′(on-site) = |φ̃σIm′〉 〈φ̃σIm| . (3.50)

Here, φ̃Im denotes the dual basis functions which are defined in terms of the inverse
overlap matrix S−1,

|φ̃σm〉 =
∑
I′m′

S−1
Im,I′m′ |φ̃σm′〉 . (3.51)

The question now is which basis functions should be used in the projection? As default
we are using the atomic type basis functions of the minimal basis set in FHI-aims. Here
we automatically assume, as they are atomic like basis functions, that they will contribute
most to the localized states. However, in general it is not known if other basis functions
should also be included in the DFT+U projection e.g. tier1 3d if one deals with first row
transition metals. Usually one can notice that by a strange behavior of the occupation
matrix during the scf-cycle (occupation numbers drop to zero as the electrons occupy
other basis functions). For that purpose we offer to include also other basis functions
in the description of DFT+U (see plus_u_use_hydors). We also like to highlight
the corresponding paper related to our implementation where we address fundamental
issues of DFT+U in a LCAO electronic structure code. However, do not panic, for most
of the systems the default settings should be sufficient enough.

So far, we presented DFT+U in quite some detail. However, we just wanted to highlight
that DFT+U is far from being a black box method. However, the handling of a actual
DFT+U calculation in FHI-aims is quite easy. One just have to specify the double-
counting correction first via the plus_u_petukhov_mixing . Afterwards one can
specify the U value and the angular momentum shell to which DFT+U should be applied
for each species. Of course one can specify different U values for different species in a
simulation. Only for hard cases where convergence can not be reached easily, it is quite
useful to checkout the other keywords. Some of them can be quite useful such as the
plus_u_matrix_control . Here, one first converges the density with help of a fixed
occupation matrix which can be edited by hand. Afterwards one can use the restart
information to calculate everything self-consistently. This can be quite useful as it turns
out that DFT+U is quite sensitive to the initial guess of a calculation. Furthermore, it
is quite useful also to start from a LDA or GGA ground state density.

Tag: plus_u_petukhov_mixing (control.in)

228 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: plus_u_petukhov_mixing mixing_factor

Purpose: only for DFT+U. Allows to fix the mixing factor between AMF and
FLL contribution of the double counting correction [180].
mixing_factor is a floating point value, specifying the mixing ratio between
0.0 and 1.0. A value of 0.0 selects the Around Mean Field (AMF) contribution.
A value of 1.0 selects the Fully Localized Limit (FLL). If unspecified, the value
is determined self-consistently according to Ref. [180].
We strongly recommend to use the FLL.

There are two common schemes for dealing with the double counting problem in DFT+U:
The AMF method assumes that the effect of the DFT+U term on the actual occupations
remains small, so that the occupations can be assumed to be equal within each shell for
the purpose of the double counting correction. The FLL method, on the other hand,
assumes a maximal effect of the DFT+U term on the occupation numbers, handling
double counting correctly in the case that all orbitals with in the shell are either fully
occupied or empty. The self consistent mixing of both limits improves the handling of
the intermediate range (see Ref. [180]).

Tag: plus_u_use_mulliken (control.in)

Usage: plus_u_use_mulliken

Purpose: only for DFT+U. Allows to switch from on-site representation to the
dual representation of the occupation matrix.
Default is the on-site representation. Forces are not provided for the dual
representation.

Tag: plus_u_out_eigenvalues (control.in)

Usage: plus_u_out_eigenvalues

Purpose: only for DFT+U. Allows to calculate the eigenvalues of the self-
consistent DFT+U occupation matrix at the end of a run.

Tag: plus_u_matrix_control (control.in)

Usage: plus_u_matrix_control

Purpose: only for DFT+U. Allows to write the self-consistent occupation matrix
to a file occupation_matrix_control.txt. If the file is already present in the
calculation folder, the occupation matrix is not calculated during the run. It will
be read out from that file instead. The occupation matrix is then fixed during
the complete run.

3.18. Hubbard corrected DFT (DFT+U) 229

This is extremely useful because one can simply edit the file and manipulate the matrix
according to some specific spin configuration. Consider to use it with restart options.

Tag: plus_u_matrix_release (control.in)

Usage: plus_u_matrix_release convergence_accuracy

Purpose: only for DFT+U. If this keyword is present in combination with
plus_u_matrix_control the occupation matrix is first fixed to the matrix
from the occupation_matrix_control.txt file until some certain convergence
criteria of the total energy is fulfilled. Afterwards the occupation matrix is
calculated self-consistently again.
convergence_accuracy this threshold specifies the convergence in total energy
from which point on the occupation matrix should be calculated self-consistently.
The value is a floating point number.

Tag: plus_u_use_hydros (control.in)

Usage: plus_u_use_hydros

Purpose: experimental — only for DFT+U. If this keyword is present also
hydrogen like basis functions are included in the DFT+U correction.
The code builds up a simple linear combination of all basis functions which
contribute to the angular momentum channel to which DFT+U is applied. All
basis functions will contribute equally (see also hubbard_coefficient).

Tag: plus_u_matrix_error (control.in)

Usage: plus_u_matrix_error

Purpose: experimental — only for DFT+U. Calculates the idempotence error of
the occupation matrix Tr (n− nn)

Tag: plus_u_ramping_accuracy (control.in)

230 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: plus_u_ramping_accuracy convergence_accuracy

Purpose: experimental — only for DFT+U. If this keyword is present the
calculation starts at U = 0 eV. If the specified convergence accuracy of the total
energy is reached, the U value is slightly increased. This is will be done until the
final U value is reached.
convergence_accuracy Floating point number. Defines the convergence
accuracy from which on the U value is increased stepwise by a certain increment.
The increment can be specified with the plus_u_ramping_increment
keyword.

Subtags for species tag in control.in:

species sub-tag: plus_u (control.in)

Usage: plus_u n l U

Purpose: only for DFT+U. Adds a +U term to one specific shell of this species.
n the (integer) radial quantum number of the selected shell.
l is a character, specifying the angular momentum (s, p, d, f, ...) of the selected
shell.
U the value of the U parameter, specified in eV.
The U here defined equals Ueff in eq. 3.46.

species sub-tag: hubbard_coefficient (control.in)

Usage: hubbard_coefficient c1 c2 c3 c4

Purpose: experimental — only for DFT+U. Only works in combination with
the plus_u_use_hydros keyword. Allows the user to specify his one
projector function for DFT+U as long as this function can be represented by
basis functions contributing to a specific angular momentum which is given by
the plus_u keyword. Only four basis functions are allowed in the expansion
and the order corresponds to their appearance in the control in.
c1 expansion coefficient of the first basis function
c2 expansion coefficient of the second basis function
c3 expansion coefficient of the third basis function
c4 expansion coefficient of the 4th basis function
If a basis function should not be part of the linear combination the corresponding
coefficient should be set to 0. Keep in mind that aims performs an on-site
orthogonalization of all basis function located at a certain atom. This means
that the radial shape of a basis function might be different from that, one would
expect from the control.in definition. Within DFT+U all basis functions are
orthogonalized w.r.t. the atomic basis functions.

3.18. Hubbard corrected DFT (DFT+U) 231

species sub-tag: plus_u_ramping_increment (control.in)

Usage: plus_u_ramping_increment increment

Purpose: experimental — only for DFT+U. Specifies the the step by
which the U value should be increased. Works only in combination with
plus_u_ramping_accuracy

increment specified in eV.

232 Chapter 3. The Full Monty: All Keywords and Capabilities

3.19 C6/R6 corrections for long-range van der Waals
interactions

The correction improves the description of van der Waals (vdW) interactions in DFT. It
is based on the leading-order C6/R6 term for the interaction energy between two atoms.
Both energy and analytic forces are implemented.

Two flavors of the correction are implemented:

(1) The C6 coefficients and vdW radii are obtained directly from Hirshfeld partitioning
of the DFT electron density. This scheme only requires a single damping parameter,
which is fitted to binding energies of small organic molecules and hardwired in the code
for PBE, PBE0, revPBE, AM05, BLYP and B3LYP functionals. For more information
and citation see Ref. [215]. Both cluster and periodic cases are implemented.

(2) The empirical C6 coefficients and vdW radii must be specified directly. This scheme is
coded for maintaining compatibility with empirical C6 approaches. In actual applications,
the usage of scheme (1) is advised, since it is significantly more accurate and less
empirical.

Tags for general section of control.in:

Tag: vdw_convergence_threshold (control.in)

Usage: vdw_convergence_threshold value

Purpose: When using the vdW correction based on Hirshfeld partitioning of the
electron density (as described in Tkatchenko and Scheffler 2009, Ref. [215]) in
a periodic system, this sets the energy convergence threshold for the supercell
sum over the TS components.
value: A small positive number (in eV). Default: For unit cells with less than
100 atoms: 10−6 eV. For structures with unit cell sizes above 100 atoms, the
default is adjusted to natoms · 10−8 eV.

Note that the vdw part of the forces may be separately converged to (if set) sc_accuracy_forces.

Tag: vdw_correction_hirshfeld (control.in)

3.19. C6/R6 corrections for long-range van der Waals interactions 233

Usage: vdw_correction_hirshfeld

Purpose: Enables the vdW correction based on Hirshfeld partitioning of the
electron density (as described in Tkatchenko and Scheffler 2009, Ref. [215]). If
this keyword is set in a periodic calculation, the sum over atom pairs is done
over successively larger supercells, until the energy is converged to the level set
by sc_accuracy_etot or vdw_convergence_threshold and the forces
(if requested) are converged to within sc_accuracy_forces .
No other input required.

This method is commonly referred to as the Tkatchenko-Scheffler method. The proce-
dure is as follows. First, the normal self-consistency cycle is completed for a semilocal
or hybrid density functional, most commonly PBE or PBE0. Second, the resulting self-
consistent electron density is used to create interatomic (pairwise) C6 coefficients. A
simple pairwise van der Waals term is then added once to the self-consistent total en-
ergy from the preceding semilocal or hybrid functional. In other words, the Tkatchenko-
Scheffler method is normally employed as a post-processing term in a non-self-consistent
way, not during the self-consistency cycle. Since it needs to be combined with a different
density functional, you would normally use it like this (example for “PBE+vdW”):

xc pbe
vdw_correction_hirshfeld

Three more caveats: (1) Do not use this method together with the local-density approx-
imation (LDA) unless you know exactly what you are doing. The LDA already contains a
spurious interaction term that will lead to very strange results if added to a pairwise van
der Waals term. (2) Do not simply apply this method to a metallic system unless you
know what you are doing. (3) This is also not the (very different) functional commonly
known as the Langreth-Lundqvist or vdw-DF functional. [55] FHI-aims contains at least
two implementations of vdw-DF for those who are interested, but either implementation
is much slower than the Tkatchenko-Scheffler pairwise interatomic sum.

Tag: vdw_correction_hirshfeld_sc (control.in)

Usage: vdw_correction_hirshfeld_sc

Purpose: Enables the self-consistent version of the vdW correction based
on Hirshfeld partitioning of the electron density (see Tkatchenko and Schef-
fler 2009, Ref. [215]). In a periodic calculation, the energy is converged with
the same criteria of the a posteriori approach: vdw_correction_hirshfeld .

This flag adds the Tkatchenko-Scheffler vdW functional as a part of the given exchange-
correlation (XC) functional. In a self-consistent scheme, the contribution of the vdW
potential, vvdW[n(r)] = δEvdW[n(r)]/δn(r), is added to the XC potential to form the
total effective potential in the Kohn-Sham equations. As a result, the van der Waals
interatomic contributions affect the total electron density and are computed at each
self-consistent cycle, until convergence is reached. In this way, it is possible to evaluate
the effects of vdW interactions on the electron density and electronic properties, going
beyond the vdW a posteriori correction of the total DFT energy.

234 Chapter 3. The Full Monty: All Keywords and Capabilities

Note: Do not use this self-consistent flag during a relaxation. The self-consistent forces
are not implemented (yet) for the Tkatchenko-Scheffler vdW functional and this will
lead to inconsistency errors.

Tag: vdw_ts (control.in)

Usage: vdw_ts [option=value...]

Alternative implementation of the TS method via the Libmbd library [98] that pro-
vides some extra features compared to the vdw_correction_hirshfeld and
vdw_correction_hirshfeld_sc implementations. The main difference is the use
of the Ewald summation to sum the 1/R6 sum in the periodic case, which makes the
use of the vdw_convergence_threshold keyword obsolete. Furthermore, forces and
stress are available also in the self-consistent case. This implementation does not honor
the vdw_pair_ignore and hirshfeld_param keywords.

• self_consistent=<logical> [default: .false.] turns on self-consistency as
explained under vdw_correction_hirshfeld_sc .

• vdw_params_kind=<string> [default: "ts"] specifies the set of free-atom vdW
parameters (α0, C6, RvdW) used. "ts" uses the original set of parameters,
"tssurf" uses values from the so-called vdWsurf approach [197] for some of the
elements. The used parameters are listed here.

Tag: vdw_correction (control.in)

Usage: vdw_correction

Purpose: Enables the empirical C6/R6 correction with the C6 coefficients and
vdW radii specified by the user.

The user needs to specify the interaction parameters for all atomic pairs in the system
(i.e. for CNOH, there are 10 atomic pairs). This is done by putting “vdw_pairs N”,
where N is the number of pairs. This should be followed by N lines of “vdw_coeff atomi

atomj C6ij R
0
ij d”, where C6ij is the C6 coefficient for the interaction between atomi and

atomj, R0
ij is the corresponding vdW radius and d is the damping function parameter.

A choice d=20 is suggested for all atomic pairs. An example for C-C interaction is:
“vdw_coeff C C 30.00 5.59 20.0”.

Tag: vdw_pair_ignore (control.in)

Usage: vdw_pair_ignore species1 species2

Purpose: excludes the interaction between species1 and species2 from
any C6-correction, eg. such that metallic slabs are not affected internally by
introducing C6-interactions. Does not apply to the vdw_ts keyword.

https://github.com/libmbd/libmbd/blob/master/src/pymbd/vdw-params.csv

3.19. C6/R6 corrections for long-range van der Waals interactions 235

Subtags for species tag in control.in:

species sub-tag: hirshfeld_param (control.in)

Usage: hirshfeld_param C6 alpha R0

Default: the values outlined in Ref. [215]
Purpose: To explicitly allow setting the parameters for the Tkatchenko-Scheffler
van der Waals correction. Does not apply to the vdw_ts keyword.

236 Chapter 3. The Full Monty: All Keywords and Capabilities

3.20 Many-Body Dispersion (MBD) method

The many-body dispersion (MBD) method calculates the long-range van der Waals
(vdW) energy of a system by modeling the response of atoms with quantum harmonic
oscillators coupled via a dipole potential [217, 216]. Two versions of MBD are available
in FHI-aims, MBD@rsSCS and MBD-NL, both via the included Libmbd library [98].

Figure 3.5: Schematic description of the MBD@rsSCS method.

MBD@rsSCS In the range-separated self-consistently screened (rsSCS) version of
MBD (MBD@rsSCS) [5], the vdW energy is calculated in three steps (Figure 3.5).
First, the free-atom reference vdW parameters (polarizabilities, C6 coefficients, vdW
radii) are scaled with the ratio of Hirshfeld volumes of atoms in the system and of the
respective free atoms. Second, the self-consistent screening equation for the dipole os-
cillators is solved to account for short-range screening between the atoms. Third, the

3.20. Many-Body Dispersion (MBD) method 237

MBD Hamiltonian is solved to obtain the vdW energy.

MBD-NL The more recent nonlocal (NL) version of MBD (MBD-NL) incorporates
several ingredients from the class of nonlocal vdW density functionals to extend the
applicability of MBD@rsSCS to ionic and hybrid metal-organic systems [99]. Compared
to MBD@rsSCS, the atomic vdW parameters are obtained by coarse-graining a modified
Vydrov–Van Voorhis polarizability functional, and the self-consistent screening step is
skipped.

Analytical forces and stress are implemented for both versions of MBD, with the following
caveat. The total nuclear derivatives of the MBD energy consist of the direct terms and
of the implicit terms arising from the dependence on the vdW parameters, which in
turn depend either on Hirshfeld volumes (MBD@rsSCS) or the polarizability functional
(MBD-NL), which depend on the electron density, which finally depends on nuclear
coordinates. Currently, the latter implicit terms are neglected, however, preliminary
testing suggests that these terms are negligible in most systems. In fact, the error
arising from neglecting these terms seems to be in general comparable to or smaller than
the inherent numerical noise in the Kohn–Sham forces. Having said that, please report
any observed discrepancies in the forces during geometry relaxations or MD simulations
to dev@jan.hermann.name.

Tags for general section of control.in:

The following two keywords activate either the MBD@rsSCS (many_body_dispersion)
or the MBD-NL (many_body_dispersion_nl) method. The optional arguments are
shared by both methods.

Tag: many_body_dispersion (control.in)

Usage: many_body_dispersion [option=value...]

Tag: many_body_dispersion_nl (control.in)

Usage: many_body_dispersion_nl [option=value...]

• beta=<real> [default: depends on XC functional] sets the damping parameter β.

• k_grid=<integer>:<integer>:<integer> [default: taken from k_grid] spec-
ifies the k-point grid used for sampling the first Brillouin zone in the MBD calcula-
tion. The grid is shifted by half a distance between the k-points from the Γ-point.
[only for periodic systems]

• freq_grid=<integer> [default: 15] controls the size of the imaginary-frequency
grid used for the Casimir–Polder integral.

mailto:dev@jan.hermann.name?subject=%5Baims%20mbd-std%5D

238 Chapter 3. The Full Monty: All Keywords and Capabilities

• self_consistent=<logical> [default: .false.] turns on self-consistency as
explained under vdw_correction_hirshfeld_sc .

• vdw_params_kind=<string> [default: "ts"] specifies the set of free-atom vdW
parameters (α0, C6, RvdW) used. "ts" uses the original set of parameters,
"tssurf" uses values from the so-called vdWsurf approach [197] for some of the
elements. The used parameters are listed here.

Examples:

• many_body_dispersion (this uses the default settings)

• many_body_dispersion_nl beta=0.8 k_grid=3:3:3 (explicit settings of the
damping parameter and of a 3× 3× 3 k-point grid)

Deprecated FHI-aims implementation (pre-2019 default)

Tag: many_body_dispersion_pre2019 (control.in)

Usage: many_body_dispersion_pre2019 [option=value...]

Purpose: Calculates the MBD@rsSCS energy for the active XC functional
(available for PBE, PBE0, and HSE).

This was the default method prior the official 2019 FHI-aims release. The default has
changed to the Libmbd implementation many_body_dispersion described above.

• k_grid=<nk1>:<nk2>:<nk3> [default: taken from k_grid] specifies the k-point
grid used for sampling the first Brillouin zone in the MBD calculation. The grid is
shifted by half a distance between the k-points from the Γ-point. [only for periodic
systems]

• vacuum=<a>::<c> [default: all .false.] controls whether some of the lattice
vectors correspond to vacuum dimensions.

• self_consistent=<logical> [default: .false.] controls the calculation of the
MBD XC potential.

• beta=<real> [default: depends on XC functional] sets the damping parameter β.

https://github.com/libmbd/libmbd/blob/master/src/pymbd/vdw-params.csv

3.21. Calculating nonlocal correlation energy within density functional approach 239

3.21 Calculating nonlocal correlation energy within
density functional approach

Warning: This functionality is available in FHI-aims, but has not seen extensive testing
by ourselves. It should therefore be treated as experimental. If you intend to use this
functionality, by all means ensure that literature results obtained using this functional
are reproducible using the implementation presented here.

There are currently two separate working implementations of van der Waals DF in FHI-
aims:

• Sec. 3.21.1: One version that allows post-processing only (i.e., compute the self-
consistent density by another XC functional, the evaluate only the vdw-DF energy
term again after the fact), using a Monte Carlo integration scheme. This version
works for non-periodic as well as periodic systems. The original code was developed
in the group of Claudia Ambrosch-Draxl at University of Leoben, Austria.

• Sec. 3.21.2: A second version that relies on an analytical integration scheme
developed by Simiam Ghan, Andris Gulans and Ville Havu at Aalto University in
Helsinki. This version allows non-self-consistent and self-consistent usage, as well
as gradients (forces). It also has a number of numerical convergence parameters
that can be adjusted.

3.21.1 Monte Carlo integration based vdW-DF

As a postprocessing step after a self-consistent calculation, the nonlocal part of the corre-
lation energy can be calculated using the van der Waals density functional proposed by M.
Dion et al. [55]. This task follows exactly the recipe presented in the original paper [55].
This calculation can be performed by choosing ll_vdwdf as a total_energy_method
(please see Section 3.3).

Important acknowledgment: The Langreth-Lundqvist functional and basic Monte
Carlo integration scheme used here was made available to us by the group of Claudia
Ambrosch-Draxl and coworkers at University of Leoben, Austria. If you use this func-
tionality successfully, please cite their work (currently, Ref. [164] and “unpublished”).

In order to perform the calculation, one should define an even spacing grid (followed by
the vdwdf tag explained below), where the total charge densities of a system obtained
after the scf cycle are projected.

In order to effectively solve the nonlocal correlation energy part, presented in Equation(1)
of [55], the Monte Carlo integration scheme of Divonne integration method of CUBA
library (Please visit http://www.feynarts.de/cuba for details).

This means that you should (yourself) compile the CUBA library as an external depen-
dency to FHI-aims. The alternative Makefile Makefile.cuba the contains examples of
how to link FHI-aims to the CUBA library, and enable the vdW-LL functional

Parameters for tuning the performance of Monte Carlo integration are defined under

240 Chapter 3. The Full Monty: All Keywords and Capabilities

the mc_int tag explained below. Also, the kernel values are tabulated in terms of the
parameters in the formula of Equation(14) of [55]. The aims package comes with the
tabulated kernel data (a file called kernel.dat) and the name of the file should be
included in control.in.

Necessary input file: In your FHI-aims distribution, a version of the kernel.dat file
as well as an example control.in file should be located in subdirectory src/ll_vdwdf .
For an actual FHI-aims program run, the kernel.dat file (currently, kernel_my.dat
is provided) must be copied to your working directory and must be referenced in your
control.in file, using the kernel_data sub-keyword of the mc_int keyword
(see below).

3.21. Calculating nonlocal correlation energy within density functional approach 241

Tags for general section of control.in:

Tag: mc_int (control.in)

Usage: mc_int subkeyword(s)

Purpose: A line that begins with vdwdf is associated with the Monte Carlo
integration performed to evaluate the non-local Langreth-Lundqvist functional.
The mc_int keyword must be followed on the same line by a subkeyword that
indicates the specific setting made here.
subkeyword(s) are one or more subkeywords or data for the Monte Carlo
integration.

To use the Monte Carlo integrated Langreth-Lundqvist functional, more than one sub-
keyword for mc_int must be specified in the control.in file. See below for valid /
necessary subkeywords. You may also want to check the documentation for the CUBA
Monte Carlo integration library (http://www.feynarts.de/cuba) that you must have built
and linked to the FHI-aims code in order to use the Langreth Lundqvist functional.

Tag: vdwdf (control.in)

Usage: vdwdf subkeyword(s)

Purpose: A line that begins with vdwdf is associated with the non-local
Langreth-Lundqvist functional. The vdwdf keyword must be followed on the
same line by a subkeyword that indicates the specific setting made here.
subkeyword(s) are one or more subkeywords or data for the Langreth-Lundqvist
functional.

To use the Langreth-Lundqvist functional, more than one subkeyword for vdwdf must
be specified in the control.in file. See below for valid / necessary subkeywords.

Subtags for vdwdf tag in control.in:

vdwdf sub-tag: cell_origin (control.in)

Usage: cell_origin x y z

x y z indicates the cartesian coordinates (in Å) of the origin of an even-spacing
cubic cell. Default: 0.0 0.0 0.0.

This option is only valid for a cluster calculation. For the case of periodic system, a cell
origin is automatically determined at the center of a supercell.

vdwdf sub-tag: cell_edge_steps (control.in)

242 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: cell_edge_steps Nx Ny Nz

Purpose: the total number of grids in each direction are defined by integer
numbers, x y z.

vdwdf sub-tag: cell_edge_units (control.in)

Usage: cell_edge_units dx dy dz.
Purpose: The real numbers dx dy dz (in Å) define the length of grid units in
each direction. Therefore, the full grid length is (Nxdx,Nydy, Nzdz).

vdwdf sub-tag: cell_size (control.in)

Usage: cell_size Lx Ly Lz

Purpose: this defines number of interacting cells in x, y, z directions for van der
Waals interactions. This option is meaningful for periodic calculation.
Lx Ly Lz are integer. Default: 0 0 0.

Note: As a temporary restriction, FHI-aims currently supports only grids with vectors
aligning along x, y, and z axes.

Calculations for periodic systems: In defining even spacing grid of a periodic system,
only information of cell_edge_steps and cell_size (if needed) is necessary and other
parameters will be automatically determined from that.

3.21. Calculating nonlocal correlation energy within density functional approach 243

Subtags for mc_int tag in control.in:

mc_int sub-tag: kernel_data (control.in)

Usage: kernel_data kernel.dat

Purpose: the name of the tabulated kernel file.

mc_int sub-tag: output_flag (control.in)

Usage: output_flag flag

Purpose: this controls output of Monte Carlo integration process, level 0 for no
output, level 1 for “reasonable”, and level 3 prints further the subregion results(if
applicable). flag is an integer number. Default: 0

mc_int sub-tag: number_of_MC (control.in)

Usage: number_of_MC N

Purpose: the total number of Monte-Carlo integration steps.
N is an integer number. Default: 5E5

mc_int sub-tag: relative_accuracy (control.in)

Usage: relative_accuracy Eacc
Purpose: control the accuracy of Monte-Carlo integration performed by Cuba
library.
Eacc is a real number. Default: 1E-16

mc_int sub-tag: absolute_accuracy (control.in)

Usage: absolute_accuracy Eabs
Purpose: control the error bar of nonlocal correlation energy.
Eabs is a real number (in the unit of Hartree). Default: 1E-2

244 Chapter 3. The Full Monty: All Keywords and Capabilities

3.21.2 Analytic integration scheme for non-selfconsistent and
self-consistent vdW-DF

This method calculates the non-local part of the correlation energy as described in [55]
allowing for both non-self-consistent and self-consistent treatment. It works for both
cluster and periodic geometries and can be used to compute forces. The implementation
as well as the kernel function are from [84]. At each scf-cycle the following steps are
performed:

• An octree is built to interpolate the current electron density to the new integration
grid below.

• To each grid point of the main integration grid another grid of similar form is
attached. The non-local correlation is then integrated on this grid using density
and its gradient interpolated from the octree. In each node of the tree a tricubic
interpolation is used.

The first step of building the octree is not parallel but the second step of integration is
MPI-parallel the usual way.

3.21. Calculating nonlocal correlation energy within density functional approach 245

Tags for general section of control.in:

Tag: nlcorr_nrad (control.in)

Usage: nlcorr_nrad number

Purpose: Sets the number of radial shells used in the integration of the non-local
correlation potential and energy. Default: 10

Tag: nlcorr_i_leb (control.in)

Usage: nlcorr_i_leb number

Purpose: Sets the index of angular Lebedev grid used in the integration of
the non-local correlation potential and energy. Maximum value available is 15.
Default: 7

Tag: vdw_method (control.in)

Usage: vdw_method type accuracy

Purpose: Sets the method for density interpolation for the integration of the
non-local correlation potential and energy.
type is the method selected, either octree, mixed, or multipoles. Default:
octree

accuracy applies to methods octree and mixed. It is the targer accuracy
of the interpolation. In case of multipoles all available multipoles are used.
Default: 1E-6

The point of providing three different options for type is simply that any prospective user
should test which one is fastest for a given problem. The difference is simply the style
of integration of the non-local part. Ideally, the results should be the same. However,
as always, please check in case of doubt.

246 Chapter 3. The Full Monty: All Keywords and Capabilities

3.22 Hartree-Fock, hybrid functionals, GW , et al.:
All the details

The basic keywords to invoke different exchange-correlation methods (ground state and
excited states) are given described in Sec. 3.3. Usually, invoking the relevant keyword
together with the normal infrastructure required to run FHI-aims should be sufficient to
produce a correct, converged result.

For Hartree-Fock and hybrid functionals, particularly for their periodic implementations,
see also the dedicated next section, Sec. 3.23.

For methods that rely explicitly on a two-electron Coulomb operator (Hartree-Fock, hy-
brid functionals, GW , MP2, RPA, etc.) and/or a frequency-dependent response function
(GW , RPA, ...), some considerable numerical trickery enters the computation in order
to keep it efficient yet manageable for practical purposes. We hope to provide resilient,
system-independent default settings, but there is a lot of freedom beyond those defaults
to either tighten up things or speed up calculations (at the price of reduced accuracy).

The present section describes all numerical settings for the aforementioned exchange-
correlation treatments.

Specifically, we describe:

• All settings that relate to the setup of the (over-)complete auxiliary basis that
expands the products of pairs of basis functions into a separate basis to represent
the Coulomb operator

• All settings that rely to the frequency grid, analytic continuation from the imagi-
nary to the real axis and contour deformation in GW related methods.

Even if you do not know what this is all about, you should know that the “auxiliary
basis” is determined as an overcomplete basis, and superfluous basis functions are then
reduced out by a threshold criterion, using singular value decomposition. This threshold
is a value to be tested in case something unexpected happens.

There are four key references that provide the technical background for these sections:

1. Principle of how we calculate the two-electron Coulomb operator by so-called
resolution of identity: Xinguo Ren et al. (2012), New J. Phys. 14, 053020, Ref.
[187]. The approach summarized below and implemented in Keyword RI_method
V is still the default for any non-periodic many-body perturbation calculations
beyond DFT (i.e., for MP2, RPA, GW , etc.)

2. Localized resolution of identity (Keyword RI_method LVL), which is used
by default for all Hartree-Fock and hybrid functional calculations, and which is
the only option for any periodic calculations including the two-electron Coulomb
operator: Arvid Ihrig et al. (2015), New J. Phys. 17, 093020, Ref. [111].

3. Linear-scaling and periodic implementation of periodic Hartree-Fock and hybrid
functionals based on RI_method LVL, described in Sergey Levchenko et al.
(2015), Comput. Phys. Commun. 192, 60-69, Ref. [145].

3.22. Hartree-Fock, hybrid functionals, GW , et al.: All the details 247

4. Technical details of self-energy evaluation in GW related methods, described in
Ref. [187] and more detailed in Golze et al. (2018), J. Chem. Theory Comput.,
14, 4856 [77]. The latter contains also a comparison of different techniques.

Mathematical background:

Any feature beyond standard DFT (e.g., HF, hybrid functional, MP2, GW , etc) requires
the two-electron Coulomb repulsion integrals, and in FHI-aims an additional auxiliary
basis set is introduced to deal with them. By utilizing the auxiliary basis functions the
N4

basis many 4-center integrals are reduced to N2
basis · Naux many 3-center integrals and

N2
aux many 2-center integrals (where Nbasis and Naux are the numbers of regular basis

functions and auxiliary basis functions, respectively). There are different ways to do so,
and here we describe two versions of these, namely, the “V" and “SVS" [221] versions
which have been implemented in this code. In the “V" version, the 4-center integrals
are approximated by

(ij|i′j′) ≈
∑
µν

(ij|µ)V −1
µν (ν|i′j′), (3.52)

and in the “SVS" one,

(ij|i′j′) ≈
∑
µν

∑
µ′ν′

(ijµ)S−1
µµ′Vµ′ν′S

−1
ν′ν(νi′j′), (3.53)

where i, j, i′, j′, . . . denote the regular basis functions and µ, ν, . . . denote the auxiliary
basis functions. Here Vµν is the Coulomb repulsion integral between two auxiliary basis
functions, and Sµν is the corresponding overlap integral. (ijµ) and (ij|µ) are the overlap
and Coulomb repulsion between the regular basis orbital product φiφj and the auxiliary
basis function Pµ respectively. Eq. (3.52) and (3.53) are often refered to as resolution
of identity (Refs. [30, 3, 221, 61] and others). In practice satisfactory accuracy can be
gained with an auxiliary basis size Naux of 4-5 times of Nbasis. In addition, we implement
a modified localized version of RI-V known as “RI-LVL”, described in Ref. [111] and also
in Sec. 3.23.

How is the auxiliary basis functions constructed? In FHI-aims, it is built up as the
“on-site” pair products of the regular basis functions (hence the auxiliary basis is also
called the “product basis” in this context). These products are then orthonormalized
at each atom using the gram-Schmidt method. These auxiliary basis functions are
hence atom-centered numeric functions with a radial function times spherical harmonics
Pµ(r) = ξ(r)at,n,l

r
Ylm(ϑ, ϕ). The radial part of the auxiliary basis function is formally

linked to that of the regular basis functions by

{ξat,n,l(r)} = {uat,n1,l1(r)uat,n2,l2 , |l1 − l2| ≤ l ≤ |l1 + l2|}. (3.54)

In Eq. (3.54) we make it clear that the set of auxiliary basis functions centered on
certain atom originates from the pair products of regular basis functions centered on
the the same atom. The angular momentum of the auxiliary basis and those of the
two constituent regular basis satisfy the triangular true. The number of auxiliary basis
function for a give l (enumerated by n) is controlled by the allowed pairs of regular
basis functions, and the accuracy threshold in the Gram-Schmidt orthormalization. The
process is described in Ref. [187] and in more detail with an illustrating figure in Ref.

248 Chapter 3. The Full Monty: All Keywords and Capabilities

[111] (open access). The parameters that controls the construction of the auxiliary basis
functions can be found below.

GW : Self-energy evaluation

Practical guidelines how to conduct GW calculations and a summary of numerical tech-
niques are given a recent, comprehensive review article [75]. In GW , we have to calculate
the self-energy Σ, which is given by

Σ(r, r′, ω) = i

2π

∫
dω′eiω

′ηG0(r, r′, ω + ω′)W0(r, r′, ω′). (3.55)

The frequency integration in Eq. (3.55) presents one of the major challenges in a G0W0
calculation because G0 and W0 have poles close to the real frequncy axis. Different nu-
merical techniques were developed, which are summarized in Ref. [75]. In FHI-aims, the
self-energy can be calculated with the analytic continuation and the contour deforma-
tion. The contour deformation is computationally more expensive, but more accurate.
The implementation of the analytic continuation in FHI-aims is described in [187] and
the implementation of the contour deformation in [77].

Analytic continuation

When using the analytic continuation, the self-energy is first calculated on the imaginary
frequency axis

Σ(r, r′; iω) = i

2π

∫
dω′G(r, r′; iω + iω′)W (r, r′; iω′) (3.56)

and then analytically continued to the real frequency axis. A proper frequency grid is
needed for the analytic continuation, i.e., a set of imaginary frequencies {iω} for which
Σ(iω) is computed. One popular way of performing the analytical continuation is to
model the self-energy with a multi-pole expression [194], namely,

Σ(iω) ≈ A0 +
∑
n

An
iω −Bn

, (3.57)

where n is the number of poles, and An and Bn are complex numbers. Eq. (3.57) is
used to fitted the calculated self-energy on imagninary axis using the non-linear least
square fitting algorithm. Once the the the parameters An and Bn are obtained that give
the best fitting, the self-energy on the real frequency axis can be obtained by

Σ(ω) ≈ A0 +
∑
n

An
ω −Bn

. (3.58)

In practice n = 2 (the so-called two-pole fitting) is often found to give good performance.

A Pade approximation based variant with more poles is also implemented in FHI-aims.
In the Pade approximation, the self-energy is parameterized as

Σ(iω) = a1

1 + a2(iω − iω1)

1 + a3(iω − iω2)
· · ·

. (3.59)

3.22. Hartree-Fock, hybrid functionals, GW , et al.: All the details 249

For a given, chosen set of calculated self-energy data points {iωn,Σ(iωn)} with n =
1, · · · , N , the N complex parameters a1, · · · , aN can be uniquely determined. The self-
energy on the real frequency axis is then obtained by replacing iω by ω in Eq. (3.59).
We note that the Pade approximation given by (3.59) can be interpreted as a multipole
expression, with the number of poles Npole = N − 1.

The type of the analytical continuation used in GW (Eqs. (3.58) or (3.59)) is determined
using the anacon_type and n_anacon_par keywords. The number of frequency
points used on the imaginary axis (this determines the accuracy of the input used for
fitting the expressions Eqs. (3.58) or (3.59)) can be set using the frequency_points
keyword. The frequency grid used is a modified Gauss-Legendre grid that ranges from
zero to infinity. Our experience suggests that highly accurate results for molecules (few
meV accuracy for electronic excitations, compared to exact expressions for the self-energy
on the real axis) can be obtained using a 16-parameter Pade approximation with 200
frequency points [223]. However, the numerical accuracy is then much higher (and
much more costly) than the accuracy of the underlying GW approximation itself, and
thus somewhat reduced defaults are set in the code (see keyword descriptions below).

More importantly, the Pade approximation is also numerically less stable than the two-
pole approximation. This means that, for some systems with a complicated pole structure
of the self-energy, the Pade fit might not converge for certain eigenvalues. The results
must therefore be inspected carefully, even if (for normal light-element molecules and
valence-like states) its accuracy can be much higher than the two-pole approximation.
This is, in fact, not a simple implementation issue but rather one that goes back to the
mathematical structure of the true self-energy.

Contour deformation

The analytical continuation becomes increasingly inaccurate for deeper states since the
structure of the self-energy is typically more complicated, i.e., has more poles. The fitted
pole models fail to represent these more complicated structures, see Ref. [77]. In these
cases, the self-energy should be calculated on the real-frequency axis using the contour
deformation technique, where the correlation part of the self-energy is then expressed as

Σc(r, r′, ω) = − 1
2π

∫ ∞
−∞

dω′G0(r, r′, ω + iω′)W c
0 (r, r′, iω′)

−
∑
i

φi(r)φi(r′)W c
0 (r, r′, |εi − ω|+ iη)θ(εi − ω)

+
∑
a

φa(r)φa(r′)W c
0 (r, r′, |εa − ω|+ iη)θ(ω − εa)

(3.60)

θ is the Heaviside step function, {φn}molecular orbitals andW c
0 (r, r′, ω) = W0(r, r′, ω)−

v(r, r′) with the bare Coloumb interaction v(r, r′). The index i refers to occupied and a
to unoccupied orbitals. The evaluation of the self-energy with the contour deformation
technique is controlled by the keyword contour_def_gw . An example input file for
GW with the contour deformation can be found in [74].

250 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: hf_version (control.in)

Usage: hf_version version

Purpose: Allows to switch between the standard density-matrix based setup of
the Fock operator, and an orbital based exchange operator.
version is a number, either 0 (alias density_matrix) or 1 (aliases
eigencoefficients and overlap). Default: 0

The exchange operator can be constructed either by summing over all states first to
construct the density matrix (version 0), of by a straightforward setup of orbitals and
computation of the exchange operator only then (version 1).

Both versions are pure matrix algebra. For small systems (few states), version 1 is
vastly more efficient, but towards large systems (many states) an efficiency crossover
clearly favors the density matrx based update.

By default, FHI-aims relies on the density-matrix based update always, because this is
more memory efficient, but for small systems (atoms) with lots of basis functions, this
choice should be reconsidered. Please note that both versions should work seamlessly
with Pulay mixing.

Tag: anacon_type (control.in)

Usage: anacon_type string

Purpose: Specifies type of analytical continuation for the self-energy (we calculate
the self-energy on the imaginary frequency axis, and hence need to continue it to
the real axis)
string is a string that indicates the self-energy type, either ’two-pole’ or ’pade’.
Default: No default (must be set by the user if the self-energy is required).

• string = ’two-pole’ or ’0’ : The normal two-pole fitting (Eq (3.58)).

• string = ’pade’ or ’1’ : Pade approximation (Eq. (3.59)).

The number of parameters in either approximation can be set using the keyword n_anacon_par
.

Note that the anacon_type only makes sense if qpe_calc or sc_self_energy
is set, i.e., the post-processing-type self-energy calculation is required.

This keyword must be set in control.in if the self-energy on the real axis is needed
(usually, for GW). In past versions of FHI-aims, the code would set a silent default
for anacon_type if a self-energy calculation for the real axis was required. This is no
longer the case in present versions. Users must make this choice explicitly in ’control.in’;

3.22. Hartree-Fock, hybrid functionals, GW , et al.: All the details 251

if that is not the case, the code will stop with a (hopefully gentle and instructive) warning
message.

The reason is that the choice of the analytical continuation used can have a noticeable
effect on the accuracy of GW -calculated eigenvalues. The two-pole approximation is well
established, but less accurate than the Pade approximation when the latter works.[223]
On the other hand, systems with a complicated self-energy structure can lead to numeri-
cal problems with the Pade approximation that can result in seemingly random values for
certain predicted quasiparticle eigenvalues (this can be tested, for instance, by modifying
the frequency_points keyword and tracking the results).

Tag: freq_grid_type (control.in)

Usage: freq_grid_type value

Purpose: If set, specifies the type of the grid for the imaginary frequency.

• value = 0 : Normal Gauss-Legendre grid ranging from 0 to a maximum
frequency, specified by the keyword maximum_frequency .

• value = 1 : Modified Gauss-Legendre grid ranging from 0 to positive
infinity.

• value = 2 : Logrithmic grid ranging from 0.01 a.u. to a maximum value
specified by maximum_frequency .

Default: value=1

Note that the freq_grid_type only makes sense if qpe_calc or sc_self_energy
is set, i.e., the post-processing-type self-energy calculation is required.

Tag: n_anacon_par (control.in)

Usage: n_anacon_par value

Purpose: If set, specifies the number of parameters used in the two-pole fit-
ting (Eq. (3.57)) or Pade approximation (Eq (3.59)). The default value for
n_anacon_par is 5 if anacon_type is set to ’two-pole’ (two-pole fitting),
and 16 if anacon_type is set to ’pade’ (Pade approximation).

Note that the n_anacon_par only makes sense if qpe_calc or sc_self_energy
is set, i.e., the post-processing-type self-energy calculation is required.

Tag: contour_def_gw (control.in)

252 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: contour_def_gw statestart,α stateend,α statestart,β stateend,β

Purpose: If set, specifies the range of states for which the GW quasiparticle en-
ergies are computed with the contour deformation, see Ref. [77] for a description
of the implementation. The range can be specified for the α and β spin chan-
nel separately. Giving the range for the β channel is optional. If not specified,
the range set for α will be also used for the β channel. For spin-unpolarized
calculations specify only the α channel.
The quasiparticle energies for the other states are computed with the analytic
continuation, i.e., the parameters anacon_type and n_anacon_par should
be set as well. Setting frequency_points is mandatory (200 grid points is
a solid choice).

Tag: contour_spin_channel (control.in)

Usage: contour_spin_channel integer (1 or 2)

Purpose: If specified, restricts the contour deformation to a certain spin channel.
If not given, QP energies for both channels will be calculated.

Tag: contour_eta (control.in)

Usage: contour_eta real

Purpose: Specifies the broadening parameter η used for the contour deformation.
It might be useful to set this parameter to higher values (e.g 0.002 a.u.) when
printing the self-energy or spectral function. Otherwise the default setting ensures
numerical accuracy and stability.
Default: 0.001 a.u.

Tag: contour_restart (control.in)

Usage: contour_restart task

Purpose: The iteration of the QP equation can become expensive for large sys-
tems. A restart is possible.
task is a string, specifying the desired restart task.
Available options for task are:

• write : Writes restart info to file contour_gw_qp_energies.dat.

• read : Reads restart info from contour_gw_qp_energies.dat and continues
the QP iteration cycle.

• read_and_write : Performs what the write and read options do. If the restart
files do not exist, the code will still proceed normally.

Tag: full_cmplx_sigma (control.in)

3.22. Hartree-Fock, hybrid functionals, GW , et al.: All the details 253

Usage: full_cmplx_sigma boolean

Purpose: Technical keyword for the contour deformation. If set to .true., the
complex broadening term iη enters also the integral term of the self-energy. This
requires more grid points in the frequency integration, i.e., frequency_points
should be set to 2000. Including iη is not necessary when calculating the quasi-
particle energies, but gets rid of (the very small) unphysical steps in the spectral
function at the KS/HF energies.
Default: .false.

Tag: gw_zshot (control.in)

Usage: gw_zshot boolean

Purpose: If set to .true., the Z-factor is calculated and the quasiparticle equation
is not calculated iteratively, but linearized using a Taylor expansion. Less exact
than the iterative solution. Works with analytic continuation an contour defor-
mation.
Default: .false.

Tag: contour_zshot_offset (control.in)

Usage: contour_zshot_offset real

Purpose: When using gw_zshot , the Z-factor is calculated, which contains
the dervative of the self-energy with respect to the frequency. For the contour
deformation, this derivative is calcuated numerically. This keyword defines the
offset (delta value) to calculate the derivate numerically and should be a small
number.
Default: 0.002 a.u.

Tag: gw_hedin_shift (control.in)

Usage: gw_hedin_shift boolean/state

Purpose: If set, the poor-man’s self-consistency proposed by Hedin [93] is enabled.
The Hedin shift is referenced to a particular state, typically the HOMO. This
procedure can be also considered as fixing the zero of the energy scale in a G0W0
calculation employing an overall energy shift ∆E. When including this shift,
the starting point dependence is significantly reduced, similar to an ev-scGW0
calculation. The computational overhead is negligible. The Hedin shift can be
calculated individually for each state. In this case, set ’.true.’ The shift can be
also calculated for a particular state, which is then applied to all other states. For
the latter, give an integer for the state instead of a boolean. Note that this is
the common way to apply the Hedin shift with the HOMO as reference level.
Default: .false.

Tag: print_self_energy (control.in)

254 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: print_self_energy state freqstart freqend

Purpose: If set, the diagonal self-energy matrix elements for the requested state
are printed in the given frequency range that should be given in eV. Setting the
frequency range is optional.

Tag: calc_spectral_func (control.in)

Usage: calc_spectral_func freqstart freqend resolution

Purpose: If set, the total spectral function A(ω) is printed in the given frequency
(ω) range that should be given in eV. The spectral function is defined as

A(ω) = 1
π

∑
m

|=Σm(ω)|
[ω − εm − (<Σm(ω)− vxcm)]2 + [=Σm(ω)]2

(3.61)

where m runs over all occupied and virtual states and where we include also
the imaginary part of the complex self-energy Σ. See reference [76] for further
details. Implemented for G0W0, evGW0 and evGW in combination with
contour deformation. Unlike for fully self-consistent GW , we include only the
diagonal matrix elements of Σ. Note that the calculation of the spectral is
computationally much more expensive than solving the QP equation and is not
recommended for prodcution runs. However, it gives access to the underlying
physics, e.g., to investigate multisolution behavior and peak intensities.
Setting the resolution is optional. If not given, the resolution is 0.001 eV.

Tag: spectral_func_state (control.in)

Usage: spectral_func_state state

Purpose: If set, the spectral function is only calculated for state n

An(ω) = 1
π

|=Σn(ω)|
[ω − εn − (<Σn(ω)− vxcn)]2 + [=Σn(ω)]2

(3.62)

where the total spectral function defined in Eq. (3.61) is A(ω) = ∑
mAm(ω).

Keyword is only active if calc_spectral_func is set.

Tag: iterations_sc_cd (control.in)

3.22. Hartree-Fock, hybrid functionals, GW , et al.: All the details 255

Usage: iterations_sc_cd integer

Purpose: Sets the maximum number of iterations in the eigenvalue self-consistent
loop in an evGW (ev_scgw) or evGW0 (ev_scgw0) calcuation using the contour
deformation (contour_def_gw). Note, this keyword does not set the number
of iterations to converge the QP equation, but the number of iterations in the
outer loop (iteration of eigenvalues in G and W). Convergence of the outer loop
is usually reached within 10-20 steps.
Default: 20

Tag: nocc_sc_cd (control.in)

Usage: nocc_sc_cd integer

Purpose: Sets the number of occupied states that enter in the eigenvalue self-
consistent loop in an evGW (ev_scgw) or evGW0 (ev_scgw0) calcuation using
the contour deformation (contour_def_gw). Ideally all states should enter,
but such a calculation is expensive with the contour deformation. If set to, e.g,
3, the first three occupied states (HOMO, HOMO-1 and HOMO-2) will enter
in addition to the ones specified in contour_def_gw . A scissor shift will
be applied to the rest of the occupied orbitals. It is recommend to include all
occupied states if possible.
Default: 5

Tag: nvirt_sc_cd (control.in)

Usage: nvirt_sc_cd integer

Purpose: Sets the number of virtual states that enter in the eigenvalue self-
consistent loop in an evGW (ev_scgw) or evGW0 (ev_scgw0) calcuation using
the contour deformation (contour_def_gw). Ideally, all states should enter,
but such a calculation is expensive with the contour deformation. If set to, e.g,
3, the first three unoccupied states (LUMO, LUMO+1 and LUMO+2) will enter
in addition to the ones specified in contour_def_gw . A scissor shift will be
applied to the rest of the virtual orbitals. It is recommended to include only 5
to 10 virtual states explicitly, in particular if the states of interest are, e.g., core
states.
Default: 5

Tag: sc_reiterate (control.in)

256 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: sc_reiterate boolean

Purpose: Keyword for evGW (ev_scgw) or evGW0 (ev_scgw0) calcuations using
the contour deformation (contour_def_gw). States that have converged in
the eigenvalue self-consistent (outer) loop exit the eigenvalue iteration in G and
W . If this keyword is set and if the states given in contour_def_gw converge
before convergence of the evGW or evGW0 calculation is reached, they are re-
iterated at the end. The changes upon re-iteration is typically smaller than 0.1 eV.
Re-iteration is recommended for calculations that require benchmark accuracy.
Default: .false.

Tag: try_zshot (control.in)

Usage: try_zshot boolean

Purpose: Keyword for evGW (ev_scgw) or evGW0 (ev_scgw0) calcuations using
the contour deformation (contour_def_gw). The QP solution might not
converge for core states or high-energy virtual states when using a GGA starting
point for theG0W0 calculation due to a lack of a distinct QP peak, which has been
explained in [76]. For the first few iterations of the evGW or evGW0 calculation,
the QP equation for some states might thus not converge. If this keyword is
set to true, an approximation of the non-converged QP energies is obtained by
linearizing the QP equation (Z-shot). Check that the Z-shot solution is not used
in the last iterations of the evGW and evGW0 calculation since it is numerically
not very exact, in particular for deep states.
Default: .true.

Tag: auxil_basis (control.in)

Usage: auxil_basis type

Purpose: Specifies the type of auxiliary basis used in the “beyond-DFT” calcula-
tion.
type is a string, which can be set either as full or opt. Default: full. Here is
a brief explanation.

• full : The auxiliary basis is constructed as the “on-site" pair products of
the regular basis functions. The allowed pair products are controlled by the
parameters max_n_prodbas and max_l_prodbas (see later). These
pair products are then orthonormalized using Gram-Schmidt procedure for
each atom.

• opt : The auxiliary basis is obtained from an optimization procedure, and
must be specified by hand in control.in – in the same spirit as the basis
sets used in standard Gaussian-bases RI-MP2 calculations.

Tag: default_prodbas_acc (control.in)

3.22. Hartree-Fock, hybrid functionals, GW , et al.: All the details 257

Usage: default_prodbas_acc threshold

Purpose: Specifies the default for prodbas_acc

threshold is a real value, defining the onsite threshold for the auxiliary basis
construction.
Default: 10−4 for RI_method lvl, depends on species (species_z)
otherwise.

See prodbas_acc for more details. Default settings are:

• 10−2 for Z ≤10 (light elements)

• 10−3 for 10< Z ≤18

• 10−4 for Z >18 (all heavier elements)

The old default (version 042811 and earlier) was simply 10−2 for all elements. For light
elements, this setting produces accurate total energies and energy differences to the sub-
meV level in all our tests. For heavier elements, significant inaccuracies could happen
in atomic total energies. These inaccuracies would cancel out in energy differences; to
guarantee total energy accuracy as well, we now set significantly tighter defaults for
prodbas_acc in this range (alas, also more expensive, both in time and memory use).

Tag: default_max_l_prodbas (control.in)

Usage: default_max_l_prodbas value

Purpose: Specifies the default for max_l_prodbas

Default: 20 for RI_method lvl, 5 for RI_method V and nuclear charge
Z <= 54, and 6 for RI_method V and Z > 54.

Tag: default_max_n_prodbas (control.in)

Usage: default_max_n_prodbas value

Purpose: Specifies the default for max_n_prodbas

Default: 20 for RI_method lvl, 6 otherwise.

Tag: frequency_points (control.in)

Usage: frequency_points value

Purpose: If set, specifies the number of (imaginary) frequency points for the self-
energy calculation.
The default value for the frequency points depends on the choice of the analytical
continutation type. For two-pole fitting (anacon_type =’two-pole’), the
default value for frequency_points value is 40; for the Pade approximation
(anacon_type =’pade’) the default value for frequency_points is 100.

258 Chapter 3. The Full Monty: All Keywords and Capabilities

Note that the frequency_points only makes sense if qpe_calc or sc_self_energy
is set, i.e., the post-processing-type self-energy calculation is required.

Tag: maximum_frequency (control.in)

Usage: maximum_frequency value

Purpose: If set, specifies the maximal (imaginary) frequency value for the
self-energy self-consistent calculation. The unit for value here is Hartree.

Note that the maximum_frequency only makes sense when the freq_grid_type
is set to be 0 or 2, i.e., when the stdandard Gauss-Legendre grid or logrithmic grid is
used. For freq_grid_type =0, the default value for maximum_frequency is
10 Hartree; for freq_grid_type =2, the default value is 5000 Hartree. However,
when self-consistent GW is involked (both scGW and scGW0), the default value for
maximum_frequency is 7000 Hartree.

Tag: maximum_time (control.in)

Usage: maximum_time value

Purpose: If set, specifies the maximal (imaginary) time value for the self-
consistent self-energy calculation. The unit for value here is Hartree−1. The
default value is 1000 a.u..

Note that the maximum_time only makes sense if sc_self_energy is set, i.e.,
the self-consistent self-energy calculation is required.

Tag: n_poles (control.in)

Usage: n_poles value

Purpose: If set, specifies the number of poles (i.e. the number of functions of
the form fi(ω) = 1/(bi + iω)) adopted in the pole-based computation of the
Fourier transform in self-consistent GW -type calculations.

Note that the n_poles only makes sense if sc_self_energy is set, i.e., the
post-processing-type self-consistent self-energy calculation is required.

Tag: pole_max (control.in)

Usage: pole_max value

Purpose: If set, specifies the position in the (imaginary) frequency axis of the
largest poles (i.e. the largest bi coefficient in fi(ω) = 1/(bi + iω)) used in
computation of the Fourier transform in self-consistent GW -type calculations.
The unit for value here is Hartree.

Note that the pole_max only makes sense if sc_self_energy is set, i.e., the

3.22. Hartree-Fock, hybrid functionals, GW , et al.: All the details 259

post-processing-type self-consistent self-energy calculation is required.

Tag: pole_min (control.in)

Usage: pole_min value

Purpose: If set, specifies the position in the (imaginary) frequency axis of the
smallest poles (i.e. the smallest bi coefficient in fi(ω) = 1/(bi + iω)) used in
computation of the Fourier transform in self-consistent GW -type calculations.
The unit for value here is Hartree.

Note that the pole_min only makes sense if sc_self_energy is set, i.e., the
post-processing-type self-consistent self-energy calculation is required.

Tag: prodbas_nb (control.in)

Usage: prodbas_nb nb

Purpose: For very large scale beyond-GGA calculations, the distribution of aux-
iliary basis functions among the CPUs becomes problematic because each CPU
only gets very few. The default Scalapack distribution is more taylored to efficient
calculations and distributes these functions in chunks of finite size. In massively
parallel runs, often each CPU gets either one or two of these chunks, leading to
bad memory distribution. This can be circumvented, possibly sacrificing some
performance, by setting the chunk size nb to “1”.
nb is the chunk size of auxiliary basis functions.
Default: min (16, bNaux/Nprocc).

Tag: prodbas_threshold (control.in)

Usage: prodbas_threshold threshold

Purpose: Prevent the possible ill-conditioning of the auxiliary basis, similar to
basis_threshold for the regular basis.
threshold is a small positive real number for the eigenvalue of the Coulomb
matrix for the auxiliary basis. Default: 10−5.

The the auxiliary basis functions centered on different atoms are nonorthogonal, and
the possible linear dependence (with certain accuracy) between them and the resultant
behavior has to be carefully eliminated. This is achieved by setting the cutoff threshold
for the auxiliary basis prodbas_threshold . From many test calculations, it is
found that the reliable value for threshold here are between 10−5 to 10−3. Within this
window, the total energy may still have some noticable change, but the energy difference
is usually negligible. It is suggested that the user should play with this value if he/she is
not sure about his/her result.

Tag: RI_method (control.in)

260 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: RI_method type

Purpose: Specifies the version of the resolution of identity used in the beyond-
DFT calculations. Here type is a string, with possible options listed below.
Default: Non-periodic: type=lvl for Hartree-Fock and hybrid functional
calculations, which can be used for geometry relaxations. type=v for MP2,
RPA and GW etc. calculations that require unoccupied states. This gives
better accuracy for a given auxiliary basis, but is usually more expensive
and provides no geometry relaxation at present. Periodic: type=LVL_fast,
which provides the necessary reduction to what is essentially an O(N) framework.

Different options for the type option include:

• svs (for the “SVS” version, i.e., Eq. (3.53))

• v (for the “V” version, i.e. Eq. (3.52))

• lvl (for the “LVL” version)

• LVL, LVL_fast, or lvl_fast are all synonymous with option lvl

• lvl_full implements a non-linear scaling version of the “LVL” approach for total
energy evaluations only

• lvl_2nd implements the so-called “robust Dunlap correction” for total energies
only, which essentially follows up an s.c.f. calculation with an additional RI-V-
like step. In our experience, similar results are better accomplished without this
correction (see also Ref. [111]).

Rules of thumb:

• type=V is the preferred method for non-periodic calculations. For formal reasons,
this is clearly the most accurate version. However, neither a periodic version nor
gradients (forces and relaxations) are implemented at present.

• type=LVl_fast is the preferred version for periodic calculations, as well as for
non-periodic Hartree-Fock and hybrid functional calculations with forces and re-
laxation. It scales as O(N) and greatly limits the memory use compared to RI-V.
RI_method LVL_fast localizes the expansion of the Coulomb potential of basis
function products to two centers, as described in Sec. 3.23 and in Refs. [111, 145].
It also relies extensively on screening near-zero elements of the density matrix and
of the Coulomb operator. On the other hand, the localized version has slightly
larger errors than RI-V for hybrid functionals, and significantly larger errors for
correlated methods like MP2 or RPA. These can be remedied by adding a few
extra functions to the construction of the auxiliary basis set using the for_aux
keyword, as described in detail in Ref. [111].

• At present, do not use RI-LVL for MP2 and RPA unless you know what you are
doing. It is possible to repair their accuracy in RI-LVL, by increasing the size of

3.22. Hartree-Fock, hybrid functionals, GW , et al.: All the details 261

the auxiliary basis set using the for_aux keyword, as described in detail in Ref.
[111], but please see the figures and benchmarks in that reference before trying.

• type=LVL_full is a slower, non-screened version of LVL for non-periodic systems.
Very useful as a reference to make sure.

• type=SVS is here only for testing purposes. This is the naive, purely overlap based
version of RI and should not be used in production.

There is an additional option for non-periodic systems, lvl_2nd, which adds a correction
term to the nonlocal exchange energy to make it “robust” in the Dunlap sense [58], that
is, the error in the energy is quadratic in the error in the product expansion.

Tag: sbtgrid_lnrange (control.in)

Usage: sbtgrid_lnrange lnrange

Purpose: for use_logsbt , set the range of the logarithmic grid (in logarithmic
units). Default is 45, which corresponds to nearly twenty orders of magnitude.
Please note that the range should be larger than intuitively guessed because the
range is the same both in real and reciprocal space (for algorithmic reasons) and
the tails in reciprocal space have to be captured.

Tag: sbtgrid_lnr0 (control.in)

Usage: sbtgrid_lnr0 lnr0

Purpose: for use_logsbt ,set the onset of the logarithmic grid in real space.
The default is −38.

Tag: sbtgrid_lnk0 (control.in)

Usage: sbtgrid_lnk0 lnk0

Purpose: for use_logsbt , set the onset of the logarithmic grid in Fourier
space. The default is −25.

Tag: sbtgrid_N (control.in)

Usage: sbtgrid_N N

Purpose: for use_logsbt , set the number of logarithmic grid points both in
real and Fourier space. The default is 4096.

For the accuracy, the density of points N/lnrange is relevant. Additionally, one has to
make sure that the tails in real and Fourier space are properly included.

Tag: state_lower_limit (control.in)

262 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: state_lower_limit value

Purpose: If set, specifies the lowest single-particle eigenstate to be included for
the quasiparticle calculation.

Note that the state_lower_limit only makes sense if qpe_calc is set, i.e., the
post-processing-type self-energy calculation is required.

Tag: state_upper_limit (control.in)

Usage: state_upper_limit value

Purpose: If set, specifies the highest single-particle eigenstate to be included for
the quasiparticle calculation.

Note that the state_upper_limit only makes sense if qpe_calc is set, i.e., the
post-processing-type self-energy calculation is required.

Tag: time_points (control.in)

Usage: time_points value

Purpose: If set, specifies the number (imaginary) time points for the self-energy
calculation.
Default: value=80.

Note that the frequency_points only makes sense if qpe_calc or sc_self_energy
is set, i.e., the post-processing-type self-energy calculation is required.

Tag: use_logsbt (control.in)

Usage: use_logsbt bool

Purpose: If set, the two-center integrals are calculated by one-dimensional
integrations in Fourier-space. In the case of RI_method LVL, also the
three-center integrals are computed by this method.
Default: .true.

use_logsbt .true. is faster and more accurate than the alternative.

The algorithm for the overlap and Coulomb integrals is described by Talman in [212]. It
uses an efficient spherical Bessel transform on a logarithmic radial grid [213, 86, 87] to
obtain the Fourier transform of the auxiliary basis functions and calculates the integrals
in Fourier space.

Tag: use_ovlp_swap (control.in)

3.22. Hartree-Fock, hybrid functionals, GW , et al.: All the details 263

Usage: use_ovlp_swap

Purpose: if set, the atomic orbital (AO) based 3-index overlap matrix (“ovlp_3fn"
in the source code) is written to the disk before transforming to the molecular
orbital (MO) based 3-index overlap matrix (“O_2bs1HF" for HF calculations and
“ovlp_3KS" for GW calculations in the source code). This avoids the double
allocation of both the AO-based 3-index integral matrix and MO-based 3-index
integral matrix at the same time and thus reduces the memory cost by about a
factor of two.

264 Chapter 3. The Full Monty: All Keywords and Capabilities

Subtags for species tag in control.in:

species sub-tag: aux_gaussian (control.in)

Usage: aux_gaussian L N [alpha]
[alpha_1 coeff_1]
[alpha_2 coeff_2]
[...]
[alpha_N coeff_N]

Purpose: For auxil_basis opt, adds a Gaussian basis function to the
auxiliary basis set for the Coulomb operator.
L is an integer number, specifying the angular momentum
N is an integer number, specifying how many primitive Gaussians comprise the
present radial function
alpha : If N=1, this is the exponent defining a primitive Gaussian function [in
bohr−2].
alpha_i coeff_i : If N>1, i = 1, . . . , N additional lines specify exponents αi
and expansion coefficients gi for a non-primitive linear combination of Gaussians.

See the description of gaussian basis functions; Gaussian basis functions in the
auxiliary basis use essentially the same infrastructure.

species sub-tag: for_aux (control.in)

Usage: for_aux basis options

Purpose: Add a extra basis function to constructor of auxiliary basis function.
Basis is a either hydro or ionic basis function keyword and options
are options for that basis function.

Adds extra basis function ONLY to the construction of the auxiliary basis set used to
expand the Coulomb operator (resolution of identity, see keyword RI_method). In
particular, the accuracy of RI_method LVL can be increased by adding extra high-
angular momentum radial functions to the auxiliary basis set. The improvement becomes
less and less relevant as the orbital basis set itself increases. For instance, there may be
a noticeable change for tier 1, but much less or not at all for tier 2. Currently supports
only hydro and ionic basis functions.

For a detailed description with benchmarks, please see Ref. [111].

Here is an example for the use of the for_aux , which was obtained by altering the
“light” settings of the C atom:

[...]
"First tier" - improvements: -1214.57 meV to -155.61 meV

hydro 2 p 1.7
hydro 3 d 6
hydro 2 s 4.9

3.22. Hartree-Fock, hybrid functionals, GW , et al.: All the details 265

"Second tier" - improvements: -67.75 meV to -5.23 meV
for_aux hydro 4 f 9.8

hydro 3 p 5.2
hydro 3 s 4.3

for_aux hydro 5 g 14.4
hydro 3 d 6.2
[...]

Adding those two high-angular momentum functions does improve the quality of the
RI_method LVL noticeably, at the price of more CPU time. On the other hand ...
“light” settings are specifically chosen because not everything is completely converged.
In fact, the orbital basis set error itself may be larger than the accuracy gained by
amending the two-electron Coulomb operator expansion.

species sub-tag: prodbas_acc (control.in)

Usage: prodbas_acc threshold

Purpose: Technical cutoff criterion for on-site orthonormalization of auxiliary ra-
dial functions. Here threshold is a small positive real value. Default: See below.

To construct the set of auxiliary basis functions, the radial functions for a single species
are “on-site" Gram-Schmidt orthonormalized. If the norm of the function after orthonor-
malization is smaller than threshold, that function is omitted.

The present default values are:

• 10−2 for Z ≤10 (light elements)

• 10−3 for 10< Z ≤18

• 10−4 for Z >18 (all heavier elements)

The old default (version 042811 and earlier) was simply 10−2 for all elements. For light
elements, this setting produces accurate total energies and energy differences to the sub-
meV level in all our tests. For heavier elements, significant inaccuracies could happen
in atomic total energies. These inaccuracies would cancel out in energy differences; to
guarantee total energy accuracy as well, we now set significantly tighter defaults for
prodbas_acc in this range (alas, also more expensive, both in time and memory use).

For simplicity, it is also possible to use default_prodbas_acc to set a global value
of prodbas_acc across all elements.

Note that the prodbas_acc should not be confused with the prodbas_threshold
. The former is used when constructing the auxiliary basis functions for each species,
whereas the latter is used to deal with the ill-conditioning behavior of the Coulomb
repulsion and/or the overlap matrix between the set of auxiliary basis functions for the
whole systems.

species sub-tag: max_n_prodbas (control.in)

266 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: max_n_prodbas value

Purpose: Specifies the maximal principal quantum number for the regular basis
function to be included in the auxiliary (product) basis construction.
value is a positive integer number here.

Note that max_n_prodbas has an effect only when auxil_basis is setted to
full.

species sub-tag: max_l_prodbas (control.in)

Usage: max_l_prodbas value

Purpose: Specifies the maximal angular quantum number for the auxiliary (prod-
uct) basis function. Any possible auxiliary basis with an angular momentum
higher than max_l_prodbas is excluded.
value is a positive integer number here.

Note that max_l_prodbas controls the auxiliary basis whereas max_n_prodbas
controls only directly the regular basis. max_l_prodbas has an effect regardless
whether auxil_basis is setted to full or opt.

3.23. Hartree-Fock and hybrid functionals, including periodic systems 267

3.23 Hartree-Fock and hybrid functionals, including
periodic systems

Periodic versions of the Hartree-Fock method and of and hybrid density functionals are
implemented in FHI-aims. Generally, our experiences are very good. The implementation
is stable and seems to scale well towards large systems. However, we still ask you to
exercise some care. If you encounter any unexpected difficulties, consult the developers.

Periodic versions of MP2, RPA and GW are not yet part of the main FHI-aims distri-
bution, as they are in various stages of development. Please feel free to ask at aimsclub
regarding these methods for periodic systems. They are very important to us, and we
will be happy to share them as they become ready and more usable.

Complete descriptions of the material described below, as well as extensive benchmarks,
are summarized in Ref. [145], as well as Ref. [111] (for the non-periodic implementation
of the “LVL” approach). Forces and the stress tensor are also implemented, with a clear
description of the stress tensor given in Ref. [124].

There are two specific issues from a usability point of view which should be considered:

• The RI_method “LVL” described below is implemented in a linear scaling and
is therefore the only reasonable pathway for large and/or periodic systems. It
is, however, slightly less accurate (for formal reasons) than the non-linear-scaling
version for non-periodic systems, RI-V. Please bear this in mind. For standard
solids and hybrid functionals, the effects seem very small. See reference [111] for
quantitative tests. In general, RI-LVL has been extremely reliable for us.

• For band structure output, the exx_band_structure_version keyword allows
to toggle between a faster real-space version that works only when a relatively dense
k-space grid has been used during the regular s.c.f. cycle and a slow(!) fallback
version that is calculated in reciprocal space. The underlying reason is that the
real-space Born-von Karman cell of the regular s.c.f. cycle may become too small
to accommodate some k-vectors that are not exact reciprocal lattice vectors of
the Born-von Karman cell. The slow fallback version should not simply be used by
default since it can easily become the computational bottleneck – both regarding
time and memory.

In periodic Hartree-Fock (and hybrid functional) implementations, the key quantity that
needs to be evaluated is the exact-exchange matrix,

Kij(k) =
∑
kl,q

Dkl(q)
∫∫

drdr′
φ∗ik(r)φkq(r)φ∗lq(r′)φjk(r′)

|r− r′|
(3.63)

where k,q are the Bloch vectors, φik(r) is the Bloch summation of the i-th atomic
orbital φi(r−R) living in the unit cell R, and Dkl(q) is the density matrix. Kij(k) can
be obtained from its Fourier transform,

Kij(k) =
∑
R
eikRXij(R) , (3.64)

268 Chapter 3. The Full Monty: All Keywords and Capabilities

where

Xij(R) =
∑
kl

∑
R′
Dkl(R′)

∑
R′′

∫∫
drdr′

φi(r)φk(r + R′′)φj(r′ + R)φl(r′ + R′ + R′′)
|r− r′|

(3.65)

In FHI-aims, periodic Hartree-Fock and hybrid density functionals are implemented in
two different ways. One implementation is based on the “k-space” formulation, where
one computes Kij(k) directly from Eq. (3.63). An alternative, and more efficient im-
plementation is based on the“real-space” formulation, where one first computes Xij(R)
from Eq. (3.65), and then Fourier transform it to Kij(k). The “real-space” implemen-
tation is used in the code by default, and the “k-space” implementation is only used for
crossing-check purposes.

Both implementations are based on a localized resolution-of-identity approximation,
which we termed as “RI-LVL”, in analogy to “RI-SVS” and “RI-V” introduced in Sec. 3.22.
Under “RI-LVL”, the products of two normal basis functions (i, j) centering at atoms
Ai and Aj are expanded only in terms of auxiliary functions centering on these two
atoms. Possible contributions of auxiliary functions from a third center are excluded in
this approximation, in contrast to “RI-V”. Specifically, one has

φi(r−Ai)φj(r−Aj) =
∑
µ

C
µ(Ai)
i(Ai),j(Aj)Pµ(r−Ai) +

∑
ν

C
ν(Aj)
i(Ai),j(Aj)Pν(r−Aj) , (3.66)

where µ and ν enumerate the auxiliary basis functions centering on atom Ai and Aj
respectively. This approximation has been extensively benchmarked with respect to the
more accurate “RI-V” approximation for finite systems, and with respect to other inde-
pendent implementations for molecular systems. The achieved accuracy is remarkable
and should be sufficiently good for production calculations.

Periodic Hartree-Fock and hybrid-functional calculations can be run in the same manner
as the periodic LDA and GGA cases, by setting the keyword xc to hf or desired hybrid
functionals, and setting the k_grid mesh to appropriate values. As mentioned above,
by default the “real-space” periodic Hartree-Fock implementation will be invoked. There
are two thresholding parameters (detailed below) which control the balance between the
computational load and accuracy in the calculation. One may also switch to the “k-
space” implementation of periodic Hartree-Fock and hybrid functionals for testing or
comparison purposes by setting the keyword use_hf_kspace to be true (see below).
The thresholding parameters do not apply to the “k-space” implementation, however.

3.23. Hartree-Fock and hybrid functionals, including periodic systems 269

Tags for general section of control.in:

Tag: coulomb_threshold (control.in)

Usage: periodic_hf coulomb_threshold value

Purpose: This sets a threshold value for a key ingredient in the construction of
the exact-exchange matrix – the Coulomb matrix. The Coulomb matrix elements
below the specified threshold value are discarded in the calculation. Suggested
values are between 10−6 and 0. The default value is 10−10.

Tag: exx_band_structure_version (control.in)

Usage: exx_band_structure_version value

Purpose: A periodic band structure calculation can be performed either using
a real-space version (value=1) or a reciprocal-space version (value=2). No
default – user must decide.
value is an integer, either 1 or 2. exx_band_structure_version 1 is
preferred (but see below).

The distinction between real-space and reciprocal-space pertains to the method used to
calculate the Fock matrix; in both cases, the coordinate system used when specifying
the k-path via the output band keyword is expressed in terms of reciprocal
coordinates.

If output band is requested for a periodic Hartree-Fock or hybrid functional
calculation, adhere to the following rules:

• Do not use excessively many k points in each band segment, for instance no more
than 11. We also note that 21 is a reasonable value to sample the fine features of
a band structure.

• exx_band_structure_version 1 is preferred. The real-space band structure
version value=1 has low overhead and is accurate IF a reasonably dense k_grid
is used during the preceding s.c.f. calculation. exx_band_structure_version
1 is therefore the recommended approach. For very sparse s.c.f. k_grid
settings, it can, however, fail. In that case, the failure is so obvious that one
cannot miss it. For better results, please avoid particularly k_grid dimensions
of 1 (one) in the s.c.f. part of the calculation. We apologize for this inconvenience.
On the bright side, if you use exx_band_structure_version 1 correctly, it
will give reliable results without much overhead compared to the underlying s.c.f.
calculation. We recommend to test to be sure.

• exx_band_structure_version 2 is a fallback method that will always work but
comes with significant time and memory overhead. If the plotted band structure
from the real-space version exx_band_structure_version value=1 has ob-
vious numerical problems, please switch to a denser k_grid during s.c.f. Only if

270 Chapter 3. The Full Monty: All Keywords and Capabilities

this approach is not successful or possible, consider exx_band_structure_version
2. The latter will always work, as the critical part of the work is handled in re-
ciprocal space. As a consequence, though, sparsity in real space can no longer
be exploited, and the band structure calculation becomes much slower than the
real-space version.

• In case of doubt, the band structure ONLY at k-points used during the s.c.f.
cycle itself can also be printed along certain directions by using the output
band_during_scf keyword, which ensures that only the information that went
into the s.c.f. cycle is actually used. This is mainly useful for debugging purposes.

We apologize that this decision process is a bit rough around the edges and leaves an
essential decision up to the user (because we want you to know). However, consider this:
The above procedure provides a simple way to make band structure output work, and
works safely. It is now generally not a problem to produce band structures with hybrid
functionals in FHI-aims and this functionality has produced much successful science.

Tag: screening_threshold (control.in)

Usage: periodic_hf screening_threshold value

Purpose: This sets a screening parameter in a periodic Hartree-Fock (or hybrid
functional) calculation. The real-space exact-exchange matrix elements below
the specified threshold value are neglected in the calculation. Suggested val-
ues are between 10−6 and 0. Smaller values mean better accuracy but heavier
computational loads. The default value is 10−7.

Tag: use_hf_kspace (control.in)

Usage: use_hf_kspace flag

Purpose: The “k-space” periodic HF implementation can be invoked by setting
flag to be .true. This is, however, very expensive.

Tag: split_atoms (control.in)

Usage: split_atoms flag

Purpose: The “split_atoms” periodic HF implementation can be switched off by
setting flag to be .false.

The keyword split_atoms helps to reduce the peak memory and increases perfor-
mance for systems with heavy elements or systems containing atoms of different size
(that is the number of basis functions). Internally, the number of basis functions
per atoms are split into smaller batches. The batch size is calculated according to
basis_functions_per_atom/split_batch, where the default value of split_batch
is 14. Its value can be changed in control.in with split_batch value, where value
is a positive integer number.

The implementation seemed to improve the performance of systems containing heavy

3.23. Hartree-Fock and hybrid functionals, including periodic systems 271

elements. If you encounter performance problems, especially systems with many atoms,
it might be worth to switch-off the split_atoms feature and test the old routine.
However, we could not find systems where the current implementation significantly harms
the performance. In the case you do, please report the issue.

272 Chapter 3. The Full Monty: All Keywords and Capabilities

3.24 Periodic GW in FHI-aims

A periodic version of GW (more precisely the one-shot G0W0) has been implemented in
FHI-aims. The current implementation is based on the k-space formalism, similar to the
k-space implementation of periodic HF (can be invoked by setting use_hf_kspace
to be true), and only works for insulating systems. So far, tests show that it is rather
stable, but if you encounter any problem, consult the developers.

Complete descriptions of the key algorithm and implementation details can be found in
Ref. [190]. Here we only present the central equation for computing the periodic G0W0
self-energy,

ΣG0W0
n,σ (k, iω) =

∫∫
drdr′ψk∗

n,σ(r)ΣG0W0
σ (r, r′, iω)ψk

n,σ(r′)

= − 1
2π

∑
m,q

∑
µ,ν

∫ ∞
−∞

dω′
Cµ
n,m,σ(k,k− q)W0,µν(q, iω′)Cν

m,n,σ(k− q,k)
iω − iω′ + µ− εk−q

m,σ

.

(3.67)
where the expansion coefficients Cµ

n,m,σ(k,k − q) are determined using the “RI-LVL"
(or localized RI) approximation, similar to the periodic HF and hybrid function case
discssued in Sec. 3.23.

At present, only the one-shot G0W0 scheme is implemented for periodic systems. The
periodic G0W0 can be run in much the same way as the cluster (finite system) case.
That is, one needs to specify a starting point by setting xc to a desired funcitonal. At
the moment, LDA, GGAs and global hybrid functions can be employed as the starting
points.

The periodic G0W0 is invoked by setting qpe_calc to gw_expt and setting k_grid
to appropriate values. Similar to the cluster case, the periodic G0W0 self-energy is first
computed on imaginary frequencies and then analytically continuted to the real frequency
axis. As such, one needs to explicitly specify the type of analytical continuation procedure
by setting the anacon_type to 0 (two-pole fitting) or 1 (Padé approximation.) The
number of frquency points and the number of analytical continuation parameters can be
specified by setting frequency_points and n_anacon_par to appropriate values.
If not, the same default values as the clusters will be used for these two parameters.
Further details can be found in Sec. 3.22.
As mentioned above, peroidic GW calculations rely on the RI-LVL scheme. This implies
one typically needs a larger set of auxiliary basis functions to achieve a satisfactory
level of numerical accuracy. In practice, one usually needs to add so-called "for_aux"
basis functions in species_default, that are used to generate additional auxliary basis
functions. Tests show that the following “for_aux" basis setting usually works rather
well, and is recommended as a first choice.

for_aux hydro 4 f 3.0
for_aux hydro 5 g 3.0

However, this does not mean the above setting is optimal, or always sufficient. If in
doubt, one is encouraged to vary the effective charge parameter Z (the value “3.0"
above) to check how the obtained results (e.g., the band gap) change.

3.24. Periodic GW in FHI-aims 273

The outputs from periodic G0W0 calcualtions are the G0W0 quasiparticle energies within
a window of energy levels at pre-set k points. The specification of the k points can be
done in two ways. In the first way, one can directly compute the quasiparticle energy
band structures along a set k-point paths. The way to set up the k-point paths is
exactly the same as in KS-DFT calculations, through the keyword output band . In
the second way, one can choose to print out the quasiparticle energy level on a sef of k
points belonging to the uniform k grid, that is used in the preceding SCF calculations.
This is set through the keyword output gw_regular_kgrid . At each k point,
the set of energy levels for which one asks for quasiparticle energy calculations can be
specified through the keyword state_lower_limist and state_upper_limit
, in exactly the same way as in the cluster case. If keywordstate_lower_limist and
state_upper_limit are not explicitly specified, G0W0 quasiparticle calculations will
be done for all the occupied states and a few low-lying unoccupied states.

274 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: qpe_calc (control.in)

Usage: qpe_calc gw_expt

Purpose: If set, and if a finite k grid is also set via the keyword k_grid ,
peroidc G0W0 calcualation will be started.
Here we choose to use a different keyword gw_expt instead of gw as in the cluster
case, in order to emphasize that this is still an experimental version. In future we
may change the setting gw_expt back to gw.

Tag: output gw_regular_kgrid (control.in)

Usage: output gw_regular_kgrid

Purpose: If set, the quasiparticle energy levels at the regular k grid will be printed
out. However, one does not automatically print out the information on all k points
(which would be often too much), but rather for a number specified through
output k_eigenvalue number. That is, the k points where quasiparticle
energy levels are printed out are precicely the same as those on which the preceding
KS/HF eigenvalues are printed.

3.25. TDDFT - linear response 275

3.25 TDDFT - linear response

These routines are not completed yet. For now it is only possible do use fxc kernels from
LDA. The development goes on and more funcionality will be added. When publishing
results obtained from this routine, please do cite me, Jan Kloppenburg as the author, as
well as of course the usual people in the aims references. When problems, questions or
suggestions arise, feel free to contact me at kloppenburg@fhi-berlin.mpg.de. Only
use there routines if you know what you are doing!

Theory

The goal is to calculate excitation energies ωI and corresponding oscillator strengths fI
from

ΩFI = ω2
IFI . (3.68)

Linear response theory (see [36]) is the basis for this calculation. We construct

Ωias,jbt = δi,jδa,bδs,t(εa − εi)2 + 2
√
εas − εisKias,jbt

√
εbt − εjt (3.69)

with the coupling kernel

Kias,jbt =
∫ ∫

ϕ∗i (r)ϕa(r)
[

1
|r− r′|

+ fxc(r, r′)
]
ϕ∗j(r′)ϕb(r′)drdr′ . (3.70)

In this notation I refer with the indices i, j to occupied and with a, b to virtual orbitals,
while s and t denote the spin. The input energies ε are obtained from either ground
state Hartree-Fock or DFT calculations. Going by this rule we contruct the matrix Ω
which then is solved for eigenvalues and eigenvectors. The excitation energies ωI then
follow from From the eigenvectors FI the oscillator strengths fI can be obtained from

fI = 2
3ωI

[∣∣∣ 〈Ψ0

∣∣∣X̂∣∣∣ΨI

〉 ∣∣∣2 +
∣∣∣ 〈Ψ0

∣∣∣Ŷ∣∣∣ΨI

〉 ∣∣∣2 +
∣∣∣ 〈Ψ0

∣∣∣Ẑ∣∣∣ΨI

〉 ∣∣∣2] , (3.71)

with the X̂ being the spatial operator for the X direction and the others respectively
with Ψ0 being the all electron ground state wave function and ΨI being the all electron
excited state wave function for the state I with excitation energy ωI .

For the TDHF calculation mode, the kernel Kias,jbt is modified to become

Kias,jbt = (ias|jbt) + δs,t(ij|ab) (3.72)

that has only the bare Coulomb part (ia|jb) and the exact exchange part (ij|ab) from
Hartree-Fock theory. This Hartree-Fock Kernel creates a non-Hermitian matrix Ω.
Please not that this calculation mode is as yet only available for single processor runs
due to the lack of a non-Hermitian parallel eigenvalue solver.

276 Chapter 3. The Full Monty: All Keywords and Capabilities

Available Kernels and libxc

As of now, there is only the pw-lda fxc kernel available for the TDDFT calculation in
aims. If the user wants to make use of additional fxc kernels he is requested to install
libxc. libxc is a library of exchange-correlation functionals for density-functional theory
(see [155]) available free under the LGPL license v3 from the internet. 2 Additionally, for
the full TDDFT calculation it is possible to choose functionals at will that are available
from this libxc. It is not required to have the DFT level calculation that generates the
input energies ε for 3.70 using the same XC functional as the TDDFT calculation. You
should really know what you are doing when you choose to experiment with different
functionals and always keep in mind that the results might be unpredictable and not
necessarily have any physical meaning at all. Nevertheless it might come in handy to
be able to mix different hybrid functionals or do a DFT ground state calculation with a
functional that does not provide and fxc and still be able to do a TDDFT calculation
on top of that when switching to functionals that do provide an fxc.

Tags for general section of control.in

Tag: neutral_excitation (control.in)

Usage: neutral_excitation type
Purpose: Triggers the calculation of neutral excitations.
type: String that defines the type of calculation to be performed.

• tddft: Full TDDFT calculation

• tdhf: Full TDHF calculation (Kernel from 3.72, serial CPU only)

• rpa: random phase approximation only (set fxc = 0 in 3.70)

With the keyword neutral_excitation the user can specify the calculation mode
for the linear response theory.
Also the keyword empty_states should be set to 1000, or the keyword calculate_all_eigenstates
should be used, to make sure the code generates all possible empty states provided from
the basis set. This number will also be reduced automatically by the code to the maxi-
mum number that can be generated from the basis set.

Tag: tddft_kernel (control.in)

2http://www.tddft.org/programs/octopus/wiki/index.php/Libxc

http://www.tddft.org/programs/octopus/wiki/index.php/Libxc

3.25. TDDFT - linear response 277

Usage: tddft_kernel string
Purpose: Specify the origin of the TDDFT kernel for 3.70
string: pw-lda/pz-lda or libxc
Both pw-lda or pz-lda are built-in options in FHI-aims. They are equivalent to
the keywords defined in xc .
When using libxc, one must specify the desired kernels through keywords
tddft_x and tddft_c . Note that libxc is only possible when the user
has compiled aims with libxc binding.

Tag: tddft_x (control.in)

Usage: tddft_x string
Purpose: Set the desired exchange kernel to use from libxc. The definition is
from libxc’s manual and can be found at the libxca website.
string: The name of the selected exchange functional, i.e. XC_LDA_X

ahttp://www.tddft.org/programs/octopus/wiki/index.php/Libxc:manual

Tag: tddft_c (control.in)

Usage: tddft_c string
Purpose: Set the desired correlation kernel to use from libxc. The definition is
from libxc’s manual and can be found at the libxc website as well.
string: The name of the selected correlation functional, i.e. XC_LDA_C_PW

Tag: excited_mode (control.in)

Usage: excited_mode string
Purpose: Select which excitations will be calculated.
string: one of {singlet|triplet|both}. To calculate both singlets and triplets is
set as the default when this keyword is omitted.

Tag: excited_states (control.in)

Usage: excited_states n
Purpose: Specify the number of excited state energies and oscillator strengths to
be printed.
n: Integer number n ∈ N, n ≥ 0

With the keyword excited_states the user can specify the number of excited states
that will be printed in the output. The default for this is 50 if there are that many. Nor-
mal production runs will generally have many more (depending on the basis set and the
number of electrons involved) that can easily reach beyond 10000. So to avoid a really
huge output from this routine this defaut is set rather low. Feel free to choose any num-
ber of your liking, if it should be too large it will automatically be defaulting to all excited
states. At the end of a calculation the file TDDFT_LR_Spectrum_(singlet/triplet).dat
will be written into the directory the FHI-aims program was run in. It contains all

http://www.tddft.org/programs/octopus/wiki/index.php/Libxc:manual

278 Chapter 3. The Full Monty: All Keywords and Capabilities

computed excitation energies and the corresponding oscillator strengths.

Tag: casida_reduce_matrix (control.in)

Usage: casida_reduce_matrix boolean
Purpose: Set to .true. if you want to reduce the energy range for the Kohn-Sham
eigenvalues to be included in the computation.
boolean: .true. or .false.

Tag: casida_reduce_occ (control.in)

Usage: casida_reduce_occ x
Purpose: Specify the energy in Hartree below which the occupied states are cut
off.
x: Cutoff energy in Hartree

Tag: casida_reduce_unocc (control.in)

Usage: casida_reduce_unocc x
Purpose: Specify the energy in Hartree above which the virtual states are cut off.
x: Cutoff energy in Hartree

3.26. Real-Time TDDFT 279

3.26 Real-Time TDDFT

This functionality is experimental and currently under active development. Please treat
results with caution. If you have any questions regarding usage and/or functionality, if
you encouter problems/bugs, or if you have suggestions - please contact joscha.hekele@uni-
due.de or peter.kratzer@uni-due.de. Please cite our preliminary arXiv publication [94]
when you publish results obtained with this functionality.

Treatment of periodic systems is soon being finished, don’t expect this to work cor-
rectly right now.

The current implementation incorporates a large set of control keywords of which only
the most important are noted here. Several keywords controlling debugging/development
features are not captured here but can be found in the code. Please contact us if you
want to learn more about this.

Theory

Basic Principles

Real-Time TDDFT - as the name suggests - calculates the response of a Kohn-Sham
system in real time. The time-dependent Kohn-Sham equation

i
∂

∂t
ψKS(r, t) = HKS[ρ(t), t]ψKS(r, t) (3.73)

is solved and describes the time-evolution of the electronic wave function ψKS(r, t). The
Hamiltonian has an explicit time-dependence in this case, e.g. by an external electric
field and/or a time-dependent external ionic potential.
In contrast to the linear response approach, real-time TDDFT is able to capture the whole
nonlinear characteristic of the given system in real time. Possible applications include
absorption spectrum calculations based on the dynamical dipole response, high-harmonic
generation simulations or ion bombardment simulations based on non-adiabatically cou-
pled electron-ion dynamics (Ehrenfest dynamics). Please see [154] for a comprehensive
review.

Real-Time Propagation in FHI-aims

What is actually done is the time propagation of the atomic basis function coefficients
{cin(t)} from the LCAO ansatz

ψKS
n (r, t) =

Nbasis∑
i

cin(t)φi(r−RI(i)) , n ∈ Nocc.

The coefficients are expressed as a matrix by considering all (occupied) states and basis
indices: C ∈ CNbasis×Nocc . The time-dependent KS matrix equation to be solved is then

d

dt
C(t) = −iS−1H(t)C(t)

280 Chapter 3. The Full Monty: All Keywords and Capabilities

where S ↔ 〈φi|φj〉 is the overlap matrix and H ↔ 〈φi|HKS|φj〉 is the Hamiltonian
matrix. The efficient and accurate solution of this equation is the key mechanic in a
real-time TDDFT implementation. Note that very large basis sets will lead to an ill-
conditioned overlap matrix, causing S−1 to be a problematic object, yielding entirely
wrong results or blow-up.
The time-dependence of the Hamiltonian is implicit via the time-dependent density and
explicit by the possible dependence on an external field, e.g. a laser or a dynamical ionic
potential. An external electric field can here be incorporated via

Length gauge : Hij(t) = HKS
ij [ρ(t)] + E(t) · 〈φi|r|φj〉

Velocity gauge : Hij(t) = HKS
ij [ρ(t)] + iA(t) · 〈φi|∇|φj〉+ 1

2A2(t)Sij

where the dipole approximation – neglecting any spatial dependence of the electric field –
is used. Electric field E and vector potential A are connected by the relation E = −∂tA.
Both gauges are physically equivalent but have different technical implications. In this
implementation, only the velocity gauge can be applied in case of periodic systems. We
note here that the (atomic ZORA) relativistic kinetic operator is currently not considered
in the expression for the velocity gauge but that is on the to-do list (it can nevertheless
be used). Scaled ZORA can not be applied.

Ehrenfest Dynamics

In Ehrenfest dynamics, non-adiabatically coupled motion between the electronic and
ionic subsystems is simulated. Mobile atoms and thus mobile basis functions lead to a
modified differential equation for the electrons,

d

dt
C(t) = −iS−1(H + G)C(t),

Gij = i〈φi|ṘI(j) · ∇|φj〉,

where the matrix G describes the time-dependence of the atomic basis functions and
effectively conserves the norm of the time-propagated wavefunctions.
Furthermore, the forces on the nuclei are complemented by specific non-adiabatic con-
tributions,

FI = FHF
I + FMP

I + FXC
I + FDBC

I + FNC
I ,

where FHF
I are the standard Hellmann-Feynman forces, FMP

I are multipole force contri-
butions and FXC

I are XC related forces, e.g. GGA. The force term

FDBC
I = −

Nocc∑
n

Nbasis∑
ij

fnc
∗
incjn

[
〈∇Iφi|HKS|φj〉+ 〈φi|HKS|∇Iφj〉

]

stands for "Dynamical Basis Correction" and can be seen as the time-dependent analogue
to Pulay forces. The last term is denoted as the nonadiabatic coupling force, possibly
consisting of two terms:

FNC
I = FEC

I + FMC
I .

3.26. Real-Time TDDFT 281

Including the full above-mentioned expression guarantees full energy- and momentum
conservation, but usually only incorporating FEC

I is sufficient and noticeably cheaper.
The energy-conserving force term can be written as

FEC
I =

Nocc∑
n

fnc†n
[
HS−1BI +

(
HS−1BI

)†]
cn,

Bij,I = 〈φi|∇I |φj〉.

The remaining force term restoring momentum conservation is given as

FMC
I = i

Nocc∑
n

fnc†n
[
W†

I −WI + D†S−1BI −
(
D†S−1BI

)†]
cn,

Wij,I = ṘI〈∇Iφi|∇Iφj〉,
Dij,I = ṘI · 〈φi|∇I |φj〉.

The integration of the nuclear equations of motion is performed via a Velocity Verlet
based algorithm, i.e.,

ṘI(t+ ∆t/2) = Ṙ(t) + ∆t
2MI

FI(t),

RI(t+ ∆t) = RI(t) + ∆tṘI(t+ ∆t/2),
where ∆t is the corresponding Ehrenfest time stepping. Based on each coordinate
change, a geometry update is performed. Please see [135, 170] for further details.

Observables

Depending on what task has to be performed, different physical observables are of
interest in a RT-TDDFT simulation. The computation of the most important ones is
briefly explained here. These are also computed and sent to output by default.

• Electronic energy: The time-dependent electronic energy for the current time
step is computed via

EKS
el (t) = Eel,kin(t) + Ees,N[ρ(t)] + Eel,XC[ρ(t)]

= −1
2
∑
nij

fnc
∗
in(t)cjn(t)〈φi|∇2|φj〉+ Ees,N[ρ(t)] + Eel,XC[ρ(t)]

where the total electrostatic energy Ees,N and the exchange-correlation energy
Eel,XC are computed from the density ρ(t) analog to time-independent DFT. The
electronic energy is not necessarily a conserved quantity, e.g. when energy is
absorbed from an external field.

• Total electronic and nuclear kinetic energy: In case when Ehrenfest dynamics
is performed, the nuclear kinetic energy contribution to the total energy has to be
taken into account, i.e.

Etot(t) = EKS
el (t) + Enuc,kin(t)

= EKS
el (t) + 1

2
∑
I

MIṘ2
I(t).

282 Chapter 3. The Full Monty: All Keywords and Capabilities

In the absence of external fields, this quantity must be conserved.

• Electronic dipole moment: Important quantities that can be computed from
the dynamical electronic dipole response are the polarisability α(ω) and absorption
strength S(ω):

µ(t) =
∫
d3r rρ(t) → αij(ω) = F [µi](ω)

F [Ej](ω) → S(ω) = 2ω
3π Im

{
Tr
[
α(ω)

]}

The electronic dipole moment is by default computed for cluster systems.

• Electronic current: From the current density j(r, t), one can compute the con-
ductivity σ(ω) and the dielectric function ε(ω) via the total current I(t):

j(r, t) = 1
2
∑
nij

fn

[
c∗in(t)cjn(t)〈φi| − i∇+ A(t)|φj〉+ c.c.

]
→ I(t) = − 1

V

∫
d3r j(r, t)

→ σij(ω) = F [Ii](ω)
F [Ej](ω) → ε(ω) = 1 + i4πσ(ω)

ω

Please note that a python-based post-processing tool named eval_tddft.py is located
in the utilities/rt-tddft folder which is made for RT-TDDFT output files. It can
currently compute, visualize and write the absorption strength function/polarisability (by
input electronic dipole and external field) and also the conductivity/dielectric function
(by input electronic current and external field) with possibly more functionality to come.

Important Notes

Some general important remarks regarding different topics are given here. Please also
pay attention to this.

• Exchange-Correlation: Due to technical and/or formal limitations, not all avail-
able XC functionals can be used. We tested for LDA- and GGA-based functionals
which should work fine. Other choices were not tested or are in development
process and the code will stop for unreasonable settings.

Tags for general section of control.in

Tag: RT_TDDFT_input_units (control.in)

Usage: RT_TDDFT_input_units units

units: String that specifies in which unit system the input is given. If atomic,
the remaining parameters are read in atomic units, if spec, the remaining
parameters are read in as what we call spectroscopic.

3.26. Real-Time TDDFT 283

Quantity atomic spec Example
Time ~/Eh fs Sim. time, steppings, pulse center/width
Frequency Eh/~ fs−1 Ext. field frequency
Electric field Eh/a0e eV/Å –

This setting affects every physical input quantity given such that one has to pay attention
to the consistent use of units. The following table depicts possible unit sets. Quite
’typical’ values for time steppings are 0.1 a.u. = 0.0024 fs or for electric field amplitudes
0.01 a.u. = 51.42 eV/Å.
This keyword must be set by the user or the code will not run which is intended to
prevent unit confusions.

Tag: RT_TDDFT_run (control.in)

Usage: RT_TDDFT_run t_tot dt_prop dt_output

Purpose: Performing a real-time TDDFT simulation.
t_tot: Total simulation time for which the time-propagation will be performed.
dt_prop: Time step which will be used.
dt_output: Time step for which output like energy, dipole, etc. is sent to
standard output and is written to file/s.

The choice of the timestep heavily affects the accuracy and stability of the time-
propagation and is restricted by internal or external degrees of freedom, e.g. the spectral
range of the Hamiltonian or the frequency of an external field oscillation. Generally, a
small timestep yields better results but significantly increases the computation time. The
possible timestep also depends on the propagation scheme which is explained later. A
conservative choice is dt_prop ≤ 0.1 a.u. (= 0.0024 fs) but 0.2 a.u. to 0.5 a.u. might
also be possible. Remember using consistent units set by RT_TDDFT_input_units
keyword.

Tag: RT_TDDFT_td_field_gauge (control.in)

Usage: RT_TDDFT_td_field_gauge gauge

Purpose: Setting gauge of a possible external field (in the dipole approximation).
gauge: String. The field can be applied either in length gauge (electric field)
or velocity gauge (vector potential). Default: length for cluster systems,
velocity for periodic systems.

While this makes no difference formally, it has some technical implications. When doing
periodic simulations, only the velocity gauge can be used. In the cluster case, the length
gauge should be used because it is computationally cheaper.
Note that the gauge is a universal setting for each individual RT-TDDFT simulation and
applies to all fields specified.

284 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: RT_TDDFT_td_field (control.in)

Usage: RT_TDDFT_td_field t_start t_end type freq cycle
center width Ex Ey Ez

Purpose: Setting the type, and shape of a possible external field (in the dipole
approximation).
t_start: Start time after which the field is evaluated.
t_end: End time before which the field is evaluated (0 = infinite).
type: Integer that defines the field type as in rt_tddft_external_field.f90.
Possible choices are defined below.
freq: Frequency if applicable (see type).
cycle: Cycle if applicable (see type).
center: Center if applicable (see type).
width: Width if applicable (see type).
Ex, Ey, Ez: Electric field amplitudes.

The choice of the external field depends on the type of calculation that one wants to
perform. To obtain the absorption spectrum via the dynamical electronic dipole response,
a delta-kick field can be applied by e.g. setting type = 2, center, width and Ez to
some values which will apply a gaussian pulse of given amplitude at center time/width
and along the z-axis. width should then be chosen quite small, e.g. to 0.05 fs.
To apply a field pulse with a defined wavelength, one can e.g. set type = 3, freq,
cycle, Ez which will result in a modulated gaussian pulse of given wavelength around
center time.
Multiple instances of this keyword with different settings can be given, e.g. to apply
multiple different pulses over time. Internally, all defined fields are simply added up, so
pay attention to temporal localization (if intended).
Note that the field amplitudes are always given as the amplitudes of the electric field,
even in the case when the velocity gauge is used (see RT_TDDFT_td_field_gauge).
Currently, the following field types are implemented:

• 0: No field at all. This is the default when RT_TDDFT_td_field is not specified.

• 1: Constant field.

• 2: Delta kick pulse via Gaussian:

E(t) = E0 exp
(
t− t0
tw

)(
1 + exp

(
t− t0
tw

))−2

A(t) = −E0tw

(
1−

(
exp

(
t− t0
tw

))−1)

3.26. Real-Time TDDFT 285

• 3: Localized field oscillation via sine-modulated Gaussian:

E(t) = E0 exp
(
−(t− t0)2

2w2

)
sin

(
ω(t− t0)

)
A(t) := E(t)

with w = tw/(2
√

2 log(2)), tw = FWHM.

• 4: Sinusoidal field with reference frequency:

E(t) = E0 sin
(
ω

c
(t− t0)

)
A(t) := E(t)

• 5: Pulse train:

E(t) = E0 sin
(2π
c

(t− t0)
)2

cos(ω(t− t0))

A(t) := E(t)

• 6: Ramp field:

E(t) = (t− t0)E0

A(t) := E(t)

where t0 = t_start, ω = 2πf and f = freq, c = cycle, tc = center, tw = width,
E0 = (Ex, Ey, Ez)T . Parameters not occuring in a function definition are not referenced
and can be set to any value.
Note that user-defined fields can easily be included in the corresponding subroutine
src/rt-tddft/src/rt_tddft_ext_field.f90.
Remember using consistent units set by the RT_TDDFT_input_units keyword.

Tag: RT_TDDFT_propagator (control.in)

Usage: RT_TDDFT_propagator propagator

Purpose: Setting the propagation scheme used in RT-TDDFT.
propagator: String that defines the numerical integration scheme. See below
for possible options. Default: exponential_midpoint.

The choice of the propagator can have major impacts on performance and there is active
research going on trying to answer the question which propagation scheme is best for
real-time TDDFT. Nevertheless, several well-proven choices exist and can be chosen
here. Additionally, some more or less experimental choices are also implemented but
should be used with caution. The possible integration schemes are listed here:

• exponential_midpoint (EM): Solid standard implicit scheme, see [37].

C(t+ ∆t) = exp
(
−i∆tS−1H(t+ ∆t/2)

)
C(t)

286 Chapter 3. The Full Monty: All Keywords and Capabilities

• crank_nicolson (CN): Also a solid standard implicit scheme, see [37].

C(t+ ∆t) = S− i∆tH(t+ ∆t/2)
S + i∆tH(t+ ∆t/2)C(t)

• etrs (Enforced Time-Reversal Symmetry): Another solid standard implicit scheme,
slighlty more expensive than EM, see [37].

C(t+ ∆t) = exp
(
−i∆t2 S−1H(t+ ∆t)

)
exp

(
−i∆t2 S−1H(t)

)
C(t)

• cfm4 (Commutator-Free Magnus Expansion 4): A newer implicit scheme that has
proven very well-working and will probably become standard soon, see [78].

C(t+ ∆t) = exp
(
−i∆tS−1 (α1H1 + α2H2)

)
exp

(
−i∆tS−1 (α1H2 + α1H2)

)
C(t)

α1/2 = 1
4 ∓
√

3
6 , H1/2 = H

(
t+

(
1
2 ∓
√

3
6

)
∆t
)

• runge_kutta_4: Standard explicit Runge-Kutta 4 scheme. Works only for very
small time steps but is a good choice for doing accurate reference simulations
because its properties are well-known. See [2] for details.

Note that all above mentioned implicit schemes are defined as implicit as they re-
quire evaluation of the Hamiltonian matrix at some future time. Currently, there are
two ways implemented on how to solve this type of equation which can be set by the
RT_TDDFT_propagator_solver keyword.
It should also be noted here that, when using a predictor-corrector scheme (which is the
default solver for all implicit propagators), accuracy can be enhanced by using extrapo-
lation, see the keyword RT_TDDFT_extrapolate_predictor .

Tag: RT_TDDFT_propagator_solver (control.in)

Usage: RT_TDDFT_propagator_solver solver

Purpose: Lets one choose the solver technique used for time propagation and for
the selected propagator.
solver: String that can be

• predictor_corrector: Standard predictor corrector scheme.

• forward_extra: Uses extrapolation to approximate future Hamiltonian in
implicit schemes.

• anderson: Anderson acceleration to solve implicit schemes. [EXPERI-
MENTAL]

• gragg_bulirsch_stoer: GBS algorithm [EXPERIMENTAL – do not use].

3.26. Real-Time TDDFT 287

This keyword must usually not be set since every RT_TDDFT_propagator has its own
default setting for the solver. Anyway, one can set the solver manually, e.g. to use one
of the implicit exponential propagators with extrapolation which is much cheaper since
the corrector integration of the Hamiltonian matrix is not applied. Some combinations
are not possible and a warning will be given that default settings will be used. Please
use this option with caution.

Tag: RT_TDDFT_use_precor_tol (control.in)

Usage: RT_TDDFT_use_precor_tol tol

Purpose: Sets a tolerance of density change after which no more corrector steps
are applied when multiple corrector steps may be performed.
tol: Float that sets convergence criterion to exit corrector-loop. Not used by
default.

Performing additional corrector steps until a convergece criterion is reached will formally
increase accuracy. It should nevertheless be noted that the biggest error is probably
introduced already by the predictor step and that significant improvements by doing
additional corrector steps are not to be expected. Every corrector update involves another
integration of the Hamiltonian matrix which is the most expensive part in RT-TDDFT
usually. Before doing more corrector steps, it probably makes more sense to choose
a smaller time step – if accuracy is a problem. If one wants to use this functionality
anyway, values of 10−5-10−9 would make sense usually. Note that a maximum number
of 10 corrector steps is hardcoded to avoid unnecessary many corrector updates (one
should check settings when this happens).

Tag: RT_TDDFT_precor_steps (control.in)

Usage: RT_TDDFT_precor_steps steps

Purpose: Lets the user choose the (fixed) number of corrector steps to be done
in the predictor-corrector solver.
steps: Integer setting a fixed number of corrector steps. Default: 1

Please see RT_TDDFT_use_precor_tol for further remarks. The default value is
usually a good choice.

Tag: RT_TDDFT_extrapolate_predictor (control.in)

Usage: RT_TDDFT_extrapolate_predictor extrapol

Purpose: Extrapolation is used for the predictor step in case a predictor-corrector
scheme is used.
extrapol: Bool that defines whether the Hamiltonian in a predictor propagator
is extrapolated. Default: .false.

288 Chapter 3. The Full Monty: All Keywords and Capabilities

The Hamiltonian (matrix) used in the predictor step will be extrapolated by a given
method which can be set via the RT_TDDFT_ham_extrapolation keyword. This
also means that additional storage is needed. The extrapolated Hamiltonian (matrix) is
applied in the predictor step. Tests indicate that extrapolation can noticeably improve
accuracy.

Tag: RT_TDDFT_ham_extrapolation (control.in)

Usage: RT_TDDFT_ham_extrapolation method order

Purpose: Controls order and method of extrapolation for the Hamiltonian matrix
if applicable.
method: String that can be either linear or lagrange. Default: linear.
order: Integer that defines the order of the extrapolation, i.e. how many past
Hamiltonian matrices are used (and saved) for extrapolation. Default: 1.

The default setting indicating linear extrapolation works well in tests, whereas, in con-
trast, the Lagrange extrapolation approach sometimes produces odd results and should
be used only with great caution.

Tag: RT_TDDFT_propagator_predictor (control.in)

Usage: RT_TDDFT_propagator_predictor prop

Purpose: A specific predictor propagator can be set in case a predictor-corrector
scheme is used.
prop: String that defines the propagator to be used in the predictor step.

This only makes sense if an explicit scheme like runge_kutta_4 is used as a predic-
tor, or, and this is the usual setting here, if any applicable implicit scheme is used in
combination with extrapolation. A very well-functioning scheme consists of an extrap-
olated exponential_midpoint predictor in combination with the CFM4 propagator for
the corrector. This keyword is ignored if no predictor-corrector scheme is in use.

Tag: RT_TDDFT_exponential_method (control.in)

Usage: RT_TDDFT_exponential_method method

Purpose: Lets one choose the method for the calculation of matrix exponentials
as required by some propagators.
method: String that can be either eigenvectors or scaling_squaring.
Default: eigenvectors.

Currently, two different approaches to compute matrix exponentials needed for the expo-
nential propagators can be used. The eigensolver-based approach [160] is usually working
perfectly but in the current implementation, it cannot be used for non-hermitian ma-
trices – this can be the case for effective Hamiltonian matrices occuring in Ehrenfest

3.26. Real-Time TDDFT 289

dynamics. In this case, the Scaling and Squaring - method [103] will be applied. Anyway,
this setting will then be adjusted automatically. One can modify this setting mainly for
benchmarking or testing.

Tag: RT_TDDFT_ehrenfest (control.in)

Usage: RT_TDDFT_ehrenfest type dt_geo

Purpose: Performing a RT-TDDFT+Ehrenfest simulation, i.e. coupled electron-
ion dynamics.
type: String that defines the Ehrenfest scheme. Must currently only be chosen
as default.
dt_geo: Timestep for geometry update and force computation.

The timestep for Ehrenfest dynamics must obviously be at least the same value as for
electron propagation. Usually, it can be chosen around 2- to 4-fold while maintaining
stable propagation. Since updating the geometry and calculating forces is expensive, the
Ehrenfest time step shoud be as large as possible. Additionally, the specific interplay
of time propagation, force update and geometry update works very good when dt_geo
= N× dt with N = 4 (in general, even numbers should be chosen when trying out). A
reasonable choice for doing Ehrenfest dynamics should be dt = 0.1 a.u. in combination
with dt_geo = 0.4 a.u. Monitoring energy conservation and norm conservation of the
eigenvectors is advised when trying out settings.
Remember using consistent units set by the RT_TDDFT_input_units keyword.

Tag: RT_TDDFT_ehrenfest_start_time (control.in)

Usage: RT_TDDFT_ehrenfest_start_time t_start

Purpose: Setting the start time for Ehrenfest dynamics.
t_start: Time after which non-adiabatic forces are calculated and geometry is
updated in case an Ehrenfest simulation is requested. Default: 0.

Usually, Ehrenfest dynamics start with the begin of a RT-TDDFT simulation when
requested but employing this key can modify the start time in case specific tasks require
this.
Remember using consistent units set by the RT_TDDFT_input_units keyword.

Tag: RT_TDDFT_ehrenfest_full_nc_forces (control.in)

Usage: RT_TDDFT_ehrenfest_full_nc_forces key

Purpose: When requested, the full non-adiabatic Ehrenfest forces are evaluated.
key: Boolean that controls whether the full force contributions are calculated at
each force computation step. Default: .false.

Usually, it seems that using the ’normal’ non-adiabatic Ehrenfest forces conserving the

290 Chapter 3. The Full Monty: All Keywords and Capabilities

energy (but not necessarily the momentum) is sufficient but by using this keyword, the
complete expression is evaluated – this might be important in specific situations and is
of course more general. Anyway it is more expensive.

Tag: RT_TDDFT_ehrenfest_remove_com (control.in)

Usage: RT_TDDFT_ehrenfest_remove_com key

Purpose: Controls whether the center of mass is set to origin in Ehrenfest
dynamics.
key: Boolean. Default: .true.

Tag: RT_TDDFT_write_file_prefix (control.in)

Usage: RT_TDDFT_write_file_prefix prefix

Purpose: Controls naming of all output files produced by the RT-TDDFT
module.
prefix: String that is used to specify output files. Default: output

All output files have the format PREFIX.rt-tddft.OBSERVABLE.SUFFIX or
PREFIX.rt-tddft-ehrenfest.OBSERVABLE.SUFFIX where PREFIX can be set by the
user to specify simulation settings. For example, energies are by default written to a
file named output.rt-tddft.energies.dat. The corresponding quantities are al-
ways specified (format, units, etc.) in comment headers inside the files. Note that
for any file output, existing files will not be overwritten. Instead, new files named
PREFIX.N.rt-tddft.OBSERVABLE.SUFFIX with N = 1, 2, .. will be created.

Tag: RT_TDDFT_write_ext_field (control.in)

Usage: RT_TDDFT_write_ext_field key

Purpose: Controls whether the time-dependent external field is written to a file.
key: Boolean. Default: .true.

The external field and all corresponding parameters are written to a file before a real-
time simulation in this case. This information can e.g. be used for postprocessing or
visualization.

Tag: RT_TDDFT_write_cube (control.in)

3.26. Real-Time TDDFT 291

Usage: RT_TDDFT_write_cube dt_cube

Purpose: Controls whether time-dependent cubes are written to files.
dt_cube: Real value determining the timestep for which output will be gen-
erated. If possible, this value should be much higher than the real-time time
stepping since computing cubes is costly.

Default cube output is deactivated until this flag is given and the output frequency is
specified. All options that can be used for cube output via the output cube
keyword can be applied here and must be set in addition to this keyword.
Remember using consistent units set by the RT_TDDFT_input_units keyword.

Tag: RT_TDDFT_output_level (control.in)

Usage: RT_TDDFT_output_level level

Purpose: Controls the amount of output written by the RT-TDDFT subroutine.
level: Integer with valid values of:

• 0: Min output - nearly nothing except basic information is written (NOTE:
no information about physical observables is written in this case, too – use
file output then)

• 1: Low output - some additional information is written, e.g. energies, dipole
moment

• 2: Mid output - more is written out, e.g. convergence or accuracy param-
eters, timings

• 3: Max output - this prints info on anything that is being performed

Default: 1

Since real-time TDDFT simulations are usually performed for a significant number of
time-integration/density update/force calculation/etc. operations, the associated output
will result in very large amounts of mostly unnecessary data which can be avoided setting
this keyword. The default should yield sufficient information on what is happening, but
setting it to 2 will give some more information about numerical properties which can be
important to follow.
Please note that important observables, e.g. energies, dipole moment, geometry, etc. are
written to separate files which can be controlled further and which eases post-processing
(see RT_TDDFT_write_file_prefix).

Tag: RT_TDDFT_output_energies (control.in)

292 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: RT_TDDFT_output_energies key_std key_file

Purpose: Controls whether time-dependent energies are calculated, sent to
output and written to file.
key_std: Boolean controlling whether energies are written to standard output.
Default: .true.
key_file: Boolean controlling whether energies are written to a file. Default:
.false.

Energy should always be observed in order to validate a properly running simulation, i.e.
total energy conservation. Note that when values written to a file too, the correspond-
ing file is named PREFIX.rt-tddft.energies.dat where PREFIX can be changed via the
RT_TDDFT_write_file_prefix keyword.

Tag: RT_TDDFT_output_dipole (control.in)

Usage: RT_TDDFT_output_dipole key_std key_file

Purpose: Controls whether time-dependent dipole moment is calculated, sent to
output and written to file.
key_std: Boolean controlling whether dipole moment is written to standard
output. Default: .true. for cluster systems, else .false.
key_file: Boolean controlling whether dipole moment is written to a file.
Default: .false.

The electronic dipole is usually an observable of major interest in many real-time TDDFT
applications. Note that when values written to a file too, the corresponding file is named
PREFIX.rt-tddft.dipole.dat where PREFIX can be changed via the
RT_TDDFT_write_file_prefix keyword.

Tag: RT_TDDFT_output_state_dipoles (control.in)

Usage: RT_TDDFT_output_state_dipoles key_std

Purpose: Controls whether time-dependent dipole moments of individual
occupied states are calculated and sent to standard output.
key_std: Boolean. Default: .false.

If given, the dipole expectation values for all occupied (and thus, time-propagated) states
are computed and sent to output. Note that this computation requires the explicit
evaluation of the dipole matrix 〈φi|r|φj〉 and could cause additional computational cost.

Tag: RT_TDDFT_output_current (control.in)

3.26. Real-Time TDDFT 293

Usage: RT_TDDFT_output_current key_std key_file

Purpose: Controls whether time-dependent electronic current is calculated, sent
to output and written to file.
key_std: Boolean controlling whether current is written to standard output.
Default: .false. for cluster systems, else .true.
key_file: Boolean controlling whether current is written to a file. Default:
.false.

The electronic current is often the main observable of interest in periodic RT-TDDFT
simulations (analog to the dipole in finite systems). Note that when values written to a
file too, the corresponding file is named PREFIX.rt-tddft.current.dat where PREFIX can
be changed via the RT_TDDFT_write_file_prefix keyword.

Tag: RT_TDDFT_ehrenfest_output_trajectory (control.in)

Usage: RT_TDDFT_ehrenfest_output_trajectory key_std key_file

Purpose: Controls whether time-dependent coordinates, velocities and forces are
sent to output and written to file in Ehrenfest dynamics.
key_std: Boolean controlling whether trajectory information is written to
standard output. Default: .true. for Ehrenfest dynamics, else .false.
key_file: Boolean controlling whether trajectory information is written to a
file. Default: .false.

Note that when values written to a file too, the corresponding file is named PREFIX.rt-
tddft-ehrenfest.trajectory.xyz where PREFIX can be changed via the
RT_TDDFT_write_file_prefix keyword.

Tag: RT_TDDFT_restart_write (control.in)

Usage: RT_TDDFT_restart_write t_write_restart

Purpose: Writes a RT-TDDFT restart file for a specified time.
t_write_restart: Real value corresponding to specific time for which a restart
file should be written.

All neccessary information to perform a RT-TDDFT restart is written to file/s in this
case. In detail, all the eigencoefficients, coordinates, settings, etc. Multiple entries of
this keyword for different times can be given.

Tag: RT_TDDFT_restart_write_period (control.in)

294 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: RT_TDDFT_restart_write_period t_write_restart_period

Purpose: Writes a RT-TDDFT restart file repeatedly after each specified time
period.
t_write_restart: Real value corresponding to specific time period after which
a restart file should be written.

See RT_TDDFT_restart_write for details. When doing very demanding simulations
and/or very long simulations, one should set a sensible value here to avoid needing to
restart from the beginning after a job was cancelled. Writing a restart file automatically
when a kill signal is received is on the do-to list.

Tag: RT_TDDFT_restart_read (control.in)

Usage: RT_TDDFT_restart_read restart_file

Purpose: Reads a RT-TDDFT restart file and starts the simulation based on it.
restart_file: String describing the corresponding restart file.

Besides the physical quantities, the restart file contains all relevant real-time simulation
parameters which are compared to what is given in control.in. The settings must be the
same or the simulation will abort. This also works for Ehrenfest dynamics. Note that
when performing a restart, FHI-aims will run a SCF cycle, but the resulting eigenvectors,
etc. will be overwritten from what is read in the restart file - based on this, the real-time
simulation will be re-initialized.

Tags for geometry.in

Tag: RT_TDDFT_initial_velocity (geometry.in)

Usage: RT_TDDFT_initial_velocity v_x v_y v_z

Purpose: Initial velocity of corresponding (i.e. last specified) atom when
peforming RT-TDDFT-Ehrenfest dynamics.
v_x, v_y, v_z: Initial velocities in units of Å/ps.

Putting initial kinetic energy into the ionic subsystem is a common initial condition used
in Ehrenfest dynamics, e.g. when simulating ion bombardment or to evaluate molecular
potential energy surfaces.

3.27. Bethe-Salpeter equation: BSE 295

3.27 Bethe-Salpeter equation: BSE

The serial BSE runs both with and without Tamm-Dancoff Approximation (TDA) and
print out both results by default. The parallel BSE runs only with TDA at the moment.

The BSE eigenvalue equation in matrix form is: A B

−B −A

X1

X2

 = Λ
X1

X2

where Λ: Excitation energies; X1, X2: Excitation eigenvectors; matrix element A and B
are calculated by quasiparticle energies, Coulomb and screened Coulomb integrals;

Ajbia = −αS/T < ia|V |jb > + < ij|W (ω = 0)|ab > +(EQP
a − EQP

i)δijδab
Bjb
ia = −αS/T < ia|V |bj > + < ib|W (ω = 0)|aj >

where i, j: occupied states; a, b: unoccupied states; αS/T = 2 for singlet states; 0 for
triplet states. The TDA considers only block A, which is symmetric and easy to solve.

Tags for general section of control.in

Tag: neutral_excitation (control.in)

Usage: neutral_excitation type
Purpose: Triggers the calculation of neutral excitations.
type: String that defines the type of calculation to be performed.

• bse: Full BSE calculation without TDA for serial run; TDA BSE for parallel
run.

Also the keyword empty_states should be set to a large number (e.g., 1000), or
the keyword calculate_all_eigenstates should be used, to make sure the code
generates all possible empty states provided from the basis set. This number will also
be reduced automatically by the code to the maximum number that can be generated
from the basis set.

Tag: read_write_qpe (control.in)

Usage: read_write_qpe type
Purpose: Specify write quasiparticle energies (qpe) in GW calculation or read qpe
in BSE calculation
type: String that specify read or write qpe, or both.

• w: write qpe to a file, used together with qpe_calc

• r: read qpe from a file, if this value(’r’) is set, a file "energy_qp" should
be provided by the user. The energy in the file "energy_qp" should be in
hartree unit.

• wr or rw: write qpe in GW and read qpe in BSE

296 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: bse_s_t (control.in)

Usage: bse_s_t type
Purpose: Specify whether singlet or triplet excitation energies should be calculated
in BSE calculation.
type: String that specify wheter singlet or triplet, can not do both at the moment.

• singlet: Singlet states calculated in BSE.

• triplet: Triplet states calculated in BSE.

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 297

3.28 DFPT - density functional perturbation theory
for lattice dynamics and homogeneous electric
fields

All these DFPT features are written by Honghui Shang and coworkers at FHI, when
using routines related to DFPT, please contact shang@fhi-berlin.mpg.de.

The density functional perturbation theory (DFPT) is in principle the perturbation form
of DFT, which is only needed for the second and higher order derivatives (2n+ 1 the-
orem). For example, for the calculation of vibrational frequencies and phonon band-
structures (second order derivative) the response of the electronic structure to a nuclear
displacement (first order derivative) is needed. These derivatives can be calculated in
the framework of density-functional perturbation theory (DFPT). DFPT provide access
to many fundamental physical phenomena, such as superconductivity, phonon-limited
carrier lifetimes in electron transport and hot electron relaxation, Peierls instabilities, the
renormalization of the electronic structure due to nuclear motion, Born effective charges,
phonon-assisted transitions in spectroscopy as well as infrared and Raman spectra.

We support DFPT calculations

• For vibrations in non-periodic systems and phonons in periodic systems.

• For homogeneous electric fields in non-periodic systems (polarizability) and in
periodic systems (dielectric constant).

There are three key references that provide the technical background for these sections:

1. Lattice dynamics calculations based on density-functional perturbation
theory in real space
Honghui Shang, Christian Carbogno, Patrick Rinke, Matthias Scheffler
Comp. Phys. Comm.215, 26 (2017)

2. The moving-grid effect in density functional calculations of harmonic vi-
bration frequencies using numeric atom-centered grids
Honghui Shang, to be submitted to J. Chem. Phys.

3. All-Electron, Real-Space Perturbation Theory for Homogeneous Electric
Fields: Theory, Implementation, and Application within DFT
Honghui Shang, Nathaniel Raimbault, Patrick Rink, Matthias Scheffler, Mariana
Rossi, Christian Carbogno
New J. Phys. 20, 073040 (2018)

298 Chapter 3. The Full Monty: All Keywords and Capabilities

DFPT electric
field

polar

dielectric

atomic
move

phonon

reduce
CPU

reduce
me-

mory

vibration
reduce
CPU

reduce
me-

mory

atomic displacement

For molecules:
”DFPT vibration”, ”DFPT vibration reduce memory”

For solid :
”DFPT phonon”, ”DFPT phonon reduce memory”

electric field

For molecules:
”DFPT polarizability”

For solid :
”DFPT dielectric”

Figure 3.6: The DFPT feathers in FHI-aims.

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 299

Theory

Lattice Dynamics

In order to get vibration/phonon frequencies, first we need to get dynamical matrix,
Let’s define a lattice vector RIm as

RIm = RI + Rm, (3.74)

whereby Rm denotes an arbitrary linear combination of a1, a2, and a3. And the dynam-
ical matrix DIJ(q) is a Fourier transform of harmonic Hessian matrix (Force constant)
Φharm
Im,J .

DIJ(q) = 1√
MIMJ

∑
m

Φharm
Im,J exp (iq ·Rm)

= 1√
MIMJ

∑
m

d2EKS
dRImdRJ

exp (iq ·Rm) (3.75)

Since the finite (3N × 3N) dynamical matrix D(q) would in principle have to be deter-
mined for an infinite number of q-points in the Brillouin zone. Its diagonalization would
produce a set of 3N q-dependent eigenfrequencies ωλ(q) and -vectors eλ(q).

In order to derive the second order derivatives for total energy analytically (which is
the key idea for the DFPT approach), the ground state total energy and force is derived
first and we could get this second order derivatives directly. It is should be noted that,
here real-space DFPT method is used, so that we could get the real-space force constant
directly.

In FHI-aims, the total energy is calculated by using band-energy, a derivation for cluster
systems is a following, and the extending to extended systems is straightforward.

EKS = −1
2
∑
i

< φi|∇2|φi > −
∫
n(r)

∑
I

ZI
|r−RI |

dr+

1
2

∫ ∫ n(r)n(r′)
|r− r′|

drdr′ + 1
2
∑
I

∑
J 6=I

ZIZJ
|RI −RJ |

+ Exc(n) (3.76)

using

⇒ ĥks = −1
2∇

2 −
∑
I

ZI
|r−RI |

+
∫ n(r′)
|r− r′|

dr′ + vxc(r)

we have
=
∑
i

< φi|ĥks|φi > −
∫

[n(r)vxc(r)]dr + Exc(n)

− 1
2

∫ ∫ n(r)n(r′)
|r− r′|

drdr′ + 1
2
∑
I

∑
J 6=I

ZIZJ
|uI − uI |

(3.77)

=
∑
i

fiεi −
∫

[n(r)vxc(r)]dr + Exc(n)

300 Chapter 3. The Full Monty: All Keywords and Capabilities

− 1
2

∫ ∫ nr)n(r′)
|r− r′|

drdr′ + 1
2
∑
I

∑
J 6=I

ZIZJ
|RI −RI |

(3.78)

=
∑
i

fiεi −
∫

[n(r)vxc(r)]dr + Exc(n)

−1
2

∫ ∫ n(r)n(r′)
|r− r′|

drdr′ + 1
2

∫
n(r)

∑
I

ZI
|r−RI |

dr

+ 1
2
∑
I

∑
J 6=I

ZIZJ
|RI −RJ |

− 1
2

∫
n(r)

∑
I

ZI
|r−RI |

dr (3.79)

=
∑
i

fiεi −
∫

[n(r)vxc(r)]dr + Exc(n)

−1
2

∫
n(r)[

∑
I

V free
I (|r−RI |) + δVI(|r−RI |)]dr

− 1
2
∑
I

ZI [
∑
J

V free
J (|RJ −RI |) +

∑
J 6=I

δVJ(|RJ −RI |)] (3.80)

=
∑
i

fiεi −
∫

[n(r)vxc(r)]dr + Exc(n)

−1
2

∫
n(r)[

∑
I

V es,tot
I (|r−RI |)]dr

− 1
2
∑
I

ZI [V es,tot
I (0) +

∑
J 6=I

V es,tot
J (|RJ −RI |)] (3.81)

Here Eq.(3.81) is exactly the one to calculate Kohn-Sham total energy. An extension
expression to extended system is in Eq.3.82

Etot = − 1
Nk

uc∑
i

fkiεki −
∫
uc

[n(r)vxc(r)]dr + Exc(n) (3.82)

−1
2

∫
uc
n(r)[

∑
I,m

V es,tot
I (|r−RI,m|)]dr

−1
2
∑
I

ZI [V es,tot
I (0) +

∑
(J,m)6=(I,0)

V es,tot
J (|RJm −RI |)]

Then we get the analytical force expression for cluster systems:

FI = −dEKS
dRI

= FHF
I + FP

I + FM
I

−[−
∂(
∫
n(r)∑I

ZI
|r−RI |

dr)

∂RI

+
∂(1

2
∑
I

∑
J 6=I

ZIZJ
|RI −RJ |

)

∂RI

]

−
∑
µν

[Pµν
∫

(∂χµ
∂RI

ĥksχν + χµĥks
∂χν
∂RI

)dr−Wµν
∂Sµν
∂RI

]

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 301

−
∫

[n(r)− nMP (r)]∂V
MP (r)
∂RI

dr (3.83)

Here Pµν refers to density matrix andWµν refers to energy density matrix. Here the first
term is Hellmann-Feynman force using Hellmann-Feynman theorem ; The second term
is Pulay term, it comes from basis set dependence of atomic coordinate; The third term
is multipole force, it count the contribution from multipole expansion error for Hartree
energy calculation (multipole Poisson solver).

Under periodic boundary conditions, we get the following expression for force for extended
systems:

FHF
J = ZJ [∂V

es,tot
J (0)
∂RJ

+
∑

(I,m)6=(J,0)
(∂V

es,tot
I (|RJ −RIm)|

∂RJ

)] (3.84)

FP
J = − 2

Nk

∑
k,i,µ,ν

∫
fikC

∗
µik
∂ϕ∗µk(r)
∂RJ

(ĥks − εik)Cνikϕνk(r)dr , (3.85)

In our real-space DFPT method, this harmonic Hessian matrix is calculated directly, as
explained in our paper. The Hessian can be split into two part

E
(2)
KS = d2EKS

dRIdRJ

= ΦHF
I,J + ΦP

I,J + PhiMP
I,J (3.86)

= [−
∂2(

∫
n(r)∑I

ZI
|r−RI |

dr)

∂RI∂uJ
+
∂2(1

2
∑
I

∑
J 6=I

ZIZJ
|RI −RJ |

)

∂RI∂RJ

]

+
∑
µν

∂Pµν
∂RJ

∫
(∂χµ
∂RI

ĥksχν + χµĥks
∂χν
∂RI

)dr

+
∑
µν

Pµν

∫
[∂2χµ
∂RI∂RJ

ĥksχν + ∂χµ
∂RI

∂ĥks
∂RJ

χν + ∂χµ
∂RI

ĥks
∂χν
∂RJ

]dr

+
∑
µν

Pµν

∫
[∂χµ
∂RJ

ĥks
∂χν
∂RI

+ χµ
∂ĥks
∂RJ

∂χν
∂RI

+ χν ĥks
∂2χν

∂RI∂RJ

]dr

−(
∑
µν

∂Eµν
∂RJ

∂Sµν
∂RI

+
∑
µν

Eµν
∂2Sµν

∂RI∂RJ

)

+
∫ ∂[n(r)− nMP (r)]

∂RI

∂V MP (r)
∂RJ

dr

+
∫

[n(r)− nMP (r)]∂
2V MP (r)
∂RI∂RJ

dr

It can also be divided into three part: Hellmann-Feynman Hessian, Pulay Hessian, Mul-
tipole Hessian. In real calculation, we drop multipole Hessian due to its value is only
10−3 times small compared with the other two.

302 Chapter 3. The Full Monty: All Keywords and Capabilities

Under periodic boundary conditions, we get the following expression for force constants:

Φharm
Is,J = d2EKS

dRIsdRJ

= − dFJ

dRIs

= −dFIs

dRJ

= ΦHF
Is,J + ΦP

Is,J . (3.87)

ΦHF
Is,J = −ZJ

(
d

dRJ

∂V es
J (0)
∂RJ

)
δIs,J0 (3.88)

−ZJ
(

d

dRJ

∂V es,tot
I (|RJ −RIs)|

∂RIs

)
(1− δIs,J0) ,

in which δIs,J0 = δIJδs0 denotes a multi-index Kronecker delta.

For the sake of readability, its total derivative is split into four terms:

ΦP
Is,J = ΦP−P

Is,J + ΦP−H
Is,J + ΦP−W

Is,J + ΦP−S
Is,J . (3.89)

The first term

ΦP−P
Is,J = 2

∑
µm,νn

(
dPµm,νn
dRJ

)∫ ∂χµm(r)
∂RIs

ĥksχνn(r) dr (3.90)

accounts for the response of the density matrix Pm,n
µm,νn. The second term

ΦP−H
Is,J = 2

∑
µm,νn

Pµm,νn · (3.91)(∫ ∂2χµm(r)
∂RIs∂RJ

ĥks χνn(r) dr (3.92)

+
∫ ∂χµm(r)

∂RIs

dĥks
dRJ

χνn(r) dr (3.93)

+
∫ ∂χµm(r)

∂RIs

ĥks
∂χνn(r)
∂RJ

dr
)

(3.94)

accounts for the response of the Hamiltonian ĥks(k), while the third and fourth term

ΦP−W
Is,J = −2

∑
µm,νn

dWµm,νn

dRJ

∫ ∂χµm(r)
∂RIs

χνn(r) dr (3.95)

ΦP−S
Is,J = −2

∑
µm,νn

Wµm,νn
∂

∂RJ

∫ ∂χµm(r)
∂RIs

χνn(r) dr (3.96)

for the response of the energy weighted density matrix Wµm,νn and the overlap ma-
trix Sµm,νn, respectively, Please note that in all four contributions many terms vanish
due to the fact that the localized atomic orbitals χµm(r) are associated with one specific
atom/periodic image RJ(µ)m, which implies, e.g.,

∂χµm(r)
∂RIs

= ∂χµm(r)
∂RIs

δJ(µ)m,Is . (3.97)

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 303

In in above force constants, it is clear that the first order density matrix ∂Pµν
∂RJ

and

the first order energy density matrix ∂Wµν

∂RJ

are needed. These first order qualtities are
obtained in the DFPT cycle. The flowchart of our DFPT cycle for lattice dynamics is
shown in Fig.3.7.
Our resulting frequencies look like this:

DFPT-Results:

List of all frequencies found:
Mode number Frequency [cm^(-1)] IR-intensity [D^2/Ang^2]

1 -2282.47061452 0.00000000
2 -2282.47061452 0.00000000
3 -0.00004008 0.00000001
4 0.00003217 0.00000000
5 0.00006390 0.00000000
6 5546.30603353 0.00000000

For vibration calculation, there are there keywords to choose:

• DFPT vibration

• DFPT vibration_reduce_memory

• DFPT vibration_with_moving_grid_effect

A comparison for these three features as well as DFT calculation is shown in Fig.3.8
In phonon calculation, only Gamma point results is printed in the output like this:

===
DFPT-Results: for q1= 0.000000000000000E+000 0.000000000000000E+000
0.000000000000000E+000

===

List of all frequencies found:
Mode number Frequency [cm^(-1)]

1 -2376.08047043
2 -2376.08047043
3 -0.00004497
4 0.00001694
5 0.00009141
6 5113.49725256

A typical phonon band structure is shown for Graphen in Fig. 3.9

A scaling test for DFPT code for lattice dynamics is has been done for Si system, with
up to 1024 atoms in the unit cell see Fig.3.10.

304 Chapter 3. The Full Monty: All Keywords and Capabilities

 1st-order density

 1st-order total
 electrostatic
 potential

 1st-order
Hamiltonian

1st-order expansion
 coefficients

force constants

 1st-order overlap

electronic density

dynamical matrix

DFPT

DFT

 1st-order
density matrix

1st-order energy
density matrix

Figure 3.7: Flowchart of the lattice dynamics implementation using a real-space DFPT
formalism.

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 305

(1) DFT
(Time = 22 000 ms)

peak memory = 28.0 MB

(2) DFPT vibration_reduce_memory
(Time = 73 000 ms)

peak memory = 28.4 MB

 (3) DFPT vibration
 (Time = 161 000 ms)

peak memory = 33.2 MB

(4) DFPT vibration_with_moving_grid_effect
 (Time = 169 000 ms)

peak memory = 34.6 MB

Basis set: minimal
Grid: tight setting
 XC : LDA

use_partition_deriv = .false. use_partition_deriv = .false.

use_partition_deriv = .false. use_partition_deriv = .true.

 hamiltonian(*) first_order_H(*)

first_order_H(3,n_atoms, *) first_order_H(3,n_atoms, *)

Figure 3.8: The memory profiles using valgrind are shown for DFT and three DFPT vi-
bration keywords. It is clearly shown that the DFPT_vibration_reduce_memory(28.4
MB) code just use nearly the same memory as DFT (28.0MB) calculation, while
DFPT_vibration(33.2 MB) and DFPT_vibration_with_moving_gird(34.6 MB) need
higher memory because they stored matrix as (3,n_atoms, *).

306 Chapter 3. The Full Monty: All Keywords and Capabilities

0

500

1000

1500

2000

2500

Γ K M Γ

Fr
eq

ue
nc

y
(c

m
-1

)
Graphene

finite difference
DFPT

-

Figure 3.9: Vibrational band structure of graphene computed at the LDA level using both
DFPT (solid blue line) and finite differences (red open circles). All calculations have been
performed using a 11×11×1 k-grid sampling for the primitive Brillouin zone, tight settings
for the integration, and a tier 1 basis set.

Homogeneous Electric Fields

Suppose we have an external electrical field ξ, the Hamitonian is changed by adding the
following term:

HE = −r · ξ (3.98)
and the induced total energy becomes:

Etot = E0
tot −

∑
I=x,y,z

µIξI −
1
2
∑
I,J

αIJξIξJ (3.99)

Here µI label the dipole moment,

µI =
∫
n(r)rIdr (3.100)

and the corresponding polarizability is defined as the first order derivative of dipole
moment with respect to external electrical field :

αI,J = ∂µI
∂ξJ

=
∫
rI
∂n(r)
∂ξJ

dr (3.101)

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 307

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

128 256 512 1024T
im

e
pe

r
D

FP
T

 s
.c

.f
. i

te
ra

tio
n

(s
)

 F
or

 o
ne

 a
to

m
 o

ne
 c

oo
rd

in
at

e

number of atoms in unit cell

 Si, light, tier 1, 128 cores EOS

DFPT-scalapack

Figure 3.10: The CPUT time per DFPT cycle as a function of the number of atoms in
unit cell on 128 CPU cores.

The polarizability for cluster system can be calculated using 3.101 without any problem.
However, for extended systems, the position operator is unbound, in order to deal with
it, we use 〈ψi(k)| − r|ψj(k)〉 = 〈ψi(k)|5|ψj(k)〉

(εi(k)− εj(k)) , so we can rewritten polarizability

(Eq.3.101) for extended system as

αI,J =
∫
uc
rI
∂n(r)
∂ξJ

dr (3.102)

= 4
Nk

∑
i,j,k
〈ψi(k)|∇I |ψj(k)〉uc

〈ψj(k)|H(1)|ψi(k)〉uc
(εj(k)− εi(k))2 (3.103)

and the corresponding dielectric constant is

ε∞IJ = δIJ + 4π
Vuc

αIJ (3.104)

Similar to the lattice dynamic case, the first order density matrix ∂Pµν
∂RJ

is needed to
be calculated using DFPT cycles. The flowchart of our DFPT cycle for electric field is
shown in Fig.??.

In order to validate our implementation for extended system, we compare the polaris-
ability with cluster extended method, We use hydrogen line (H2) as a showcase. All

308 Chapter 3. The Full Monty: All Keywords and Capabilities

 1st-order density

 1st-order total
 electrostatic
 potential

 1st-order
Hamiltonian

1st-order expansion
 coefficients

electronic density

DFPT

DFT

 1st-order
density matrix

Polarizability

Figure 3.11: Flowchart of the electric field implementation using a real-space DFPT for-
malism.

calculations have been performed with a geometry shown in Fig.3.12 using the tight
integration grids and "minimal" basis sets. For the periodic chain, a reciprocal-space
grid of 35× 1× 1 electronic k-points (in the primitive Brillouin zone) has been utilized
as substantiated convergence in Tab. 3.2. The convergence with respect to electronic
k-points is reasonably fast, in which k grid 35 × 1 × 1 has already get converged with
absolute and relative errors of 0.09 Bohr3 and 0.07 % compared with k grid 70× 1× 1.

For cluster extended method, the results are fitted with an equation

ln (αN − αN−1) = a+ b

N
(3.105)

k 10 20 35 40 70
αxx 180.49 134.76 130.17 130.29 130.26

Table 3.2: The k-convergence tes for polarizabllities per H2 unit cell.

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 309

So the limiting value of the polarizability per unit cell with N going to infinity is given :

lim
N→∞

αuc = exp(a) (3.106)

Here we fit the DFPT results (N=52 to 64) with an equation

ln (αN − αN−1) = a+ b

N
(3.107)

So the limiting value of the polarizability per unit cell with N going to infinity is given :

lim
N→∞

αuc = expa (3.108)

and finally get

a = 4.857 (3.109)
b = −1.123 (3.110)

(3.111)

so we have α(Extrapolation)uc = 128.718

Some Technical details

Screened Method

In periodic systems, the Coulomb potential is long range, e.g. in a H atom as shown in
Fig. 3.13, both Velectron−ion and V free

electron−electron are (separately) never zero (they decay
as 1/r but the number of atoms which they interact with in a periodic system grows as
r2 with distance). If we use the neutral free atom potential instead, the potential will
approach zero at the radius where the electron charge integrates to exactly −1, which
is a finite radius determined by the confinement potential in FHI-aims.

The general idea of screened scheme is to use free part of electronic Coulomb potential
to screening the ion charge Coulomb potential and get short-range neutral potential:

V free
neutral(|r−RI |) = Velectron−ion + V free

electron−electron (3.112)

= − ZI
|r−RI |

+
∫ nfree(r′ −RI)

|r− r′|
dr′

So the total electrostatic potential can be written as[26]

Ves(r) = −
∑
Im

ZI
|r−RIm|

+
∫ n(r′)
|r− r′|

dr′ (3.113)

= −
∑
Im

ZI
|r−RIm|

+
∫ nfree(r′) + δn(r′)

|r− r′|
dr′

=
∑
I,m

[
V free
neutral(|r−RIm|) + δV (|r−RIm|)

]
(3.114)

310 Chapter 3. The Full Monty: All Keywords and Capabilities

HN (a.u.) αDFPTN αDFPTuc

2 9.923 9.923
4 34.042 24.118
6 73.134 39.092
8 126.619 53.485
10 193.231 66.612
12 271.317 78.086
14 359.107 87.790
16 454.896 95.789
18 557.150 102.254
20 664.553 107.404
22 776.018 111.464
24 890.662 114.644
26 1007.790 117.128
28 1126.853 119.064
30 1247.430 120.577
32 1369.190 121.760
34 1491.883 122.693
36 1615.312 123.429
38 1739.328 124.016
40 1863.812 124.485
42 1988.677 124.865
44 2113.848 125.171
46 2239.272 125.423
48 2364.903 125.631
50 2490.709 125.806
52 2616.657 125.949
54 2742.728 126.071
56 2868.902 126.174
58 2995.166 126.264
60 3121.505 126.339
62 3247.909 126.404
64 3374.371 126.462

Table 3.3: Total longitudinal polarizabllities calculated using PZ-LDA molecular hydrogen
chains, with bond length alternation scheme A (H-H = 2.0 a.u., H2-H2 = 4.5 a.u. Also we
list the longitudinal polarizabllities per H2 unit cell calculated by (αN − αN−1).

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 311

2.0 a.u.

2.5 a.u.

Electric field

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60L
on

gi
tu

di
na

l p
ol

ar
iz

ab
ili

tie
s

pe
r H

2
un

it
α u

c
(a

.u
.)

Number of hydrogen atoms

Oligomers (DFPT)
Extrapolation

Polymer (DFPT-PBC)

Figure 3.12: Total longitudinal polarizabllities per H2 unit cell calculated using DFPT
with PZ-LDA for molecular hydrogen chains, the bond length is H-H = 2.0 a.u., H2-H2 =
4.5 a.u., as shown in the figure. The extrapolated value of αDFPTuc is 128.7, listed with red
line. The DFPT-PBC value is 130.2, listed with black line.

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20

Po
te

nt
ia

l (
a.

u.
)

r (a.u.)

Velectron-ion

Vfree
electron-electron

Vfree
neutral

Figure 3.13: The screened scheme can remove long-range tail of Coulomb potential. Here
we use H atom as an example.

312 Chapter 3. The Full Monty: All Keywords and Capabilities

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12 14 16 18 20

Fi
rs

t o
rd

er
 p

ot
en

tia
l (

a.
u.

)

r (a.u.)

V(1)
electron-ion

Vfree(1)
electron-electron

Vfree(1)
neutral

Figure 3.14: The screened method for first order potential. Here we use H atom as an
example.

We follow the line of screened scheme, the first order total electrostatic potential V (1)
es,tot(~r)

can be written as

V
(1)
es,tot(r) = −(

∑
In

ZI
|r−RIn|

)(1) +
∫ n(1)(r′)
|r− r′|

dr′ (3.115)

=
∂−(∑I,n

ZI
|r−RIn|

)

∂RIm

+
∂(
∫ nfree(r′) + δn(r′)

|r− r′|
dr′)

∂RIm

= ∂V free(|r−RIm|)
∂RIm

+
∫ δn(1)(r′)
|r− r′|

dr′

= ∂V free(|r−RIm|)
∂RIm

+ ∂δV (r)
∂RIm

(3.116)

In this way, the first order total electrostatic is divided into two part: free part ∂V
free(|r−RIm|)
∂RIm

and residual part ∂δV (r)
∂RIm

, as shown in Eq. (3.116).

Sparse Matrix

Pleas note that, all matrices in our real-space implementation are in sparse matrix form.
see Fig 3.15 We choose the matrix elements which is just in touch with unit cell basis
sets, as labelled by i-place in the middle.

Using Pulay mixer

The Pulay mixer is the same as the one used in Magnetic Response. However, in current

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 313

Figure 3.15: The sparse matrix storage in FHI-aims for overlap matrix, Hamiltonian matrix
and density matrix, here is an example for H2-line. In total, there are 13 cells (i-cell), with
cell-index from [-6,0,0] to [6,0,0]. Only centers (i-center) within these cells are considers
to build sparse matrix (i-place), the other original centers are just dropped because of no
overlap with unit cell.

1

32

4

65

7

98

10

1211

13

1514

16

1817

19

2120

22

2423

25

2726

28

3029

31

3332

34

3635

37

38

1

2

3

4

5

6

7

8

9

10

11

12

13

 i-cell i-placecell-index

2

1

66

65

84

83

102

101

120

119

138

137

156

155

190

189

208

207

226

225

244

243

262

261

280

279

1

33

42

51

60

69

78

95

104

113

122

131

140

origin-cell origin-center

2

1

4

3

6

5

8

7

10

9

12

11

14

13

16

15

18

17

20

19

22

21

24

23

26

25

i-center

0

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

DFPT phonon
DFPT phonon_reduce_memory
DFPT polarizability
DFPT dielectric

by default, the Pulay mixer (pulay step 8) is used, and the mixing parameter is set by

DFPT_mixing 0.2
DFPT_sc_accuracy_dm 0.001

The Pulay mixer can be changed by writing the number of pulay steps in contron.in.

dfpt_pulay_steps 8

314 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in

Tag: DFPT vibration (control.in)

Usage: DFPT vibration [subkeywords and their options]

Purpose: Allows to calculate vibrations using density-functional perturbation
theory, use Acoustic Sum Rule (ASR) to get Hessian matrix, do not use
moving-grid-effect.

Usage: DFPT vibration_with_moving_grid_effect [subkeywords and
their options]

Purpose: give the results for vibrations with moving-grid-effect, do not use ASR
for Hessian matrix.

Usage: DFPT vibration_without_moving_grid_effect [subkeywords
and their options]

Purpose: give the results for vibrations without moving-grid-effect, ONLY served
as comparison with vibration_with_moving_grid_effect.

Tag: DFPT vibration_reduce_memory (control.in)

Usage: DFPT vibration_reduce_memory [subkeywords and their
options]

Purpose: Allows to calculate vibrations density-functional perturbation theory
by using nearly the same memory as DFT. At present, functionals LDA,
PBE are supported, relativistic is also supported. It should be noted that
PBE and PBE+TS is supported only for DFPT cycle (first-order-H), but
not for Hessian. Only linear-mix (no Pulay-mixer) can be used for DFPT
vibration_reduce_memory at present.

Here is an example, the following need to be added to control.in:

DFPT vibration_reduce_memory
DFPT_mixing 0.2 #default is 0.2
DFPT_sc_accuracy_dm 1E-6 # default is 1.0d-6

Tag: DFPT phonon_gamma (control.in)

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 315

Usage: DFPT phonon_gamma [subkeywords and their options]

Purpose: Allows to calculate phonon for PBC systems using density-functional
perturbation theory. This feather use the dense matrix in FHI-aims, which
cost a lot of memory, so this keyword only served as a benchmark for DFPT
phonon_reduce_memory.

Tag: DFPT phonon (control.in)

Usage: DFPT phonon [subkeywords and their options]

Purpose: Allows to calculate phonon (real space method) for PBC systems using
density-functional perturbation theory. This method could get force constants
using real space method and give the phonon band structures. At present, only
functionals LDA without relativistic is supported.

Here is an example for using DFPT phonon, the following need to be added to control.in:

DFPT phonon
DFPT_mixing 0.5 #default is 0.2
DFPT_sc_accuracy_dm 1.0d-6 # default is 1.0d-3
dfpt_pulay_steps 6 # default is 8

Tag: DFPT phonon_reduce_memory (control.in)

Usage: DFPT phonon_reduce_memory [subkeywords and their
options]

Purpose: Allows to calculate phonon (reciprocal space method) at q point
for PBC systems using density-functional perturbation theory. At present, this
keyword only works to get dynamic matrix at q = 0. This feature is under
developing. At present, functionals LDA, PBE are supported, relativistic is also
supported. It should be noted that PBE and PBE+TS is supported only for
DFPT cycle (first-order-H), but not for Hessian.

Here is an example for using DFPT phonon_reduce_memory, the following need to be
added to control.in:

DFPT phonon_reduce_memory
DFPT_mixing 0.5 #default is 0.2
DFPT_sc_accuracy_dm 1.0d-6 # default is 1.0d-3
dfpt_pulay_steps 6 # default is 8

Tag: DFPT polarizability (control.in)

316 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: DFPT polarizability [subkeywords and their options]

Purpose: Allows to calculate polarizability for cluster systems using density-
functional perturbation theory.
For "DFPT polarizability", functionals LDA, PBE, HF(RI-V) are supported, rela-
tivistic is also supported.

Here is an example for using DFPT polarizability, the following need to be added to
control.in:

DFPT polarizability
DFPT_mixing 0.5 #default is 0.2
DFPT_sc_accuracy_dm 1.0d-6 # default is 1.0d-3
dfpt_pulay_steps 6 # default is 8

Tag: DFPT dielectric (control.in)

Usage: DFPT dielectric [subkeywords and their options]

Purpose: Allows to calculate dielectric constant for extended systems using
density-functional perturbation theory. For "DFPT dielectric", functionals LDA,
PBE, are supported, relativistic is also supported.

Here is an example for using DFPT dielectric, the following need to be added to con-
trol.in:

DFPT dielectric
DFPT_mixing 0.5 #default is 0.2
DFPT_sc_accuracy_dm 1.0d-6 # default is 1.0d-3
dfpt_pulay_steps 6 # default is 8

Tag: DFPT_width (control.in)

Usage: DFPT_width width

Purpose: Removes the divergence that can arise in case of small eigenvalue dif-
ferences and/or fractional occupation numbers. This keyword is to employ in
combination with a DFPT dielectric calculation. Note that it has not been thor-
oughly tested, and some small adjustments might be needed.

width is a real number that corresponds to the width of the smearing function
(in eV). A value of 0.01 eV proves reasonable in most cases.

The usual expressions employed to calculate the first-order quantities fail when
tiny eigenvalue differences are present and/or when the system under study has
some fractional occupation numbers, potentially leading to divergences when cal-
culating the polarizability and dielectric constant. In order to circumvent this, we
use a similar scheme as the one proposed by de Gironcoli [51], which makes use
of smearing functions to convolute the density of states.

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 317

318 Chapter 3. The Full Monty: All Keywords and Capabilities

3.29 Calculating polarization of solids with FHI-aims

This section describes the relevant keywords connected to the implementation of the
Berry-phase formalism within FHI-aims. The theory behind these flags will soon be
summarized here.

Tag: output polarization (control.in)

Usage: output polarization pol_direction n_kpoints_dir1
n_kpoints_dir2 n_kpoints_dir3

Warning: At the current stage, ScalaPACK is not supported, yet. Please specify
KS_method serial to force the code to use LAPACK instead.

Purpose: Calculates the electronic and ionic contributions to the polarization
in periodic systems via the Berry-phase formalism [120] along a specific recip-
rocal lattice vector pol_direction using a n_kpoints_dir1 × n_kpoints_dir2 ×
n_kpoints_dir3 k-grid. N.B. System must be an insulator/semiconductor.

The polarization direction pol_direction accepts the values 1, 2, or 3, corresponding to
the index of the reciprocal space lattice vector along which the polarization is then calcu-
lated. The k-point grid defined by the last three fields (n_kpoints_dir1 n_kpoints_dir2
n_kpoints_dir3) should contain integer numbers and defines the k-point density along
the reciprocal lattice vectors 1, 2, and 3, respectively. On this mesh, the required eigen-
states and wave functions are obtained non-self consistently by Fourier-interpolating the
electronic density obtained during the SCF cycle, in close analogy to band-structure or
density-of-states calculations.

Note that the polarization is only defined modulo the polarization quantum, therefore,
when evaluating polarization differences between different geometries, it is thus necessary
to ensure that the polarization changes continuously between different geometries and
does not jump by a full quantum. This can be checked by constructing discrete paths
between geometries, e.g. between a non-centrosymmetric and centrosymmetric struc-
ture. For the latter, the polarization has to vanish. Therefore, relaxed geometries that
fulfill all symmetry constraints are necessary to obtain accurate polarization differences.

Multiple polarization calculations can be requested within one FHI-aims run, e.g., to
obtain the polarization along all reciprocal lattice vectors:

output polarization 1 20 5 5
output polarization 2 5 20 5
output polarization 3 5 5 20

For each one of these directives, the polarization is evaluated independently. A summary

3.29. Calculating polarization of solids with FHI-aims 319

for all directives can be found at the end of the polarization calculations, e.g.,

Summarizing all directives:
Directive 1 in direction of rec. latt. vec. 1 yields the full polarization:
472.792E-03 (C/m2)
Directive 1 in direction of rec. latt. vec. 2 yields the full polarization:
0.0E00 (C/m2)
Directive 1 in direction of rec. latt. vec. 3 yields the full polarization:
0.0E00 (C/m2)

Whenever the polarization is calculated along all three directions within the same run,
the code will also output the polarization along the Cartesian axes x, y, z , e.g.,
Cartesian Polarization 403.809855E-06 -684.500436E-06 10.214219E-03

This is particularly useful for non-orthogonal lattice vectors, for which (reciprocal) lattice
vectors and Cartesian axes do not coincide.

A quick note on convergence: Generally, a much larger density of k-points is required
for polarization calculations than for the SCF cycle. In particular along the reciprocal
lattice vector pol_direction along which the polarization is evaluated, as the example
above shows. The reason is that the Berry-connection is evaluated using finite-differences
for the wave-function derivatives with respect to this k-path.

Tag: output Z2_invariant (control.in)

Usage: output Z2_invariant num_of_planes n_kpoints_parallel
n_kpoints_perpendicular

Warning: At the current stage, ScalaPACK is not supported, yet. Please specify
KS_method serial to force the code to use LAPACK instead.

Purpose: Calculates the evolution of the Wannier Center of Charges (WCC)
for num_of_planes planes representing the Brillouin zone. n_kpoints_parallel
and n_kpoints_perpendicular denote the k-point mesh in the plane, whereby
n_kpoints_parallel are the k-points paralleland n_kpoints_perpendicular are
those perpendicular to the direction along which the WCC evolution is evalu-
ated, as in the case of the tag output polarization. The obtained WCC evolution
allows the subsequent determination of the topological invariant Z2 [118] and the
characterization of insulators into topologically trivial (those with even Z2) and
topologically non-trivial (those with odd Z2). Note that the material must be
insulating and should have the time reversal symmetry.

The index num_of_planes denotes the following planes in reciprocal space:

320 Chapter 3. The Full Monty: All Keywords and Capabilities

1. kx=[-0.5, 0.5] ky=[0.0, 0.5] kz= 0.0 || kx = kparallel / ky = kperpendicular
2. kx= [-0.5, 0.5] ky=[0.0, 0.5] kz= 0.5 || kx = kparallel / ky = kperpendicular
3. kx= 0.0 ky=[-0.5, 0.5] kz= [0.0, 0.5] || ky = kparallel / kz = kperpendicular
4. kx= 0.5 ky=[-0.5, 0.5] kz= [0.0, 0.5] || ky = kparallel / kz = kperpendicular
5. kx= [0.0, 0.5] ky=0.0 kz= [-0.5, 0.5] || kz = kparallel / kx = kperpendicular
6. kx= [0.0, 0.5] ky=0.5 kz= [0.0, 0.5] || kz = kparallel / kx = kperpendicular

The code always iterates over all planes between 1 and num_of_planes and for each
plane n the evolution of the WCC can be found in the output file WCCn.dat. For
each plane n, the output file WCCn.dat allows to investigate how many times the Berry
phase is cycled through the Brillouin zone and thus allows to determine the topological
invariant Z2 for this particular plane [118]. In practice, this can be done by plotting
the WCC evolution and counting how often the WCC evolution crosses an arbitrary line
parallel to the abscissa [231]. An odd number of crossings implies Z2=1 (topological),
an even number Z2=0 (trivial insulator). See Fig.3.16 for some examples.

WCC path (normalised)0 1 WCC path (normalised)0 1 WCC path (normalised)0 1 WCC path (normalised)0 1
0

2π

W
C

C
 e

vo
lu

tio
n

Z2 = 0

Z2 = 1 Z2 = 1
Z2 = 0

Figure 3.16: Sketches of different WCC evolutions (azure). The number of crossings (red)
with an arbitrary horizontal line determines the topological invariant Z2.

Alternatively, the value of Z2 can be determined automatically using the approach pro-
posed by [207] and implemented in the script get_z2.py that can be found in the
utilities folder of the FHI-aims distribution. The main idea behind the algorithm is that
topological indexes (in fact winding numbers) can be determined by tracking the biggest
gap in phase between the evolution of the individual WCC centers along the WCC path,
see [207, 80]. In practice, it is sufficient to copy get_z2.py into the folder containing
the WCCn.dat files and to execute it there. Besides plotting the WCC evolution, the
determined Z2 indexes for the individual planes n are reported both in the title of the
graphes and in the file output_z2.dat.

To distinguish between weak and strong topological insulators [69] Z2 needs to be in-
vestigated in multiple planes. For two-dimensional materials with a thick vacuum layer
along the Cartesian z axes, it is sufficient to study the WCC evolution in the kz = 0 plane
(num_of_planes=1), since there is no dispersion in z direction. For three-dimensional
crystals with three-fold rotational symmetry, it is enough to investigate two planes, i.e.,
one intersecting the Gamma point and one at the border of the Brillouin zone, by using
num_of_planes=2. The topological character of the material is then given by the sum
of the two obtained indexes modulo 2.

In the general, three-dimensional case, materials are characterized by a set of 4 indexes
v0;v1,v2,v3 and all six planes (num_of_planes=6) in the BZ need to be investigated [69].

3.29. Calculating polarization of solids with FHI-aims 321

The first, strong index v0 distinguishes between strong and weak topological insulators.
The last three indices v1,v2,v3 are called weak topological invariants [68] and denote the
value of Z2 for the planes at the BZ boundaries, i.e., those planes in which the index is
associated with num_of_planes is 2,4, and 6. For instance, Bi2Se3 with 1; 0, 0, 0 implies
that Bi2Se3 is a strong topological insulator (there are topologically protected surface
states).

How to calculate Born Effective Charges?

Born effective charges (BEC) or dynamic charges are defined as the change in polarization
upon the displacement of one atom in the unit cell (and its periodic images, i.e., q=0) as
Z∗k,ij = Ω

e
∂Pi
∂Rk,j

. Here, the index runs over all atoms in the unit cell, the indexes i,j denote
the Cartesian directions for the polarization and the atomic displacement, respectively,
Ω is the unit cell volume and e is the elementary charge.
The computation of BECs can be performed using the python script BEC.py that can
be found in the FHIaims utilities directory. It utilizes a finite difference approach to
determine the derivative of the polarization with respect to atomic displacements.

Example: Displacing Mg atoms along z direction with a k−grid 25×5×2 along direc-
tion 1, 2×7×3 direction 2 and 3×4×20 direction 3, finite difference between 0.005 and
0.01Å:

python BEC.py -r path-to-aims-excutable Mg -p 1 --kx 25 5 2 --ky 2 7 3
--kz 3 4 20 -c 3 -d 0.005 0.01

Here, the user has to provide the path to the FHI-aims executable and for which atoms
or species the BEC needs to be computed. If the user wants to displace all atoms of the
same species, e.g., because they are equivalent, then the option -p must be omitted. If
only one specific atom from the chosen species should be displaced, then the user has to
provide the number of this atom in geometry.in (-p 2). Moreover, the user has to provide
the polarization k-grid size along the reciprocal lattice vectors (--kx --ky --kz), the
Cartesian axis along which the atom shall be displaced (-c 1,2 or 3 corresponding to
x,y, and z), and the displacements in Angstrom to be used for the finite difference (-d
d1 d2). The latter setting is optional and defaults to -d 0 0.0025 if omitted.

The script then performs the following steps in an automatic workflow:

• It reads the provided geometry.in and control.in files and creates two folders, one
for each of the chosen displacements d1 and d2 of the chosen atoms. In each of
these folders it copies the provided control.in and adds the polarization comments
with the provided k-grids.

• The polarization is calculated along all Cartesian coordinates with FHI-aims using
the specified k-point grids.

322 Chapter 3. The Full Monty: All Keywords and Capabilities

• The BECs are obtained via finite difference displacements from the calculated
polarizations.

3.30. Molecular Dynamics with Electronic Friction 323

3.30 Molecular Dynamics with Electronic Friction

For questions please directly contact r.maurer@warwick.ac.uk

This module calculates the electronic friction tensor due to the nonadiabatic or electron-
phonon coupling. This yields vibrational lifetimes and classical friction forces that can
be used in molecular dynamics with nonadiabatic friction in a Langevin formalism, but
also as input to calculate electron-phonon coupling constants.

The key references you should consult are:

• Ab-initio tensorial electronic friction for molecules on metal surfaces: nonadia-
batic vibrational relaxation R. J. Maurer, M. Askerka, V. S. Batista, J. C. Tully,
arXiv:1607.02650 (2016)

• Role of Tensorial Electronic Friction in Energy Transfer at Metal surfaces M.
Askerka, R. J. Maurer, V. S. Batista, J. C. Tully, Phys. Rev. Lett. 116, 217601
(2016)

Theory

Typically, for molecular dynamics at ambient conditions, the Born-Oppenheimer approxi-
mation is well justified. This means that the time scales of electronic and nuclear motion
are well separated. This is the case for most thermal reactions of molecules in gas phase
or for insulating or semi-conducting materials. Therefore nuclei can be viewed as moving
on a single potential energy surface (PES) given by the ground state electronic structure.
This is, however, not the case for nuclei moving on or in metal surfaces (see Fig. 3.17).
The continuum of electronic states in metals can already be excited by the vibrational
motion of the adsorbate atoms due to resonance at similar energy scales. As a result
adsorbate atoms exhibit additional frictional forces. Another way to view this is that the
vibrations or phonons are being screened by electronic excitations giving them a finite
lifetime. Assuming that the ground and excited state PES are parallel and that these
adiabatic effects are only weakly perturbing the adsorbate nuclear motion, we can apply
perturbation theory to this problem.

The picture in Fig. 3.17 holds if:

• the coupling is weak compared to the individual contributions of electrons and
nuclei, and if

• electron-hole pair excitations do not lead to a qualitative change in the nuclear
dynamics.

Following first order time-dependent perturbation theory or many-body perturbation
theory (using lowest order RPA) one arrives at the Fermi’s golden rule expression for
relaxation rate along a vibration with frequency ωj:

Γ(ωj) = π~2ωj
M

∑
k,ν,ν′>ν

|gjkν,ν′|2 · [f(εkν)− f(εkν′)] · δ(εkν′ − εkν − ~ωj), (3.117)

324 Chapter 3. The Full Monty: All Keywords and Capabilities

Figure 3.17: left: Schematic view of adsorbate vibration (here shown for a CO molecule on
a Cu(100) surface) leading to changes in the electronic structure that excite electron-hole
pairs from below to above the Fermi level of the metal density-of-states. right: In the
Langevin picture of electronic friction, these electron-hole pairs act as energy gain or loss
channels on the nuclear motion along a single potential energy surface.

with

gjkν,ν′ = 〈ψkν |ej · ∇R|ψkν′〉 . (3.118)

The relaxation rate Γ defines the lifetime of the mode τ = 1/Γ and the vibrational
linewidth γ = Γ~. In eq. 3.118, ej is the atomic displacement vector corresponding to
the vibrational normal mode ωj and ∇R is the vector of Cartesian derivatives.

This can be rewritten in terms of cartesian displacements.

Γ(ωj) = 1
M

eTj ·
(
π~

∑
k,ν,ν′>ν

〈ψkν |
∂

∂Rn′a′
|ψkν′〉 〈ψkν′|

∂

∂Rna

|ψkν〉 · (εkν′ − εkν)·

(3.119)

[f(εkν)− f(εkν′)] · δ(εkν′ − εkν − ~ωj)
)
· ej

Correspondingly the rate of decay of adsorbate motion along a displacement vector ej is
given by:

Γ(ωj) = eTj · Λ̃(ωj) · ej. (3.120)

where Λ̃ is the so-called mass-weighted friction tensor or tensor of nonadiabatic relaxation
rates Λ̃ij = Λij/(

√
mi
√
mj).

In practice the friction tensor is calculated using the ground state Kohn-Sham eigenstates
and evaluated in the quasi-static or zero-frequency limit as Λ(ω → 0). This can be done
for a cluster and a periodic system. In the periodic case, the relaxation rate of periodic
motion (q = 0, default) can be calculated or, in combination with DFPT, averaged over
the whole phonon Brillouin zone (

∫
q Λ(q)δ(ω − ωq) (work in progress). The matrix

elements are expressed in the local atomic orbital basis by derivatives with respect to the
Hamiltonian and overlap matrix in basis representation (see references for more details).

The implementation in FHI-Aims collects all excitations from occupied to unoccupied
states in a window of friction_max_energy close to the Fermi level into a discretized
electron-phonon spectral function (with discretization length friction_discretization_length

3.30. Molecular Dynamics with Electronic Friction 325

) and applies a Gaussian broadening of friction_broadening_width to facili-
tate convergence with respect to k-points. The corresponding spectral functions along
every pair of cartesian components can be printed in file ‘friction_gamma2.out’, but
as default only the final friction tensor evaluated at zero frequency is printed in ‘fric-
tion_tensor.out’. Calculations need to be converged with respect to the number of k
points. Convergence is achieved if the relaxation rate is stable over a large range of
friction_broadening_width values (10% variation over 0.3-0.6 eV).

In order to do this, first the coupling matrix elements need to be calculated. This can be
done using finite difference displacements of the involved atoms or Density Functional
Perturbation Theory (see calculate_friction).

Calculation workflow and functionality

The electron-phonon calculation in FHI-aims involves following steps:

1. SCF calculation.

2. Finite-difference or DFPT (in progress) calculation of matrix elements. Optionally,
these matrix elements can be read from files.

3. Calculate relaxation rates and line widths from electronic structure data.

The module currently allows to:

• calculate the nonadiabatic relaxation rate tensor in the quasi-static limit using
finite-difference matrix elements for cluster and PBC systems. The latter only
works for the Gamma point (q = 0).

• atomwise input and output nonadiabatic coupling matrix elements, which can serve
as a restart mechanism

• DFPT evaluation of overlap derivatives for the cluster case. Coupling to the DFPT
module an extension to phonon wavevectors beyond the q = 0 point is work in
progress.

326 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in

Tag: calculate_friction (control.in)

Usage: calculate_friction type
Purpose: Triggers the calculation of the friction tensor.
type: String that defines the type of calculation to be performed.

• numerical_friction: Using finite difference to calculate matrix elements.
default WARNING: Some errorneously large friction tensor elements may
be present if a friction atom lies on a symmetry plane.

• DFPT: Using Density Functional Perturbation Theory to calculate matrix
elements (currently only for pz-lda and n_spin=1, see DFPT chapter)

With the keyword type the user can specify the calculation mode for the evaluation of
electron-phonon coupling matrix elements.
In addition, the keyword empty_states should be set to a large number, or the
keyword calculate_all_eigenstates should be used, to make sure the code
generates all possible empty states provided from the basis set. This number will also
be reduced automatically by the code to the maximum number that can be generated
from the basis set.

Tag: friction_numeric_disp (control.in)

Usage: friction_numeric_disp disp
Purpose: This keyword provides the finite difference displacement stencil disp in
Å for numerical calculation of the friction tensor. The default is 0.0025 Å.

Tag: friction_broadening_width (control.in)

Usage: friction_broadening_width width
Purpose: This keyword specifies the width of the broadening function that
is used to average over the spectral function and to facilitate Brillouin zone
integration. Affects friction tensor only (doesn’t affect functions outputted as a
response in energy). The typical range is 0.3 to 0.6 eV. The default value is 0.3 eV.

Tag: friction_temperature (control.in)

Usage: friction_temperature float
Purpose: This keyword specifies the electronic temperature in Kelvin that enters
through state occupations in Fermi’s rolden rule. The default value is 300 K.

Tag: friction_iter_limit (control.in)

3.30. Molecular Dynamics with Electronic Friction 327

Usage: friction_iter_limit integer
Purpose: This keyword specifies the maximum number of iterations in the
finite-difference or DFPT evaluation of electron-phonon matrix elements. The
default value is 20.

Tag: friction_accuracy_rho (control.in)

Usage: friction_accuracy_rho float
Purpose: This keyword specifies the accuracy to which the electronic density is
converged in the finite difference calculation. The default is 1d-5 e/a0

3.

Tag: friction_accuracy_etot (control.in)

Usage: friction_accuracy_etot float
Purpose: This keyword specifies the accuracy to which the electronic energy is
converged in the finite difference calculation. The default is 1d-5 eV.

Tag: friction_accuracy_eev (control.in)

Usage: friction_accuracy_eev float
Purpose: This keyword specifies the accuracy to which the sum of Kohn-Sham
eigen energies is converged in the finite difference calculation. The default is
0.01 eV.

Tag: friction_accuracy_potjump (control.in)

Usage: friction_accuracy_potjump float
Purpose: This keyword specifies the accuracy to which the potential is converged
in the finite difference calculation. The default is 1.01 eV.

Tag: friction_delta_type (control.in)

Usage: friction_delta_type type
Purpose: This keyword specifies the shape of the broadening function that is
used to generate a converged electron-phonon spectral function. The default
type is a gaussan function. Choices include a gaussian function (gaussian,
a square window (square), a squashed Fermi function (squashed_fermi), a
Lorentzian (lorentzian), and a sine function (sine).

Tag: friction_double_delta (control.in)

328 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: friction_double_delta boolean
Purpose: If set to true, evaluates the friction tensor in the low temperature
limit expression given in Ref 1 of this section. Here the Fermi occupation factor
is not included. Two delta functons are employed with widths controlled by
friction_broadening_width . This feature is experimental.
boolean: .true. or .false.

Tag: friction_max_energy (control.in)

Usage: friction_max_energy energy
Purpose: This keyword sets the maximum excitation energy in eV for which
electronic excitations will be included. The safe default is 4 times the value
of friction_broadening_width . It should not be below 1 eV for a reliable
broadened friction tensor.

Tag: friction_coupling_matrix_mode (control.in)

Usage: friction_coupling_matrix_mode integer
Purpose: This keyword sets the expression with which the coupling matrix ele-
ments are constructed from first order overlap and first order hamiltonian. There
are three different modes (0 = "Head-Gordon-Tully-type", 1="Averaged-type",
2="exact matrix elements", 3="Effective potential type"). The default is 0.
Type 2 only works in combination with DFPT. Type 3 is experimental. For
details on the different types, please refer to the above publication reference.
There is significantly less computational expense when using Type 0 for large
systems.

Output of spectral function

Various levels of the electron phonon response output are provided for convenience.
friction_output_couplings provides the full tensorial non-adiabatic coupling ele-
ments, |gjkν,ν′ |2 along with their raw excitation energies. friction_output_gamma
provides the nonadiabatic coupling element, gjkν,ν′ response as a function of energy, dis-
cretised on a grid using a (small) finite gaussian smearing. friction_output_gamma2
provides the tensorial response as a function of energy, Λ̃ij(ε), similary smeared using
gaussian function.

Tag: friction_output_couplings (control.in)

3.30. Molecular Dynamics with Electronic Friction 329

Usage: friction_output_couplings boolean
Purpose: This keyword controls the output of raw nonadiabatic coupling
elements / ps−1 as a function of excitation energy / eV. For periodic systems
this generates 1 file per k point, for clusters there is 1 file per unique atomic
coordinate.
boolean: .true. or .false.

Tag: friction_output_gamma2 (control.in)

Usage: friction_output_gamma2 boolean
Purpose: Currently this keyword controls the output of the electron-phonon re-
sponse / ps−1 as a function of energy / eV. Excitations are collected and smeared
using gaussian broadening, width controlled by friction_window_size .
Subject to future change
boolean: .true. or .false.

Tag: friction_output_gamma (control.in)

Usage: friction_output_gamma boolean
Purpose: Currently this keyword controls the output of the nonadiabatic
coupling response / Å−1 for each atomic coordinate as a function of energy
/ eV. Excitations are collected and smeared using gaussian broadening, width
controlled by friction_window_size . Subject to future change
boolean: .true. or .false.

Tag: friction_window_size (control.in)

Usage: friction_window_size width
Purpose: This keyword sets the broadening width when calculating the
full vibronic spectral function with friction_output_gamma2 or
friction_output_gamma . There is typically no need to change this
value. The default value is 0.01 eV.

Tag: friction_discretization_length (control.in)

Usage: friction_discretization_length width
Purpose: This keyword sets the discretization of the grid on which the electron-
phonon response will be printed with keyword friction_output_gamma2
and friction_output_gamma . The default value is 0.01 eV.

Tag: friction_output_jdos (control.in)

330 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: friction_output_jdos boolean
Purpose: Currently this keyword if set to true will output the joint-density of
states / eV−1 for first order interband transitions (i.e those within the same k
point). The JDOS is k weighted. It reflects the density of transitions used within
the friction calculation.
boolean: .true. or .false.

Input and Output of matrix elements and vectors

Tag: friction_read_matrices (control.in)

Usage: friction_read_matrices boolean
Purpose: This keyword leads to skipping the evaluation of electron-phonon
matrix elements. FHI-aims will read the matrix elements from files, generated by
the keyword output friction_matrices .
boolean: .true. or .false.

Tag: output friction_matrices (control.in)

Usage: output friction_matrices
Purpose: Prints first order hamiltonian / Ha a−1

0 and first order overlap matrices
/ a−1

0 to file. This can be read via friction_read_matrices .

Tag: output friction_eigenvectors (control.in)

Usage: output friction_eigenvectors
Purpose: Prints friction eigenvectors as jmol readable file.
boolean: .true. or .false.

Tags for geometry.in

Tag: calculate_friction (geometry.in)

Usage: calculate_friction boolean

Purpose: In geometry.in, includes the last specified atom into the calculation
of the friction tensor.
boolean is .true. or .false., Default: .false.

3.31. Linear macroscopic dielectric function and Kubo-Greenwood transport 331

3.31 Linear macroscopic dielectric function and
Kubo-Greenwood transport

The linear macroscopic dielectric tensor εij(ω), the ratio between the average of the
total potential in one unit cell and the external field, within the RPA is calculated. For
derivation from the microscopic dielectric function ε(~r, t; ~r′, t′) and references see [4]
(Chapter 1, 2 and appendix). From the complex frequency dependent dieletric function
all other optical constants can be determined, e.g. optical conductivity, Loss function,
Reflectivity, etc. Also see Appendix K in Ashcroft/Mermin: solid state physics.
The frequency dependent real and imaginary part of the inter- (eq. 3.122) and intra-
(eq. 3.121) band contribution to the linear dielectric tensor is calculated as post-processing
after convergence of the SCF-cycle from (atomic units):

εij(ω) = δi,j −
4π

Vcellω2

∑
n,k

(
−∂f0

∂ε

)
εn,k

pi;n,n,kpj;n,n,k (3.121)

+ 4π
Vcell

∑
k

∑
c,v

pi;c,v,kpj;c,v,k

(εc,k − εv,k − ω) (εc,k − εv,k)2 (3.122)

f is the Fermi-function and Vcell the unit cell volume. The intra band part is singular at
ω = 0. Here the plasma frequency ωpl;ij is calculated:

ω2
pl;ij = 1

π

∑
n

∫
~k
pi;n,n,~kpj;n,n,~kδ(εn,~k − εF) (3.123)

By adopting a Drude-like shape for the intra-band contributions a lifetime broadening Γ
is introduced and εinterij (ω) becomes:

Im(εintraij (ω)) =
Γω2

pl;ij

ω(ω2 + Γ2) (3.124)

Re(εintraij (ω)) = 1−
ω2
pl;ij

ω2 + Γ2 (3.125)

In the case of a spin unpolarized calculation eq. 3.122 and eq. 3.121 have to be multiplied
by 2 to yield the correct occupation.
The following quantities are needed/calculated:

- εn,~k - the eigenvalue of the Kohn-Sham eigenstate (n,~k).

- δ(εn′ ,~k− εn,~k−ω) = 1√
2πwidthexp

(
−1

2
(ε
n
′
,~k
−ε

n,~k
−ω)2

Γ2

)
- Gauss function with width

Γ=width for calculating the plasma frequency. In eq 3.122 ω is replaced by ω+iΓ,
introducing Lorentzian broadenig.

- pj;n′ ,n,~k =
〈
ψn′~k|∇j|ψn~k

〉
- the momentum matrix elements calculated form the

real space basis functions in k-space and KS-eigenstate basis

〈
ψn′~k|∇j|ψn~k

〉
=
∑
ij

c∗
~k
in′c

~k
jn

∑
~N, ~M

ei~k[~T(~N)−~T(~M)] 〈φi ~M |∇j|φj ~N
〉

(3.126)

332 Chapter 3. The Full Monty: All Keywords and Capabilities

〈φi ~M |∇|φi ~N〉 =
∫
unit cell

d3rφi, ~M
~∇φj, ~N (3.127)

with the real space functions φi(~r) centered in unit cells shifted by ~T
(
~N
)
, ~N =

(N1, N2, N3), see [26] for details.

Building up on the expressions for the dielectric function also the corresponding Kubo-
Greenwood transport properties expressed via the Onsager coefficients Lij:

Lij(ω) = 2πe4−i−j

3V m2
eω

∑
k,m,n

|〈Ψm|p̂|Ψn〉|2·
(
εkm + εkn

2 − εFermi
)i+j−2

·(fkm − fkn) δ (εkn − εkm − ~ω)

(3.128)

In this representation L11 corresonds to the optical conductivity σ(ω). Furthermore the
(frequency dependent) Seebeck coefficient is easily obtainable:

S = L12

TL11
(3.129)

3.31. Linear macroscopic dielectric function and Kubo-Greenwood transport 333

Tags for general section of control.in:

Tag: compute_dielectric (control.in)

Usage: compute_dielectric ωmax nω

Purpose: Sets basic parameters for calculating the imaginary and real part of
the inter-band and intra-band contribution to the linear dielectric tensor within
the RPA approximation. This keyword is specified once to set parameters for the
dielectric tensor calculation.

By setting this keyword, the whole dielectric tensor components (in directions:
x_x, y_y, z_z, x_z, y_z, x_y) would be output automatically within the
corresponding absorption coefficients (in directions: x_x, y_y, z_z) for the
diagonal parts.
The momentum matrix elements in the energy window [VBM-(ωmax + 10.0 eV),
CBM+(ωmax + 10.0 eV)] (in eV) relative to the internal zero will be summed.
The default broadening type and broadening width used for the delta function
is 0.1 eV in Lorentzian type. These settings can also be changed via the
dielectric_broadening keyword.
In order to avoid numerical integration errors caused by including 0 eV energy, the
minimum energy (ωmin) are automatically setting to a spefic value corresponding
to the broadening width you used (broadening width/ 10.0).
The resulting output files will be named dielectric_function_(directions).out
(e.g. dielectric_function_x_x.out for the x_x direction) and absorp-
tion_(directions).out.
In order to test the impacts of different broadening type and broadening
parameters, the individual tensor component for the dielectric constants can also
be specified via the output dielectric keyword. By setting this keyword,
the code would only output the dielectric functions in the directions you listed
in the output dielectric keyword, instead of automatically outputing
the whole tensor components. The calculation is very sensitive to the k-point
grid, an extremely high number of k-points might be needed for convergence,
especially for metals.

Tag: dielectric_broadening (control.in)

Usage: dielectric_broadening broadening_method width

Purpose: Changing the broadening function type and broadening parameters used
in the dielectric calculation. To use this keyword, the compute_dielectric
keyword must be specified in control.in
The Delta-distribution is approximated by a broadening function specified by
the broadening_method option with a defined width specified by the width
option (in eV). Gaussian (gaussian) and lorentz (lorentzian) broadenings are
supported.

334 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: output dielectric (control.in)

Usage: output dielectric broadening_method width i j

Purpose: Output the ij tensor components (choices: i,j = x, y, z) of the imag-
inary and real parts of the inter-band and intra-band contribution to the linear
dielectric tensor. This keyword may be specified multiple times in control.in
to output more than one tensor component (possibly with different broadenings)
per calculation. The RPA approximation (i.e. Lindhard theory) is used. To
use this keyword, the compute_dielectric keyword must be specified in
control.in.
Note: This keyword are just setted for testing purpose. By setting this keyword,
only the directions you listed will be output. The Delta-distribution is approx-
imated by a broadening function specified by the broadening_method option
with a defined width specified by the width option (in eV). Gaussian (gaussian)
and Lorentz (lorentzian) broadenings are supported. Good starting choices
for parameters are broadening_method = gaussian and width=0.05eV . We
encourage the user to try out different broadenings by specifying this keyword
multiple times.

Tag: compute_absorption (control.in)

Usage: compute_absorption width Emin Emax ωmin ωmax nω i use_gauss

Purpose: Calculate and output the i component (choices: x, y or z) of the linear
absorption.

αi(ω) = 8π2

ωVcell

∑
c,v

∑
~k

∣∣∣pi;c,v,~k∣∣∣2 δ(εc,~k − εv,~k − ω)d~k (3.130)

The momentum matrix elements in the energy window [Emin,Emax] (in eV)
relative to the internal zero are summed up. The Delta-distribution is repre-
sented by a Gaussian function (use_gauss = .true.) or a Lorentz function
(use_gauss = .false.) with width width (in eV) for nω ω-values in the interval
[ωmin, ωmax] (in eV). The output file is named absorption_i.out. A good
choice is: width=0.1eV , usually it is enough to include only a few states
below and above the fermi level in the energy window [Emin,Emax]. The
unit is a−1

0 . Vcell the unit cell volume. (see page 38, eq. 3.13 and 3.14 of
http://www.tddft.org/bmg/files/papers/85619.pdf, [29])
The calculation is very sensitive to the k-point grid, an extremely high number
of k-points might be needed for convergence, especially for metals.

Tag: compute_momentummatrix (control.in)

3.31. Linear macroscopic dielectric function and Kubo-Greenwood transport 335

Usage: compute_momentummatrix Emin Emax k-point

Purpose: Calculate and output the momentum matrix elements
〈
ψn′~k|∇x|ψn~k

〉
,〈

ψn′~k|∇y|ψn~k
〉
,
〈
ψn′~k|∇z|ψn~k

〉
for the k-point with the number k-point for

KS-eigenstates that are within the energy window [Emin,Emax] (in eV) relative
to the internal zero. The output file is named element_k_k-point.dat. The
unit is a−1

0 (bohr−1).
If you are conducting a cluster calculation (no periodic boundary conditions)
make sure to set k-point to 1.
Setting k-point to 0 will output the momentum matrix elements for all k-points
into one container file (mommat.h5). To use this functionality, FHI-aims has to
be compiled with the external hdf5 module (see Sec. H.2 for details).

Tag: compute_dipolematrix (control.in)

Usage: compute_dipolematrix Emin Emax k-point

Purpose: Calculate and output the dipole matrix elements
〈
ψn′~k|x|ψn~k

〉
,〈

ψn′~k|y|ψn~k
〉
,
〈
ψn′~k|z|ψn~k

〉
(position operator!) for the k-point with the

number k-point for KS-eigenstates that are within the energy window
[Emin,Emax] (in eV) relative to the internal zero. The output file is named
element_k_k-point.dat. The unit is a0 (bohr).
If you are conducting a cluster calculation (no periodic boundary conditions)
make sure to set k-point to 1.
Setting k-point to 0 will output the dipole matrix elements for all k-points into
one container file (dipmat.h5). To use this functionality, FHI-aims has to be
compiled with the external hdf5 module (see Sec. H.2 for details).

Tag: compute_dipolematrix_k_k (control.in)

336 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: compute_dipolematrix_k_k Emin Emax k_k_method

Purpose: Calculate and output the dipole matrix elements
〈
ψn′ ~k′ |x|ψn~k

〉
,〈

ψn′ ~k′ |y|ψn~k
〉
,
〈
ψn′ ~k′|z|ψn~k

〉
(position operator!) for all (k, k’)-points for

KS-eigenstates that are within the energy window [Emin,Emax] (in eV) relative to
the internal zero. The output file is named dipmat_k.h5. The unit is a0 (bohr).
With the option k_k_method (choises: 1, 2, 3) you can chose the method for
calculating the matrix elements. 1 will first calculate the matrix elements (k,
k’)!!! for the atomic basis before transforming to the KS-basis (biggest array
size: n_basis*n_k_points*n_k_points). 2 will calculate the matrix elements
(k) for the atomic basis and transform to the KS-basis for all (k’) (n_k_points
times) (biggest array size: n_basis*n_k_points). 3 will calculate the matrix
elements in the atomic basis and transform to the KS-basis for all (k, k’)
(n_k_points*n_k_points times) (biggest array size: n_basis). 1 needs the most
memory, 3 does the most (repetitive) calculations.
The dipole matrix elements for all (k,k’)-points are written into one container
file (dipmat_k.h5). To use this functionality, FHI-aims has to be compiled with
the external hdf5 module (see Sec. H.2 for details).

Tag: compute_kubo_greenwood (control.in)

Usage: compute_kubo_greenwood width FD_Temp Emin Emax ωmin ωmax
nω i j

Purpose: Calculate and output the i j component (choices: (x, y or z) or (a
a)) of the the Kubo-Greenwood transport properties optical conductivity σ(ω)
and Seebeck coefficient S in units (Ω · cm)−1 and µV/K, respectively. The (a
a) choice triggers the calculation of the average of the three diagonal elements
Lij,xx, σij,yy and σij,zz. As before, [Emin,Emax] (in eV) determine the energy win-
dow (relative to the internal zero) within which the momentum-matrix elements
are considered. The Delta-distribution is represented by a Gaussian function with
width width (in eV) and the Fermi occupations are calculated at an electronic
temperature FD_Temp (in eV). The spectra contain nω ω-values in the interval
[ωmin, ωmax] (in eV). The output file is named dielectric_i_j<Fermi-level>.out
and consists of the dielectric function, the optical conductivity and the Seebeck
coefficient. Usually it is enough to include only a few states below and above
the fermi level in the energy window [Emin,Emax].
The calculation is very sensitive to the k-point grid, an extremely high number
of k-points might be needed for convergence, especially for metals.

Tag: greenwood_method (control.in)

3.31. Linear macroscopic dielectric function and Kubo-Greenwood transport 337

Usage: greenwood_method method

Purpose: Switches between the use of sparse or full transition matrices.
(Choices: sparse or full). As of now, the keyword has to be set in case the
compute_kubo_greenwood is used. The use of sparse matrices is recommended.
(Keyword will be deprecated in the near future)[1.0ex]

338 Chapter 3. The Full Monty: All Keywords and Capabilities

3.32 Electronic Transport

Electronic transport in FHI-aims can be computed either using the built-in routine de-
scribed in this chapter or with the help of aitranss-package (see Chapter 5.1). The
built-in routine computes the electronic transport through a nanostructure connected
to two, three or four semi-infinite leads using the Landauer-Büttiker formalism. Only
calculations within the zero-bias limit are supported. All transport related actions are
initiated with the keyword transport that is followed by the action required.

A typical work-flow of a transport calculation is as follows

1. Information for the semi-infinite leads are created. To this end the action lead_calculation
should be used. Separate periodic calculation is required for each lead and the third
lattice vector must point away from the nanostructure, i.e., into the semi-infinite
lead. The region used to model the semi-infinite lead should be large enough so
that the basis functions from the nanostructure region do not extend beyond the
lead region.

2. Once all the leads are calculated transport through the nanostructure is calcu-
lated using the action transport_calculation. This produces the tunneling
information through the nanostructure for each pair of the leads. The nanostruc-
ture should be large enough so that the basis functions from different leads do
not overlap. In this calculation the lead atoms need to be included in the file
geometry.in and their positions must be exactly the same as in the calculation
for the lead information. In particular, they should not be relaxed when the ge-
ometry of the nanostructure is optimized. This calculation should also be run as
a periodic calculation using a sufficient amount of k-points. The transport part
of the calculation is done using only one k-point but in order to ensure converged
density and potential of the nanostructure region more k-points are usually needed.

Tags for general section of control.in:

Tag: transport (control.in)

Usage: transport action [further options]
Purpose: This is the keyword that is used to control the built-in transport
routines.
action is a string that specifies the kind of requested action in the transport
calculation; any further needed options depend on action.

Specific actions transport keyword:

transport sub-tag: lead_calculation (control.in)

3.32. Electronic Transport 339

Usage: transport lead_calculation

Purpose: Computes the lead information for the given lead. Only one lead can
be calculated at at time and each lead needs to be calculated separately. The
calculation is periodic and the third lattice vector must point into the lead.

transport sub-tag: transport_calculation (control.in)

Usage: transport transport_calculation

Purpose: Performs the transport calculation. Using this keyword requires that
the information for all the semi-infinite leads is already calculated.

transport sub-tag: tunneling_file_name (control.in)

Usage: transport tunneling_file_name filename

Purpose: Specifies the name of the file where the tunneling information is written.
Each pair of the leads is written to a separate column in plain text format.

transport sub-tag: energy_range (control.in)

Usage: transport energy_range Emin Emax nsteps

Purpose: Sets the energy range for which the tunneling information is calculated.
The energy range Emax − Emin is divided into nsteps steps and the tunneling
information is calculated for each step. The energy zero is referenced at the
chemical potential of the nanostructure.

transport sub-tag: lead_i (control.in)

Usage: transport lead_i atom_index filename

Purpose: Tells the transport calculation where the information on the semi-infinite
leads is stored. One line for each lead is required and the index i is substituted by
the lead index (1, 2, 3, or 4). The option atom_index is set to the index of the
first atom of the lead in question in the file geometry.in and the coordinates
of the lead atoms must be the same used when calculating the lead information.
The option filename provides the name of the file where the lead information
is stored. Note that for a successful transport calculation information for at least
two leads is needed. Hence, this keyword must be invoked at least twice. The
maximum number of leads supported is currently four.

The Green’s function for the semi-infinite leads needs to be solved iteratively for each
energy step. The iteration is regularized adding a small complex part to the energy of
the step being computed. At each iteration the magnitude of the regularizing part is
decreased until either convergence of lower bound of the parameter is reached. The
iteration can be controlled by several keywords.

340 Chapter 3. The Full Monty: All Keywords and Capabilities

transport sub-tag: number_of_boundary_iterations (control.in)

Usage: transport number_of_boundary_iterations number

Purpose: Sets the maximum number of iterations to solve the Green’s function
for each lead. Default: 10

transport sub-tag: boundary_treshold (control.in)

Usage: transport boundary_treshold number

Purpose: Sets the convergence criterion for the iteration of the Green’s functions.
The metric used is the maximum absolute value change in the matrices for the
Green’s functions of the leads. Default: 1.0

transport sub-tag: boundary_mix (control.in)

Usage: transport boundary_mix number

Purpose: Mixing value for the linear mixer in the iteration of the Green’s function.
Values below one correspond to under-relaxation. Default: 0.7

transport sub-tag: epsilon_start (control.in)

Usage: transport epsilon_start number

Purpose: Starting value for the regularizing complex parameter in the iteration
for the Green’s function for the semi-infinite lead. Only the magnitude of the
parameter should be given with this keyword. Default: 0.02ı

transport sub-tag: epsilon_end (control.in)

Usage: transport epsilon_end number

Purpose: Ending value for the regularizing complex parameter in the iteration
for the Green’s function for the semi-infinite lead. Only the magnitude of the
parameter should be given with this keyword. Default: 0.0001ı

transport sub-tag: fermi_level_fix (control.in)

3.32. Electronic Transport 341

Usage: transport fermi_level_fix

Purpose: Set the potential reference of the leads to their Fermi level. Since
in the transport calculations the leads are calculated first and only after that
incorporated into the system there is a question of a potential reference. Currently
two options are available. The default option is to use the average of the energy
levels of the lowest orbitals of the lead atoms. The second option invoked by this
keyword is to align the Fermi levels of the leads between the lead calculations and
the transport calculation.
Note that since the calculation of the lead is separate from the transport calcu-
lation in general the distance from the energy of the lowest lying orbital to the
Fermi level of the calculation is not necessarily the same. This means that the
leads in the lead calculation are not in the same environment as in the transport
calculation and bringing them together introduces an alignment problem for the
potential. From the transport calculation point of view this implies that a gate
voltage is introduced into the system. In the transport calculation the value of this
gate voltage is printed. In the tunneling results the energy is always referenced
to the Fermi level of the transport calculation. Default: .false.

342 Chapter 3. The Full Monty: All Keywords and Capabilities

3.33 ESP charges

This sections describes how to calculate partial charges by fitting to the electro static
potential (ESP). These charges are widely used in the context of force fields ([161], [48],
[205], [23], CHELP: [46], CHELPG: [32], RESP-charges: [17], CHELP-BOW/CHELMO:
[204], ESP-charge from multi-pole-moments: [107]). FHI-aims implements a simple
method for cluster calculation (molecules) as well as two methods for solids (periodic
boundary conditions) [35], [45].
The starting point for these methods is the calculation of the electro static potential
at a sufficiently high number of grid points outside the vdw radius of the atoms. To
define a space region for the grid two parameters are necessary: a minimal radius and
a maximal radius around the atoms. These radii are defined as multiples of the vdw-
radius of the atoms, see figure 3.18 for details. The values for the vdw radii of most
atoms in the periodic table have been taken from "http://de.wikipedia.org/wiki/Van-
der-Waals-Radius" ([28], [196], [151]). For the generation of the points cubic grids are
used. For cluster calculations points within a cube encapsulating the spheres with the
maximal radius (multiple of the vdw radius) around all atoms are generated. For periodic
boundary conditions the provided unitcell is used. The points within the superposition of
the spheres with the minimal radius (minimal multiple of the vdw radius) are excluded.
The atom-centered radial grids are also available, mainly for test purposes. Here, all
points lie on N spheres with radii between the minimal and maximal multiple of the vdw
radius. The spacing between the radii of the N spheres is equidistant or logarithmic.
For the cluster case the function to fit to is a sum of Coulomb potentials with charges

H H

O
vdw radius
esp_min x vdw radius
esp_max x vdw radius
selected volume

Figure 3.18: Definition of the volume used for the creation of grid points at which the
potential is evaluated.

3.33. ESP charges 343

qi, the ESP-charges, at the atomic position Ri:

VESP (r) =
Nat∑
i=1

qi
|r−Ri|

(3.131)

The qi are calculated by a least squares fit with the additional constraint of constant
total charge qtot = ∑Nat

i=1 qi. We use the method of Lagrange multipliers to minimize the
function:

F =
Ngrid∑
k=1

(VDFT (rk)− VESP (rk))2 − λ
(
qtot −

Nat∑
i=1

qi

)2

. (3.132)

This can be translated into a system of linear equations:

Âq = B. (3.133)

with the Nat+1 x Nat+1 matrix Â:

Aij =
Ngrid∑
k=1

1
|rk −Ri|

1
|rk −Rj|

with i, j ≤ Nat (3.134)

Ai=Nat+1,j =Ai,j=Nat+1 = 1; Ai=Nat+1,j=Nat+1 = 0

and the Nat + 1 vector B:

Bi =
Ngrid∑
k=1

VDFT (rk)
|rk −Ri|

with i ≤ Nat (3.135)

Bi=Nat+1 = qtot (3.136)

q are the Nat charges.
For solids (periodic boundary conditions) the situation is more complicated because all
charges are repeated infinitely and the potential is only defined up-to an arbitrary offset.
The methods to solve this problem are based on Ewald summation. Details on method
1 can be found here [35] and on method two here [45]. The function for the potential
generated by the ESP charges centered at the atoms of the unit-cell now reads:

VESP (r) =
Nat∑
i=1,T

qi
erfc(α|r−Ri,T|)
|r−Ri,T|

+ 4π
Vcell

Nat∑
i=1,k

qicos(k(r−Ri))
exp−

k2
4α2

k2 (3.137)

with T = n1a1 + n2a2 + n3a3 mapping the lattice positions. ai the lattice vectors,
ni ∈ Z. k = m1b1 + m2b2 + m3b3 mapping the reciprocal space. bi the reciprocal
lattice vectors, mi ∈ Z. Vcell is the volume of the unit-cell. The parameter α is defined
as α =

√
π

Rc
with Rc the cutoff radius of the Ewald summation. For the second method

Wolf summation is implemented as well:

VESP (r) =
Nat∑
i=1

qi

[
erfc(
√
α|r−Ri|)
|r−Ri|

− erfc(
√
αRc)

Rc

+
(

erfc(
√
αRc)

R2
c

+ 2
√
α√
π

exp(αR2
c)

Rc

)]
(3.138)

x(|r−Ri| −Rc)

344 Chapter 3. The Full Monty: All Keywords and Capabilities

The function to minimize for method 1 is:

F PBC
1 =

Ngrid∑
k=1

VDFT (rk)− VESP (rk) + 1
Ngrid

Ngrid∑
j=1

(VDFT (rj)− VESP (rj))
2

(3.139)

− λ
(
qtot −

Nat∑
i=1

qi

)
+

Nat∑
i=1

wi

(
E0
i + χiqi + 1

2J
00
i q

2
i

)
.

The χi and J00
i are electro-negativity and self-Coulomb interaction of the respective

elements, which can be used to constrain the desired charges. wi are weighting factors
for the constraints. This results in Â and B for the linear equations system:

Aij =
Ngrid∑
k=1

∂VESP (rk)
∂qi

− 1
Ngrid

Ngrid∑
j=1

∂VESP (rj)
∂qi

 x (3.140)
∂VESP (rk)

∂qj
− 1
Ngrid

Ngrid∑
m=1

∂VESP (rm)
∂qj

+ wi
2 J

00
i δij ; i, j ≤ Nat

Ai=Nat+1,j =Ai,j=Nat+1 = 1; Ai=Nat+1,j=Nat+1 = 0

Bi =
Ngrid∑
k=1

VDFT (rk)− 1
Ngrid

Ngrid∑
j=1

VDFT (rj)
 x

∂VESP (rk)
∂qi

− 1
Ngrid

Ngrid∑
m=1

∂VESP (rm)
∂qi

− wmχm2 ; i ≤ Nat

Bi=Nat+1 = qtot

The function to minimize for method 2 is:

F PBC
2 =

Ngrid∑
k=1

(
VDFT (rk)−

(
VESP (rk) + V offset

DFT

))2
(3.141)

− λ
(
qtot −

Nat∑
i=1

qi

)
+ β

Nat∑
i=1

(qi − qi0)2 .

The constraint charges qi0 can be determined with other methods (e.g. Mulliken charge

3.33. ESP charges 345

analysis [163]), β is the weighing factor. This gives Â and B:

Aij =
Ngrid∑
k=1

(
∂VESP (rk)

∂qi

∂VESP (rk)
∂qj

)
+ βδij ; i, j ≤ Nat (3.142)

Ai=Nat+1,j = Ai,j=Nat+1 =
Ngrid∑
k=1

∂VESP (rk)
∂qj

j ≤ Nat

Ai=Nat+2,j = Ai,j=Nat+2 = 1
Ai=Nat+2,j=Nat+2 = Ai=Nat+1,j=Nat+2 = Ai=Nat+2,j=Nat+1 = 0

Bi =
Ngrid∑
k=1

(
VDFT (rk)∂VESP (rk)

∂qi

)
− βq0i ; i ≤ Nat

Bi=Nat+1 =
Ngrid∑
j=1

VDFT (rj)

Bi=Nat+2 = qtot

Here the arbitrary offset of the potential Voffset is an additional fitting parameter, the
matrix Â is of dimension Nat+2 x Nat+2 and B of dimension Nat+2. For method 1 Voffset
can be calculated as:

Voffset =
Ngrid∑
k=1

(VDFT (rk)− VESP (rk)) (3.143)

from the fitted charges qi. As a measure for the quality of the fit the root-mean-square
(RRMS) is defined as:

RRMS =

∑Ngrid
k=1 ((VESP (rk) + Voffset)− VDFT (rk))2∑Ngrid

k=1 (VDFT (rk))2

2

(3.144)

The current implementation is quite sensitive to the points chosen for the calculation
of the electrostatic potential. Thorough studies regarding the parameters for the grid
are advised! For periodic boundary conditions the ESP-charges calculated for transition
densities are experimental, caution!! The ESP-charges from transition densities can be
benchmarked against the dipole-moments calculated with compute_dipolematrix .
Example for a periodic system:

output esp
esp n_radius 10
esp radius 1.0 2.
esp pbc_method 1
esp R_c 10
output esp
esp n_radius 10
esp radius 1.0 2.
esp pbc_method 2
esp R_c 30
output esp

346 Chapter 3. The Full Monty: All Keywords and Capabilities

esp radius 1.0 2.
esp pbc_method 2
esp R_c 20
esp equal_grid_n 10 10 10

The ESP-charges for the full potential will be calculated for a periodic system. At first
with points within once the vdw radius and twice the vdw radius of the atoms, with 10
shells in between and a cutoff radius of 10Å for the Ewald summation, method 1 (Ewald
summation) is used. Secondly with points within once the vdw radius and twice the vdw
radius of the atoms, with 10 shells in between and a cutoff radius of 30Å, method 2
(Ewald summation) is used. Thirdly with points within once the vdw radius and twice the
vdw radius of the atoms, with 10×10×10 initial points on a cubic grid, method 2 is used.

Warning: For periodic boundary conditions the atoms in the supplied geometry.in
must be within the first (central) Wigner-Seitz-cell. For a two layer system it would
normally be possible to have one layer within the (central) Wigner-Seitz-cell and the
second one sticking out at one side. Periodic boundary conditions will take care. The
atoms sticking out would be shifted back into the (central) Wigner-Seitz-cell. This might
lead to different ESP-charges and Dipole matrix elements. They are only invariant for
collective translations of all atoms. The program will stop if a non-valid geometry is
detected.

3.33. ESP charges 347

Tags for general section of control.in:

output sub-tag: esp (control.in)

Usage: output esp

Purpose: Calculate the ESP-charges at the atomic position from the full density
with default settings. The default settings are to use a radial grid with equidistant
radii and without mapping back to the unit-cell in case of periodic boundary
conditions. The radial multipliers for the exclusion radius are 3 (Minimum) and
8 (Maximum) times the vdw-radius for the cluster case and 1 (Minimum) and 2
(Maximum) times the vdw-radius for pbc. In both cases 5 radial-shells are used.
For pbc a cutoff radius for the Ewald summation of 10Å is used. The maximal
multiples of the lattice vectors (rm) and the reciprocal lattice vectors (km) used
in the summation are 7 (for both). No constraints are applied to the charges.
The keyword can be used multiple times to calculate esp charges with dif-
ferent settings. The optional sub-sub keywords (see below) have to be set
after output esp for every calculation separately, otherwise defaults are used.

Optional keywords for output esp :

• esp spin spin
Select spin spin state (1 or 2) for the calculation of the esp charges from the
transition density ρij with states i -> j (default 1) at k-point kpoint (default 1).

• esp state state_one state_two
Select states i=state_one -> j=state_two (i,j ∈ [1,n_states]) for the calculation
of the esp charges from the transition density ρij with spin spin (default 1) at
k-point kpoint (default 1).

• esp kpoint k-point
Select states the kpoint (k-point ∈ [1,n_k_points]) for the calculation of the
esp charges from the transition density ρij states i -> j (default 1) with spin spin
(default 1).

• esp radius min_radius max_radius
Select the minimal (min_radius) and maximal (max_radius) multiple of the vdw
radius to select the volume where the potential is evaluated and the esp charges
fitted. Defaults: 3 and 8 for clusters and 1 and 2 for pbc. max_radius should not
be larger than smallest lattice vector for pbc and radial gird.

• esp n_radius n_radius
Select the n_radius number of of radial shells that are used to create points in the
selected volume. Default: 5

• esp equal_grid_n n_grid_x n_grid_y n_grid_z
Select the number of points for the cubic grid in x - n_grid_x, y - n_grid_y and
z - n_grid_z direction. Default: 10 10 10

348 Chapter 3. The Full Monty: All Keywords and Capabilities

• esp rm r_m
PBC only. Maximum number r_m of multiples of the lattice vectors that are used
in the real space sum of the Ewald summation. Default: 7

• esp km k_m
PBC only. Maximum number k_m of multiples of the reciprocal lattice vectors
that are used in the reciprocal space sum of the Ewald summation. Default: 7

• esp R_c R_c
PBC only. Real space cutoff radius for the Ewald/Wolf-summation. Default: 20Å.

• esp pbc_method method
PBC only. Switch between methods for periodic boundary conditions. Choices
for method : 1 - method 1 with Ewald summation (3.140, 3.137); 2 - method 2
with Ewald summation (3.142, 3.137); 3 - method 3 with Wolf summation (3.142,
3.138). Default: 2

• esp grid type
Switch between radial gird - 1, logarithmic radial grid - 2, cubic grid from lattice
vectors - 3 and cubic grid from lattice vectors, but truncated in z-direction by
maximal vdw-radius (exclude vacuum region for surface slabs) - 4. Default: 3.

• esp output_cube type
Instead of fitting the ESP-charges to the potential, the potential is written to a
cube-file (potential_esp_i.cube). A cubic grid is required. Switch between Hartree
potential - 1, XC-potential - 2, X-potential - 3, C-potential - 4, Density - 5, and
Hartree potential with the coordinates of voxels - 6.

• esp output_fit
The ESP-charges are fitted to the potential and the potential calculated from the
fitted ESP-charges is written to a cube-file (potential_esp_i.cube). A cubic grid
is required.

• esp use_dip_for_cube
The dipole correction is added to the cube output of the (fitted) potential. Only
applied if a dipole correction was used during SCF.

Tag: esp_constraint (control.in)

Usage: esp_constraint method

Purpose: PBC only. Constrain the calculated ESP charges with periodic bound-
ary conditions for method 1 or 2. The constraints will be used for all calculated
ESP-charges. Due to technical reasons (array allocations) you have to specify
the method you are using in control.in with this keyword. Choices for method are
1 and 2. The actual constraints have to be specified for each atom in geometry.in.

Tag: compute_esp_charges (control.in)

3.33. ESP charges 349

Usage: compute_esp_charges Emin Emax min_vdw_radius grid_type
max_vdw_radius n_radius k-point

Purpose: Calculate and output the ESP-charges for the transition states within
the energy window [Emin, Emax] at k-point k-point. Data will be written to file
esp_element_k-point.dat. The grid type grid_type (1 - radial, 2 - logarithmic
radial, 3 - cubic, 4 - cubic from radii) will be used. The potential will be calculated
on the n_radius radial shells within the volume created by min_vdw_radius
and max_vdw_radius times the vdw radius of the atoms or in a cube with
n_radiusxn_radiusxn_radius oints. The dipole moment calculated from the
fitted charges qi at atomic positions Ri is also written to file:

dij =
Nat∑
k=1

qkRk (3.145)

for transition states i→ j.

Tags for geometry.in:

Tag: esp_constraint (geometry.in)

Usage: esp_constraint constraint_1 constraint_2 constraint_3

Purpose: PBC only. Define the constraints for the fit of the ESP-charges for
each atom. Depending on the chosen method (esp_constraint method in
control.in). Method 1 needs three parameters (χ, J00, w) 3.140 and method 2
needs two parameters (q0, β) 3.142 as defined above.

350 Chapter 3. The Full Monty: All Keywords and Capabilities

3.34 Magnetic Response

FHI-aims is capable of perturbatively calculating the response of the system to a magnetic
field. The magnetic field can be either external or that associated with the magnetic
moments of atomic nuclei. Currenty functionality includes:

• Nuclear magnetic shielding tensors and the spin-spin coupling tensors, which are
the central parameters in nuclear magnetic resonance (NMR) spectroscopy;

• The magnetizability tensor, which is the proportionality between the induced mag-
netic moment and the magnetic field. It can be thought of as the magnetic
analogue of the polarizability;

• Electric field gradient (experimental).

References:

• Martin Kaupp, Michael Bühl, and Vladimir G. Malkin, editors, Calculation of NMR
and EPR Parameters: Theory and Applications, Wiley-VCH, Weinheim, Germany,
2004 — A comprehensive treatment of general theory and applications.

• V. Sychrovsky et al., Nuclear magnetic resonance spin-spin coupling constants
from coupled perturbed density functional theory, J. Chem. Phys. 113, 3530
(2000) — Nonrelativistic J-couplings in DFT.

• G. Schreckenbach and T. Ziegler, Calculation of NMR Shielding Tensors Using
Gauge-Including Atomic Orbitals and Modern Density Functional Theory, J. Phys.
Chem. 99, 606 (1995) — Standard theory of GIAO shieldings in DFT.

• T. Helgaker et al., Nuclear shielding constants by density functional theory with
gauge including atomic orbitals, J. Chem. Phys. 113, 2983 (2000) — GIAO GGA
correction (shieldings only).

The basic parameters of a magnetic response experiment are a collection of electron
spins, S = ∑

i Si, nuclear spins, I = ∑
i Ii, and an external magnetic field B. Consid-

ering all possible couplings between these parameters, the fully general effective Hamil-
tonian has the form

HS = H(S,S) +H(S, I) +H(S,B) +H(I, I) +H(I,B) +H(B,B). (3.146)

We have not explicitly considered coupling to the electron orbital angular momentum,
L = ∑

iLi, whose effects are assumed to be incorporated into the electronic wavefunc-
tion. Based on which terms are dominant in a given spectroscopy, we can partition the
Hamiltonian (3.146) as follows:

• The NMR nuclear spin Hamiltonian:

HNMR =H(I,B) +H(I, I)
=−

∑
A

B(←→1 −←→σA)µA +
∑
A>B

hIA(←−→DAB +←→JAB)IB, (3.147)

3.34. Magnetic Response 351

where ←→σ A are the nuclear shielding tensors, ←−→DAB and ←→JAB are the direct and
indirect spin-spin coupling tensors, IA is the nuclear spin of atom A, and µA =
~γAIA is the corresponding nuclear magnetic dipole moment.

• The EPR spin Hamiltonian:

HEPR =H(S,S) +H(S, I) +H(S,B). (3.148)

• The effective Hamiltonian describing the second order response to an external
magnetic field:

HMag = −1
2B
←→
ξ B, (3.149)

where
←→
ξ is the magnetizability tensor. For a closed shell molecule, it describes

the lowest order response of the energy to an external magnetic field.

The magnetic response parameters can be expressed as mixed second derivatives of the
total electronic energy with respect to the external magnetic field and the magnetic
moments,

←→σA = ∂2E(B,µ)
∂B∂µA

∣∣∣∣∣
B=0;µ=0

,

←→
JAB =γAγB2π

∂2E(B,µ)
∂µA∂µB

∣∣∣∣∣
B=0;µ=0

,

←→
ξ AB =− ∂2E(B,µ)

∂2B

∣∣∣∣∣
B=0;µ=0

,

(3.150)

where µ denotes the collection of all magnetic moments. In the first of Eqs. (3.150),
the total energy should not contain the classical nuclear Zeeman term. The derivatives
are, to a very good approximation, taken at zero values of B and µ, which allows us to
consider only the linear response of the system.

In time-independent second-order perturbation theory, the general expression for a prop-
erty ←→X is

←→
X =

occ∑
i

[
〈ψi|HMN |ψi〉+ 2Re 〈ψMi |HN |ψi〉

]
, (3.151)

where |ψi〉 are the unperturbed wavefunctions, |ψM〉 are the first-order wavefunctions
with respect to the perturbation M , and HM and HMN are the first and second deriva-
tives of the Hamiltonian. The derivatives are calculated at zero values of the perturbation
(B and/or µ). The total number of terms depends on the type of perturbation. For
instance, in case of J-couplings, the paramagnetic part is a sum of three separate terms,
HN = HFCµA +HPSOµA +HSDµA , which are listed below.

Density functional perturbation theory

The first-order wavefunctions are calculated according to density functional perturbation
theory (DFPT) (also called coupled-perturbed Kohn-Sham or coupled-perturbed Hartree-
Fock). The DFPT steps are the following:

352 Chapter 3. The Full Monty: All Keywords and Capabilities

• Update the self-consistent first-order Hamiltonian:

H(1)
σ (r) = H

(1)
NSC,σ(r) +

[
∂vxc,σ[n]
∂nσ

n(1)
σ (r) + ∂vxc,σ[n]

∂nσ′
n

(1)
σ′ (r)

]
n=n(r)

+H
(1)
Ha nσ(r),

(3.152a)
where H(1)

NSC is the non-self-consistent part of the first-order Hamiltonian, vxc,σ is
the xc-potential, H(1)

Ha is the first-order Hartree potential, and n(1)
σ is the first-order

density. First-order Hartree potential is computed only for an open-shell system
and vanishes otherwise. For a closed shell system, only n(1)

σ in Eq. (3.152a) is
updated, the rest need not be calculated more than once. In fact, the xc-kernel,
which depends only on the unperturbed density, is the same for any perturbation
and is calculated only once during the entire calculation. In Eq. (3.152a), only the
LDA contribution is shown, but GGA and hybrids are also available. Note that
for purely imaginary operators the perturbed density vanishes, which means that
in LDA and GGA there is no contribution from the xc-kernel and it is sufficient
to perform only a single DFPT step (this is the sum-over-states approach). With
hybrids or Hartree-Fock, this does not hold because while the first-order density
vanishes, the first-order density matrix does not.

• Compute the first-order wavefunctions:

ψ(1)
n (r) =

occ∑
i

C
(1)
in φi(r) =

occ∑
i

φi(r)
∑
k

CikUkn, (3.152b)

where φi(r) are the basis functions, C are the unperturbed wavefunction coeffi-
cients, C(1) are the first-order coefficients, and

Umn = −1
2
∑
ij

CimS
(1)
ij Cjn (3.152c)

if mn is an occupied-occupied or virtual-virtual pair, and

Umn =
∑
ij

CimH
(1)
ij Cjn − CimS

(1)
ij Cjnεn

εn − εm
(3.152d)

otherwise. S(1) is the first-order overlap matrix.

• Construct a new density matrix from the first-order changes in wavefunctions:

n
(1)
ijσ =

occ∑
mσ

〈φi|ψmσ〉 〈ψ(1)
mσ|φj〉+ 〈φi|ψ(1)

mσ〉 〈ψmσ|φj〉 =
occ∑
mσ

cimc
(1)∗
jm + c

(1)
imcjm.

(3.152e)
The unperturbed coefficients are always real.

• Check convergence and, if necessary, perform density matrix mixing (default is to
do Pulay mixing):

n
(1)
ijσ → nX,nextijσ . (3.152f)

• Construct a new density from the density matrix:

n(1)
σ (r) =

occ∑
ij

φi(r)n(1)
ijσφj(r). (3.152g)

3.34. Magnetic Response 353

Integrals.

In the presence of an external magnetic field and NMR active nuclei (those with a nonzero
magnetic moment) in the system, the magnetic vector potential takes the form

A = 1
2B × r + α2∑

A

µA × rA
r3
A

, (3.153)

where rA = r − RA is the position relative to atom A. Inserting this into the non-
relativistic Hamiltonian and taking the first and second derivatives with respect to the
magnetic field and/or the nuclear magnetic moments, we arrive at the following terms:

• Orbital Zeeman:
HB = − i2(r ×∇), (3.154a)

• Spin Zeeman:
HSZB = S, (3.154b)

• Paramagnetic spin-orbit (PSO):

HPSOµA = −iα2rA ×∇
r3
A

, (3.154c)

• Fermi contact (FC):

HFCµA = 8πα2

3 δ(rA)S, (3.154d)

• Spin-dipole (SD):

HSDµA = α2
[

3(SrA)rA
r5
A

− S

r3
A

]
, (3.154e)

• Diamagnetic shielding (DS):

HBµA = α2

2
rrA − rArT

r3
A

, (3.154f)

• Diamagnetic spin-orbit (DSO):

HµAµB = α4

2
rArB − rBrTA

r3
Ar

3
B

, (3.154g)

• Diamagnetic magnetizability:

HBB = 1
4(r2 − rrT). (3.154h)

In case of shieldings and magnetizability, the GIAO formalism is used to overcome the
slow convergence related to the nonuniqueness of the gauge origin. Each basis function
φn is equipped with a phase factor of the form

φn(r)→ e−iAnrφn(r) = e−
i
2 (Rn×r)Bφn(r), (3.155)

where An = 1
2B× (r−Rn) is the vector potential with the gauge origin shifted to the

origin of basis function n, Rn. This modifies some of the integrals (3.154) and leads to
a few new ones:

354 Chapter 3. The Full Monty: All Keywords and Capabilities

• GIAO orbital Zeeman:

HGIAOB
mn = i

2 〈φm | (Rmn × r)H0 − rn ×∇ |φn〉+ 〈φm|V BGGA,α|φn〉 . (3.156a)

• GIAO diamagnetic shielding:

HGIAOBµA
mn = α2

2

〈
φm

∣∣∣∣∣ (Rmn × r)(rA ×∇)T
r3
A

∣∣∣∣∣φn
〉
. (3.156b)

• GIAO diamagnetic magnetizability:

HGIAOBB
mn =1

4
〈
φm

∣∣∣ 2(Rmn × r)(rn ×∇)T
∣∣∣φn〉+ 1

4
〈
φm

∣∣∣ r2
n − rnrTn

∣∣∣φn〉
− 1

4
〈
φm

∣∣∣ (Rmn × r)(Rmn × r)THLDA
∣∣∣φn〉+

〈
φm

∣∣∣V BBGGA

∣∣∣φn〉 .
(3.156c)

• First-order overlap matrix:

SGIAOB
mn = i

2 〈φm|Rmn × r|φn〉 . (3.156d)

• Second-order overlap matrix:

SGIAOBB
mn = −1

4 〈φm|(Rmn × r)(Rmn × r)T |φn〉 . (3.156e)

In Eqs. (3.156), H0 is the unperturbed DFT Hamiltonian, V BGGA and V BBGGA are the first
and second B derivatives of the xc-potential. In LDA, the latter terms vanish.

Table 3.4 illustrates which terms are required for calculating which properties.

Table 3.4: The number of different types of integrals required for J-couplings, shieldings,
and magnetizabilities is 4. Without GIAOs, the number is 3 for shieldings and 2 for
magnetizabilities.

←→
JAB

←→σA (no GIAO) ←→
ξ (no GIAO)

|ψM〉 HFCµA HPSOµA HSDµA HB HB

HM HFCµA HPSOµA HSDµA HPSOµA HB

HMN HµAµB HBµB HBB

←→σA (GIAO) ←→
ξ (GIAO)

|ψM〉 HGIAOB, SGIAOB HGIAOB, SGIAOB

HM HPSOµA HGIAOB

HMN HGIAOBµA HGIAOBB, SGIAOBB

3.34. Magnetic Response 355

Dipolar couplings

The direct spin-spin coupling tensor, ←−→DAB, also called the dipolar coupling tensor, is
expressed as

←−→
DAB = ~α2

2π γAγB
(

1
R3
AB

− 3RABR
T
AB

R5
AB

)
, (3.157)

where RAB is the vector connecting atoms A and B. Because it does not depend on
the electronic structure, its computation takes no time and it is always automatically
included whenever a J-coupling calculation is requested

Current limitations

• Periodic systems not supported;

• Only the nonrelativistic formalism has been implemented (scalarrelativistic under
development);

• Hybrid functionals not supported for shieldings and magnetizability;

• Meta functionals not supported.

For developers

Most of the magnetic response (MR) related source code resides in the directory
MagneticResponse. The parent subroutine for doing MR calculations is MR_main.
It sets up the environment depending on user input, calls MR_core which performs the
actual calculations, and prints various information including the results of the calculation.
MR_core is called separately for every type term that needs to be computed. If the first-
order wavefunctions are required, a DFPT cycle is performed first. If a diamagnetic
property is calculated, the DFPT part is skipped.

The module integration provides a subroutine that is used for all integrations. The
only exception is the nonrelativistic FC term, which needs a completely separate subrou-
tine because of the delta function. The bodies of most functions that are integrated over
real space are found in integrands.f90. The result of each integration is written into
a 2D block cyclic matrix (the matrix_BC_out argument of the integrate). Outside
the integration subroutine, all linear algebra involving large arrays is done with Scalapack
routines.

Example input

The following is a minimal example for running a magnetic response calculation.

356 Chapter 3. The Full Monty: All Keywords and Capabilities

control.in:

H2O
xc pw-lda
magnetic_response # Default is to calculate all magnetic

response quantities
Basis sets
...

geometry.in:

atom 0.00 0.00 0.00 O
magnetic_response
atom -0.96 0.00 0.00 H
magnetic_response
atom 0.32 -0.90 0.00 H
magnetic_response

Notes on performance

For best performance, it is recommended to always include the following flags in control.in:

load_balancing .true.
use_local_index .true.
collect_eigenvectors .false.

In the timings section, the following terms are shown:

• “Fermi contact”, “paramagnetic spin-orbit”, “spin-dipole”, “paramagnetic shield-
ing”, “paramagnetic magnetizability” — these are the integration times of the
non-self-consistent parts of the Hamiltonian [H(1)

NSC in Eq. (3.152a)].

• “diamagnetic spin-orbit”, “diamagnetic shielding”, “diamagnetic magnetizability”
— integration of a diamagnetic magnetic property.

• “First-order xc” — integration of the first-order response of the xc-potential.

• “First-order density” — constructing the first-order electron density from the first-
order density matrix (this is an integral over real space).

• “First-order Hartree” — integration of the first-order response of the Hartree po-
tential.

• “First-order Ha update” — constructing the first-order Hartree potential from the
first-order density. It mainly times calls to update_hartree_potential_p1 and
sum_up_whole_potential_p1.

3.34. Magnetic Response 357

• “Mat-mat multiplications” — total wall time spent on pdgemm and pzgemm.

• “packed <-> block cyclic” — total wall time spent on subroutines that do conver-
sion from one matrix type to another. These are packed_to_block_cyclic and
block_cyclic_to_packed.

• “Total” — total wall time spent on the magnetic response calculation. This is
higher than the sum of the above, because it contains additional overhead from
stuff that is in between the subroutines that are timed.

• “Total minus individual terms” — Difference between the total wall time and the
sum of individual terms. If the total time is much higher than the sum of the
individual terms then there is an unexpected bottleneck somewhere in the code
that does not scale. Note that the difference is between the total time of the
slowest task and a sum where each term individually corresponds to that of the
slowest task. Thus, do not be alarmed if this number becomes slightly negative
(unlikely, but possible depending on how the load is balanced).

Maximum and minimum cpu times are shown where possible. In case the subroutine
to be timed contains and explicit or implicit MPI barrier (e.g., pdgemm), individual cpu
times are not meaningful and only the maximum wall time is shown.

358 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: magnetic_response (control.in)

Usage: magnetic_response options

Purpose: Primary keyword for doing magnetic response calculations. This is
the minimum that is required in control.in and by default leads to the full
calculation of J-couplings, shieldings, and the magnetizability.
This keyword can be followed by a number of options:

• J_coupling or J or j — Calculate J-couplings only.

• shielding or s — Calculate the shieldings only.

• magnet or m — Calculate the magnetizability only.

• fc — Calculate the FC contribution to J-couplings only.

• po — Calculate the PSO contribution to J-couplings only.

• sd — Calculate the SD contribution to J-couplings only.

• do — Calculate the DSO contribution to J-couplings only.

• shielding_p or s_p — Calculate the paramagnetic contribution to the
shieldings only.

• shield_d or s_d — Calculate the diamagnetic contribution to the shield-
ings only.

• magnet_p or m_p — Calculate the paramagnetic contribution to the mag-
netizability only.

• magnet_d or m_d — Calculate the diamagnetic contribution to the mag-
netizability only.

• no_giao — Calculate the shieldings and magnetizability using the standard
formalism without GIAOs (default: false, i.e., with GIAOs).

• full — Calculate the full tensors (default: only diagonal elements).

Comment: any combination of options works. For example,
magnetic_response fc s po full
calculates the FC and PSO terms of J-couplings and the shielding tensors including
off-diagonal elements. The default is equivalent to
magnetic_response J_coupling shielding magnet

Tag: dfpt_accuracy_n1 (control.in)

3.34. Magnetic Response 359

Usage: dfpt_accuracy_n1 value

Purpose: Convergence criterion for the DFPT self-consistency cycle, based on the
RMS change in the first-order density matrix. Specifically, the unmixed output
density matrix is checked against the input density matrix corresponding to the
same iteration. The RMS value is calculated over all directions and spins that
are being processed.
value is a real positive number (in electrons). Default: 1d-9.

Tag: dfpt_iter_limit (control.in)

Usage: dfpt_iter_limit number

Purpose: Maximum number of DFPT cycles.
number is an integer number. Default: 40.

Tag: dfpt_linear_mix_param (control.in)

Usage: dfpt_linear_mix_param value

Purpose: Parameter for linear mixing of first-order electron density. Used in Pulay
and simple linear mixing.
value is a real number between 0 and 1. Default: 1.0

Tag: dfpt_pulay_steps (control.in)

Usage: dfpt_pulay_steps number

Purpose: Number of steps kept in memory for Pulay mixing. Value of 1 corre-
sponds to simple linear mixing.
number is a positive integer number. Default: 8

Tag: mr_gauge_origin (control.in)

Usage: mr_gauge_origin x y z

Purpose: Gauge origin for the calculation of the shieldings or the magnetizability.
This has no effect with GIAOs.
x y z are real numbers (in Å) that specify the position of the gauge origin.
Default: the center of mass.
Comment: The center of mass is based on the natural abundance of elements. If
this is not desirable, the user can set the gauge origin manually.

Tag: output_sxml (control.in)

360 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: output_sxml [name]
Purpose: If present, the spin system and the results of calculations are printed
into an sxml file [Biternas et al., J. Mag. Res. 240, 124 (2014)], which can serve
as input to other software, e.g., Spinach [spindynamics.org].
The name of the output file is name if present. Otherwise, the default name is
aims.xsml.

Tag: mr_experimental (control.in)

Usage: mr_experimental

Purpose: Overrides any safety checks that would cause the run to stop. This
allows the user to test features that are still in development and even avoid
simple sanity checks such calculating the shieldings without specifying any atoms
in geometry.in.

Tags for geometry.in:

Tag: magnetic_response (geometry.in)

Usage: magnetic_response

Purpose: Includes the current atom in the magnetic response calculations. If only
the magnetizability is required, this keyword need not be used in geometry.in.
Otherwise, the calculation of the shieldings or J-couplings is aborted if no atoms
are flagged for MR calculations in geometry.in

Tag: magnetic_moment (geometry.in)

Usage: magnetic_moment value

Purpose: Overrides the default magnetic moment for the given atom. The
default values (in units of the nuclear magneton µN) can be found in
MagneticResponse/MR_nuclear_data.f90. In case of J-couplings, the iso-
topes used are also printed in the output.
value, a real number, is the magnetic moment in atomic units (-5.157d-4 for
O-17).

Tag: nuclear_spin (geometry.in)

3.34. Magnetic Response 361

Usage: nuclear_spin value

Purpose: Overrides the default nuclear spin for the given atom. The default
values can be found in MagneticResponse/MR_nuclear_data.f90 and are also
printed in the output for J-coupling calculations.
value, a real number, is the nuclear spin (2.5 for O-17).

Tag: isotope (geometry.in)

Usage: isotope number

Purpose: Overrides the default isotope mass number for the given atom. For
more flexibility, the magnetic moment and spin can be specified separately
with the above keywords. The default isotopes numbers can be found in
MagneticResponse/MR_nuclear_data.f90.
number, a positive integer, is the mass of the given atom (17 for O-17).

362 Chapter 3. The Full Monty: All Keywords and Capabilities

3.35 Large-scale, massively parallel: Memory use,
sparsity, communication, etc.

In one way or another, most options available with FHI-aims concern physical algorithms
or numerical choices, including those affecting the accuracy and/or efficiency of a given
task. As much as possible, FHI-aims attempts to use the exact same code and settings
to describe any given system, and on any kind of computer hardware. Usually, this guar-
antees efficient code on all ends, and improvements for one class of systems immediately
benefit all others

However, for very large tasks [meaning here several hundred up to thousands of atoms,
depending on the system] and/or on parallel architectures with possibly (ten)thousands
of processors, memory and communication constraints may come into play that require
specific workarounds not needed (or beneficial) in normal systems. On a practical level,
FHI-aims attempts to be as memory-parallel as possible without loss of efficiency. How-
ever, if any such modification could affect the performance for normal systems and
computer architecture adversely, we recommend to switch it on separately only when
needed.

On massively parallel machines, and for very large problems, the following options are
particularly important:

• If KS_method parallel is used, keyword collect_eigenvectors .false.
switches off the collection of the full eigenvectors cil on each CPU, saving both
communication time and a significant amount of memory. This is the default where
possible but the default is currently switched silently between .false. (efficient)
and .true. (inefficient) depending on the details of the calculation.

• Keyword use_local_index , which ensures that integration grid batches on the
same CPU are always close together, requiring only a subset of the packed Hamil-
tonian matrix as working space for integrals on each CPU. Use load_balancing
to improve load-balancing in this case to avoid the a negative impact on the effi-
ciency.

• The Kerker preconditioner (part of the density mixing step is switched on
by default for all periodic calculations, but does not scale well to large processor
counts and with system size. If the density mixing step costs a significant amount
of time (see FHI-aims timings, printed at the end of each s.c.f. step in the output),
consider switching off the Kerker preconditioner. For systems with a band gap, it
is often not needed and the much cheaper default Pulay mixer will work as well.

• In the cluster case, keyword use_density_matrix_hf should be used for
system sizes of a few hundred atoms and above. (This is the default for all
periodic systems anyway).

• For the cluster case, and if KS_method parallel is used, keyword packed_matrix_format
may save a significant amount of memory in the construction of the overlap, Hamil-
tonian, and density matrices. (This is the default for all periodic systems anyway).

3.35. Large-scale, massively parallel: Memory use, sparsity, communication, etc. 363

• For the cluster case with more than 200 atoms, the non-periodic Ewald method
can be used to accelerate the calculation, see section 3.7.1.

• The keyword distributed_spline_storage avoids to store the complete
multipolar decomposition of the charge density on each processor. Instead, they
are only stored for those atoms with local grid points in reach.

• For beyond-GGA: Keyword prodbas_nb can be used to enhance the distribution
of memory intensive arrays, possibly sacrificing performance.

Finally: There is a keyword, use_alltoall , that allows to switch the communication
behaviour of FHI-aims for very large runs when parallel linear algebra (KS_method
parallel) is used. The default switching point is set at 1024 MPI tasks and affects
CPU time (very many cores) and memory use. If you see changes around 1024 cores
(especially lack of memory in “normal” LDA/GGA calculations), see there.

364 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: collect_eigenvectors (control.in)

Usage: collect_eigenvectors flag

Purpose: When KS_method parallel is used, allows to switch off the
collection of all eigenvectors to each CPU, saving memory and computation
time.
Restriction: Local copies of the eigenvectors are needed for some post-processing
functionality.
flag is a logical string, either .false. or .true. Default: .false. wherever
possible.

For memory efficiency reasons, this keyword should be set to .false. whenever possible.
Otherwise, especially the largest and most demanding calculations will run out of memory.
When .true., this keyword creates a complete and up-to-date copy of every eigenvector
for the k-point assigned to it on every MPI task. When .false., this information is
communicated only when unavoidable. In principle, every operation in FHI-aims should
be implemented so as to keep this keyword set to .false. and it is only human time
that keeps us from doing it.

Tag: distributed_spline_storage (control.in)

Usage: distributed_spline_storage flag

Purpose: Request to store the multipolar decomposition of the density only for
the atoms needed on a given processor for the corresponding parts of the Hartree
potential.
flag is a logical string, either .false. or .true. Default: .false.

This flag is .false. by default because the complete splined density might be needed
for some postprocessing or output option.

Tag: force_mpi_virtual_topo (control.in)

Usage: force_mpi_virtual_topo flag

Purpose: Auxiliary option to try to force the MPI library to respect the topology
of the nodes used (several tasks within each shared-memory node vs. slower
communication between different nodes)
flag is a logical string, either .false. or .true. Default: .false.

If requested, enables to cache the (deduced) topology of the nodes to the default com-
municator. In principle, the communication layer should then obtain more information on
the network topology and organize the communication pattern more efficiently. However,
nothing is guaranteed. The standard does not force MPI to respect the cached informa-
tion, and in all decent MPI library implementations, this information should already be

3.35. Large-scale, massively parallel: Memory use, sparsity, communication, etc. 365

provided by the system.

In short: Perhaps try this if a truly strange communication pattern is observed, but
probably, there will be no effect.

Tag: load_balancing (control.in)

Usage: load_balancing flag

Purpose: Using the keyword use_local_index has a negative impact on
the distribution of work across CPUs for real-space grid operations. When load
balancing is enabled via this keyword, this performance hit can be avoided by
explicit reassignment of grid point batches to processors according to timings of
test runs.
flag is a logical string, either .false. or .true. (or if_scalapack, see below).
Default: .false.

This feature, which was implemented by Rainer Johanni, eliminates the negative impact
on performance incurred by the use_local_index keyword. It should always be used
whenever memory becomes a bottleneck for a calculation. For more information about
what this keyword does, please see the documentation for the use_local_index
keyword, as the two keywords are closely intertwined.

Load balancing requires that KS_method parallel be used: that is, there is more
than one CPU for cluster calculations or more CPUs than k-points for periodic calcula-
tions. If the if_scalapack option is supplied, load balancing will be turned on when
KS_method parallel is being used and will be turned off when KS_method serial
is being used.

When this keyword is set to .true. or if_scalapack, the use_local_index
keyword will be set to the same value by default.

Tag: packed_matrix_format (control.in)

Usage: packed_matrix_format type

Purpose: Allows to use a packed-matrix format for the Hamiltonian, overlap,
and density matrices of the real-space basis functions.
type is a string that indicates the type of packing used. Default: none for the
cluster case, index for periodic geometries.

The following options exist for type:

• none - no packing is used

• index - matrices are packed by strictly eliminating all near-zero elements of all
three matrices. Elements ij are eliminated if both the overlap matrix element and
the initial Hamiltonian matrix element are smaller than a threshold set by keyword
packed_matrix_threshold .

366 Chapter 3. The Full Monty: All Keywords and Capabilities

Packing the overlap, Hamiltonian and density matrices reduces the size of these arrays
during matrix integration, at the expense of some small effort to correctly sort interme-
diate results during the integration appropriately.

From a technical point of view, packing only makes sense if the full Hamiltonian is not
required later anyway, during the eigenvalue solution. This is the case:

• In the cluster case: if KS_method parallel is used.

• In the periodic case: for more than one k-point, and/or if KS_method parallel
is used.

Tag: packed_matrix_threshold (control.in)

Usage: packed_matrix_threshold tolerance

Purpose: Tolerance value below which the elements of the overlap / Hamiltonian
matrices are eliminated from the packed_matrix_format .
tolerance : A small positive real numerical value. Default: 10−13.

Tag: prune_basis_once (control.in)

Usage: prune_basis_once flag

Purpose: Stores the indices of the non-zero basis functions for each integration
batch in memory
flag is a logical string, either .false. or .true. Default: .true.

All operations for the integrations and the electron density update are O(N) operations,
but verifying which basis functions are non-zero for each integration batch requires to
check each basis function, and is thus an O(N2) operation with a small prefactor. This
step can be avoided by checking for the non-zero basis functions once, and then storing
their indices in memory for each batch of integration points. For very large systems
and restricted memory, it may be worth trying to switch this feature off to save some
memory, otherwise this should always be done.

Tag: store_EV_to_disk_in_relaxation (control.in)

Usage: store_EV_to_disk_in_relaxation flag

Purpose: During relaxation, eigenvectors from a previous geometry can be stored
to disk instead of in memory in case the next step is reverted.
flag is a logical string, either .false. or .true. Default: .false.

During relaxation (see relax_geometry), geometry steps can be rejected if the total
energy increased unexpectedly. In order to revert to a previous step, it is necessary to
access the Kohn-Sham eigenvectors used to initialize that step, which must hence be
stored for that purpose. In normal calculations, eigenvector storage is not a problem, but

3.35. Large-scale, massively parallel: Memory use, sparsity, communication, etc. 367

their size grows as O(N2) with system size. For very large system sizes, their storage
in memory can become a bottleneck, which is here circumvented by the option to store
them to disk.

This keyword is not related to the restart functionality of the restart keyword, since
it is an old, not a current, set of Kohn-Sham eigenvectors that may be needed when
reverting a geometry step.

Tag: use_2d_corr (control.in)

Usage: use_2d_corr flag

Purpose: Allows to switch on or off the two-dimensional distribution of data
structures for correlated methods.
flag is a logical string, either .false. or .true. Default: .true..

Only relevant for correlated beyond-hybrid methods.

Tag: use_alltoall (control.in)

Usage: use_alltoall flag

Purpose: Allows to switch some communication calls in FHI-aims, depending on
the number of tasks.
flag is a logical string, either .false. or .true. Default: .false. below
1024 MPI tasks, true for 1024 and above.

Only relevant for KS_method parallel.

When running on a system with many CPUs, it can be much faster to use “all-to-all”
communcation (mpi_alltoallv) than doing n_tasks times a sendrecv call; this is, for
example, noticeable on the BlueGene/P with ≈105 MPI tasks at at time. For much
fewer tasks, the effect is not usually relevant.

On the other hand, “all-to-all” costs a significant amount of memory, and this memory
pressure will be felt for much fewer MPI tasks (e.g., Intel architecture with hundreds of
CPU cores at a time.

Thus we use “sendrcv” (individual communication) to using mpi_alltoallv when using
1024 CPUs or more. use_alltoall can be employed to enforce one or the other
type of call throughout. If you see too much MPI-related memory use at 1024 tasks or
above, try it—and let us know.

Tag: use_mpi_in_place (control.in)

368 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: use_mpi_in_place flag

Purpose: Allows some collective communication calls to be handled using the
“MPI_IN_PLACE” flag of the MPI specification.
flag is a logical string, either .false. or .true. Default: .true.

Only relevant for parallel runs.

When running on a system with many CPUs, it can be a bit more memory efficient to
use “MPI_IN_PLACE” communication. Then, instead of separate send- and receive
buffers, a single buffer is used and information is updated “in place”.

However, not all MPI implementations seem to implement this feature correctly. Thus,
this choice can sometimes lead to problems or even errors in the results, depending on
the MPI library and version that was used.

The code checks for specific problems related to “MPI_IN_PLACE” and switches to
use_mpi_in_place .false. if problems are encountered.

If anyone identifies further problems related to the use of “MPI_IN_PLACE”, please let
us know.

Tag: use_local_index (control.in)

Usage: use_local_index flag

Purpose: Reduces work space size for Hamiltonian / overlap matrix during
integrals by storing only those parts that are touched by any grid points assigned
to the present CPU.
Restriction: Supported for standard LDA , GGA, and hybrid functionals using
KS_method parallel and packed matrices, but not for some non-standard
options.
flag is a logical string, either .false. or .true. (or if_scalapack, see
below). Default: .false.

Originally, FHI-aims stored its real-space Hamiltonian/overlap matrices in a non-distributed
fashion, i.e. every CPU has the full copies of the real-space Hamiltonian/overlap matri-
ces. While this makes the math easier internally, it will lead to a memory bottleneck for
large calculations: as the number of atoms in a calculation increases, the sizes of the
real-space matrices increase, and eventually the real-space matrices are too large to fit
in memory. Adding more CPUs to a calculation does not fix this problem, since each
CPU has the full copies of the matrices.

For very large systems with many CPUs, it thus becomes necessary to spread the real-
space matrices across CPUs. This is done using a method known as “domain decom-
position” (or, informally, local indexing), where we assign batches of integration grid
points close to one another to the same CPU. Each CPU then stores only the portions
of the real-space Hamiltonian/overlap matrices which have non-zero support on the in-
tegration points which it possesses. The real-space matrices are thus distributed across
CPUs, considerably decreasing their sizes. Should a calculation still suffer from memory

3.35. Large-scale, massively parallel: Memory use, sparsity, communication, etc. 369

issues associated with the sizes of the real-space matrices, we can increase the number
of CPUs to reduce the memory overhead on each individual CPU.

While the domain decomposition method will spread the real-space matrices across CPUs
and eliminates the memory bottleneck previously mentioned, eventually we will need to
solve the Kohn-Sham eigenvalue problem. To solve the Kohn-Sham eienvalue problem,
we need to generate the Hamiltonian entering into the eigensolver from the real-space
Hamiltonian, which is now distributed across CPUs. The subsequent merge of all results
into the BLACS infrastructure used by the eigensolvers supported by FHI-aims then
becomes more difficult, and some performance overhead results from the altered load on
each CPU. This option is therefore not used by a standard call to FHI-aims, but must
be switched on explicitly if needed.

To overcome the performance overhead associated with use_local_index keyword, it
is *strongly* recommended that the user also try using the load_balancing keyword,
which enables load balancing. Load balancing will eliminate the overhead associated with
the use_local_index keyword, but it is not enabled for all non-standard functionality
in FHI-aims, hence why we do not enable it by default.

Domain decomposition requires KS_method parallel: that is, there is more than
one CPU for cluster calculations or more CPUs than k-points for periodic calculations.
If the if_scalapack option is supplied, domain decomposition will be turned on when
KS_method parallel is being used and will be turned off when KS_method serial
is being used.

Domain composition also requires prune_basis_once and a parallel
grid_partitioning_method . These are enabled by default for FHI-aims calculations,
so you shouldn’t worry about setting them yourself.

Tag: walltime (control.in)

Usage: walltime seconds

Purpose: Can limit the wall clock time spent by FHI-aims explicitly, e.g., to
obtain the correct final output before a queuing system shuts down a calculation.
seconds is the integer requested wall clock time in seconds. Default: no limit.

In order to reach the postprocessing phase and write information required at the end of
a calculation in an organized manner, FHI-aims can force a stop before a certain amount
of real time (wall clock time) is exceeded. In order to achieve this safely, FHI-aims uses
an internal estimate of the duration of a single s.c.f. iteration within the calculation,
and stops if it estimates that the next iteration will take more time than what remains
available.

370 Chapter 3. The Full Monty: All Keywords and Capabilities

3.36 Fragment molecular orbital DFT calculations

The fragment molecular orbital (FMO or FO) scheme allows the efficient calculation
of transfer matrix elements for transport calculations. The two reference states are
constructed from isolated calculations of the respective fragments (donor and acceptor).
This circumvents the electron delocalistion error, but neglects any interactions between
the fragments.

Important: This functionality is not yet available for periodic systems.
Important: The δ+-FODFT scheme is not optimized for large systems.

FODFT flavours

Depending on the approximations done to implement the FODFT method we distinguish
between three different flavours of FODFT. Please see [200] for a detailed description and
assessment of each. Within FHIaims it is possible to use all different FODFT-schemes.

H2n@DA

This is the classic implementation by [202]. The fragment calculations are always done
for the neutral fragments and the Hamiltonian is constructed using a wrong number of
electrons. Hab = Hba even for hetero dimers.

To use this flavour, simply calculate neutral fragments and continue with the default
FODFT options.

H2n−1@DA / H2n+1@D−A−

This implementation was first used within the CPMD code[169]. Here, neutral (double
anionic) fragment calculations are combined for hole (electron) transfer with a reset of
the occupation number in the highest occupied molecular orbital. This leads to the
correct number of electrons for the construction of the Hamiltonian.

To use this flavour, calculate neutral (or anionic) fragments and use the fo_flavour
keyword with the option reset.

H2n±1@D±A

This scheme was first implemented within FHIaims and uses charged fragment calcu-
lations. This results in slightly different approximations with improved accuracy in the
electronic coupling values. Please see [200] for more details.

To use this flavour, calculate appropriately charged fragments and continue with the
default FODFT options.

3.36. Fragment molecular orbital DFT calculations 371

δ+-FODFT

The implementation of the δ+-FODFT scheme is not optimized for large systems and
considered experimental. In our study[200] we found no significant improvement when
using this scheme.

Theoretical Background

The following section intends to give a quick overview over the theory and the implemen-
tation within FHIaims. For detailed theory we refer to the before mentioned publications.
The following theory is for the charged FODFT flavour (H2n±1@D±A).

In principle, the transfer matrix element for hole transport between the HOMO and the
LUMO of two molecules is given by

HAB = 〈ΨD
HOMO|ĤKS|ΨA

LUMO〉. (3.158)

Obtain the fragment wavefunctions

First, two standard-DFT calculations are done to obtain the fragment wavefunctions.
Some additional output is needed for the subsequent combination of the fragments to
the full system.

Combine the fragment wavefunctions and extract the transfer matrix element

The saved wavefunctions of both fragment calculations are used to obtain the full, non-
interacting electron density of the combined system (D+A). Although FHIaims uses
atom centered basis functions, it is not generally possible to re-use any restart file. If
the ordering of the atoms in the geometry.in files is identical, it is possible to use a
restart file for any geometry with translational symmetry. If the geometry is rotated, it
is necessary to rotate the wave function.

For this non self-consistent density the Hamiltonian is calculated and used to determine
HAB. We therefore use the non-interacting density, but the interacting Hamiltonian with
the correct number of electrons. This is in contrast to other implementations, where
only the Hamiltonian of the neutral fragment is used.

The first step is a Loewdin-Orthogonalization of the Kohn-Sham-eigenvector.

U>SU = s (3.159)

X = S−
1
2 = Us−

1
2 U> (3.160)

C′ = X−1C
H′ = X>HX (3.161)

372 Chapter 3. The Full Monty: All Keywords and Capabilities

In the next step, the Hamiltonian is transformed,
H′st. = C′>H′C, (3.162)

and the overlap of states is calculated:
Sst. = C> ·C. (3.163)

In the final step, the transfer matrix element HAB is calculated with

HAB =
(
1− Sst.(a,b)2

)−1
[H′st.(a,b)− Sst.(a,b) (H′st.(a,a) + H′st.(b,b)) /2] (3.164)

Important technical hints

When creating the input geometries for the calculations, the geometry.in must mirror
the actual fragmentation. This means, the order of atoms has to be consistent for the
dimer and the fragments.

Example: Calculating the HAB for two methane molecules (CH+
4 – CH4)

Complete System, CH+
4 –CH4

#fragment 1
atom 12.7490 4.3034 0.0000 C
atom 13.8413 4.3037 0.0000 H
atom 12.3850 4.7804 -0.9128 H
atom 12.3850 4.8558 0.8693 H
atom 12.3851 3.2750 0.0435 H
#fragment 2
atom -2.6946 4.4740 0.0002 C
atom -1.6023 4.4740 0.0000 H
atom -3.0586 3.6144 -0.5671 H
atom -3.0586 5.3949 -0.4609 H
atom -3.0585 4.4127 1.0278 H

Fragment 1, CH+
4

atom 12.7490 4.3034 0.0000 C
atom 13.8413 4.3037 0.0000 H
atom 12.3850 4.7804 -0.9128 H
atom 12.3850 4.8558 0.8693 H
atom 12.3851 3.2750 0.0435 H

Fragment 2, CH4

atom -2.6946 4.4740 0.0002 C
atom -1.6023 4.4740 0.0000 H
atom -3.0586 3.6144 -0.5671 H
atom -3.0586 5.3949 -0.4609 H
atom -3.0585 4.4127 1.0278 H

3.36. Fragment molecular orbital DFT calculations 373

Folder structure for FODFT-calculation

At least three separate calculations (fragment1, fragment2 and combination step) are
needed for a complete FODFT run. To maintain a clean structure and avoid copying of
files, a special scheme is enforced. The folders can have arbitrary names, but need to be
in the same root directory. This allows easy reuse of fragment calculations for different
dimer calculations.

- fodft_something (main calculation folder)
|
+-- dimer_01

|
+-- control.in
+-- geometry.in

+-- frag1/
|
+-- control.in
+-- geometry.in

+-- frag2/
|
+-- control.in
+-- geometry.in

δ+ FO-DFT - Inclusion of the local potential

In our implementation, an additional option is available to include interactions between
the fragments by means of an embedding scheme, using the full local potential (Vloc)
of the embedded fragment. In contrast to the standard implementation, the fragment
wavefunction ΨA is polarized by the potential of the second fragment ΨB during the
SCF cycle.

The general procedure is:

1. Calculation of fragment wavefunctions

(a) Calculate Fragment A, export potential A
(b) Import potential A, calculate Fragment B, export new potential B
(c) Import potential B, calculate Fragment A∗∗

2. Combination of fragment wavefunctions

3. Determination of HAB

**: Please note that this step might not be necessary if fragment A was choosen wisely,
depending on the polarizability of the fragments.

374 Chapter 3. The Full Monty: All Keywords and Capabilities

The embedding can be used to iteratively converge towards a final solution, but as usual
the first steps are the most important ones for the polarization.

IMPORTANT: Since this method requires the reassignment of grid points from the
fragment calculations for the local potential, the current implementation is not optimized
towards large systems.

Tags for general section of control.in:

Tag: fo_dft (control.in)

Usage: fo_dft type

Purpose: This is the central control keyword for fragment orbital DFT. Its main
purpose is the control of the desired calculation step (fragment or combined
system) and associated choices. Depending on type, further flags or lines are
necessary. Those are explained below.
Options: Possible options are fragment and final.

fo_dft sub-tag: fragment (control.in)

Usage: fo_dft fragment

Purpose: This keyword indicates that a fragment for FODFT will be calcu-
lated. The restart information (restart.frag) and an additional output file
(info.frag) with information for the recombination of the fragments for the
final FODFT run will be written.

fo_dft sub-tag: final (control.in)

Usage: fo_dft final

Purpose: This keyword indicates that this is the final FODFT run, where to
wavefunctions of both fragments are combined and the transfer matrix element
is calculated.
IMPORTANT: This calculation can only be started after both fragments have
been calculated!

Tag: fo_orbitals (control.in)

3.36. Fragment molecular orbital DFT calculations 375

Usage: fo_orbitals state1 state2 range1 range2 type

Required input for the final FODFT step. Determines the actual states of interest
for the calculation of the coupling elements.

• state1, state2: [Integer] – Isolated fragment states for the determination
of the respective matrix element.

• range1, range2: [Integer] – Default 1. Gives a range for the selected
states.
(state1 = 5 and range1 = 2 will include state 5 and state 6 of fragment 1.)

• type: [String] Determines whether the matrix element for the spin-up (up
or elec) or spin-down (dn or hole) Hamiltonian is calculated. In most
cases, spin down means hole transport (excess hole on fragment 1 to frag-
ment 2) and spin up means electron transport (excess electron on fragment
1 to fragment 2).
Example Zn+-Zn: fo_orbitals 15 15 1 1 hole
will output the transfer matrix elements for hole transfer between the LUMO
of Zn+ (fragment 1) and the HOMO of Zn (fragment 2).

If not deactivated via fo_verbosity 0, the full Hab submatrix will be written
to the file full_hab_submatrix and any matrix element can be retrieved from
this file after the calculation.

Tag: fo_folders (control.in)

OPTIONAL Usage: fo_folders folder_frag1 folder_frag2

Purpose: This keyword allows the specification of custom names for the fold-
ers with the fragment calculation. If not set, standard names (frag1_00 and
frag2_00) are used.

Tag: fo_flavour (control.in)

OPTIONAL Usage: fo_flavour flavour

Purpose: This keyword allows the specification of the FO-DFT flavour to be used
for the calculation. See FODFT theory section for details. Options:

• default - no occupations are modified. For H2n@DA and H2n±1@D±A
flavours. This is the default.

• reset - selects the H2n−1@DA/H2n+1@D−A− scheme.

Note: There is no option yet to calculate Hab and Hba within one FHIaims run. If
the system is heterogeneous, two dimer steps with appropriate fragment ordering
and charges are necessary!

376 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: fo_verbosity (control.in)

Usage: fo_verbosity level

Purpose: Control the verbosity of the FO-DFT output. Options:

• 0: Write minimal output to output file. No retrieval of arbitrary couplings
without restarting the dimer calculation possible.

• 1: Write calculated couplings to output file and the full Hab matrix to the
file full_hab_submatrix. This is the default.

• 2: Write all elements for selected states from eq. 3.164 (Sst, H ′st, . . .) to
aims output.

Tag: fo_deltaplus (control.in)

Usage: fo_deltaplus .true.

Purpose: Enables the polarized δ+ fragment calculations.

With this keyword, the full local potential of the actual fragment (Hartree + nu-
clei) will be written to files (output_potential_0000*). In addition, if previous
potential files are found within the calculation folder, they will be read in and
added as an external potential to the current calculation.
Important: In order to use this improved scheme, the (empty) atom positions of
the other fragment have to be included in the geometry.in (see 3.36).
Important: The number of cores (determined by mpirun -n or similar) has to be
the same for both fragments, or the calculation will fail!
Note: Due to differences in the partitioning of the FHIaims grid between these
runs it is necessary to reassign the potential to each grid point. Depending on the
system size and the number of MPI processes (communication!), this will take
some time.

Additional tags for polarized FODFT in geometry.in and
control.in:

The following changes are only necessary for polarized FODFT (fo_deltaplus). In
order to allow a polarization of the fragment wavefunction, the atom centered integration
grids have to be extended to the region of the embedded fragment.

3.36. Fragment molecular orbital DFT calculations 377

geometry.in:

The atomic positions of the second, embedded fragment must be included as empty sites
with the tag empty (instead of atom). In addition, even the minimal basis functions
have to be disabled in the species_defaults for this atom type in the control.in
(see next section). To distinguish between real and empty atoms, the species name has
to be changed.

The following example for Zn+
2 shows the 3 different geometry.in-files.

Fragment 1, Zn+

atom 0.00 0.00 0.00 Zn
initial_charge 1
empty 0.00 0.00 5.00 Zn_empty

Fragment 2, Zn

empty 0.00 0.00 0.00 Zn_empty
#initial_charge 1 #no charge for emtpy atoms
atom 0.00 0.00 5.00 Zn

Complete System, Zn+
2

atom 0.00 0.00 0.00 Zn
initial_charge 1
atom 0.00 0.00 5.00 Zn

control.in:

For every atom type of the embedded system, the species_data part has to be included
and the species name must be changed to species_empty. Disable the minimal basis
with the keyword species include_min_basis set to .false. and comment
all tier basis function lines, as showed in the following example for Zn.

[...]
species Zn_empty

global species definitions
nucleus 30
mass 65.409

#
l_hartree 4

#
cut_pot 3.5 1.5 1.0
basis_dep_cutoff 1e-4

#

378 Chapter 3. The Full Monty: All Keywords and Capabilities

include_min_basis .false.

[...]

"First tier" - improvements: -270.82 meV to -12.81 meV
#hydro 2 p 1.7
#hydro 3 s 2.9
#hydro 4 p 5.4
#hydro 4 f 7.8
#hydro 3 d 4.5

"Second tier" - improvements: -3.35 meV to -0.82 meV
#hydro 5 g 10.8
#hydro 2 p 2.4
#hydro 3 s 6.2
#hydro 3 d 3

3.37. Symmetry 379

Figure 3.19: . Illustration of atomic coordinates in the unit cell (RI), lattice vector (Rm)
and atomic coordinates in super cell (RIm = RI + Rm). Image credits: Honghui Shang.

3.37 Symmetry

This functionality is considered "under development". Please
report any errors to the aimsclub.

No post-processing (DOS, band-structure) implemented, yet.
Only realspace EXX.

FHI-aims can make use of symmetry to reduce the number of k-points and thus the
number of calls to the eigensolver. The functionality is based on the external library
spglib written by Atsushi Togo (https://atztogo.github.io/spglib/). For instructions
how-to compile FHI-aims with spglib see Appendix E.2.
In real space, FHI-aims uses the Bloch functions

χI(µ),k(r) =
∑
m

ϕI(µ),m(r) exp(−ikRm) , (3.165)

where
ϕI(µ),m(r) = ϕI(µ),m(r−RI(µ) −Rm) (3.166)

is the local basis function (atomic orbital) with the quantum numbers µ = (n, l,m)
associated with atom I(µ) in the mth periodic replica of the unit cell (see Fig. 3.19).
The general space group symmetry operator has the form:

Ŝ = {V |R + f} (3.167)

V are rotations, f (fractional) translation vectors and R direct lattice translation vec-
tors. Under such symmetry operations {V |f}, the local basis function in equation 3.166
transform according to:

{V |f}ϕI(µ),m(r) = (3.168)
ϕI(µ),m(V −1r−V −1(RI(µ) + Rm + f)) . (3.169)

380 Chapter 3. The Full Monty: All Keywords and Capabilities

We make use of the fact that Atom I of the first unit cell is transformed by application
of V −1|f into atom J in the jth unit cell. Also, OV

I is the vector translating RJ(µ) back
to the first unit cell (V −1(RI(µ) − f)→ RJ,c; OV

I = RJ,0 −RJ,c):

RI(µ) + Rm = V (RV
I(µ) + RV

m) + f (3.170)
RV
I(µ) = V −1(RI(µ) − f) + OV

I = RJ(µ′) (3.171)
RV
m = V −1Rm −OV

I = Rj (3.172)

Using this, we finally get:

{V |f}ϕI(µ),m(r) =
∑
m′
T̂ (V, l,m,m′)ϕJ(µ′),j(r−RJ(µ′) −Rj) , (3.173)

in which T̂ (V, l,m,m′) is the transformation matrix of the spherical harmonics Ylm.
Along the same line, the Bloch states in Eq. (3.165) fulfill

kRm = (V −1k)(V −1Rm + OV
I −OV

I) = kV RV
m + kV OV

I (3.174)

so that we get

{V |f}χI(µ),k(r) = exp
(
−ikV OV

I

)∑
m′
T̂ (V, l,m,m′)χJ(µ′),kV (r) (3.175)

Please note that the KS eigen-coefficients transform exactly like the basis functions:

ci,I(µ),k = exp(−ikV OV
I)
∑
m′
T̂ (V, l,m,m′)ci,J(µ′),kV (3.176)

ci,J(µ′),kV = exp(ikV OV
I)
∑
m

T̂+(V, l,m,m′)ci,I(µ),k (3.177)

The symmetry analysis, k-point reduction and reconstruction of the density matrix is
done as follows:

1. We use spglib (http://atztogo.github.io/spglib/) to

• determine the space group of the system
• determine translation vectors (f) and rotation matrices (V) for this space

group

See Appendix E.2 how-to include spglib during the compilation of FHI-aims. Ad-
ditionally, we implemented routines to

• tabulate the rotation matrices (V) required for the calculation of T̂ (V, l,m,m′).
• and calculate the distance O between equivalent atoms due to the symmetry

operation {V |f} to determine the phase factor in Eq. 3.177.
• determine the equivalent k-points
• construct the map between symmetry-equivalent k-points

3.37. Symmetry 381

2. The Euler angles are calculated from the rotation matrices V (α, β, γ).

V (α, β, γ) =
cos γ cos β cosα− sin γ sinα cos γ cos β sinα + sin γ cosα − cos γ sin β
− sin γ cos β cosα− cos γ sinα − sin γ cos β sinα + cos γ cosα sin γ sin β

sin β cosα sin β sinα cos β

 ,
This corresponds to the “y-convention”:

1. The x′1-, x′2-, x′3-axes are rotated anticlockwise through an angle α about
the x3 axis

2. The x′′1-, x′′2-, x′′3-axes are rotated anticlockwise through an angle β about
the x′2 axis

3. The x′′′1 -, x′′′2 -, x′′′3 -axes are rotated anticlockwise through an angle γ about
the x′′3 axis

3. The rotation matrices T̂ (V, l,m,m′) = T̂ (V (α, β, γ), l,m,m′) = T̂ lm,m′(α, β, γ)
for the real spherical harmonics (T̂ (V, l,m,m′)) are calculated.
The rotation matrix in the basis of the real spherical harmonics is calculated from
the rotation matrix in the basis of the complex spherical harmonics, the Wigner
D-Matrix Dl

mm′(α, β, γ), and a transformation matrix Ĉ l
m,m′ (see M. A. Blanco,

M. Florez, M. Bermejo, J. of Mol. Strucure, 419 (1997) 19-27, [25]):

T̂ lm,m′(α, β, γ) = Ĉ l ∗
m,m′D̂

l
mm′(α, β, γ)Ĉ l T

m,m′

• The Wigner D-Matrix (rotation matrix in the basis of the complex spherical
harmonics) is defined by the formula:

Dl
mm′(α, β, γ) =

∑
i

(−1)i
√

(l +m)!(l −m)!(l +m′)!(l −m′)!
(l −m′ − i)!(l +m− i)!i!(i+m′ −m)!

×
(

cos β2

)2l+m−m′−2i (
sin β2

)2i+m′−m

e−i(mα+m′γ),

(from “Bradley and Cracknell, The mathematical theory of symmetry in solids
: representation theory for point groups and space groups, Clarendon Pr.,
1972, p.53”, [31]) Thereby, improper rotations (combination of rotation and
inversion) are made proper R → −R and Dl

mm′ → (−1)lDl
mm′ . In practice

the calculation of Dl
mm′(α, β, γ) is done with a recursive algorithm, that

does not require the calculation of factorials. (M. A. Blanco, M. Florez, M.
Bermejo, J. of Mol. Strucure, 419 (1997) 19-27, [25])

• Ĉ l
m,m′ is constructed by these 6 rules:

1. Ĉ l
m,m′ = 0 if |m| 6= |m′|

2. Ĉ l
0,0 = 1

3. Ĉ l
m,m = (−1)m/

√
2

4. Ĉ l
m,−m = 1/

√
2

382 Chapter 3. The Full Monty: All Keywords and Capabilities

5. Ĉ l
−m,m = −i(−1)m/

√
2

6. Ĉ l
−m,−m = i/

√
2

• Last but not least, we have to take care of the sign convention for the real
spherical harmonics as implemented in FHI-aims – figuring this out took
us some time. In practice, this is taken care of by an additional matrix
multiplication (with T lm,m′) yielding the correct signs in Ĉ l

m,m′ .

Ĉ l
m,m′ = T lm,m′ × Ĉ l

m,m′

4. Eventually, this matrices are used to transform the KS eigen-coefficients following
Eq. (3.177). Furthermore, the rotation of the KS-eigenvectors can be made more
efficient by directly transforming the density matrix n(k, n,m) at each k-point
with the help of two matrix operations:

n(k, n,m) =
occ∑
i,j

c∗i,n,kcj,m,k =
occ∑
i,j

∑
n′
exp(ikV OV

n′)T ∗n,n′c∗i,n′,kV (3.178)

×
∑
m′
exp(−ikV OV

m′)Tm,m′cj,m′,kV

= T̂ ∗n(kV , n′,m′)T̂ T

The phase factor exp(ikV OV
n′) can be included in the transformation matrix during

the pre-processing. This increases the matrix size (and required memory) by a
factor of the size of the number of k-points to reconstruct at each computing
task. Furthermore the density matrix only has to be reconstructed for k-points
reduced by proper rotations. The corresponding improper (inversion symmetry)
rotations are accounted for by the integration weights.

3.37. Symmetry 383

Tags for general section of control.in:

Tag: symmetry_reduced_k_grid_spg (control.in)

Usage: symmetry_reduced_k_grid_spg .true./.false.

Purpose: Only use the irreducible set of k-points during the calculation. Default:
.false.

Tag: reconstruct_proper_only (control.in)

Usage: reconstruct_proper_only .true./.false.

Purpose: Only reconstruct the density matrix for proper rotations. Improper
rotations (Inversion symmetry) are accounted for by the integration weights.
Default: .true.

Tag: use_spg_full_Delta (control.in)

Usage: use_spg_full_Delta .true./.false.

Purpose: Include phase factors in the reconstruction matrix for the density
matrix during pre-processing. Set to .false. if memory is an issue. Default:
.true.

Tag: use_spg_mv_mm (control.in)

Usage: use_spg_mv_mm .true./.false.

Purpose: Reconstruct the density by rotating the eigenvector and setting up the
density matrix in the standard way (matrix-vector and matrix-matrix operation
instead of the matrix-matrix operations in Eq. 3.178). Default: .false.

Tag: use_symmetric_forces (control.in)

Usage: use_symmetric_forces .true./.false.

Purpose: Symmetrize the forces and generalized forces on the lattice, i. e., the
stress, for geometry relaxation, e. g., to preserve crystal symmetry but without
fully reducing the k-point set. If full symmetry is used for k-point reduction,
forces are symmetrized. The forces are symmetrized by averaging over all
symmetry operations. Default: .false.

384 Chapter 3. The Full Monty: All Keywords and Capabilities

There keywords here are RLSY based symmetry related. It is a work by Yi Yao, Olle Hell-
man, and Volker Blum to use spacegroup symmetry to accelerate the DFT calculation.
Please report bugs by opening issue in aims git repository.

Tag: rlsy_symmetry (control.in)

Usage: rlsy_symmetry all

Purpose: grid based symmetry reduction calculation to accelerate DFT calcula-
tions. Default: None

Tag: rlsy_symmetry_refine_structure (control.in)

Usage: rlsy_symmetry_refine_structure .true./.false.

Purpose: refine the structure and lattice vectors to idealized position based on
the spacegroup symmetry. Default: .false.

Tag: hartree_d_matrix_method (control.in)

Usage: hartree_d_matrix_method pseudo_inverse/submatrix

Purpose: The original d matrix inversion method for Hartree potential calculation
described in Delley’s paper is the submatrix method. It would introduce slightly
asymmetricity in the calculation especially for stress tensor. Swithing it to the
pseudo inverse method can reach a fully symmetry result with some additional
calculation. Default: submatrix

3.38. Output options 385

3.38 Output options

The primary (and most important) output of FHI-aims is written to the standard output
channel, and can / should be captured in a file from there. However, FHI-aims provides
a host of further output options that can be activated to yield more specialized data not
ordinarily required from a standard calculation, but highly useful for specific purposes.

The majority of these output options is activated by invoking the output option in file
control.in. The individual subkeywords to this keyword are therefore listed separately,
towards the end of this section. In addition, some particularly important output options
are revisited with examples in Chapter 4.

386 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for geometry.in:

Tag: verbatim_writeout (geometry.in)

Usage: verbatim_writeout flag

Purpose: Enables or suppresses the writing of geometry.in to the FHI-aims
standard output stream exactly as it is read the first time.
flag is a logical variable (.true. or .false.). Default: .true. .

By default, geometry.in is now written (copied) verbatim into the FHI-aims standard
output as it is parsed for the first time, allowing to reproduce exactly any FHI-aims
calculation simply by copy-pasting that part to a new geometry.in file.

If verbatim_writeout is set to false anywhere in geometry.in, no writing will
occur from that point on forward.

The exact same option (same keyword / syntax) can also be used in control.in,
producing the same effect there.

Note that the keyword has the same name in geometry.in and control.in, and
is therefore only documented as a clickable link for control.in. Apologies for this
omission.

Tags for general section of control.in:

Tag: cube_default_size_safeguard (control.in)

Usage: cube_default_size_safeguard number

Purpose: Sets the maximum size that a cube output file is allowed to have if its
dimensions are based on internal defaults.
number is an integer number. Default: number=5·107

When the output cube functionality is requested in order to print a three-
dimensional array on an even-spaced grid, FHI-aims can use internal defaults to determine
the dimensions of this cube file. Each cube file is based on an even-spaced grid with n
grid points, where n = n1 × n2 × n3 and ni is the number of grid segments used along
each of the grid directions i=1, 2, 3. The output cube edge subtag can be
used to specify the grid spacing. However, if that subtag is not set, a default value of
0.1 Å is used for discretization of the three cube edges. For large structures, this could
lead to very large cube file sizes. As a safeguard, FHI-aims stops when the number of
points in a cube, n, exceeds the number set by cube_default_size_safeguard
. Its default value, 5·107, corresponds to a cube file size of about 800 MB (i.e., 16
bytes of information are stored for each point of a cube grid). If the edges of any cube
files are set explicitly using the output cube edge subtag, the criterion set by
cube_default_size_safeguard is not checked and the code does noty stop.

3.38. Output options 387

Tag: dos_kgrid_factors (control.in)

Usage: dos_kgrid_factors n1 n2 n3

Purpose: If set, a post-scf density of states is computed with a denser k-point
grid than used in the s.c.f. cycle.
Restriction: Works only for periodic systems. Does not work when keyword
use_local_index is set.

Only useful in conjunction with the keywords output dos or output
postscf_eigenvalues , and only for periodic systems.

Note: There is now a much better way to accomplish the same goal as dos_kgrid_factors
. You should no longer need it at all. Instead of using the old output dos func-
tionality, a much better integration method can be accessed by using the output
dos_tetrahedron keyword. We keep the description of dos_kgrid_factors for
now, but only use it in case the alternative, much better resolved DOS does not work.

In a periodic calculation, one usually specifies the basic k_grid used to obtain the
self-consistent electron density, total energy etc. Such k-space grids are usually fairly
sparse, and if a density of states (DOS) is calculated directly from the eigenvalues stored
at these k-points only, the DOS will either look choppy, or (after significant broadening),
smooth, broad, and blurred.

A simple remedy is to use the original k_grid while approaching self-consistency
as usual, but then compute the DOS using an auxiliary k-grid that is made denser by
factors n1, n2, n3, respectively. For example, the settings
k_grid 10 10 10
output dos [...]
dos_kgrid_factors 8 8 8
mean that the s.c.f.-cycle itself is run with a 10×10×10 k-point grid, but subsequently,
a density of states is computed with an 80×80×80 k-point grid.

Note that this additional calculation is done using serial solutions of the eigenvalue
problems for individual k-points on individual CPU cores. This always works but will
create memory problems as the system size increases, simply because local copies of
all matrices are kept on single CPUs. For large systems, our usual, more sophisticated
parallelization strategies have not yet been copied over to this routine.

Tag: elsi_output (control.in)

Usage: elsi_output verbosity

Purpose: Controls the output level of ELSI.
verbosity is a keyword (string). Default: detail.

Available options for verbosity are:

• none : No output from ELSI. This is the default if the overall output level of

388 Chapter 3. The Full Monty: All Keywords and Capabilities

FHI-aims is MD_light.

• light : Enables output from the ELSI interface, but no output from the solvers.

• detail : Enables output from the ELSI interface as well as the solvers. When
using libOMM or PEXSI, additional output will be written to an separate log file.

• debug : Enables the same output as does the detail option, with additional
memory usage information. Creates large output files and thus should not be
chosen in production runs.

• json : Enables the output of the runtime parameters used in ELSI in a separate
JSON file, powered by the FortJSON library. May be used on top of the above
options.

Tag: elsi_output_matrix (control.in)

Usage: elsi_output_matrix matrix

Purpose: Outputs the k-space Hamiltonian, overlap, density matrices, and KS
eigenvectors in the ELSI format.
matrix is a string, specifying the desired matrix to output.

Available options for matrix are:

• hamiltonian : Outputs the SCF converged Hamiltonian matrix.

• overlap : Outputs the overlap matrix.

• density_matrix : Outputs the SCF converged density matrix.

• eigenvectors : Outputs the SCF converged KS eigenvectors.

Note that this keyword outputs matrices in the k-space instead of the real space. There-
fore, the number of matrix files would be equal to the number of k-points, multiplied by
the number of spin channels. The output files are in the ELSI CSC binary format (see
the documentation of ELSI). The Python scripts in the “utilities/elsi_matrix” directory
may be used to post-process an ELSI matrix file, e.g., converting it to a human-readable
format.

Tag: evaluate_work_function (control.in)

Usage: evaluate_work_function

Purpose: Surface slab calculations only – if true, the work functions of both slab
surfaces will be evaluated.

This option requires that a reference z coordinate for the electrostatic potential evalua-
tion deep in the vacuum be provided by hand, through the keyword set_vacuum_level
. The surface must be parallel to the xy plane.

3.38. Output options 389

The output for the “upper’ and “lower” surface of the slab (larger and smaller z value,
respectively), will be printed separately. Note that for non-symmetric slabs, these work
functions should generally be different. In practice, this behavior is correctly reproduced
only if the use_dipole_correction is additionally specified.

If the work function output is requested, keyword compensate_multipole_errors
is now automatically switched on by default. This will change total energies slightly
compared to the uncompensating case, and – we believe – even for the better. It will
certainly lead to a better description of the long-range Hartree potential.

However, it must be possible to find a vacuum plane z, where the surface dipole is
compensated, that is further than 6 Å away from the nearest atom. Otherwise, the
calculation will stop and alert the user.

Specifically, the reference Hartree potential component for the work function evaluation
is only the long-range (reciprocal-space) Hartree potential term of the Ewald sum, not
the full electrostatic potential. Thus, the vacuum level must be specified in a region
where all real-space components of the electrostatic potential have safely died away to
zero. One may achieve this by increasing the vacuum layer thickness, which can be done
at very small overhead cost in FHI-aims.

Tag: output (control.in)

Usage: output type [further options]
Purpose: This is the central keyword that controls most of the non-standard
output that can be written by FHI-aims.
type is a string that specifies the kind of requested output; any further needed
options, or possibly additional lines, depend on type.

The list of additional output types is given as a separate subsubsection below.

Tag: output_boys_centers (control.in)

Usage: output_boys_centers

Purpose: Calculates and outputs the maximally localized Boys centers (equiva-
lent of Wannier centers for the isolated molecule case).

The maximization procedure follows JCP 135, 134107 (2011). Currently only the carte-
sian position of the centers is outputted in xyz format in geometry_boys.xyz. The
transformation matrix is also calculated, but only applied to the orbitals when using the
keyword apply_boys .

Tag: output_cube_nth_iteration (control.in)

390 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: output_cube_nth_iteration n

Purpose: Writes all cube files specified in control.in every nth SCF iteration.
n is an integer greater than or equal to 1. Default: N/A (cube files will be
output after the SCF cycle has converged.)

By default, cube files are written once, after the SCF cycle has converged. With this
keyword,all cube files specified in control.in will be written each nth iteration, where
n is an integer greater than zero. This keyword should be helpful to analyse what is
going on during subsequent SCF cycles. However, the output of cubes is usually quite
slow, so choosing this option will slow down the calculation a lot.

This keyword does not support spin-orbit coupling, as spin-orbit coupling is applied after
the SCF cycle has converged.

This keyword is only applicable when the output cube keyword(s) are being used;
please see the manual entry for output cube for more information.

Tag: output_in_original_unit_cell (control.in)

Usage: output_in_original_unit_cell flag

Purpose: Shifts the atoms in a periodic calculation back into the first unit cell
before printing them out at the beginning of a new geometry step.
flag is a logical string, either .true. or .false. Default: .true.

In some, atoms in FHI-aims can unexpectedly “switch” unit cells during relaxation. This
has no effect on the calculation, but the output geometry coordinates (written to the
standard output stream) will look strangely detached when visualized. By default, FHI-
aims maps its coordinates back to the first unit cell anyway, but this behavior can be
forcibly switched off if so requested (makes nicer movies).

Tag: output_level (control.in)

Usage: output_level level

Purpose: Allows to increase the amount of output written to the standard output
of FHI-aims.
level is a string that determines the amount of output written. Default:
normal .

If increased to full, the Kohn-Sham eigenvalues of every s.c.f. iteration are written to
the standard output file. For single-point calculations, this may be quite desirable, but
leads to unmanageable file sizes for long relaxation or molecular dymnamics runs.
Another option, useful for long molecular dynamics (MD) runs, is MD_light. It writes
standard output only in the initialization part and at the end of each MD step, while a
minimal output is written for the single scf cycle.

Tag: overwrite_existing_cube_files (control.in)

3.38. Output options 391

Usage: overwrite_existing_cube_files flag

Purpose: Allows overwriting of pre-existing cube files with new cube files of
the same name, instead of preserving the pre-existing cube files by appending
numbers to the end of the new file names.
flag is a logical string, either .true. or .false. Default: .false.

If set to .false., FHI-aims will check during the output of cube files whether a file with
the selected file name already exists. If such a file is found, the file name will be changed
by adding a number (1,2,3...) to the end of the file name. This is very useful when
relying on default names or when plotting cubes during the SCF cycle.

If set to .true. FHI-aims will not check during output whether a file with the selected
name already exists. If it does exist, it will be simply overwritten!

This keyword is only applicable when the output cube keyword(s) are being used;
please see the manual entry for output cube for more information.

Tag: verbatim_writeout (control.in)

Usage: verbatim_writeout flag

Purpose: Enables or suppresses the writing of control.in to the FHI-aims
standard output stream exactly as it is read the first time.
flag is a logical variable (.true. or .false.). Default: .true. .

By default, control.in is now written (copied) verbatim into the FHI-aims standard
output as it is parsed for the first time, allowing to reproduce exactly any FHI-aims
calculation simply by copy-pasting that part to a new control.in file.

If verbatim_writeout is set to false anywhere in control.in, no writing will occur
from that point on forward.

The exact same option (same keyword / syntax) can also be used in geometry.in,
producing the same effect there.

392 Chapter 3. The Full Monty: All Keywords and Capabilities

Specific output types available through the output keyword:

output sub-tag: acks2_parameters (control.in)

Usage: output acks2_parameters

Purpose: Evaluate the KS-DFT electronic structure based Cartesian Gaussian
basis set parameters (xc-contributions to hardness and non-interacting linear
respone kernel) of the ACKS2 model [83] for the given atomic structure and
write them to file. Definition of the ACKS2 density and KS-potential basis set
options are to be provided in an additional file called ’acks2.in’. An example file
is given below, add more lines for each individual atom of the geomtry.in file and
update the number of radial basis functions accordingly (remove all comments
started by #). The read format specifier for the Gaussian width parameters is
’(A4, F12.6)’, i.e. four horiztonal white space before angular type definition (s,
p, d, etc.) and F12.6 floating point representation for Gaussian width parameter.
Illustrative file content ’acks2.in’ for H2 structure:
finite_diff_epsilon 01.0E-07 # central difference scheme size
threshold_radial 01.0E-07 # radial threshold for Gaussian function evaluation

density_basis 00004 # keyword plus total number of radial functions
02 s 0000.264085 p 0000.691120 # 1st atom, 2 radial functions, s-type
and p-type
02 s 0000.264085 p 0000.691120 # 2nd atom, 2 radial functions,
s-type and p-type

KS_potential_basis 00004 # keyword plus total number of radial func-
tions
02 s 0000.228849 p 0000.836703 # 1st atom, 2 radial functions, s-type and
p-type
02 s 0000.228849 p 0000.836703 # 2nd atom, 2 radial functions, s-type and
p-type

Restrictions: This functionality is available only for non-periodic systems
and non-spin-polarized systems. The exchange-correlation functional imple-
mentation of ACKS2 has only been targeted and tested for GGA (and LDA)
versions.

output sub-tag: aitranss (control.in)

3.38. Output options 393

Usage: output aitranss

Purpose: Writes Kohn-Sham eigenvectors cil and energies εl (where i is a basis
function index and l is an eigenstate index) of each spin channel and overlap
matrix sij into separate ASCII-files in a format compatible with aitranss (ab
initio transport simulations) package.
Restrictions: This functionality is available only for non-periodic systems. If
KS_method parallel is used, packed_matrix_format is not supported.
Flag use_local_index is not supported either.

Please, look at Chapter 5 for a comprehensive description on how to perform transport
simulations across nanoscale objects.

output sub-tag: atom_proj_dos (control.in)

Usage: output atom_proj_dos Estart Eend n_points broadening

Purpose: Writes an atom-projected, angular-momentum resolved partial density
of states (pDOS).
Estart : Lower bound of the single-particle energy range for which the pDOS
are given.
Eend : Upper bound of the single-particle energy range for which the pDOS are
given.
n_points : Number of energy data points for which the pDOS are given.
broadening : Gaussian broadening applied to obtain a smooth partial density
of states based on the peaks produced by individual states.

This option is based on a Mulliken Analysis and shares its syntax with output dos
and output species_proj_dos . See also section 4.4 for more details.

Note: You should no longer need the output species_proj_dos , output
atom_proj_dos or output dos at all. Instead, the same objects can be ob-
tained with MUCH better integration accuracy using the alternative keywords output
species_proj_dos_tetrahedron , output atom_proj_dos_tetrahedron or
output dos_tetrahedron . Please see there for the syntax. The description of the
older keywords is kept for now.

There are two types of output files for each atom:

• atom_proj_dos_number _raw.dat, where number denotes the atom number in
the order of geometry.in. This file contains the total and angular-momentum
resolved DOS components as a function of eigenvalue energy (first column) as used
internally in FHI-aims. The energy zero is then given by the vacuum level (non-
periodic systems) or by the G=0 component of the long-range Hartree potential
(periodic systems).

• atom_projected_dos_number.dat, which gives the same information, except
that the energy zero is shifted to the Fermi energy (metallic systems) or valence
band maximum (insulators), respectively.

394 Chapter 3. The Full Monty: All Keywords and Capabilities

Note that projected densities of states such as given here must be based on some kind
of projection orbitals, the choice of which is somewhat arbitrary by necessity. This is
thus a tool for qualitative analyses.

In FHI-aims, we project directly on the atom-centered angular-momentum components
as defined by the overlapping basis set. This definition becomes the more arbitrary the
larger the basis set, just like a mulliken analysis. The closer the full basis comes to
completeness, the more ambiguous will a mulliken -like analysis become, since it may
not be a priori clear which electrons should be counted towards the basis functions of
one atom vs. those of another atom. Thus, do not expect a pDOS to simply converge
as the basis set size is increased; use it as a qualitative indicator of trends, but nothing
more.

This keyword supports spin-orbit coupling. When spin-orbit coupling is enabled, the
file(s) containing the spin-orbit-coupled DOS will have the default filename(s) and the
file(s) containing the scalar-relativistic (i.e. no SOC) DOS will have an additional suffix
“.no_soc”. Note that if you requested spin collinear in the control.in file, there
will be only one file per atom (and equivalently for all _raw.dat files) containing the
projected DOS of all spin-coupled states:

• atom_proj_dos_number.dat

The reason is that the separate spin channels of scalar relativity no longer exist after
the SOC operator is applied – the states now form a single set. However, there are two
DOS files for the output without spin-orbit coupling; one for each spin channel:

• atom_proj_dos_spin_upnumber.dat.no_soc

• atom_proj_dos_spin_dnnumber.dat.no_soc.

output sub-tag: atom_proj_dos_tetrahedron (control.in)

Usage: output atom_proj_dos_tetrahedron Estart Eend n_points

Purpose: Writes an atom-projected, angular-momentum resolved partial density
of states (pDOS).
Estart : Lower bound of the single-particle energy range for which the pDOS
are given.
Eend : Upper bound of the single-particle energy range for which the pDOS are
given.
n_points : Number of energy data points for which the pDOS are given.

This is the keyword that should be used to obtain atom-resolved densities of states with
high integration resolution.

This option is based on a Mulliken Analysis and shares its syntax with output
dos_tetrahedron and output species_proj_dos_tetrahedron . See also
section 4.4 for more details.

There are two types of output files for each atom:

3.38. Output options 395

• atom_proj_dos_number _tetrahedron_raw.dat, where number denotes the
atom number in the order of geometry.in. This file contains the total and
angular-momentum resolved DOS components as a function of eigenvalue energy
(first column) as used internally in FHI-aims. The energy zero is then given by the
vacuum level (non-periodic systems) or by the G=0 component of the long-range
Hartree potential (periodic systems).

• atom_projected_dos_number _tetrahedron.dat, which gives the same infor-
mation, except that the energy zero is shifted to the Fermi energy (metallic sys-
tems) or valence band maximum (insulators), respectively.

Note that projected densities of states such as given here must be based on some kind
of projection orbitals, the choice of which is somewhat arbitrary by necessity. This is
thus a tool for qualitative analyses.

In FHI-aims, we project directly on the atom-centered angular-momentum components
as defined by the overlapping basis set. This definition becomes the more arbitrary the
larger the basis set, just like a mulliken analysis. The closer the full basis comes to
completeness, the more ambiguous will a mulliken -like analysis become, since it may
not be a priori clear which electrons should be counted towards the basis functions of
one atom vs. those of another atom. Thus, do not expect a pDOS to simply converge
as the basis set size is increased; use it as a qualitative indicator of trends, but nothing
more.

This keyword supports spin-orbit coupling. When spin-orbit coupling is enabled, the
file(s) containing the spin-orbit-coupled DOS will have the default filename(s) and the
file(s) containing the scalar-relativistic (i.e. no SOC) DOS will have an additional suffix
“.no_soc”. Note that if you requested spin collinear in the control.in file, there
will be only one file per atom (and equivalently for all tetrahedron_raw.dat files)
containing the projected DOS of all spin-coupled states:

• atom_proj_dos_tetrahedron_number.dat

The reason is that the separate spin channels of scalar relativity no longer exist after
the SOC operator is applied – the states now form a single set. However, there are two
DOS files for the output without spin-orbit coupling; one for each spin channel:

• atom_proj_dos_tetrahedron_spin_upnumber.dat.no_soc

• atom_proj_dos_tetrahedron_spin_dnnumber.dat.no_soc.

output sub-tag: band (control.in)

Usage: output band kstart1 kstart2 kstart3 kend1 kend2 kend3
n_points name_start name_end

Purpose: Plots a band along the line from <kstart1,kstart2,kstart3> to
<kend1,kend2,kend3> at n_points equally spaced points. The k-vectors are
written in relative coordinates of the reciprocal basis vectors.

396 Chapter 3. The Full Monty: All Keywords and Capabilities

Several bands can be plotted; FHI-aims outputs one file per specified output band
line.

The band structure output files are named bandXYYY.out, where the letters X and YYY
are replaced with numbers in the actual output file names:

• The letter X encode the spin channel. In a non-spinpolarized or in a spin-orbit
coupled calculation, X will always be 1. In a spin-polarized calculation, X=1
indicates the first spin channel, X=2 indicates the second spin channel.

• The letters YYY are the consecutive numbers of the bands (starting from 001)
requested in the control.in file, that is, the bands given in the order of output
l ines in control.in.

The files bandXYYY.out have the format
ipoint k1 k2 k3 occ1 E1 occ2 E2 ... occN EN,
i.e. they specify not only the bands for each k-point but also the occupation number for
this particular point.

A safe starting value for n_points when performing semi-local calculations is 21. We
have found that this generally samples the fine features of the k-path reasonably well,
even for small unit cells with correspondingly large Brillouin zones. For hybrid-functional
calculations, due to the computational expense one should consider using a smaller value.
We also note that n_points includes the end-points, i.e. n_points=21 will give 20
intervals for a given branch. For comparison with results calculated by other DFT codes,
it’s recommended to use values of form 1, 6, 11, 16, 21, ... to ensure that the reciprocal
coordinates are nice, simple fractions.

Note that a fully occupied band has the occupation number 2.0 in a non-spinpolarized
calculation. In a spin-polarized or spin-orbit-coupled calculation, the maximum occupa-
tion number is 1.0.

Since this format contains all the important information, but is not particularly useful
for actually plotting the band structure, we provide a small script which is described in
section 4.4.

Note: the last two input options are technically not needed by the FHI-aims main
program, but they are seriously helpful when turning this data into a plot and are used
by the band plotting script provided along with this distribution, see Section 4.4 for
details.

For periodic calculations, the eigenvectors, overlap matrices, and hamiltonian matrices
at each k-point requested by output band can be written out using the output
eigenvectors , output overlap_matrix , and output hamiltonian_matrix
keywords, respectively.

For periodic band structure output, the exx_band_structure_version keyword
must be set – see the respective Section 3.23 for a brief explanation of the background.

This keyword supports spin-orbit coupling. When spin-orbit coupling is enabled, the
file(s) containing the spin-orbit-coupled band structures will have the default filename(s)

3.38. Output options 397

and the file(s) containing the scalar-relativistic (i.e. no SOC) band structures will have
an additional suffix “.no_soc”. Note that if you requested spin collinear in the
control.in file in addition, there will be only one file per band segment containing all
spin-coupled states (output with spin-orbit coupling):

• band1YYY.dat

The reason is that the separate spin channels of scalar relativity no longer exist after the
SOC operator is applied – the states now form a single set. However, there are two band
segment files for the output without spin-orbit coupling; one for each spin channel:

• band1YYY.dat.no_soc

• band2YYY.dat.no_soc

output sub-tag: band_during_scf (control.in)

Usage: output band_during_scf kstart1 kstart2 kstart3 kend1
kend2 kend3 name_start name_end

Purpose: Plots a band along the line from <kstart1,kstart2,kstart3> to
<kend1,kend2,kend3> but only at those k points that are already part of the
normal s.c.f. k_grid . The k-vectors are written in relative coordinates of
the reciprocal basis vectors.

This keyword allows to get the band structure along a certain reciprocal-space direction,
but only at those k-points that are already used during the s.c.f. calculation. If there are
no appropriate k-points, no band structure is printed. If there are appropriate k-points,
they are printed in the same format as the normal band structure from output band
, although some additional editing may be required to get a clean plot.

The purpose of this keyword is to allow to extract a band structure even in cases when
the normal output band functionality is experimental or, for some reason, not
available.

output sub-tag: band_mulliken (control.in)

Usage: output band_mulliken kstart1 kstart2 kstart3 kend1
kend2 kend3 n_points name_start name_end

Purpose: Plots a band along the line from <kstart1,kstart2,kstart3> to
<kend1,kend2,kend3> at n_points equally spaced points. The k-vectors are
written in relative coordinates of the reciprocal basis vectors.

This keyword allows to calculate the mulliken charge analysis at all K points along the
band K path. The file name is named as bandmlk1001.out, bandmlk1002.out, ..., etc. In
the output file, the mulliken charge data is written first by K point, then by eigenstates.
In each eigenstate, the mulliken charge on all atoms is written line by line. In each

398 Chapter 3. The Full Monty: All Keywords and Capabilities

line, the following information is written: eigenstate ID, eigenvalue, occupation number,
atom ID, spin ID, total mulliken charge, mulliken charge for l = 0, 1, 2,.. etc. For each
state at a given point, the total mulliken charge for all atoms should sum up to 1 or 2,
for non-SOC and SOC, respectively.

There is a keyword called band_mulliken_orbit_num specifying how many orbitals
(states) to be written out. If the number following the keyword band_mulliken_orbit_num
is I, then the orbitals in the range of HOMO - I + 1 and LUMO + I would be written
out in the output file. The default value of band_mulliken_orbit_num is 50 for
non-SOC and 100 for SOC.

To plot the band structures with Mulliken decomposition, two python script in the utilities
directory in FHI-aims distribution can be used, i.e., band_mlk.py and band_mlk_soc.py
for non-SOC and SOC, respectively. Running of these scripts is instructed in the first
lines of these python files.

output sub-tag: basis (control.in)

Usage: output basis

Purpose: Writes radial functions before and after orthonormalization, as well as
second derivatives and the basis-defining potentials to separate files.

This output option allows to visualize the basis functions used, as well as some of the
other defining pieces of the basis set. Note that the output is written for each grid point
of the dense 1-dimensional logarithmic grid, with the radius given in bohr.

Specifically, this option produces the following types of files:

• Ai_j_nl_base.dat : Atomic (minimal basis) radial function u(r) after the basis-
confining potential was applied, for species number i, atomic-like (minimal)
radial function number j, radial and angular quantum numbers nl.

• Ai_j_nl_base_kin.dat : Corresponding kinetic energy expression [ε−v(r)] ·u(r)

• Ci_j_nl_base.dat : confined free-atom like radial function u(r) number j
for species number i, radial and angular quantum numbers nl.

• Ci_j_nl_base_pot.dat : Corresponding basis-defining potential including con-
fining potential

• El _base_n_l.dat : Radial function u(r) after the basis-confining potential was
applied for the species named El, radial and angular quantum numbers nl
(same as Ai_j_nl_base.dat).

• El _base_pot.dat : Basis-defining potential for atomic (minimal) radial functions
of the species named El, after addition of the confining potential (as defined
by cut_pot).

• El _base_pot.dat Free-atom density of species named El (same as El _base_pot.dat).

3.38. Output options 399

• El _free_n_l.dat: Radial function u(r) before the basis-confining potential was
applied for the species named El, radial and angular quantum numbers nl

• El _free_pot.dat Spherical self-consistent free-atom potential of the species
named El (implicitly confined by the cut_free_atom potential, but this artificial
part is here not included)

• El _free_rho.dat Free-atom density of the species named El.

• Hi_j_nl_base.dat : hydro radial function u(r) number j for species
number i, radial and angular quantum numbers nl.

• Hi_j_nl_base_kin.dat : Corresponding kinetic energy expression [ε−v(r)] ·u(r)

• Ii_j_nl_base.dat : ionic radial function u(r) number j for species
number i, radial and angular quantum numbers nl.

• Ii_j_nl_base_pot.dat : Corresponding basis-defining potential including con-
fining potential

• ty _i_j_n_l.dat : After on-site orthonormalization, radial function u(r) of type
ty (atomic, confined , hydro , ionic , ...), for species number i,
radial function number j, radial and angular quantum numbers n, l.

• kin_ty _i_j_n_l.dat : Corresponding kinetic energy expression after on-site or-
thonormalization.

• Si_j_nl_base.dat : Slater-type orbital radial function u(r) for species num-
ber i, radial function number j, radial and angular quantum numbers nl.

• Si_j_nl_base_kin.dat : Corresponding kinetic energy expression [ε−v(r)] ·u(r)

output sub-tag: batch_statistics (control.in)

Usage: output batch_statistics

Purpose: Write out statistics for each batch of points used in the evaluation
of real-space quantities, organized by associated MPI task (one file per MPI task)

This keyword outputs information about the batch distribution used by FHI-aims to eval-
uate real-space quantities (real-space Hamiltonian, charge density update, etc.) Every
MPI task creates a batch_statistics_task_###.dat file, where ### is the MPI
task’s rank, and statistics for each batch are output sequentially to file. Statistics output
for each batch include:

• Number of points in the batch

• Minimum and maximum number of radial basis functions evaluated on batch

• Maximum number of basis functions evaluated on batch

400 Chapter 3. The Full Monty: All Keywords and Capabilities

• Minmum and maximum number of atoms whose basis functions are evaluated on
the batch

• Minimum and maximum values for the integration weights for points in batch

Note: As of this writing, the output files will be rewritten with every SCF restart,
including SCF reinitialization, geometry relaxation steps, and MD steps.

output sub-tag: cube (control.in)

Usage: output cube type

Purpose: Writes a quantity (density, eigenfunction, ...) to a uniform three-
dimensional grid, using the ASCII-based cube file format established by the
Gaussian code and accepted by numerous visualization tools.
type is a string, indicating the quantity to be plotted.

The “cube” file format originates from the Gaussian code, but publically available de-
scriptions exist, for example here:
http://paulbourke.net/dataformats/cube/

It is accepted by multiple visualization tools.

Visualization tools which may be used to plot cube file and are available for all major oper-
ating systems are Avogadro (https://avogadro.cc), jmol (http://www.jmol.org),
and VMD (http://www.ks.uiuc.edu/Research/vmd/). For periodic systems, excel-
lent success has been reported by multiple users using Vesta (https://jp-minerals.org/vesta/en/).
Please see the documentation of those programs for more information on plotting the
resulting cube files.

By default, the cube files will be output once, after the SCF cycle has converged, and
FHI-aims will avoid overwriting pre-existing cube files it finds by appending numbers to
the end of new file names. To output the cube files at regular intervals during the SCF
cycle, use the output_cube_nth_iteration keyword, and to overwrite pre-existing
cube files with new files, use the overwrite_existing_cube_files keyword.

This keyword supports spin-orbit coupling, but only when the type is either eigenstate_density
or eigenstate. The large-scale use_local_index and load_balancing keywords
are only supported when the type is either eigenstate_density or eigenstate.

Before we move on to the supported options for type, as well as other keywords related
to cube output, there is an important note about specifying the dimensions of the cube
that all users should know.

If no cube grid spacings are specified using the output cube edge tag, FHI-aims
will use its own internal default for this grid spacing. In some cases, such as separated
molecules or surfaces with large amounts of vacuum, the cube dimensions that FHI-aims
would silently default to may not be ideal and may result in excessively large files.

In order to prevent uncontrolled damage (such as, filling up a file system or quota to
beyond any reasonable limits) the code will therefore stop if a default number of cube

http://paulbourke.net/dataformats/cube/
https://avogadro.cc
http://www.jmol.org
http://www.ks.uiuc.edu/Research/vmd/

3.38. Output options 401

grid points would be written to a single file in excess of limiting value defined by keyword
cube_default_size_safeguard . This limit is configurable (see the description of that
keyword).

If any output cube edge tag is specified in control.in, the limit given by
cube_default_size_safeguard does not apply.

Also, many viewers do not implement non-rectangular cube edges, which would result
from non-rectangular unit cells by default.

In short: Users are always strongly encouraged to specify cube geometries directly.

A list of all keywords related to cube plotting is given below. After this list of keywords,
we have provided an example set of lines for plotting the total density of a molecule
as well as the densities for individual eigenstates. This example should be adaptable
for other types of cube files. Units for densities and eigenstates are Å−3 and Å−3/2,
respectively. The unit for the long range and hartree potential is Hartree [Ha]. However,
for electronic density response the unit is VÅ−2.

• output cube type This is the only mandatory line, specifying which type of
cube file should be produced. FHI-aims presently allows the following options for
type:

1. delta_density : Writes the difference between the initial (superposition of
free atoms) and the final self-consistent density to a file.

2. eigenstate_density n. Writes the electron density of the n−th eigenstate
to a file. The eigenstate density is obtained as the square of the wavefunction.
In periodic calculations, this includes the contribution from the imaginary part
of the wave function, and thus the output of this type is more physically
relevant than the eigenstate type, which outputs only the real part of
the wave function. By default, the first spin channel and the first k-point is
printed out, see also cube spinstate.

3. eigenstate n : Writes the real part of the wave function of the n-th
eigenstate to a file. n must be an integer number. For non-periodic non-
spin-orbit coupled calculations, the wave function has no imaginary part, so
this type is sufficient. However, periodic and/or spin-orbit-coupled calcula-
tions produce wave functions with both a real part and an imaginary part.
The corresponding imaginary part can be printed by requesting the cupe
type eigenstate_imag (see below) for the same state, in addition to the
eigenstate type. Alternatively, one may eigenstate_density type for
periodic calculations (and non-periodic calculations with spin-orbit coupling)
instead. By default, the first spin channel and the first k-point is printed out,
see also cube spinstate and cube kpoint.

4. eigenstate_imag n : If applicable (for example, in periodic or spin-orbit
coupled calculations), writes the imaginary part of the of the n-th eigenstate
to a file. n must be an integer number. Specifically for a spin-orbit coupled
orbital, it is important to remember that such an orbital is a vector of two

402 Chapter 3. The Full Monty: All Keywords and Capabilities

complex-valued functions:

ψn,k(r) =
 ψ

(1)
n,k(r)
ψ

(2)
n,k(r)

 (3.179)

The two functions ψ(1)
n,k(r) and ψ(2)

n,k(r) are complex-valued, i.e., they each
have a real part and an imaginary part. Thus, a total of four scalar func-
tions Re(ψ(1)

n,k), Im(ψ(1)
n,k), Re(ψ(2)

n,k), Im(ψ(2)
n,k) need to be plotted to get the

full orbital (n,k). The two vector components (1) and (2) are sometimes
loosely called “spin channels” although they are spin channels only in the
non-relativistic limit; in the actual spin-orbit coupled case, the expectation
value of the Pauli matrices would have to be calculated to get the spin direc-
tion. In any case, to get a full spin-orbit coupled orbital (say, n=1568 and
the default k-point, usually – for unshifted k-point grids – Γ) as cube file
output, the syntax to use in control.in is this:

output cube eigenstate 1568
cube spinstate 1

output cube eigenstate_imag 1568
cube spinstate 1

output cube eigenstate 1568
cube spinstate 2

output cube eigenstate_imag 1568
cube spinstate 2

5. spin_density : The spin density n↑(r) − n↓(r) is written to a file named
spin_density.cube. Only available for spin collinear.

6. stm : Must be followed by a real number V . Calculates 3D tunneling current
map (more precisely, the tunneling current is proportional to the printed val-
ues) which can be used to plot STM images for a given voltage V (in Volts) in
the frame of the Tersoff-Hamann model. This is done by summing up eigen-
state densities for all eigenstates between the Fermi level and V (in eV), and
the result is multiplied by V . In addition, a file cube_xxx_stm_z_map.cube
will be printed. It contains values of the z-coordinate at the vertices of the
cube, and can be used along with the tunneling current map to color the
constant current isosurfaces according to their extent in the z-direction (to
mimic the constant current image contrast in STM imaging). The output of
stm-cubes works only for periodic systems.

7. total_density : The full electron density is recomputed and written to the
a. In case of a periodic calculation, electron density from all unit cells that
overlap with the cube output region will be printed.

3.38. Output options 403

8. total_density_integrable : The full electron density is recomputed and
written to the a. In case of a periodic calculation, electron density from
all unit cells that overlap with the cube output region will be printed. The
output value is the integration in the voxel instead of the value at the center
of the voxel. The total density here is more suitable for functions like Bader
analysis.

9. long_range_potential : Prints the long range electrostatic potential of
the Ewald summation. This result is useful in regions where no electron
density is found and is much faster than the output of the full potential.

10. hartree_potential: The whole (i.e, short-range and long-range) electro-
static potential is recomputed on a cube grid and written out. Be careful
with keyword potential. Please report errors.

11. xc_potential: The xc potential is recomputed on a cube grid and written
out. PBE only, spin unpolarized only.

12. potential: Legacy. The whole (i.e, short-range and long-range) electro-
static potential is recomputed on a cube grid and written out. The keyword
is considered broken/experimental. Use hartree_potential.

13. delta_v: Output δv = v− vfree. This is especially tested for MPB solvation
effects and is also an experimental feature especially for vacuum calculations.

14. ion_dens: Ionic charge density nMPB
ion as obtained from an MPB-DFT cal-

culation. Still experimental.
15. dielec_func: Dielectric function ε[nel] as used in the MPB-DFT calcula-

tion.
16. elf: Electron localization function. Different options are available for spin-

polarized systems, see keyword cube elf_type. Currently under testing,
please report any errors. The implementation is not yet compatible with
spin-orbit calculations.

17. first_order_density n: Density response with respect to an applied ho-
mogeneous electric field is printed in a cube file (∂ρ

∂εn
). So that, n represents

the direction of the field (1,2 or 3). a. For nonperiodic systems, DFPT
polarizability should be specified in control.in before the cube file com-
mands. b. For periodic system, DFPT dielectric should be specified
in control.in before the cube file commands. An example outputting density
response with respect to the three Cartesian direction in control.in is this:

output cube first_order_density 1
cube origin 7.3408 7.6288 52.3975
cube edge 100 0.1468 0.0000 0.0000
cube edge 100 0.0000 0.1526 0.0000
cube edge 300 0.0000 0.0000 0.1480

output cube first_order_density 2
cube origin 7.3408 7.6288 52.3975
cube edge 100 0.1468 0.0000 0.0000
cube edge 100 0.0000 0.1526 0.0000

404 Chapter 3. The Full Monty: All Keywords and Capabilities

cube edge 300 0.0000 0.0000 0.1480
output cube first_order_density 3

cube origin 7.3408 7.6288 52.3975
cube edge 100 0.1468 0.0000 0.0000
cube edge 100 0.0000 0.1526 0.0000
cube edge 300 0.0000 0.0000 0.1480

Hence, three cube file will be outputted for each direction.

• cube spinstate spin
This keyword allows the user to choose whether to print spin-channel 1 or 2. The
default value is 1. An example for how to use the cube spinstate keyword to
print eigenstates in both spin channels is given below. This keyword is only useful
for spin-polarized calculations (keyword spin collinear) and for spin-orbit
coupled calculations. Otherwise, scalar-relativistic spin-non-polarized calculations
(keyword spin none) have degenerate spin channels by definition. See the
description of eigenstate_imag for an example of how to write all parts of a
spin-orbit coupled orbital to a cube file.

• cube kpoint kpoint
This keyword allows to choose the k-point to be printed. kpoint is an integer
number following the same ordering as the k-points within the SCF-cycle. It is
presently not possible to output cube files at a k-point not included in the scf.
Keyword output k_point_list may be used to print out the entire list of
k-points used in the s.c.f. cycle. This will help identify which k-point is printed in
a cube file. Default: 1

• cube state spin k-point
Deprecated keyword to choose spin and k-point. The cube spinstate keyword
should be used instead as given in the example below. If nothing else is specified,
this keyword defaults to cube state 1 1. Note that for cluster calculations,
k − point must always be 1.

• cube filename name_of_the_file
Allows to customize the name of the cubefile. If this line is not given, FHI-AIMS
will default to a file name which contains the number of the cube requested, its
type, and, if applicable, the corresponding spin and k-point of the data.

• cube format format
Apart from the default cube format, FHI-AIMS also supports output in the formats
of the gOpenMol and XCrysden software. This is requested by the line cube
format format. The options for format are cube, gOpenMol, and xsf (the
XCrysden format). Default: cube

• cube divisor number
This is a technical settings which governs the paralellization of the cube output.

3.38. Output options 405

The whole cube is divided into smaller, so-called minicubes, which are then treated
one after the other. The value governs the number of points in each directed to
be used for each minicube, i.e., its size. A larger setting therefore results in less
minicubes (and it thus potentially faster), but also a larger demand for memory.
Unless there are problems with memory, this setting usually does not need to be
touched, with the exception of output potential, where it should be set to its
maximal value (45), independent of the number of processors used. Default: 10

• cube spinmask i j
For total_density cube files, the line cube spinmask i j with integer i and j
allows to manipulate the spin channels independently according to the following
formula: i · n↑(r)− j · n↓(r). If i = 1 and j = 1 (which is the default), the total
density will be computed as normal. This keyword replaces the earlier keyword
cube spin .

• cube elf_type i
Specifies the type of electron localization function (ELF) to be calculated. The
default i = 0 (and the only available option for spin-unpolarized calculations) is the
Savin et al. formula [198]. For spin-polarized systems, i = 1 and i = 2 correspond
to the original formulation by Becke and Edgecombe [18] for spin channels 1 and
2, respectively. If i is not 0, 1, or 2, and the system is spin-polarized, the Kohout-
Savin variant of ELF [126] will be calculated.

• cube origin x y z
Single line which specifies the origin , i.e., the center of the region to be plotted.
Values are given in ÅIf omitted, the same origin as for the previous cube file is
used. If no origin has been given yet, it defaults to the geometric center of the
molecule in the cluster case or (0,0,0) for periodic calculations. For slab type
calculations (when using dipole_correction .true.), the origin is set to the
center of the slab.

• cube edge n dx dy dz
Specifies the edges of the volumetric data to be plotted. Separate lines have to
be given for each of the three edges of the cube. In each line, n indicates the
number of steps a particular edge (voxel), and dx, dy, dz indicate the length of
each individual step [i.e., the full cube edge length is (n · dx, n · dy, n · dz). If
omitted, the same edges as for the previous cube file are used. If no edges have
been specified yet, FHI-aims defaults (in the cluster case) to orthogonal grids of
0.1 Å length, which span the whole molecule plus 14 Bohr beyond the outermost
nucleii. For periodic calculations, the default edges are the same as the lattice
vectors, again with 0.1 Å step length.
Note: In some cases, such as separated molecules or surfaces with large amounts
of vacuum, the defaults might be far from ideal and result in excessively large files.
In order to prevent uncontrolled damage (such as, filling up a file system or quota
to beyond any reasonable limits) the code will therefore stop if a default number of
cube grid points would be written to a single file in excess of limiting value defined
by keyword cube_default_size_safeguard . This limit is configurable (see
the description of that keyword).

406 Chapter 3. The Full Monty: All Keywords and Capabilities

Users are always strongly encouraged to specify cube geometries themselves.

NOTE: A word of warning here: FHI-aims outputs the density and the wave function
in units of 1/Å3 and 1/Å3/2, respectively, by default. In contrast, the length units of the
cube voxels are in atomic units. The choice of units must be accounted for when doing
any kind of postprocessing.

The keyword cube_content_unit allows one to switch the output units of the printed
array.
cube_content_unit legacy is the default and gives the output in SI units, while
cube_content_unit bohr switches to output of densities and orbitals in atomic units.
(Note that other codes’ definition of cube file usually is in atomic units, which is why
we do not provide a switch to Å).

As promised, an example set of lines for the control.in file showing how to plot the
total density and densities for individual eigenstates of a hypothetical spin-polarized non-
periodic system. This example will not exactly correspond to your system and should
not be blindly copy-pasted. Nevertheless, it should give a good idea of how the keywords
presented previously work together.

output cube total_density
cube origin 1.59 9.85 12.80
cube edge 101 0.15 0.0 0.0
cube edge 101 0.0 0.15 0.0
cube edge 101 0.0 0.0 0.15
output cube eigenstate_density 151
cube spinstate 1
output cube eigenstate_density 151
cube spinstate 2
output cube eigenstate_density 152
cube spinstate 1
output cube eigenstate_density 152
cube spinstate 2
output cube eigenstate_density 153
cube spinstate 1
output cube eigenstate_density 153
cube spinstate 2
output cube eigenstate_density 154
cube spinstate 1
output cube eigenstate_density 154
cube spinstate 2

The first line requests cube output for the total density. See the details above on how to
get individual versions of the spin density. Then, the center of the cube is specified at
(1.59, 9.5, 12.80) Å. Each cube direction has 101 points that are spaced apart by 0.15 Å,
giving a total cube edge length of 15 Å in each direction. Finally, output is requested for
the densities correspond to the Kohn-Sham wave functions associated with eigenstates

3.38. Output options 407

number 151-154. For each eigenstate, the additional cube spinstate i line requests
first the spin-up channel (i=1), then spin-down (i=2).

NOTE that for periodic systems, the cube spinstate lines may have to be followed by
cube kpoint lines to specify the k-point at which an eigenstate is printed. By default,
only k-point number 1 is printed. For unshifted k grids, that is the Γ point.

Thus ends our brief treatise on cube plotting. We return you to your regularly scheduled
programming.

output sub-tag: density (control.in)

Usage: output density

Purpose: Writes the electron density n(r) at each integration grid point r to a
file density.dat.

Note that this density output is not given on a uniform grid, but simply on the overlapping
atom-centered grid used for all internal operations of FHI-aims. For a density on a
uniform grid, see the output cube subkeyword.

output density additionally writes the difference between the current density and
the superposition-of-free-atom reference density to a file diff-density.dat

output sub-tag: dgrid (control.in)

Usage: output dgrid

Purpose: Dumps the Wave function of the final s.c.f. cycle on disk into the file
dgrid_aims.dat. This files serves as an interface to the DGrid program.

This option serves as interface to the DGrid program (written by Miroslav Kohout),
which is available free of charge at https://www2.cpfs.mpg.de/~kohout/dgrid.
html. DGrid allows to employ various electronic structure and chemical bonding analysis
alogorithms in real space, e.g., the QTAIM (Quantum Theory of Atoms in Molecules of
R.F.W. Bader) or the ELI-D/ELF method. After installation of DGrid (Version≥ 5.0) the
command dgrid dgrid_aims.dat converts the interface wave function file dgrid_aims.dat
into a new file dgrid_aims.fhi with native DGrid file format. This file provides the basis
to all capabilities of the DGrid program described in detail in its manual at https:
//www2.cpfs.mpg.de/~kohout/Documents/dgrid-html/dgrid.html.

output sub-tag: dipole (control.in)

Usage: output dipole

Purpose: Calculates and writes the electrical dipole moment of the structure to
the FHI-aims standard output as a post-processing step.

This is generally useful, but the dipole moment is particularly needed to compute molec-
ular oscillator strengths for individual vibrational frequencies.

https://www2.cpfs.mpg.de/~kohout/dgrid.html
https://www2.cpfs.mpg.de/~kohout/dgrid.html
https://www2.cpfs.mpg.de/~kohout/Documents/dgrid-html/dgrid.html
https://www2.cpfs.mpg.de/~kohout/Documents/dgrid-html/dgrid.html

408 Chapter 3. The Full Monty: All Keywords and Capabilities

Note that, for charged systems, the electrical dipole is defined with respect to the
(possibly arbitrary) origin of the file geometry.in, rather than an origin within the
system itself. Thus, charged systems will yield different dipole moments for different
choices of origin, but the important dipole differences needed to compute, e.g., oscillator
strengths via finite diffences remain well-defined.

output sub-tag: dos (control.in)

Usage: output dos Estart Eend n_points broadening

Purpose: Writes the density of states (DOS) to an external file for plotting
purposes.
Estart : Lower bound of the single-particle energy range for which the DOS is
given.
Eend : Upper bound of the single-particle energy range for which the DOS is
given.
n_points : Number of energy data points for which the DOS is given.
broadening : Gaussian broadening applied to obtain a smooth density of states
based on the peaks produced by individual states.

This keyword shares its syntax with output atom_proj_dos and output
species_proj_dos . See also section 4.4 for more details.

Note: You should no longer need the output species_proj_dos , output
atom_proj_dos or output dos at all. Instead, the same objects can be ob-
tained with MUCH better integration accuracy using the alternative keywords output
species_proj_dos_tetrahedron , output atom_proj_dos_tetrahedron or
output dos_tetrahedron . Please see there for the syntax. The description of the
older keywords is kept for now.

Two output files emerge from this option:

• KS_DOS_total_raw.dat contains the total DOS components as a function of the
eigenvalue energy (first column) as used internally in FHI-aims. The energy zero is
then given by the vacuum level (non-periodic systems) or by the G=0 component
of the long-range Hartree potential (periodic systems).

• KS_DOS_total.dat contains the same information, except that the energy zero
is shifted to the Fermi energy (metallic systems) or valence band maximum (insu-
lators), respectively.

When followed by the following keyword

dos_kgrid_factors n1 n2 n3

where n1, n2 and n3 are integers, the dimensions of the k-point grid along the first,
second and third lattice vectors are multiplied by n1, n2 and n3, respectively. New
eigenvalues are re-calculated non-selfconsistently on the new denser k-point grid. The
new eigenvalues are then used to plot an improved (so-called perturbative) density of
states.

3.38. Output options 409

If no dos_kgrid_factors are specified, the original k-point grid is used.

The unit of output for the density of states is (eV · Vunit cell)−1, i.e., number of states
per energy unit (eV) and unit cell volume.

This keyword supports spin-orbit coupling. When spin-orbit coupling is enabled, the
file(s) containing the spin-orbit-coupled DOS will have the default filename(s) and the
file(s) containing the scalar-relativistic (i.e. no SOC) band structure will have an addi-
tional suffix “.no_soc”. Note that if you requested spin collinear in the control.in
in addition, the file with spin-orbit coupling included (suffix “.dat”) has only one column
containing the dos of all spin-coupled states. The reason is that the separate spin chan-
nels of scalar relativity no longer exist after the SOC operator is applied – the states
now form a single set. The output of the total DOS without spin-orbit coupling (suffix
“.dat.no_soc”) has two columns - one for each spin channel.

output sub-tag: dos_tetrahedron (control.in)

Usage: output dos Estart Eend n_points

Purpose: Writes the density of states (DOS) to an external file for plotting
purposes.
Estart : Lower bound of the single-particle energy range for which the DOS is
given.
Eend : Upper bound of the single-particle energy range for which the DOS is
given.
n_points : Number of energy data points for which the DOS is given.

This keyword shares its syntax with output atom_proj_dos_tetrahedron and
output species_proj_dos_tetrahedron . See also section 4.4 for more details.

Two output files emerge from this option:

• KS_DOS_total]_raw_tetrahedron.dat contains the total DOS components as
a function of the eigenvalue energy (first column) as used internally in FHI-aims.
The energy zero is then given by the vacuum level (non-periodic systems) or by
the G=0 component of the long-range Hartree potential (periodic systems).

• KS_DOS_total_tetrahedron.dat contains the same information, except that
the energy zero is shifted to the Fermi energy (metallic systems) or valence band
maximum (insulators), respectively.

The keyword dos_kgrid_factors is not supported by the tetrahedron method, but
the tetrahedron method should give better integration in all cases.

The unit of output for the density of states is (eV · Vunit cell)−1, i.e., number of states
per energy unit (eV) and unit cell volume.

This keyword supports spin-orbit coupling. When spin-orbit coupling is enabled, the
file(s) containing the spin-orbit-coupled DOS will have the default filename(s) and the
file(s) containing the scalar-relativistic (i.e. no SOC) band structure will have an addi-
tional suffix “.no_soc”. Note that if you requested spin collinear in the control.in

410 Chapter 3. The Full Monty: All Keywords and Capabilities

file in addition, the file with spin-orbit coupling included (suffix “.dat”) has only one
column containing the dos of all spin-coupled states. The reason is that the separate
spin channels of scalar relativity no longer exist after the SOC operator is applied – the
states now form a single set. The output of the total DOS without spin-orbit coupling
(suffix “.dat.no_soc”) has two columns - one for each spin channel.

output sub-tag: eigenvectors (control.in)

Usage: output eigenvectors

Purpose: Writes the actual Kohn-Sham eigenvectors cil into separate files for
each spin channel.
Restriction: This functionality is best tested for periodic systems with
KS_method serial at present. For periodic systems, it has no effect unless
specific band structure output is requested through output band .

For non-periodic systems, this option causes the Kohn-Sham eigenvectors cil (for basis
functions i, eigenstates l) to be written out for each state, whenever the Kohn-Sham
eigenvalues are written. However, at present the non-periodic version is mostly of ’de-
bug’ character. In particular, KS_method parallel is not supported under all
circumstances. Please test carefully.

For periodic systems, eigenvector output must be requested together with the output
band functionality described above. If output eigenvectors is set in addition, the
Kohn-Sham eigenvectors cil(k) will be written into separate files for each spin channel,
only for each k-point for which band output was requested.

For each state l, the real and imaginary part of cil(k) will then be written out for each
basis function i. Output file names are assigned automatically based on the number of
the output band, and to the specific k-point in that band, to which they pertain, e.g.:
KS_eigenvectors.band_∗.kpt_∗.out
In addition to the eigenvectors themselves, these files also contain as header information:

• the relative coordinates of the k-point in question (in units of the reciprocal lattice
vectors of the structure in question)

• Information on the identity (atom number and angular momentum) for each basis
function

• The Kohn-Sham eigenvalue and occupation number of each state.

The listed eigenvectors pertain to the superimposed, Bloch-like basis functions (with
phase factors!) χi,k(r) as defined through Eq. (22) of the FHI-aims Computer Physics
Communications description, Ref. [26].

Note that the output aitranss keyword provides one further option to print
eigenvectors and other information for any non-periodic system, serial or parallel (ScaLA-
PACK, ELPA, ELSI).

3.38. Output options 411

This keyword will output scalar-relativistic eigenvectors. For spin-orbit-coupled eigen-
vectors, please see the soc_eigenvectors keyword.

output sub-tag: elpa_timings (control.in)

Usage: output elpa_timings

Purpose: Writes timings for the parallel ELPA eigenvalue solver to standard
output.

output sub-tag: elsi_log (control.in)

Usage: output elsi_log

Purpose: Output ELSI runtime information in a JSON format.

When this flag is enabled, the ELectronic Structure Infrastructure (ELSI) will output
information every time it is used to solve the Kohn-Sham eigenvalue problem, including
timings for the ELSI invocation, a list of values for relevant variables, and versioning
information.

This information is stored in a JSON format and is written to the file elsi_log.json
using the FortJSON library, which is distributed with FHI-aims and ELSI and is built
automatically. Only task 0 will output this file.

To output information from an FHI-aims calculation in a JSON format, please use the
output json_log keyword.

output sub-tag: grids (control.in)

Usage: output grids

Purpose: Writes to separate files: (i) the radial_base integration grid shells
for each species incl. integration weights, and (ii) the full three-dimensional grid
point locations incl. integration weights.

output sub-tag: h_s_matrices (control.in)

412 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: output h_s_matrices

Purpose: Writes the Hamiltonian and overlap matrices sij and hij into separate
files. The output format has one line per matrix entry. On this line the first
column is the row index of the entry, the second column the column index of
the entry and the third column is the value of the entry. Only the upper triangle
and the diagonal of the symmetric matrix is written.
This functionality behaves slightly differently in periodic vs. cluster calcu-
lations. In the cluster case sij and hij are written out in keeping with
the packed_matrix_format . In the periodic case only the Gamma-
point Hamiltonian is written out and only as a dense matrix regardless of
packed_matrix_format settings.

output sub-tag: hamiltonian_matrix (control.in)

Usage: output hamiltonian_matrix

Purpose: Writes out the k-point dependent complex hamiltonian matrix for a
periodic system for those k-points for which band structure output was requested.
Restriction: For periodic systems only, and KS_method parallel is not
supported. Specific band structure output must be requested through output
band .

For periodic systems, this option allows to write out the k-dependent (Bloch) hamiltonian
matrices that correspond to the set of k-points requested with the output band
keyword. Both spin channels are written into the same file.

output sub-tag: ks_coulomb_integral (control.in)

Usage: output ks_coulomb_integral

Purpose: Writes the Coulomb integrals matrices < ij|V |kl > into the file named
coulomb_integrals_mo.out. The output format has one line per matrix en-
try. On this line the four columns are the indices i, j, k, l, denoting the KS
molecular orbitals. The last column is the value of the entry. The whole
matrix is written out. This functionality works only for cluster calculations
at this point.

output sub-tag: hessian (control.in)

Usage: output hessian

Purpose: Writes the initial Hessian approximation for the structure optimizer
into the file hessian.out.

3.38. Output options 413

output sub-tag: hirshfeld (control.in)

Usage: output hirshfeld

Purpose: Produces a Hirshfeld analysis of partial charges and moments on each
atom.
Restriction: Currently disabled for Hartree-Fock and some other functionals.
Support for this can easily be added by commenting out the “stop” line in the
source code, except that the Hirshfeld analysis is then based on the DFT-LDA
free atom density nfreeat (r). For the hybrid functionals HSE, PBE0, and B3LYP,
the underlying densities used for the partitioning are free-atom PBE and BLYP
densities, respectively.

Defining “atoms-in-molecules” is a classic, intuition based problem; one would like to
associate individual (partial) charges or moments with individual atoms in a bonded
structure. This process is by necessity not uniquely definable (molecules are not atoms,
and the are no rigorously defined boundaries between atoms). Nonetheless, much chem-
ical intuition is based on such a concept.

Hirshfeld’s [105] “atoms-in-molecules” partitioning relies on the same idea as the par-
titioning of our charge density for the electrostatic potential (Eq. 3.19), using the
free-atom electron density nfreeat (r) as the weight function gat(r) in Eq. (3.15). Since
(for a given functional), we know the spherical nfreeat (r) exactly, this analysis remains well-
defined even as external circumstances such as the basis set change. However, the re-
sulting values are still qualitative in the sense that Hirshfeld’s [105] “atoms-in-molecules”
partitioning is just one among many other prescriptions that have been suggested in the
literature. Any ghost atoms in the system are skipped for this analysis. This could lead
to “missing” charge if the ghost atoms carried any nonnegligible charge, but that should
happen only in abnormal systems.

Note that the output hirshfeld keyword itself only writes a Hirshfeld analysis
for the final geometry of an FHI-aims run, not, for instance, for intermediate molecular
dynamics steps. This ensures that the Hirshfeld analysis does not accidentally clutter
an output file with large amounts of data if the output_level MD_light out-
put level is set. Output for every geometry can be accomplished with the output
hirshfeld_always keyword below.

output sub-tag: hirshfeld_always (control.in)

Usage: output hirshfeld_always

Purpose: Writes out a Hirshfeld analysis at every geometry step of a run.

This keyword ensures that a Hirshfeld analysis is written at every geometry step of a
FHI-aims run, not just after the final step. If output hirshfeld-I is requested
together with output hirshfeld_always , results from both the normal and the
iterative Hirshfeld analysis are written at every step.

414 Chapter 3. The Full Monty: All Keywords and Capabilities

output sub-tag: hirshfeld-I (control.in)

Usage: output hirshfeld-I

Purpose: Produces an “iterative Hirshfeld” analysis of partial charges and
moments on each atom.

Similar functionality to the normal output hirshfeld Hirshfeld analysis – see
the comments for that keyword – except that in the “iterative Hirshfeld” [33] analysis
the partition weights are changed. Here, the partitioning densities are not those of
neutral atoms but rather those of ions with the same formal charge as the formal charge
determined by the “iterative Hirshfeld” analysis.

This keyword is implemented but has not seen much production use. It is therefore not
guaranteed that it will always work or that the results will always make sense or even be
in line with the original “iterative Hirshfeld” publication.[33] All may be well, but if you
do use the functionality, please check very carefully that the results appear to be correct.

output sub-tag: json_log (control.in)

Usage: output json_log

Purpose: Output FHI-aims runtime information in a JSON format.

When this flag is enabled, FHI-aims will output information in a JSON format, which
may be easily parsed by your favorite post-processing language (or Python).

This feature was added in 2018, and much of the functionality in FHI-aims outside of
the main SCF cycle will not write out any information. A partial list of quantities which
will be written includes:

• Initial/final geometries

• Versioning information

• Runtime settings: number of basis functions, number of k-points, etc.

• SCF convergence evolution

• Mulliken decompositions (when calculated)

• Domain decomposition (a.k.a. batch partitioning) statistics

• Total energies

• HOMO/LUMO levels (on the SCF k-grid)

• Fundamental gap (on the SCF k-grid)

• Timings

3.38. Output options 415

This information is written to the file aims.json using the FortJSON library, which
is distributed with FHI-aims and built automatically. Only task 0 will output this file.
Unlike the ELSI JSON log (which is written out using the output elsi_log
keyword), this JSON log will persist through SCF reinitialization, geometry relaxation
steps, and MD steps; it will only be overwritten when a new FHI-aims calculation is
performed.

To output information from ELSI directly in a JSON format, please use the output
elsi_log keyword.

output sub-tag: k_eigenvalue (control.in)

Usage: output k_eigenvalue number

Purpose: For periodic structures, determines for how many k points FHI-aims
will write the electronic eigenvalues εl(k).
number is an integer number. Default: 1.

Eigenvalues will only be written for the first number k-points by default. For dense
k-grids, the sheer number of k-points simply gets too large to allow for a full output.

output sub-tag: k_point_list (control.in)

Usage: output k_point_list

Purpose: For periodic geometries only, this option writes a complete listing of
the reciprocal space coordinates of all k-points in the calculation to the stan-
dard output file. Warning: This output is empty if using KS_method parallel.

The k-point coordinates are written in units of the reciprocal lattice vectors of the
structure. This option is also the default when using output_level full and
KS_method serial.

output sub-tag: matrices_2005 (control.in)

Usage: output matrices_2005

Purpose: Writes the Hamiltonian and overlap matrices sij and hij into separate
files. The output format is the legacy format where the entries of the matrix are
written out in five-by-five blocks.
Restriction: This functionality is unavailable for periodic systems, or if a
packed_matrix_format is used.

output sub-tag: matrices_elsi (control.in)

416 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: output matrices_elsi

Purpose: Uses ELSI to output the Hamiltonian and overlap matrices.

Note that the output is written as binary files in the ELSI CSC format (see the docu-
mentation of ELSI). The Python script in the “utilities/elsi_matrix” directory may be
used to convert an ELSI matrix file to a human-readable format.

output sub-tag: matrices_parallel (control.in)

Usage: output matrices_parallel types [format]
Purpose: Writes distributed matrices into separate files.
types is a string that determines the type of matrices that are written.
format (optional) is a string that determines the format of the output.

Depending on option “types”, the upper part of up to three different matrices is written
into separate files. If types is “n” (without quotes), no matrices are written. If types
is set to “h”, then the Hamiltonian is written. The choice “o” causes the overlap
matrix to be output. Finally, “s” refers to the system matrix from which the eigenvalues
are calculated. The last three options can be combined. For example, “ho” means
Hamiltonian and overlap.

The format of the files can be controlled with the optional parameter format. Possible
values are “asc” for ASCII output (default) and “bin” for binary output.

output sub-tag: memory_tracking (control.in)

Usage: output memory_tracking

Purpose: Outputs all tracked allocations and deallocations.
Restriction: A large number of allocations and deallocations in FHI-aims are
currently not tracked.

output sub-tag: moment_mat_soc (control.in)

Usage: output moment_mat_soc

Purpose: Writes the SOC-perturbed momentum matrices at every k-point of
the SCF k-grid to matrix files in the ELSI CSC format. This keyword requires
include_spin_orbit , compute_dielectric , and parallel linear algebra
(ScaLAPACK). FHI-aims will stop if this keyword is used in an unsupported case.

Note that the output is written as binary files in the ELSI CSC format (see the docu-
mentation of ELSI). The Python script in the “utilities/elsi_matrix” directory may be
used to convert an ELSI matrix file to a human-readable format.

3.38. Output options 417

output sub-tag: mulliken (control.in)

Usage: output mulliken

Purpose: Produces a Mulliken analysis of the occupation of each atom and its
angular momentum channels in terms of the basis used.

Defining “atoms-in-molecules” is a classic, intuition based problem; one would like to
associate individual (partial) charges or moments with individual atoms in a bonded
structure. This process is by necessity not uniquely definable (molecules are not atoms,
and the are no rigorously defined boundaries between atoms). Nonetheless, much chem-
ical intuition is based on such a concept.

A classic “atoms-in-molecules” concept is the Mulliken analysis [163], which defines elec-
tronic occupations of atoms by projected occupations into the localized basis functions
associated with them (see the standard literature for exact definitions and use).

In short, when so requested, FHI-aims will provide a decomposition of the electronic
density per atom, angular momentum channel, and possibly spin channel, allowing to
deduce approximate partial charges. The summarized Mulliken analysis is written into
the standard output stream, while a separate file Mulliken.out contains detailed state-
by-state projected electron occupations.

Note that a Mulliken analysis is somewhat ill-defined because of basis function overlap;
thus electrons can be counted to one atom or another at will. For small basis sets,
a Mulliken analysis may still yield qualitatively reasonable numbers, but it becomes
increasingly ill-defined as the atom-centered basis sets approach basis set completeness.

This keyword supports spin-orbit coupling. When spin-orbit coupling is enabled, the
file(s) containing the spin-orbit-coupled Mulliken analysis will have the default filename(s)
and the file(s) containing the scalar-relativistic (i.e. no SOC) Mulliken analysis will have
an additional suffix ".no_soc".

output sub-tag: nuclear_potential_matrix (control.in)

Usage: output nuclear_potential_matrix

Purpose: Writes the matrix elements of only the bare electron-nuclear potential
in the current basis sto to a file
Restriction: This functionality is unavailable for periodic systems, or if a
packed_matrix_format is used.

This can be useful if the FHI-aims basis functions are needed for a further, sepa-
rate purpose (Quantum Monte Carlo etc) but please note that the integration accu-
racy for the Coulomb singularity near the nuclei must be higher than in our standard
calculations (where the singularity is cancelled by the kinetic energy), so increasing
radial_multiplier is in order.

418 Chapter 3. The Full Monty: All Keywords and Capabilities

output sub-tag: onsite_integrands (control.in)

Usage: output onsite_integrands

Purpose: Writes out onsite integrands for all radial functions on the code’s
internal ’radial’ and ’logarithmic’ grids.

Since August 2013, FHI-aims verifies the accuracy of its ’radial’ integration grid (the
sparse grid of atom-centered radial shells around each atom which is part of the definition
of its three-dimensional, overlapping atom-centered integration grids) in comparison to
integrals on the dense ’logarithmic’ grid which is used to set up the spherical free atom,
all radial functions etc. in one dimension.

These integrals take the form∫
d3rφi(r)Ĥφi(r) =

∫
dr [f(r)]× angular integral. (3.180)

With our usual definition of basis functions,

φi(r) = ui(r)
r

Ylm(Ω) , (3.181)

we get:

f(r) = ui(r) ·
[
−1

2u
′′
i (r) + 1

2
l(l + 1)
r2 ui(r) + v(r)ui(r)

]
(3.182)

in the non-relativistic case. In the case of scaled ZORA or atomic ZORA scalar relativity,
the kinetic energy part is modified and the integrand reads:

f(r) = ui(r) ·
[

2c2

2c2 − v(r) ·
(
−1

2u
′′
i (r) + 1

2
l(l + 1)
r2 ui(r)

)
(3.183)

− c2

(2c2 − v(r))2 · v
′(r) ·

(
u′i(r)−

ui(r)
r

)
+ v(r)ui(r)

]
.

These are the integrands to test both the ’logarithmic’ grid and the ’radial’ grid around
each atom, where v(r) is set to be the one-dimensional potential of a spherical free atom
as calculated at the outset of each run.

If output onsite_integrands is set to be true, the actual integrands f(r)
and various of their parts are printed for each radial function. This is mainly useful for
debugging purposes, to understand what we are integrating for a given basis function
choice. Especially for contracted Gaussian basis functions, f(r) can look quite ugly near
the nucleus.

The files that contain the actual integrand f(r) defined above are called
Onsite_r2_phi_h_phi_log.(function).dat and
Onsite_r2_phi_h_phi_rad.(function).dat for the logarithmic and radial grids, re-
spectively, with “(function)” indicating the element and the radial function number in
the order used by FHI-aims (for instance, the output basis keyword uses the
same order to output the radial functions used in the code). Units are Å for the radial
coordinate, but atomic units (Ha/bohr3) for the integrand itself.

3.38. Output options 419

output sub-tag: overlap_matrix (control.in)

Usage: output overlap_matrix

Purpose: Writes out the k-point dependent complex overlap matrices for a
periodic system for those k-points for which band structure output was requested.
Restriction: For periodic systems only, and KS_method parallel is not
supported. Specific band structure output must be requested through output
band .

For periodic systems, this option allows to write out the k-dependent (Bloch) overlap
matrices that correspond to the set of k-points requested with the output band
keyword. If output eigenvectors is set in addition, the Kohn-Sham eigenvectors
cil(k) will be written into separate files for each spin channel, only for each k-point for
which band output was requested.

output sub-tag: ovlp_spectrum (control.in)

Usage: output ovlp_spectrum

Purpose: Writes the non-singular part of the eigenvalue spectrum of the overlap
matrix to the FHI-aims standard output.
Restriction: Works only for the cluster case, and only for KS_method serial.

This option can help show if (or if not) the chosen basis set for the full system is close
to ill-conditioning (see the comments for keyword basis_threshold).

output sub-tag: postscf_eigenvalues (control.in)

Usage: output postscf_eigenvalues

Purpose: For periodic systems, writes all Kohn-Sham eigenvalues on a potentially
dense k-space grid to an ASCII file ’Final_KS_eigenvalues.dat’.
Restriction: Works only for periodic systems. Does not work when keyword
use_local_index is set.

If this keyword is set, the eigenvalues and occupation numbers for a periodic system are
recomputed and written to a file ’Final_KS_eigenvalues.dat’ after the s.c.f. calculation
(and, possibly, relaxation, dynamics etc.) is complete. A denser k-space grid than during
the original s.c.f. calculation can be specified using the dos_kgrid_factors keyword.

Note that the resulting output file can become very large. See the header of the ’Fi-
nal_KS_eigenvalues.dat’ for details and for units used.

Note that this additional calculation is done using serial solutions of the eigenvalue
problems for individual k-points on individual CPU cores. This always works but will
create memory problems as the system size increases, simply because local copies of

420 Chapter 3. The Full Monty: All Keywords and Capabilities

all matrices are kept on single CPUs. For large systems, our usual, more sophisticated
parallelization strategies have not yet been copied over to this routine.

Finally, note that an externally generated k-point list k_list.in (see keyword
k_points_external) is not supported by output postscf_eigenvalues and
an internally generated, even-spaced k-point grid (also defined in k_list.in) is used
instead.

output sub-tag: quadrupole (control.in)

Usage: output quadrupole

Purpose: Calculates and writes the electrical quadrupole moment of the structure
to the FHI-aims standard output as a post-processing step.

output sub-tag: rho_and_derivs_on_grid (control.in)

Usage: output rho_and_derivs_on_grid

Purpose: Writes the post-processing density and derivations(including Laplacian)
evaluation in FHI-aims.
Several notes
===
The definition of weight (called partition_tab in aims code) of the integration
point is in the line after the eqn (20) from Computer Physics Communications
180 (2009) 2175-2196
And also, we have this equation∑
iw(ri)ρ(ri) = nelectron

===
The density gradient is output as a vector. Post-processing is needed if you need
sigma or something else.
===
The kinetic energy density tau is defined w/o the 1/2 coefficient.
τ(r) = ∑

ij∇ϕi(r)nij∇ϕj(r)
===
We don’t evaluate properties on those points with zero weight (partition_tab).
I still print them out but those points have all properties equal zero. You might
want to throw them away before usage.
===
For spin polarized calculation, two files are outputted (spin 1 and spin 2).
===

output sub-tag: rho_multipole (control.in)

3.38. Output options 421

Usage: output rho_multipole

Purpose: Writes the partitioned atom-centered charge multipole components
δñat,lm(r) to individual files for each atom, l, and m (see Eq. 3.19).

output sub-tag: soc_eigenvalues (control.in)

Usage: output soc_eigenvalues

Purpose: Writes the SOC-perturbed eigenvalues at every k-point of the SCF
k-grid to an output file named SOC_eigenvalues.dat. This keyword will
not enable spin-orbit coupling; if spin-orbit coupling is not enabled via the
include_spin_orbit keyword, this keyword will be ignored.

output sub-tag: soc_subspace_in_band (control.in)

Usage: output soc_subspace_in_band

Purpose: Writes the spin-orbit coupled eigenvectors in a basis of non-spin-orbit
coupled eigenstates (e.g., in the basis formed by the scalar-relativistic eigenstates
of a self-consistent, non-spin-orbit-coupled calculation). This is only done for
k-points included in any band structure segments requested to be written out.

This keyword must be used together with include_spin_orbit and output
band or band_mulliken .

FHI-aims normally solves the non-selfconsistent spin-orbit coupled eigenvalue problem
(including eigenvectors) in a basis of self-consistent eigenvectors calculated in a preced-
ing, scalar-relativistic calculation (no spin-orbit coupling). This means that the spin-orbit
coupled eigenvectors are immediately available and can be interpreted in terms of their
origin from an underlying scalar-relativistic basis set.

The spin-orbit coupled eigenvectors in terms of their non-spin-orbit-coupled counterparts
will be written for each sampled k point in each specified band in control.in.

As an example, assume that there are n scalar-relativistic (i.e.,pre-SOC) eigenstates in a
closed-shell (non-spinpolarized) self-consistent calculation. After the SOC perturbation is
applied and the resulting eigenvalue problem solved, this leads to 2n spin-orbit coupled
eigenvectors. These are the columns of a (2n×2n) matrix, where the first n rows
represent n pre-SOC states of the scalar-relativistic spin channel 1 and the following n
rows (row numbers (n+1) to 2n) represent the n pre-SOC states of the scalar-relativistic
spin channel 2. Since the original scalar-relativistic eigenvectors form an orthonormal
basis set, the absolute value of element (i,j) represents the contribution from the pre-
SOC state corresponding to the ith row to the post-SOC state corresponding to the jth
column.

Note that for parallel calculations, the output is written as binary files, using the ELSI
infrastructure (for details, the documentation of ELSI covers this format). You may

422 Chapter 3. The Full Monty: All Keywords and Capabilities

want to use the script convert_elsi_to_mm.py together with read_elsi.py in the utili-
ties/elsi_matrix directory to create a human-readable format.

output sub-tag: species_proj_dos (control.in)

Usage: output species_proj_dos Estart Eend n_points
broadening

Purpose: Writes a projected, angular-momentum resolved partial density of
states (pDOS), adding up the contributions of all atoms of each species .
Estart : Lower bound of the single-particle energy range for which the pDOS
are given.
Eend : Upper bound of the single-particle energy range for which the pDOS are
given.
n_points : Number of energy data points for which the pDOS are given.
broadening : Gaussian broadening applied to obtain a smooth partial density
of states based on the peaks produced by individual states.

This option is based on a Mulliken Analysis and shares its syntax with output dos
and output atom_proj_dos . See also section 4.4 for more details.

Note: You should no longer need the output species_proj_dos , output
atom_proj_dos or output dos at all. Instead, the same objects can be ob-
tained with MUCH better integration accuracy using the alternative keywords output
species_proj_dos_tetrahedron , output atom_proj_dos_tetrahedron or
output dos_tetrahedron . Please see there for the syntax. The description of the
older keywords is kept for now.

Different from the atom_proj_dos option, this option adds up the pDOS contributions
of all atoms of each species defined in control.in and used in geometry.in.
This provides a quick handle to obtain the pDOS contribution of well-defined subgroups
of individual atoms, e.g., those of a given layer of a slab, by simply defining a separate
species for the desired atoms in control.in.

There are two types of output files for each atom:

• species _l_proj_dos_raw.dat, where species denotes the species name
used in geometry.in and control.in. This file contains the total and angular-
momentum resolved DOS components as a function of eigenvalue energy (first
column) as used internally in FHI-aims. The energy zero is then given by the
vacuum level (non-periodic systems) or by the G=0 component of the long-range
Hartree potential (periodic systems).

• species _l_proj_dos.dat, which gives the same information, except that the
energy zero is shifted to the Fermi energy (metallic systems) or valence band
maximum (insulators), respectively.

Note that projected densities of states such as given here must be based on some kind
of projection orbitals, the choice of which is somewhat arbitrary by necessity. This is
thus a tool for qualitative analyses.

3.38. Output options 423

In FHI-aims, we project directly on the atom-centered angular-momentum components
as defined by the overlapping basis set. This definition becomes the more arbitrary te
larger the basis set, just like a mulliken analysis. The closer the full basis comes to
completeness, the more ambiguous will a mulliken -like analysis become, since it may
not be a priori clear which electrons should be counted towards the basis functions of
one atom vs. those of another atom. Thus, do not expect a pDOS to simply converge
as the basis set size is increased; use it as a qualitative indicator of trends, but nothing
more.

This keyword supports spin-orbit coupling. When spin-orbit coupling is enabled, the
file(s) containing the spin-orbit-coupled DOS will have the default filename(s) and the
file(s) containing the scalar-relativistic (i.e. no SOC) DOS will have an additional suffix
“.no_soc”. Note that if you requested spin collinear in the control.in file, there
will be only one file per species (and equivalently for all _raw.dat files) containing the
projected DOS of all spin-coupled states:

• species _l_proj_dos.dat

The reason is that the separate spin channels of scalar relativity no longer exist after
the SOC operator is applied – the states now form a single set. However, there are two
DOS files for the output without spin-orbit coupling; one for each spin channel:

• species _l_proj_dos_spin_up.dat.no_soc

• species _l_proj_dos_spin_dn.dat.no_soc.

output sub-tag: species_proj_dos_tetrahedron (control.in)

Usage: output species_proj_dos Estart Eend n_points

Purpose: Writes an projected, angular-momentum resolved partial density of
states (pDOS) adding up the contributions of all atoms of each species .
Estart : Lower bound of the single-particle energy range for which the pDOS
are given.
Eend : Upper bound of the single-particle energy range for which the pDOS are
given.
n_points : Number of energy data points for which the pDOS are given.

This option is based on a Mulliken Analysis and shares its syntax with output
dos_tetrahedron and output atom_proj_dos_tetrahedron . See also
section 4.4 for more details.

Different from the atom_proj_dos_tetrahedron option, this option adds up the
pDOS contributions of all atoms of each species defined in control.in and used
in geometry.in. This provides a quick handle to obtain the pDOS contribution of well-
defined subgroups of individual atoms, e.g., those of a given layer of a slab, by simply
defining a separate species for the desired atoms in control.in.

There are two types of output files for each atom:

424 Chapter 3. The Full Monty: All Keywords and Capabilities

• species _l_proj_dos_tetrahedron_raw.dat, where species denotes the species
name used in geometry.in and control.in. This file contains the total and
angular-momentum resolved DOS components as a function of eigenvalue energy
(first column) as used internally in FHI-aims. The energy zero is then given by the
vacuum level (non-periodic systems) or by the G=0 component of the long-range
Hartree potential (periodic systems).

• species _l_proj_dos_tetrahedron.dat, which gives the same information,
except that the energy zero is shifted to the Fermi energy (metallic systems)
or valence band maximum (insulators), respectively.

Note that projected densities of states such as given here must be based on some kind
of projection orbitals, the choice of which is somewhat arbitrary by necessity. This is
thus a tool for qualitative analyses.

In FHI-aims, we project directly on the atom-centered angular-momentum components
as defined by the overlapping basis set. This definition becomes the more arbitrary te
larger the basis set, just like a mulliken analysis. The closer the full basis comes to
completeness, the more ambiguous will a mulliken -like analysis become, since it may
not be a priori clear which electrons should be counted towards the basis functions of
one atom vs. those of another atom. Thus, do not expect a pDOS to simply converge
as the basis set size is increased; use it as a qualitative indicator of trends, but nothing
more.

This keyword supports spin-orbit coupling. When spin-orbit coupling is enabled, the
file(s) containing the spin-orbit-coupled DOS will have the default filename(s) and the
file(s) containing the scalar-relativistic (i.e. no SOC) DOS will have an additional suffix
”.no_soc”. Note that if you requested spin collinear in the control.in file, there
will be only one file per species (and equivalently for all _raw.dat files) containing the
projected DOS of all spin-coupled states:

• species _l_proj_dos_tetrahedron.dat

The reason is that the separate spin channels of scalar relativity no longer exist after
the SOC operator is applied – the states now form a single set. However, there are two
DOS files for the output without spin-orbit coupling; one for each spin channel:

• species _l_proj_dos_tetrahedron_spin_up.dat.no_soc

• species _l_proj_dos_tetrahedron_spin_dn.dat.no_soc.

output sub-tag: v_eff (control.in)

Usage: output v_eff

Purpose: Writes the local effective potential veff(r) at each integration grid
point r to a file v_eff.dat.

3.38. Output options 425

Note that the meaning of this effective potential depends on the xc option used.
For DFT-LDA, this is simply the full local potential. For gradient-corrected (GGA)
functionals, the gradient partial derivatives of the exchange-correlation functional are
not included in the potential, as they are treated separately by integration by parts (see
Ref. [26]). For hybrid functionals or Hartree-Fock, the exchange part of the potential is
of course not included.

Note also that this output does not happen on a uniform grid. For further processing,
a proper visualization tool is needed, and/or an interpolation onto a uniform grid must
be done.

output sub-tag: v_hartree (control.in)

Usage: output v_hartree

Purpose: Writes the electrostatic (Hartree) potential multipole components
δṽat,lm(r) to individual files for each atom, l, and m.

output sub-tag: zero_multipoles (control.in)

Usage: output zero_multipoles

Purpose: Prints out the partial charges associated with the multipole electrostatic
potential of each atoms in each s.c.f. iteration.

The resulting values are “atoms-in-molecules” like partial charges assigned to each atom,
similar to a hirshfeld partitioning (but not identical because a different partitioning
function may be used as the hartree_partition_type).

426 Chapter 3. The Full Monty: All Keywords and Capabilities

3.39 Deprecated keywords

The following section lists a number of keywords in FHI-aims which exist, but which
may go away in future versions of FHI-aims. In some cases, this is because the rel-
evant modifications proved successful, and there is no sense in maintaining some old,
obsolete extra functionality without any use in production settings. In other cases, the
relevant keywords were experiments that did not yield the anticipated success, and /
or functionality that may be superseded in a different, more comprehensive way in the
future.

3.39. Deprecated keywords 427

Tags for general section of control.in:

Tag: Adams_Moulton_integrator (control.in)

Usage: Adams_Moulton_integrator flag

Purpose: Allows to switch between a simple integrator and the higher-order
Adams-Moulton integration scheme to determine the Hartree potential compo-
nents from classical electrostatics.
flag is a logical string, either .false. or .true. Default: .true.

Tag: batch_distribution_method (control.in)

Usage: batch_distribution_method method

Purpose: Parallel distribution of integration grid batches only in the case that
the external qhull and METIS libraries are configured.
method is a string, the only possible value being qhull+metis at this point.

Outsources the distribution of integration grid batches to the external qhull and METIS
libraries. Only relevant if these libraries are compiled into the code. However, the
associated grid_partitioning_method s are less useful than the default maxmin
algorithm, and the internal work distribution method of FHI-aims usually performs rather
well. Therefore, this option is deprecated and kept only for experimental purposes, for
now.

Tag: communication_type (control.in)

Usage: communication_type type

Purpose: Determines the type of calculation / storage of per-atom spline arrays
of the Hartree potential for a parallel run.
type is a string, see below. Default: calc_hartree .

In a parallel run of FHI-aims, each processor holds a certain part of the real-space inte-
gration grid, which in turn are each touched by all atom-centered multipole components
(splined) of the real-space Hartree potential. So, to construct the electrostatic (Hartree)
potential on each grid point, an array of splined atom-centered multipole components
δṽat,lm(r) must be available on every MPI sub-process (see Sec. 3.7 for details regarding
the electrostatic potential). The memory use to store these components grows rapidly
and with a large prefactor with system size. Thus, keeping a local copy of all the splined
multipole components of the Hartree potential on each CPU is not advisable.

The actual handling of these components is instead controlled by keyword communication_type
. The following choices for option are possible:
calc_hartree : The default, and usually very efficient. Hartree potential components
for each atom are integrated on the fly on each CPU when needed (usually less CPU

428 Chapter 3. The Full Monty: All Keywords and Capabilities

time than communication time).
shmem : If compiled with shared memory support (see Section I.2), each compute node of
a parallel run keeps the components of the Hartree potential in a separate shared mem-
ory segment, only internode communication is needed. Performance test show hardly any
benefet over calc_hartree. Note that the (legacy) keyword distributed_spline_storage
should be false for shmem, at least.

Tag: distribute_leftover_charge (control.in)

Usage: distribute_leftover_charge .true./.false.
This keyword is superseded by the compensate_multipole_errors keyword which
solves the problem of small residual charge integration errors in slab calculations much
better than distribute_leftover_charge .

Keyword distribute_leftover_charge could introduce noticeable total energy
inaccuracies especially for “light” integration grid settings.

Tag: force_new_functional (control.in)

Usage: force_new_functional flag

Purpose: For test purposes, allows to switch to an energy functional form that
treats the electronic and nuclear electrostatic energy terms separately.
flag is a logical string, either .false. or .true. Default: .true.

See Ref. [26] regarding the correct shape of the energy functional that treats the nuclear
and electronic parts of the electrostatic energy together on a per-atom basis.

Tag: force_smooth_cutoff (control.in)

Usage: force_smooth_cutoff tolerance

Purpose: Optionally, enforces smoothness of all basis functions near the cutoff
radius.
tolerance is a small positive real number. Default: No check.

If requested, keyword force_smooth_cutoff ensures that the radial function u(r)
and its first and second derivatives remain below tolerance at the outermost point of
the logarithmic grid where any of them is non-zero at all. The code stops if the onset
of the radial function is too abrupt.

It would be a good idea to switch this option on if reducing the width parameter of
keyword cut_pot to a very low value (say, below 1 Å).

Tag: grouping_factor (control.in)

3.39. Deprecated keywords 429

Usage: grouping_factor factor

Purpose: Grouping factor for the (experimental, and not recommended!) group
grid_partitioning_method .
factor is an integer number, describing how close-by grid points are grouped
together. Default: 2.

This keyword is retained for experimental purposes only, for the moment. Since the
related grid_partitioning_method group was a proof-of-concept to show that
the default maxmin performs better, this keyword is now deprecated. See Ref. [91] for
more details if interested.

Tag: hartree_worksize (control.in)

Usage: hartree_worksize megabytes

Purpose: Limits the size of workspace arrays used to construct the Hartree
potential on each CPU.
megabytes : The maximum allowed work space size to construct the Hartree
potential, in megabytes. Default: 200 MB.

Several large work space arrays across the integration grid are used in the construction
of the Hartree potential. Their size can grow quite large, especially when forces are
computed for large structures (then, three arrays per atom are required for all atoms).

FHI-aims can circumvent this by computing the final output (integrated energies and
forces) in “chunks” of the whole integration grid, limiting the work space used for
each chunk. This modification is especially important on low-memory-per-processor
architectures such as the BlueGene.

Tag: KH_post_correction (control.in)

Usage: KH_post_correction flag

Purpose: Under construction – do not use A way to replace the scaled ZORA
post-processing correction for scalar relativity by a Koelling-Harmon type
scalar-relativistic correction.
flag is a logical string, either .false. or .true. Default: .false.

This keyword is no longer supported, do not use it. It will be superseded by an improved
handling of scalar relativity during the s.c.f. cycle in the future.

Tag: mixer_swap_boundary (control.in)

Usage: mixer_swap_boundary bytes

Purpose: Ignored; never swap. Used to allow to swap the stored density
components for Pulay mixing to disk if they exceed a certain memory boundary.

On few-CPU systems and for mid-sized systems (several hundred atoms), the stored

430 Chapter 3. The Full Monty: All Keywords and Capabilities

electron density components from past iterations are a large part of the memory used. If
this becomes a bottleneck, the stored Pulay arrays can in principle be swapped to disk,
instead, to be read only during Pulay mixing.

If anyone has a strong need for this currently unsupported feature, please contact us.

Tag: multiplicity (control.in)

Usage: multiplicity value

Purpose: If set, specifies the multiplicity of the system.
Restriction: Currently available for non-periodic geometries only. Use
fixed_spin_moment instead.
value : integer number, sets the overall multiplicity as 2S + 1.

Meaningful only in the spin-polarized case (spin collinear in control.in). On
a technical level, this is a special case of the more general, locally spin-constrained
DFT formalism available within FHI-aims (see Sec. 3.14). Note that the underlying
constraint_electrons keyword can be used to enforce a non-integer fixed spin
moment, in addition to allowing to fix electron or spin numbers in given subsystems

Also, be sure to check what the Kohn-Sham eigenvalues mean if you need them, do not
use them blindly. multiplicity shifts the eigenvalues!

Tag: occupation_thr (control.in)

Usage: occupation_thr value

Purpose: Any occupation numbers below value will be treated as zero. value
is a small positive real number. Default: 0.d0 .

Tag: recompute_batches_in_relaxation (control.in)

Usage: recompute_batches_in_relaxation flag

Purpose: Allows to switch off the redistribution of atom-centered grid points
into new integration batches after a relaxaton step.
flag is a logical string, either .false. or .true. Default: .true.

For practical purposes, the integration grid should always be repartitioned after a re-
laxation step; the associated overhead is low, and the shape of the batches will remain
optimal in the face of individual points that “move” with different atoms.

Tag: squeeze_memory (control.in)

3.39. Deprecated keywords 431

Usage: squeeze_memory flag

Purpose: Used to allow one combined workspace for three different purposes.
This option is no longer necessary due to optimizations by Rainer Johanni. flag
is a logical string, either .false. or .true. Default: .false.

Tag: use_angular_division (control.in)

Usage: use_angular_division flag

Purpose: If radial grid shells are used as integration batches, allows to switch off
their subdivision into “octant” batches.
flag is a logical string, either .false. or .true. Default: .true.

This flag currently only applies to the initialization iteration, in case that self-adapting
angular grids are used (not recommended; see keyword angular_acc if interested).
Even then, switching off the subdivision of radial shells can only decrease the perfor-
mance.

432 Chapter 3. The Full Monty: All Keywords and Capabilities

Subtags for species tag in control.in:

species sub-tag: cut_core (control.in)

Usage: cut_core type [radius]
Purpose: Can be used to define a separate (tighter) onset of the cutoff potential
for all core radial functions.
type : A string, either finite or infinite. Default: finite .
radius : A real number, in Å: Onset radius for the cutoff potential, as defined
in the cut_pot tag. Default: same as onset in cut_pot .

Deprecated flag because basis_dep_cutoff should supersede this functionality in
a more organized way. Having a separate, tighter cutoff for core radial functions sounds
like a good idea, but core radial functions are already rather localized anyway. Our
experience is that the separate core setting either does not matter for CPU time, or
already introduces noticeable total energy changes when it matters.

433

Chapter 4

Running FHI-aims: Guides to specific
tasks

The complete specification of all keywords available in FHI-aims and their capabilities
was given in the previous chapter. The present chapter attempts to illustrate these
capabilities in a tutorial way. The purpose of this exercise is threefold: (i) to provide
clear starting points for the most common types of production calculations; (ii) to provide
clear examples that can be modified (but need not be completely reinvented) for the many
further capabilitues of FHI-aims; (iii) to describe specific “higher-level” tasks that bind
together multiple FHI-aims calculations by way of scripts (e.g., vibrations, or nudged-
elastic band calculations to find transition barriers).

434 Chapter 4. Running FHI-aims: Guides to specific tasks

4.1 Ground state DFT: Total energies and relaxation

As a first and basic example, we discuss how to set up a simple DFT total-energy
calculation for a given structure in FHI-aims. We here expand on the example provided
as a testrun: The relaxation of a H2O molecule towards its minimum-energy structure.
The relevant input files geometry.in and control.in are included in the directory
testcases/H2O-relaxation (see Chapter 1).

The starting geometry here is badly distorted H2O, with an initial bond angle of 90◦.
For any relaxation runs, we strongly recommend a two-step procedure: First, pre-relax
the structure with light settings down to (say) 10−2 eV/Å or so, and only then follow
up with a post-relaxation run using tight settings or anything else. light calculations
may easily be cheaper by a factor of 5-10 than tight ones, and going down a relaxation
trajectory of any length can then be a trememdous waste of computational resources.

The test case below only includes the quick but safe prerelaxation step, leading to
an improved geometry that is the optimum using light settings. Based on this resulting
geometry, the postrelaxation step with tight settings should be simple follow-up exercise.

Input files

Turning first to geometry.in, we see that the basic geometry input for FHI-aims is very
simple in most cases: atom lines that contain nuclear coordinates in Å, together with
the appropriate species designation (in this case, H and O). For a spin-polarized
calculation, one might additionally want to specify initial spin moments for selected
atoms using the initial_moment keyword, in order to define a good initial spin
density guess for the s.c.f. procedure.

The input file control.in contains all necessary computational information regarding
the desired run. Most importantly, the xc keyword is required to specify the exchange-
correlation functional; FHI-aims will not proceed without this information. The further
“physical” specifications – spin , relativistic , and charge – are all at
their default settings (no spin-polarization, no relativity, and no charge), but are listed
explicitly to make them visible at a quick glance. This is especially important for the
relativistic keyword, where the none setting would not be justified for heavier
elements (see Sec. 4.2).

The next setting, relax_geometry , specifies a geometry relaxation using the bfgs
algorithm, together with a standard convergence criterion for the forces in the final
geometry: No force component for any atom of the relaxed structure should exceed
10−2 eV/Å. This criterion may well be set tighter for sensitive cases, such as a starting
geometry to obtain vibrational frequencies, but not orders of magnitude tighter (for
example, do not simply use a setting of 10−4 eV/Å because it feels more accurate –
it will only end up probing some irrelevant numerical traits of the energy surface, for
example from the finite integration grids, with no noticeable geometry or total energy
changes resulting at all).

The version of the BFGS optimization algorithm used here is a trust-radius enhanced

4.1. Ground state DFT: Total energies and relaxation 435

version (as compared to a straight, textbook-like BFGS implementation which could
alternatively be used, see the description of the relax_geometry keyword). By
default, the convergence of the relaxation is additionally sped up by an intelligent guess
for the Hessian matrix used in the initial BFGS step. This is done by way of a slightly
modified version of the general purpose model matrix proposed by Lindh and coworkers
[146], see keyword init_hess .

The control.in could also include other general keywords concern the technicalities
of obtaining self-consistency, which are not mandatory and are therefore not included in
this simple test case. Examples include a broadening of occupation numbers around the
Fermi level using the occupation_type keyword (this has no physical impact in a
molecule with a HOMO-LUMO gap but may be important in metals), a mixing parameter
charge_mix_param for the mixer (nonlinear optimization of the s.c.f. cycle),
and convergence criteria for the s.c.f. cycle. FHI-aims attempts to choose reasonable
settings for these aspects automatically in order to help avoid lengthy mistakes. The
s.c.f. criterion for density convergence, sc_accuracy_rho in particular is set tightly
by default, in order to have forces that are already mostly converged when the (more
expensive) force computation is first done.

In control.in, it remains to set the species information for H and O, the elements
included in control.in. Normally, these settings should be obtained by copy-pasting
the relevant information from the species_defaults directory, for example the choices in
the light or tight subdirectory located there. Once this is done, the species defaults
may still be adapted for the purpose in question.

Output stream

We next analyze some significant parts of the standard output produced by FHI-aims,
also provided in the file H2O.reference.out. We emphasize that this output is kept as
human-readable as possible; it pays to actually look into the output, especially when
something does not appear to have gone correct. Often, a simple warning in in the initial
input section or elsewhere in the file may already tell you what is going on. Warnings
can also be identified by “grepping” for asterisks in the file.

The standard output stream is structured as follows:

• A summary of the setup (nodes used, required fixed dimensions, information in
control.in and geometry.in) and, importantly, default values inserted for pa-
rameters that were not explicitly specified in control.in.

• Preparation of fixed parts of the calculation – most importantly, information re-
garding the setup of the per-species basis

• Initialization – information on the setup of all three-dimensional integrations, and
solution of the first Kohn-Sham eigenvalue problem for the initial superposition-
of-free-atoms electron density.

• Process and total energy information for each successive s.c.f. iteration.

436 Chapter 4. Running FHI-aims: Guides to specific tasks

• Upon convergence of the s.c.f. cycle, the Kohn-Sham eigenvalues are also included,
as well as final total energies and forces in a long format for reading by external
utilities (scripts etc.)

• This is followed by information on the geometry optimization, up to the coordinates
predicted for the next step, based on the converged forces obtained from the
previous iteration.

• Reinitialization, s.c.f., and geometry optimization information is repeated for each
successive geometry step until the optimum geometry is found within the force
tolerance specified by relax_geometry .

Key information that should be paid attention to is the following:

Eigenvalue and total energy information:
This should be checked for roughly realistic total energy values, a reasonable eigenvalue
spectrum: Make sure that the expected core states, the correct number of eigenstates,
and possibly the expected HOMO-LUMO gap are all in place.
As in all other iterations, three variants of the total energy are given (here quoted from
the initialization step, just prior to the start of the s.c.f. cycle for the initial geometry):

| Total energy : -76.44577378 Ha -2080.19534383 eV
| Total energy, T -> 0 : -76.44577378 Ha -2080.19534383 eV
| Electronic free energy : -76.44577378 Ha -2080.19534383 eV

For systems with a HOMO-LUMO gap, these values should all be the same, but for sys-
tems with fractional occupation numbers (metallic systems, large occupation_type
setting, or degenerate levels at the Fermi level), this is not generally the case.

For molecular systems, the meaning of fractional occupation numbers is questionable,
and we recommend to always rely on the first value, the “Total energy”.

For metallic systems, fractional occupation numbers are unavoidable. However, it is
possible to estimate the total energy for zero occupation broadening (“Total energy,
T − > 0”) based on an entropy expression associated with the fractional occupation
numbers. This estimate is based on a free electron gas argument; do not trust it for
atoms or small molecules. Bulk metals or metallic surfaces benefit from this correction,
and their total energy may be estimated from the extrapolated total energy (“Total
energy, T − > 0”).

The “free energy” simply sums the total energy together with the full entropy correction
from the fractional occupation numbers. This quantity has no physical meaning, but it
is strictly this free energy to which our calculated forces correspond. The reason is that
fractional occupation numbers may carry an implicit derivative of their own with respect
to the nuclear coordinates. This would enter the total energy, but this derivative is not
available in simple analytical terms in FHI-aims.

Geometry information:
After each relaxation step, the convergence of the present geometry is checked (by
monitoring the maximum remaining force component on any atom in the structure), and

4.1. Ground state DFT: Total energies and relaxation 437

the updated geometry to be treated next is printed. For instance, the final (converged)
geometry can be found near the end, in a format that is directly suitable for a follow-up
run:

--
Final atomic structure:

x [A] y [A] z [A]
atom 0.00000000 -0.07327020 -0.00000000 O
atom 0.76741277 -0.67036490 0.00000000 H
atom -0.76741277 -0.67036490 0.00000000 H

--

By default, a version of this information is also written into a file geometry.in.next_step,
which should be used (together with the hessian.aims file) to continue a relaxation
run and also to begin a possible post-relaxation with tight settings (the hessian.aims
file contains a usually much better Hessian for the structure at hand than the starting
guess).

Timing information:
Finally, we note that FHI-aims also provides detailed timing information as well as partial
memory accounting for each s.c.f. iteration, and as a summary at the end of each run.
For example, the provided test run reads similar to this:

--
Leaving FHI-aims.
Date : 20200114, Time : 104524.650

Computational steps:
| Number of self-consistency cycles : 49
| Number of SCF (re)initializations : 5
| Number of relaxation steps : 4

Detailed time accounting : max(cpu_time) wall_clock(cpu1)
| Total time : 3.228 s 3.255 s
| Preparation time : 0.067 s 0.067 s
| Boundary condition initalization : 0.000 s 0.000 s
| Grid partitioning : 0.041 s 0.041 s
| Preloading free-atom quantities on grid : 0.028 s 0.028 s
| Free-atom superposition energy : 0.047 s 0.048 s
| Total time for integrations : 1.394 s 1.404 s
| Total time for solution of K.-S. equations : 0.032 s 0.030 s
| Total time for EV reorthonormalization : 0.001 s 0.001 s
| Total time for density & force components : 0.986 s 0.991 s
| Total time for mixing : 0.063 s 0.068 s
| Total time for Hartree multipole update : 0.050 s 0.049 s
| Total time for Hartree multipole sum : 0.400 s 0.402 s
| Total time for total energy evaluation : 0.008 s 0.014 s

[...]

438 Chapter 4. Running FHI-aims: Guides to specific tasks

Figure 4.1: Total energy convergence (left y axis) and force convergence (right y axis)
during the relaxation test run of H2O. A total of five steps is taken (initial geometry plus
four relaxation steps). The total energy of the final step is taken as the reference here,
and the total energy in the second-to-last step is already identical within the numerical
accuracy of the calculation. The final step is only taken to bring the residual forces (total
energy gradients) to practically zero as well.

Have a nice day.
--

The date and time at the end are in the ddmmyyyy and hhmmss.mmm formats of a wall-
clock time, not in seconds; i.e., the above calculation did not take 104524 s, but rather
ended at 10:45:24 h, one fine January 14.

In addition, detailed timing is provided both for as elapsed CPU time (on individual
CPUs during the run), and actual elapsed wall clock time. In a normal production run, no
significant discrepancies should occur between wall clock and CPU times. If discrepancies
arise, they could indicate serious problems with load balancing or communication in a
parallel run.

Further analysis

Some statistics on the complete relaxation run can be obtained using the script
get_relaxation_info.pl, located in the utilities subdirectory of the FHI-aims distribution.
This script is invoked as follows:

> get_relaxation_info.pl < H2O.reference.out > statistics.dat

or with any other output file. The script searches the FHI-aims output file for total
energies (no entropy correction) and maximum force components at the end of each
relaxation step. The development of the total energy, total energy difference with re-
spect to the starting geometry, and maximum force component can then be visualized
as a function of the relaxation step number, using standard tools such as xmgrace.

4.1. Ground state DFT: Total energies and relaxation 439

Fig. 4.1 visualizes the progress of the relaxation run based on the data obtained from
get_relaxation_info.pl.

Likewise, much other information can and should be extracted from the standard output
using similar scripts. For example, the development of the geometry can be visual-
ized in the format of a .xyz file using the create_xyz_movie.pl script, using standard
visualization tools such as jmol or vmd.

To continue a relaxation run (for instance, for a post-relaxation step with tight settings,
see below), use the files geometry.in.next_step and hessian.aims that are created
by default during a relaxation. They contain the atomic structure of the current relax-
ation step and the current estimate of the Hessian matrix, respectively, as created by
the bfgs relaxation algorithm. This output can be fine-tuned (or prevented) using the
write_restart_geometry and hessian_to_restart_geometry keywords.

Obviously, all intermediate geometries (but not the Hessian) are also part of the standard
output stream by default, in the right format for a restart.

Next steps

As with any electronic structure code, monitoring the convergence of the basis set
for each element is an important user task, to make sure any physical conclusions
are accurate. For instance, the present example could be continued as follows:

• A “prerelaxation” such as the present test run should not employ a huge basis set,
simply for efficiency’s sake. The light settings used for the present elements use
a tier 1 basis set. Very often, geometries obtained with light are already rather
close to converged.

• For these same elements, you will find that the tight settings actually employ tier
2, which is significantly larger and very close to basis set convergence at least for
DFT methods.

• Obviously, one might extend this to tier 3 or higher for test purposes, possibly even
based on really_tight settings otherwise. Comparing the changes made between
light, tight, and really_tight settings, and different basis sets, is an interesting
exercise. For the H2O molecule shown here, it should hopefully reveal that there
is not much to be gained beyond what is prescribed as “tight”.

Finally, we note that “tier 1” does not necessarily mean the same level of convergence
accuracy for all elements. For light elements, tier 2 may often be needed, and we
set them by default in our tight settings. For significantly heavier elements (transition
metals in particular), tier 1 is already well converged for ground-state DFT calculations,
which is therefore mostly the default in our tight settings.

440 Chapter 4. Running FHI-aims: Guides to specific tasks

4.2 Heavy elements (Z &30): Modifications for
scalar relativity

Actually, this section could easily apply to all elements. As outlined in Section 3.8, it
seems that the relativistic atomic_zora scalar keyword and the underlying
“atomic ZORA” approach as implemented in FHI-aims (Equations (55) and (56) of Ref.
[26]) perform on par with the best available scalar-relativistic benchmark methods (see
Refs. [143, 109]). Just use this approach in production, unless there is a specific reason
not do do so (a few methods in FHI-aims that are still being implemented may initially
only support a non-relativistic treatment).

Note that total energy differences will be very large between different relativistic treat-
ments, so it is best to stick to a single level of scalar relativity for all calculations.

With H and O, the simple H2O testcase of the preceding Section 4.1 involves only
elements so light that relativistic effects on their total energies can still be ignored in
production calculations.

The rule of thumb that relativistic effects do not matter much for quantities derived
from total energies (binding energies, geometries) holds up to elements number Z=20-
30 (Ca or Zn), depending on the reqired accuracy. For example, the DFT-LDA lattice
parameter for fcc Cu is 3.54 Å in the non-relativistic case, but 3.52 Å if relativistic
effects are included. In any case, relativistic effects should be accounted for in accurate
calculations beyond these elements. As described in more detail in Ref. [26], this process
is handled by FHI-aims at different levels of approximation, with some overhead resulting
compared to the simple non-relativistic case.

In a nutshell, the physical impact of relativity for heavy elements is noticeable not just as
a total-energy offset, but importantly in total energy differences, and in particular impacts
also geometries. The underlying reason is that core and valence orbitals “see” the near-
nuclear region (where relativistic effects are most important) differently, depending on
their angular momentum l. Somewhat simplistically put, the increased relativistic mass
of the electron near the nucleus results in a tendency for all orbitals to “shrink” compared
to the non-relativistic case, but to a different degree for different orbitals. The shrinkage
thus changes not just atom sizes, but also the nature of bonding itself. A detailed
discussion of relativistic effects is beyond the scope of this manual (and can be found
in many excellent reviews, e.g., Ref. [186]) – but bear in mind that relativistic effects
should not simply be shrugged off!

As noted in Section 3.8, we recommend “atomic ZORA” as the blanket default where
possible, invoked by the keyword

relativistic atomic_zora scalar

Additionally, the effects of spin-orbit coupling may be included in energy levels / band
structures, densities of states, etc. post-selfconsistently, i.e., after the self-consistent
calculation is complete. The keyword to do this is:

include_spin_orbit

That’s it.

4.2. Heavy elements (Z &30): Modifications for scalar relativity 441

We illustrate the practical use of atomic ZORA and spin-orbit coupling for the Au dimer
in DFT-LDA, found in the testcases/Au_dimer directory. Importantly, this follows the
always recommended two-step approach for relaxations: First, a light prerelaxation (saves
much time for steps of the relaxation algorithm that will be completely irrelevant for the
final result) and second, a tight post-relaxation for final results.

The testcase here uses semilocal DFT, which is relatively cheap. For the much more
costly hybrid density functionals, tight settings can be prohibitively expensive, and in-
termediate settings (where available) are often completely sufficient.

In the subdirectory relax_light, a quick but sufficiently accurate prerelaxation is set up,
at the atomic_zora level. The control.in file is set up to use relativistic
atomic_zora scalar and relax_geometry bfgs 1.e-2 to converge forces down
to 10−2 eV/Å. Since this is intended to be a quick prerelaxation run (starting with an
arbitrary separation of 3 Å of both atoms), the “light” species default settings for Au
are used for the species subsettings. Compared to the much more accurate “tight”
settings,

• the radial and angular integration grids are significantly reduced,

• the Hartree potential expansion is capped at l_hartree =4,

• the cutoff potential onset and width in cut_pot are reduced to a minimum
that we still consider safe (3.5 Å / 1.5 Å, respectively),

• the basis set is the spdf section of tier 1 only.

. Among these settings, the reduction of the basis set to spdf has the biggest impact
on the resulting equilibrium geometry, d=2.464 Å. (The difference to the tight result
below is quite minor – 0.012 Å.)

After this relaxation run is complete, a file geometry.in.next_step is written out by
FHI-aims. This file contains the final, relaxed geometry from the “light” prerelaxation run
just performed, as well as the Hessian matrix estimate created by the relax_geometry
bfgs relaxation algorithm. This file can serve as an improved guess for geometry.in
in the next, typically more expensive “tight” post-relaxation step.

In the subdirectory postrelax_tight, the final geometry from the previous step is used
as the starting point for an accurate post-relaxation using the “tight” species_defaults
settings. Note that, while all other settings are tightly converged at this level, the basis
set convergence should normally still be tested explicitly. The tier 1 level (without the h
function) used here for Au is quite sufficient for an accurate result. The binding distance
converges after two additional relaxation steps, at d=2.452 Å.

We also added in spin-orbit coupling for completeness using the include_spin_orbit
keyword.

In conclusion, this section illustrates how a quick pre-relaxation followed by a safe cal-
culation of the relevant energy differences can be combined. The key point in this
endeavour is to ensure that the final relaxed geometry is accurate with as little compu-
tational overhead as possible.

442 Chapter 4. Running FHI-aims: Guides to specific tasks

4.3 k-point sampling in the Brillouin zone for
semiconductors

In a semiconductor, the choice of the k-grid is crucial for accurately sampling the Brillouin
zone, because the valence band maxima (VBM) and conduction band minima (CBM)
are usually located at high symmetry points. Here, we describe three different choices
for a k-grid offset:

• a Γ-centered grid,

• the grid suggested by Monkhorst and Pack [162] and

• an off-Γ grid.

They are defined as

ur =

r−q
q

Γ-centered,
2r−q−1

2q Monkhorst-Pack,
r−1
q

+ 1
2q off-Γ

(4.1)

where r = 1 . . . q and q is the total number of points. In Fig. (4.2, 4.3 and 4.4) the three
different shifts are illustrated. The Monkhorst-Pack grid1 agrees with the Γ-centered grid
for an uneven number of grid points and with the off−Γ grid for an even number of
points. The Γ-centered grid and sequentially the Monkhorst-Pack grid with an uneven
number of grid points include the Γ-point.
To achieve the relevant settings in the control.in file, two keywords have to be
changed. For the number of grid points the keyword k_grid needs to be speci-
fied:
k_grid n1 n2 n3,
where the numbers n1, n2, n3 are integers defining the number of splits along the re-
ciprocal vectors.
For the off-Γ and Monkhorst-Pack shift, a second keyword has to be given in the
control.in file:
k_offset f1 f2 f3,
where fi are fractional coordinates between zero and one. The offset can be defined
according to Eqn. (4.3).

k_offset

0.0 0.0 0.0 Γ-centered,
1
2 −

1
2n1

1
2 −

1
2n2

1
2 −

1
2n3

Monkhorst-Pack,
1

2n1
1

2n2
1

2n3
off-Γ

(4.2)

1One could argue that Monkhorst and Pack never intended their formula to be used for for odd
q. Still, for the sake of this section, “Monkhorst-Pack” refers to this definition.

4.3. k-point sampling in the Brillouin zone for semiconductors 443

Γ-centered: even number of points

(0,1)

(0.5,0)

(-0.5,-0.5)

(1,1)

(0,0.5)

(-0.5,0.5)

(0.5,-0.5)

(1,0)

Γ-centered: uneven number of points

(0,1)

(0.5,0)

(-0.5,-0.5)

(1,1)

(0,0.5)

(-0.5,0.5)

(0.5,-0.5)

(1,0)

Figure 4.2: The Γ-centered grid in two dimensions for even and uneven numbers of
grid points. In both cases the Γ-point is included in the grid.

Monkhorst-Pack: even number of points

(0,1)

(0.5,0)

(-0.5,-0.5)

(1,1)

(0,0.5)

(-0.5,0.5)

(0.5,-0.5)

(1,0)

Monkhorst-Pack: uneven number of points

(0,1)

(0.5,0)

(-0.5,-0.5)

(1,1)

(0,0.5)

(-0.5,0.5)

(0.5,-0.5)

(1,0)

Figure 4.3: The Monkhorst Pack grid [162] in two dimensions for even and uneven
numbers of grid points. In the left picture (uneven number of grid points) the Γ point
is included in the grid.

off-Γ: even number of points

(0,1)

(0.5,0)

(-0.5,-0.5)

(1,1)

(0,0.5)

(-0.5,0.5)

(0.5,-0.5)

(1,0)

off-Γ: uneven number of points

(0,1)

(0.5,0)

(-0.5,-0.5)

(1,1)

(0,0.5)

(-0.5,0.5)

(0.5,-0.5)

(1,0)

Figure 4.4: The off-Γ grid in two dimensions for even and uneven numbers of grid
points.

444 Chapter 4. Running FHI-aims: Guides to specific tasks

Figure 4.5: The crystal struc-
ture of silicon carbide in its
cubic zinc blende structure
(3C-SiC)

Here,we present a concrete example. Cubic silicium car-
bide (3C-SiC) is a semicoductor featuring an indirect
band gap between the Γ-point and the X-point [see
Fig. (4.7)]. In Fig. (4.5) the crystal structure of 3C-
SiC is shown. The crystal is similar to the zinc-blende
structure. The lattice constant was found to be 4.36 Å
[113].The k-grid was tested in terms of grid density in
the Brillouin zone and the three different shifts discussed
above.
As a reference energy the total energy was taken with a
k-grid of 25× 25× 25 k-points. In Fig. (4.6) the energy
differences |E(k = 25)− E(k)| are plotted on a logarith-

mic scale versus the number of k-points.
The oscillatory behaviour in Fig. (4.6) of the Monkhorst-Pack grid reflects the agreement
with the off-Γ grid in the case of an even number of grid points and the Γ-centered for
uneven number of grid points respectively.

typical convergence
criterion

Figure 4.6: The k-grid was tested with respect to the grid density and the shift of the grid
in reciprocal space. The shifts are defined in Eqn. (4.1).

4.3. k-point sampling in the Brillouin zone for semiconductors 445

b*

c*

a*

L

G

U W
K

X

Figure 4.7: The band structure of 3C-SiC
with tight, Tier 2 basis settings.

A typical convergence criterion for the
total energy is a value of 10−6 eV. In
Fig. (4.6) the dashed line marks the con-
vergence criterion. In the case of an off-Γ
shift the calculation is well converged with
a k-grid of 8×8×8. For a Γ-centered grid
the calculation did not reach convergence
with a grid of 14×14×14. As mentioned
before, in 3C-SiC the VBM is in the Γ-
point. Therefore the convergence of the
total energy with respect to the density of
the k-grid is slow for every grid including
the Γ-point, because the contribution of
the energy in the Γ-point is over-weighted.
In this case the off-Γ shift gives best con-
vergence.
We note the above conclusion is mainly
applicable for semiconductors. In a metal, the sampling of the Fermi-surface is crucial,
this demands a high k-grid density rather than a special off-set.

446 Chapter 4. Running FHI-aims: Guides to specific tasks

4.4 Plotting the band structure and density of
states of a solid

An example for plotting band structures and the density of states is contained in the
example for bulk silicon (diamond lattice) in the testcases directory. Likewise, the fcc Al
test case contains the necessary lines for control.in (just commented out).

This section contains a walk-through of the necessary steps and keywords to obtain
this band structure and density of states. First, let us look at the relevant lines in
control.in as given in the test case.

output DOS
output dos_tetrahedron -18. 0. 200

output band structure
output band 0.5 0.5 0.5 0.0 0.0 0.0 50 L Gamma
output band 0.0 0.0 0.0 0.0 0.5 0.5 50 Gamma X
output band 0.0 0.5 0.5 0.25 0.5 0.75 50 X W
output band 0.25 0.5 0.75 0.375 0.375 0.375 50 W K

To get an output of the band structure, use the keyword output band . Each ’
band ’ line covers a single line in reciprocal space, from a starting point to an end point
and with a given number of points inbetween.

The total density of states of the system is obtained by the ’ output dos_tetrahedron
’ line, from a starting single-particle energy to an ending single-particle energy, with a
specified number of points inbetween to create a smooth line (see section 3.38 for de-
tails). The tetrahedron here indicates the implementation of tetrahedron method to
achieve better integration accuracy.

The density of states of a solid is a continuous function, but originates from a Brillouin
zone integral,

g(ε) =
∑
n

∫
BZ
d3k δ(ε− εn(k)) . (4.3)

The index n runs over all bands, and k is the crystal momentum.

As it stands, this expression for the density of states creates a problem. We obtain it
from a discrete set of k-points, rather than as a continuous integral. The density of
states from a discrete k-mesh would thus be a sequence of δ-function peaks.

With the lines for band structure output, DOS output_tetrahedron in control.in, we
can run the example calculation in the testcases directory.

Once this is done, a number of new files have appeared (in addition to the usual stan-
dard output stream): The files band1XXX.out, KS_DOS_total_tetrahedron.dat, and
KS_DOS_total_raw_tetrahedron.dat.

These files contain the necessary information in column formats that can be manipulated
for further output with standard plotting tools. The result of such a manipulation is
shown in Fig. 4.8.

4.4. Plotting the band structure and density of states of a solid 447

Figure 4.8: Band structure and density of states of the bulk Si test case as generated by the
aimsplot.py script, which is located in the “utilities” directory. A schematic visualization
of the Brillouin zone of the fcc Bravais lattice including some high-symmetry k-points is
also shown (taken from Wikipedia).

However, it would be nice to not have to personally massage the output data every time
to get this kind of output. The script ’aimsplot.py’, located in the utilities directory,
should do this for you (type “aimsplot.py --help” for more information regarding
available options). Simply run it in the output directory, and a version of the band
structure and DOS should automatically appear as a png file.

Note: You will need python3 (not python2) to run aimsplot.py and you will need
a compatible version of matplotlib (a common python library) installed, or else the
aimsplot.py script will exit with a verbose but (to the uninitiated) cryptic error mes-
sage.

As there are various conventions for plotting the density of states, each possible DOS
plot produces two different output files. The first one, ending in “_raw.dat”, contains
the exact density of states, using exactly the same eigenvalue energies and energy zero
as internally in FHI-aims (in cluster systems, the energy zero is simply the vacuum level;
in periodic systems, the energy zero is set by the G=0 component of the long-range

448 Chapter 4. Running FHI-aims: Guides to specific tasks

electrostatic potential).

The file KS_DOS_total_tetrahedron.dat contains the same information, but the en-
ergy zero is shifted to the Fermi-level of the system. Note that, for metals, the Fermi
level is usually well defined. For insulators, it is not well defined, and may end up any-
where in the gap (at some location where FHI-aims finds the normalization criterion for
the number of electrons to be sufficiently fulfilled).

If, for a semiconductor, you wish to have the energy zero of a DOS shifted to the top
of the valence band, you will have to do this as an extra step. Identify the location of
the valence band edge (highest occupied level) either from the FHI-aims output or from
the band structure, and shift the x-axis of KS_DOS_total_tetrahedron.dat and other
files by the appropriate amount.

Except for the total density of states, there are also a few other options to obtain
densities of states with some local, spatial resolution. In particular:

• an atom-projected density of states, using output atom_proj_dos_tetrahedron

• an angular-momentum component projected density of states averaged over all
atoms of a single species, using the keyword output species_proj_dos_tetrahedron
. This is useful because different atoms of the same element may be grouped to-
gether as a separate species in control.in, e.g., all atoms in the first layer of a
slab. The species-projected density of states (but not currently the atom-projected
version) will also be automatically plotted by aimsplot.py.

Note that there are two useful projections of the DOS, both of which are based on a
Mulliken analysis. output species_proj_dos_tetrahedron can be used to get a
species-dependent angular momentum projection, while output atom_proj_dos_tetrahedron
resolves the states into the various atomic angular-momentum contributions.

As mentioned above, the species_proj_dos_tetrahedron keyword can also be
used to get the DOS contribution from a whole group of atoms at once. Just duplicate
the species defaults for the element(s) in question in control.in, give the species a
new name, and then use that new species (say) for all surface atoms in geometry.in.
This will get you the density of states contribution from all surface atoms.

Finally, an element-decomposed version of the band structure can also be obtained,
using the output band_mulliken keyword as an alternative. Two separate
scripts for visualization are available in the utilities directory, band_mlk.py and
band_mlk_soc.py, for non-SOC and SOC, respectively. Like aimsplot.py, these
scripts are intended as starting points for plotting purposes and should be customized
further, if necessary. The python matplotlib library is used to generate these plots and
documentation of this package is available online.

4.5. Visualizing charge densities and orbitals 449

4.5 Visualizing charge densities and orbitals

Charge densities, orbitals, etc. can be written onto a cartesian grid in the “cube” file
format (see below, as well as Section 3.38, specifically the output keyword and the
cube subkeyword described there). The visualization described in this section pertains
to a simple H2O molecule, and can be repeated for example for the relaxed geometry
obtained in the relaxation testrun for H2O in this distribution.

After running FHI-aims for the desired target geometry with the appropriate output flags
(see Section 3.38), some files will be generated, all of which have the extension “*.cube".
In the H2O example shown in this section, the calculation was run with tier 2 basis set,
which should produce a more accurate charge density, and the parameters entered in the
control.in file were:

output cube total_density
cube origin 0.0 0.0 0.0
cube edge 29 0.15 0.0 0.0
cube edge 29 0.0 0.15 0.0
cube edge 29 0.0 0.0 0.15

output cube eigenstate 5
output cube eigenstate 6

The “Gaussian CUBE" files are written in a file format originally defined by the “Gaus-
sian” program package, but now implemented as a de facto standard by many visualiza-
tion programs. In this section, an example of how to visualize them using jmol program
[116] is presented.

The CUBE files are composed of a header and the volumetric data. The header is divided
in the following manner:

• 1st and 2nd lines: text ignored by visualization programs

• 3rd line: number of atoms in the file followed by the origin around which the
volumetric data will be plotted.

• 4th, 5th, and 6th lines: number of points to be plotted, followed by the axis vector.

• 7th line on, until the end of the header: one line for each atom of the system,
consisting of atomic number, followed by the atom xyz position.

An example of such a header with the beginning of the volumetric data is given below:

CUBE FILE written by FHI-AIMS

3 -2.100000 -2.100000 -2.100000
29 0.150000 0.000000 0.000000
29 0.000000 0.150000 0.000000

450 Chapter 4. Running FHI-aims: Guides to specific tasks

29 0.000000 0.000000 0.150000
8 0.000000 0.000000 0.000000 0.000000
1 0.000000 0.707000 -0.707000 0.000000
1 0.000000 -0.707000 -0.707000 0.000000

0.12810E-04 0.18208E-04 0.25394E-04 0.34819E-04 0.46974E-04 0.62322E-04
0.81196E-04 0.10365E-03 0.12928E-03 0.15704E-03 0.18520E-03 0.21135E-03
0.23277E-03 0.24687E-03 0.25180E-03 0.24687E-03 0.23277E-03 0.21135E-03
.
.
.

In order to visualize these files in jmol, open the program and open the script con-
sole. Load a cube file, for example the total electronic density, by typing the following
command:

> load "total_density.cube"

This will show your molecule. In order to visualize the surfaces, one must use the
“isosurface" command. It has a myriad of options, all of which are explained in the jmol
documentation [116], as of this writing located at http://chemapps.stolaf.edu/
jmol/docs/#isosurface. As an example, in order to plot a volume, the command is:

> isosurface cutoff <cutoff> "total_density.cube"

The field <cutoff> specifies a radius for the surface, since all values equal too or less
than this one will be plotted.

Although these files are written by default in Å, some programs (including jmol), read
them in atomic units (bohr) by default. In the utilities/ folder, one can find the
angstrom_to_bohr.pl script that converts the CUBE files to atomic units.

Plotting planes is also very easy, and the command is, for example:

> isosurface plane <plane_position> <other_options> "total_density.cube"

The field <plane_position> can either specify the axis that define your plane (e.g. xy)
or three atoms, whose centers will specify the plane (syntax: (atomno=1) (atomno=2)
(atomno=3)). The field <other_options> may contain all sorts of color scheme and/or
cutoff specifications.

One can plot as many isosurfaces simultaneously as one wishes. The command to delete
them is simply:

> isosurface delete

Some example images and their respective commands are shown in Figure 4.9. The
CUBE files shown were all converted to atomic units.

http://chemapps.stolaf.edu/jmol/docs/#isosurface
http://chemapps.stolaf.edu/jmol/docs/#isosurface

4.5. Visualizing charge densities and orbitals 451

(a) (b)

(c) (d)

Figure 4.9: Jmol plots of charge densities and orbitals.

452 Chapter 4. Running FHI-aims: Guides to specific tasks

4.6 Computation of vibrational and phonon
properties

Vibrations (non-periodic structures) and phonons (periodic structures) can be computed
in FHI-aims within different approaches. On the one hand, there is the finite-difference
approach. On the other hand, vibrational and phonon properties are accessible through
density-funtctional prturbation theory (DFPT). Note that currently the DFPT part is
still considered experimental as, e.g., not all XC functionals are supported. Thus, for
production calculations we recommend to use the finite-difference methods described
below. (Or you know what you are doing. However, cross-checks with finite-difference
methods are recommended anyway.)

Currently, vibrational frequencies via the finite-difference method can be calculated in
two ways:

4.6.1 Perl script: aims.vibrations.*.pl (non-periodic systems)

There is an older perl script and source codes for this step for the entire finite-difference
calculation included with FHI-aims. To compile the tools with CMake, use the tar-
get name vibrations, e.g., make -j vibrations. Location of the Perl script for
running the calculations is shown at the end of the make output. Otherwise, when
using Makefile and its backend, change into the src/ directory, from which you also
compiled the original FHI-aims. With the same Makefile settings as for the main pro-
gram, type either make vibrations, make vibrations.mpi, or (in most cases) make
vibrations.scalapack.mpi.

For the FHI-aims vibrations target, we recommend the vibrations target with CMake
and the vibrations.scalapack.mpi target with Makefile. Here is an example initial
cache file to use with CMake:

set(CMAKE_Fortran_COMPILER "mpif90" CACHE STRING "")
set(CMAKE_Fortran_FLAGS "-O3 -ip -fp-model precise" CACHE STRING "")
set(Fortran_MIN_FLAGS "-O0 -fp-model precise" CACHE STRING "")
set(CMAKE_C_COMPILER "icc" CACHE STRING "")
set(CMAKE_C_FLAGS "-O3 -ip -fp-model precise -std=gnu99" CACHE STRING "")
set(LIB_PATHS "/opt/intel/mkl/lib/intel64" CACHE STRING "")
set(LIBS "mkl_intel_lp64 mkl_sequential mkl_core
mkl_blacs_intelmpi_lp64 mkl_scalapack_lp64" CACHE STRING "")

This will create two files in the FHI-aims binary directory. One is the actual diag-
onalization subprogram, the other one the perl-wrapper. You will need to edit
the header of the perl-wrapper scripts and give three key parameters: The abso-
lute location of the FHI-aims binary directory ($AIMS_BINDIR), the aims executable to
be used ($EXE), and the calling command for the executable ($CALLING_PREFIX and
$CALLING_SUFFIX). The $CALLING_PREFIX is required for specification of parallel runs,
for example

4.6. Computation of vibrational and phonon properties 453

$CALLING_PREFIX = mpirun -np 2

for a two-core parallel run. In addition, some parallel environments (most notably IBM’s
poe require that the number of cores is specified after the executable is called, for those
instances you can set $CALLING_PREFIX. Note that the postprocessing routines for the
vibrations are also parallel.

Having compiled the vibrations script, running it is very simple. We use the same water
molecule that was relaxed in the example section 4.1. This test case is contained in the
directory testcases/H2O-vibrations.

We are here calculating a second derivative of the energy from the numerical change on
the forces arising from small finite displacements δ, in the following way:

∂E

∂xi∂xj
= F i(xj + δ)− F i(xj − δ)

2δ (4.4)

Here, E is the total energy as a function of all atomic coordinates xi (i=1,...,3M for M
individual atoms), and F i are the components of the analytical first derivatives (forces)
on each atom (again, i=1,...,3M) due to a displacement of coordinate another xj by an
amount plus or minus δ.

Since we are interested in the Hessian in a local minimum of the potential energy surface
(ideally, F i({xj})=0 for all i at the local minimum geometry {xj}), this expression is
the difference of two force values that are themselves already near zero. The smaller
the displacement δ, the smaller the absolute magnitude of the forces to be subtracted,
giving greater weight to any residual numerical noise in the calculation. The larger the
displacement δ, the larger does the difference become, but at the same time, we will
also move out of the region of the potential energy surface that is exactly harmonic,
and introduce systematic errors into the Hessian. We are thus faced with a tradeoff
between choosing a value δ that is large enough to be free of any potential numerical
noise, yet small enough to avoid large systematic errors due to real anharmonicities. The
default value for δ is 0.0025 Å, but this value should be checked explicitly in any practical
calculation.

Since the vibrational frequencies depend strongly on the accuracy of the forces, and on
any near-zero residual forces on the fully relaxed geometry itself, we apply the following
changes to the earlier file control.in:

• We use the tight species defaults for elements H and O. Among other things,
these defaults prescribe denser integration grids than light and thus lead to more
accurate forces. Obviously, the previous optimum geometry from the light settings
should be postrelaxed to the exact minimum for the modified tight settings, and
our script does this automatically (but check the output just in case).

• We increase the accuracy to which the forces are converged in the self-consistency
cycle, sc_accuracy_forces , to 1E-5. However, be sure to check that the
remaining settings, especially sc_accuracy_eev are accurate enough. You
do not want your FHI-aims calculation to spend more than 1-2 s.c.f. cycles per
geometry on actually converging the forces, because each s.c.f. iteration with

454 Chapter 4. Running FHI-aims: Guides to specific tasks

forces can be up to a factor 10 more expensive than an s.c.f. iteration during
which the forces are not yet checked.

• We change the relax_geometry bfgs convergence criterion to 1E-4. This
is, again, a rather harsh requirement, and one should verify (especially for large
molecules) that the relaxation algorithm is not spending large amounts of time
on failed relaxation steps near the minimum, probing any residual numerical noise
of integration grids etc. rather than following an actual, smooth potential energy
surface.

These new settings contain all that is necessary to get close enough to the actual
minimum. Again, the convergence settings quoted above should normally be fine, but
in case of doubt, check. If, for some reason, those stringent criteria can not be reached
exactly, it is still preferable to obtain a slightly less converged Hessian within an amount
of CPU time that is actually finite.

In order to run the calculation of the vibrations, change to the directory containing
the input files control.in and geometry.in and run the aims.vibration.*.pl script in
the directory. That’s it. The calculation should take no more than a few minutes to
complete. It first relaxes the structure to its minimum configuration and then applies six
finite displacements to each of the atoms: 18 single-point calculations in total for the
water molecule. The result (using the default settings for δ) can be visited in subdirectory
test_default.

The output stream contains all of the important data, which is additionally saved in
a number of temporary and output files. The file basic.vib.out contains the output
of the normal mode analysis, while the file basic.xyz contains the actual eigenmodes
(vibrations), which can be read by a number of molecular viewers.

A short note on the actual physical output basic.vib.out: The frequencies are given
in cm1, the corresponding zero point energies in eV, and their cumulative total. It is
important to ensure that the first six eigenmodes are close to zero, which means that
the structure in question actually corresponds to a minimum on the potential energy
surface. FHI-aims does not do an a priori reduction of the translational and rotational
eigenmodes, which allows an explicit check on the quality of the strucure.

In the default version (no command line options specified), the vibration script automat-
ically assumes a jobname basic. This name, as well as the finite difference displacement
δ, can be changed on the command line, leading to the following complete calling form
of the script:

aims.vibrations.*.pl 〈jobname〉 delta

〈jobname〉 is a name of choice that will be appended to all output files produced during
the run. One can thus run the same job with different settings δ multiple times in the
same directory, starting from the same input files.

The second parameter, delta, is the finite displacement δ used for calculating the
Hessian matrix. Its default is 0.0025 Å, which has been doing a good job for all the
cases we are aware of, but still, please verify that it works for your particular system.
(See the brief discussion above).

4.6. Computation of vibrational and phonon properties 455

For example, for our test case, subdirectory test_delta_0.001 contains a second ex-
ample run with the following command line:

aims.vibrations.*.pl test_0.001 0.001

For the default settings, our resulting frequencies look like this:

Mode number Frequency [cm^(-1)] Zero point energy [eV] IR-intensity [D^2/Ang^2]
1 -12.66044778 -0.00078485 1.89406419
2 -0.15559990 -0.00000965 0.00266735
3 -0.00081379 -0.00000005 0.00000000
4 0.04885082 0.00000303 0.00002821
5 6.58934967 0.00040849 0.00000000
6 7.01167236 0.00043467 5.41560478
7 1592.96295435 0.09875111 1.63341394
8 3708.86739272 0.22992045 0.04298854
9 3813.74446188 0.23642200 1.07616306

In contrast, the smaller value δ=0.001 Å produces the following results:

Mode number Frequency [cm^(-1)] Zero point energy [eV] IR-intensity [D^2/Ang^2]
1 -5.13719038 -0.00031847 1.89407621
2 -0.06616895 -0.00000410 0.00323346
3 -0.00073155 -0.00000005 0.00000000
4 0.01938144 0.00000120 0.00002697
5 2.47172391 0.00015323 0.00000000
6 2.70760068 0.00016785 5.41498492
7 1593.00852915 0.09875393 1.63340808
8 3708.82166272 0.22991761 0.04299176
9 3813.70936996 0.23641982 1.07615430

So, in this case, the rather tight relaxation and force convergence settings do produce a
set of translations and rotations that are closer to zero for δ=0.001 Å than the default.

However, once again be warned that for larger molecules the same harsh convergence
criteria may not be applicable, and a too small value δ can in fact inflate any residual
noise. So, a small value δ=0.001 Å or even less should not be blindly expected to
improve numerical accuracy.

It should also be noted that the “physical” vibrational frequencies 7-9, above the six
translations and rotations, remain completely unimpressed by the change of δ, either
way. This is generally true, and would even remain true for a yet larger value δ=0.005 Å,
which would also be a reasonable default choice.

Finally, a word about restarting the aims.vibrations.*.pl script if it performed a
part of the needed single-point force calculations but did not finish all of them, typically
as a result of queue time limits on a shared computer. In short, one can simply restart
the script in the same directory as before right away. The script will figure out how far
it got during its last run and it will then pick up from there to continue and eventually
finish the calculation of vibrational frequencies and free-energy terms.

Raman spectra: A third optional argument is available in the vibrations script, which
allows for the calculation of harmonic Raman spectra. In order to obtain such spectra,
one should type the following,

456 Chapter 4. Running FHI-aims: Guides to specific tasks

aims.vibrations.*.pl 〈jobname〉 delta polar .

The polarizabilities are obtained with DFPT, and the derivatives with respect to the
displacement are then calculated in a similar way as for IR spectra. All the formulae can
be found in the following reference: Neugebauer et al., J. Comput. Chem. 23: 895-910,
2002. In particular, Eq. (43) is used to produce the final Raman intensities. Keep in
mind that Raman spectra obtained in such fashion are much more time-consuming than
IR spectra, the latter requiring only DFT. Note that Raman spectra for solids can also
be calculated in this manner (only Γ-point is involved). The Raman intensities that are
outputted from this script correspond to combinations of the different tensor components
combined to form what is commonly called “powder” spectrum.

In the following we provide the description of tags defining the output of free energies.

Tag: vibrations (control.in)

Usage: vibrations [subkeywords and their options]

Purpose: allows to choose temperature/pressure range for output of free
energies. It has the subkeywords free_energy , trans_free_energy , as
detailed below.

vibrations sub-tag: free_energy (control.in)

Usage: vibrations free_energy Tstart Tend Tpoints

Purpose: governs the calculation of the free energies of vibration and rotation
(rigid rotor approximation)

The calculation of the free energy of vibration and rotation (rigid rotor approximation)
can be requested with this keyword. They are calculated between the temperatures
Tstart (K) and Tend (K) with a total of Tpoints steps. The implemented equations
read:

Fvib(T) =
3N−6∑
i

[
~ωi
2 + kBT ln

(
1− e

−~ωi
kBT

)]
, (4.5)

with N being the number of atoms in the molecule and ωi depicting the vibrational
frequencies.

Frot(T) = −3
2kBT ln

[
2kBT
~2 (IAIBIC)1/3π1/3

]
, (4.6)

where IA, IB, and IC depict the moments of inertia of the molecule.

vibrations sub-tag: trans_free_energy (control.in)

Usage: vibrations trans_free_energy pstart pend ppoints

Purpose: governs the calculation of the translational free energy

The calculation of the free energy of translation can be requested with this keyword.

4.6. Computation of vibrational and phonon properties 457

It only works if vibrations free_energy is used as well. The free energy
of translation is calculated within the temperature range given with vibrations
free_energy and between pressures pstart (Pa) and pend (Pa) with ppoints steps.
The equation reads:

Ftrans = −kBT
[
ln kBT

p
+ 1 + ln(mkBT2π~2)3/2

]
, (4.7)

with p denoting the partial pressure.

4.6.2 Python script: get_vibrations.py (non-periodic and
periodic (Γ-point only) systems)

A newer implementation of the same technique (finite-difference approach) as the Perl
script can be achieved through a python script get_vibrations.py found in folder
Utilities, and through which the running mechanism of this script is described below.
The script works for nonperiodic and periodic systems (only Γ-point) as well.
python get_vibrations.py [options] <name> <mode>
The script functions in three modes:

• mode 0: The script creates folders containing the aims input files for single cal-
culations. These are the 6N calculations for the N unconstrained atoms in the
geometry.in in the execution path. The atoms are displaced by +/-delta (default
0.0025Å) in x, y, and z. Moreover, the control.in is copied to all folders.

• mode 1: The script creates folders containing the aims input files for force cal-
culations. These are the 6N calculations for the N unconstrained atoms in the
geometry.in in the execution path. The atoms are displaced by +/-delta (default
0.0025Å) in x, y, and z. Moreover, the control.in is copied to all folders with force
output flags. The hessian matrix, eigenvectors, normal modes and their corre-
sponding frequencies are calculated and saved.

• mode 2: The script creates folders containing the aims input files for force cal-
culations. These are the 6N calculations for the N unconstrained atoms in the
geometry.in in the execution path. The atoms are displaced by +/-delta (default
0.0025Å) in x, y, and z. Moreover, the control.in is copied to all folders with
polarization/dipole, DFPT or both calculations flags depends on what the user
decides to calculate IR, Raman or both.

The available options with the discussed modes:

• -r : Running aims, it should be followed with the path to aims executable (mode
2 and 3).

458 Chapter 4. Running FHI-aims: Guides to specific tasks

• -s : To run more than one core (mode 2 and 3).

• -x : Relaxing the structure before proceeding with vibrational calculations (mode
1,2 and 3).

• -d : The amount of displacement in AA along Cartesian coordinates(mode 1,2 and
3), default is 0.0025 AA.

• -p : Plotting the spectra (Raman/IR) (mode 2 only).

• -b : Broadening for IR and Raman spectrum in cm−1, default is 5.

• -w : If imaginary frequencies are present, then files of the system displaced along
the geometries of the imaginary frequencies are outputted (mode 2 and 3).

• -m : Printing the geometries, frequencies and vibrations in molden format.

• -M : For calculating both Raman and infrared intensities (mode 2 only).

• -R : For calculating Raman intensities only (mode 2 only).

• -I : For calculating infrared intensities only (mode 2 only).

• -n : For calculating infrared intensities of periodic systems the polarization grid
should be specified (-n nx ny nz), should be added after -M or -I.

• --kx --ky --kz : Each should be followed by three integers, these options represent
the polarization grid along reciprocal lattice vectors 1,2 and 3 respectively (should
be added after -M or -I).

For further details about the calculation of the polarization of solids from the Berry
phase formalism, please see Section 3.29, where the k-point grid mentioned above is
better explained.

Examples

1. python get_vibrations.py name 0 -x : Creating all folders as discussed above including
an additional file for relaxation.
2. python get_vibrations.py name -r path − to − aims − excutable 1 -w: Creating all
folders as discussed above, aims will be running in these folders one after the other. The
output files will be:

• masses.name.dat : Atomic mass of atoms in a.m.u and their position as in geom-
etry.in .

• hessian.name.dat : Hessian matrix before mass weighting.

• massweighted_Hessian.name.dat : Mass weighted hessian matrix (Dynamical ma-
trix.)

4.6. Computation of vibrational and phonon properties 459

• mass_vec.name.dat : Diagonal matrix of 1/sqrt(mass)

• eigen_vectors.name.dat: Normal modes written in a matrix form, each column
corresponds to a normal mode arranged from lower to higher frequency.

• car_eig_vec.name.dat : Eigen vectors that are not normalized (not mass weighted).

• normalmodes.name.dat: Normal modes and their corresponding frequencies.

• name.distorted.vibration : Geometry displaced along imaginary frequency mode (if
exists).

3. python get_vibrations.py name -r path− to−aims−excutable 2 -R -p -m > output:
Creating all folders as discussed above including an additional with no previous relax-
ation, aims will be running in these folders one after the other. The output files will be:

• masses.name.dat: Atomic mass of atoms in a.m.u and their position as in geom-
etry.in .

• hessian.name.dat: Hessian matrix before mass weighting.

• grad_dipole.name.dat: Derivative of dipole moment with respect to displacement
delta.

• name.Raman: Raman intensities and the corresponding frequencies.

• name.molden: Molden geometries and displacements for the mode.

• name.xyz: All vibrational displacement, this file can be opened using jmol to view
the vibrations.

• name_Raman_spectrum.pdf: Raman spectra plot

4. python get_vibrations.py name -r path − to − aims − excutable 2 -I −−kx 4 2 2
−−ky 2 4 2 −−kz 2 2 4 -p > output:
Creating all folders as discussed above including an additional with no previous relaxation,
aims will be running in these folders one after the other to find the infrared intensity for
periodic system. The output files will be:

• masses.name.dat: Atomic mass of atoms in a.m.u and their position as in geom-
etry.in .

• hessian.name.dat: Hessian matrix before mass weighting.

• grad_dipole.name.dat: Derivative of dipole moment with respect to displacement
delta.

• name.ir: Infrared intensities and the corresponding frequencies.

460 Chapter 4. Running FHI-aims: Guides to specific tasks

• name.molden: Molden geometries and displacements for the mode.

• name.xyz: All vibrational displacement, this file can be opened using jmol to view
the vibrations.

• name_IR_spectrum.pdf: IR spectra plot

It is important to note that the atoms that will not enter in the vibrational
analysis are followed with constrain_relaxation .true. in geometry.in file

Theory

The theory behind the calculation of the hessian, harmonic Raman and infrared intensity
is explained in the previous subsection of the Perl script. However, for the IR calculation
in the nonperiodic system, the infrared is calculated directly from the dipole, while, in
periodic systems it is calculated from the polarization multiplied with the unit cell volume.

4.6.3 Vibrations and Polarizability by DFPT within FHI-aims
(non-periodic systems)

The following lists the keywords to activate the calculation of the vibrational frequencies
with DFPT.

Tag: DFPT vibration (control.in)

Usage: DFPT vibration [subkeywords and their options]

Purpose: Allows to calculate vibrations using density-functional perturbation
theory, use Acoustic Sum Rule (ASR) to get Hessian matrix, do not use
moving-grid-effect.

Usage: DFPT vibration_with_moving_grid_effect [subkeywords and
their options]

Purpose: give the results for vibrations with moving-grid-effect, do not use ASR
for Hessian matrix.

Usage: DFPT vibration_without_moving_grid_effect [subkeywords
and their options]

Purpose: give the results for vibrations without moving-grid-effect, ONLY served
as comparison with vibration_with_moving_grid_effect.

Tag: DFPT vibration_reduce_memory (control.in)

4.6. Computation of vibrational and phonon properties 461

Usage: DFPT vibration_reduce_memory [subkeywords and their
options]

Purpose: Allows to calculate vibrations density-functional perturbation theory
by using nearly the same memory as DFT. At present, functionals LDA,
PBE are supported, relativistic is also supported. It should be noted that
PBE and PBE+TS is supported only for DFPT cycle (first-order-H), but
not for Hessian. Only linear-mix (no Pulay-mixer) can be used for DFPT
vibration_reduce_memory at present.

Here is an example, the following need to be added to control.in:

DFPT vibration_reduce_memory
DFPT_mixing 0.2 #default is 0.2
DFPT_sc_accuracy_dm 1E-6 # default is 1.0d-6

Tag: DFPT polarizability (control.in)

Usage: DFPT polarizability [subkeywords and their options]

Purpose: Allows to calculate polarizability for cluster systems using density-
functional perturbation theory.
For "DFPT polarizability", functionals LDA, PBE, HF(RI-V) are supported, rela-
tivistic is also supported.

Here is an example for using DFPT polarizability, the following need to be added to
control.in:

DFPT polarizability
DFPT_mixing 0.5 #default is 0.2
DFPT_sc_accuracy_dm 1.0d-6 # default is 1.0d-3
dfpt_pulay_steps 6 # default is 8

4.6.4 Phonons via FHI-vibes and Phonopy (periodic systems)

The recommended way to compute phonon properties with FHI-aims is through the
Python package FHI-vibes [123]. FHI-vibes is a python package built on top of the
Atomic Simulation Environment (ASE, [137]), and tightly integrates FHI-aims with
phonopy [218]. With that, FHI-vibes provides a unified user interface to run and
process the necessary calculations. It thus allows harmonic phonon calculations via
phonopy [218], but also gives access to more advanced analysis and post-processing
methods, especially for the study of anharmonic effects.

Details on how to obtain, set up, and use FHI-vibes –including tutorials on how to
perform phonon calculations– can be found in the official documentation: https://
vibes.fhi-berlin.mpg.de/.

https://vibes.fhi-berlin.mpg.de/
https://vibes.fhi-berlin.mpg.de/

462 Chapter 4. Running FHI-aims: Guides to specific tasks

Alternatively, it is also possible to use phonopy directly (without FHI-vibes) by using the
interface to FHI-aims included in phonopy (Version 2.5 and higher). Documentation and
examples can be found in the phonopy source code at https://github.com/phonopy/
phonopy/tree/develop/example/diamond-FHI-aims (cf. README.md).

Please note: The former interface phonopy-FHI-aims is not officially supported any-
more. The last FHI-aims release including phonopy-FHI-aims and respective documen-
tation was the 210226 release.

Note that the former, native phonon infrastucture in FHI-aims is no longer needed.
The previous make targets phonons and phonons.mpi still exist, but we no longer
recommend them. FHI-vibes/Phonopy is, simply, more stable and general.

4.6.5 Phonons by DFPT within FHI-aims (periodic systems)

A third level of infrastructure for vibrations and phonons in non-periodic and periodic
systems based on density functional perturbation theory (DFPT) is nearing readiness and
usable to some degree. However, parts of this implementation are not yet optimized.
The DFPT implementation should therefore still be considered experimental at this time.
We recommend to cross-check the DFPT results always with finite-difference methods
described above.

Tag: DFPT phonon (control.in)

Usage: DFPT phonon [subkeywords and their options]

Purpose: Allows to calculate phonon (real space method) for PBC systems using
density-functional perturbation theory. This method could get force constants
using real space method and give the phonon band structures. At present, only
functionals LDA without relativistic is supported.

Here is an example for using DFPT phonon, the following need to be added to control.in:

DFPT phonon
DFPT_mixing 0.5 #default is 0.2
DFPT_sc_accuracy_dm 1.0d-6 # default is 1.0d-3
dfpt_pulay_steps 6 # default is 8

Tag: DFPT phonon_reduce_memory (control.in)

https://github.com/phonopy/phonopy/tree/develop/example/diamond-FHI-aims
https://github.com/phonopy/phonopy/tree/develop/example/diamond-FHI-aims

4.6. Computation of vibrational and phonon properties 463

Usage: DFPT phonon_reduce_memory [subkeywords and their
options]

Purpose: Allows to calculate phonon (reciprocal space method) at q point
for PBC systems using density-functional perturbation theory. At present, this
keyword only works to get dynamic matrix at q = 0. This feature is under
developing. At present, functionals LDA, PBE are supported, relativistic is also
supported. It should be noted that PBE and PBE+TS is supported only for
DFPT cycle (first-order-H), but not for Hessian.

Here is an example for using DFPT phonon_reduce_memory, the following need to be
added to control.in:

DFPT phonon_reduce_memory
DFPT_mixing 0.5 #default is 0.2
DFPT_sc_accuracy_dm 1.0d-6 # default is 1.0d-3
dfpt_pulay_steps 6 # default is 8

464 Chapter 4. Running FHI-aims: Guides to specific tasks

4.7 Restarting FHI-aims calculations

This section gives background information on restarts in FHI-aims.

4.7.1 General restart procedure

Calculations can be restarted from previous wavefunctions using the keyword restart
. In general, restarting the same calculation on the same computer using the same
number of MPI-tasks will always work.

Important — Rotated systems: FHI-aims wavefunctions are not symmetry-aware.
While the same restart file can be used for molecules translated by a vector, this does
not work for rotated molecules. For a way to restart systems with rotated geometries
or superpositions of molecular densities see Section 4.7.4.

FHI-aims has two main means of saving the wavefunction for a later restart, depending
on the used keywords.

Kohn–Sham eigenvector ("wavefunction"): This is the default case always used
for calculations using KS_method serial. The saved file contains some informa-
tion on the system (number of basis functions, states, spin, k-points), the Kohn–Sham
eigenvector, eigenvalues and occupations.

Kohn–Sham density matrix ("density matrix"): This variant is only used for cal-
culations using KS_method parallel. The saved file contains the density matrix
(n̂ij = ∑

l flcilcjl), either in full or sparse storage.

The corresponding keywords determining which version of storage is used are KS_method
and density_update_method . See Fig. 4.10 for possible options and outcomes.

Figure 4.10: Scheme of different restart types depending on used methods.

For technical reasons there is not one single way, but the above mentioned variants with
again, variants.

The density matrix based restart always writes one file per spin-channel, no matter
how many parallel MPI tasks are used. The wavefunction based restart generally writes
a single restart file for all cluster calculations and one file per MPI-task for periodic

4.7. Restarting FHI-aims calculations 465

calculations. Due to this periodic calculations using the wavefunction restart need to be
restarted with the same number of MPI-tasks.

4.7.2 Mixing variants - the "force_single_restartfile" option

For a subset of possible calculations the above described differences are not valid and
it is possible to restart different calculations using one type of restart file. This is
the case for all possible cluster calculations (using either KS_method serial or
KS_method parallel) and for periodic calculations with only 1 k-point, Γ-only (using
either KS_method serial or KS_method parallel.

This is implemented via the keyword force_single_restartfile . Using this
functionality, it is for example possible to profit from the parallel ELPA solver for huge
systems and still get a file containing the KS-wavefunction for post-processing.

4.7.3 Comments on the ’restart’ starting point and on
self-consistency

As noted in the description of the restart keyword, it is important to note that the
restart infrastructure corresponds to a restart from the last Kohn-Sham orbitals, not
from the last density.

In practice, this means that the code will restart from the last unmixed Kohn-Sham
density, not from the last mixed density. When restarting from a non-selfconsistent
starting point, this can lead to unexpected jumps in the calculated non-selfconsistent
total energy between the “old” and the “new” (restarted) FHI-aims run.

Only the self-consistent total energy is truly meaningful. This quantity (the self-consistent)
total energy should be the same for the same stationary density, when approached from
different starting densities. However, note additionally that some systems may exhibit
several different self-consistent stationary densities even for the exact same atomic posi-
tions and for the exact same density functional. A simple example are antiferromagnetic
vs. ferromagnetic spin states in some systems. In such cases, the true ground state in a
DFT sense is the stationary density that yields the lowest energy. It can be found by way
of a global search for different stationary densities, usually by varying the initial density
guess.

4.7.4 Rotating the FHI-aims wavefunction

This feature is new and tested for the case of weakly interacting organic molecules as
can be found in organic crystals. If you encounter any problems or strange behaviour,
please let us know!

In many molecular systems a rotation does not change the electron density (or wave-
function) of a system. Therefore, the same wavefunction can be used again to restart
such a calculaction.

466 Chapter 4. Running FHI-aims: Guides to specific tasks

This is especially true for weakly interacting systems such as van-der-Waals bound or-
ganic crystals. In these cases, the wavefunction of each single molecule in the crystals
is not too different from the isolated wavefunction of a single molecule. This can be
exploited to start a FHI-aims calculation of huge molecular systems from a superposition
of molecular densities instead of the usual superposition of atomic densities.

This functionality is implemented as an external tool using Python and can be found in
the FHI-aims repository itself (Python-package aimsutils) or at https://gitlab.lrz.
de/theochem/aimsutils.

If you use this functionality, please cite C. Schober, K. Reuter, H. Oberhofer, J. Chem.
Phys., 144:054103, 2016 [200].

Important pre-requisites

This functionality only works for restart files containing the wavefunction of the system,
not the density matrix. Therefore, please make sure you have wavefunction restart files
or use the option force_single_restartfile . The FHI-aims output file of the
calculation is also necessary.

Rotations can be defined via Euler angles in zyz convention or quaternions. To avoid any
confusions with rotational conventions (especially with Euler angles), the input geometry
will be rotated and saved using the same rotation matrix. Please be sure to check
if your expected and the actual rotation are the same (or directly use the generated
geometry.in).

The final rotated restart file is again in the wavefunction format.

- example_calc
|
+-- control.in
+-- geometry.in # necessary
+-- aims.out # necessary
+-- restart.wavefunction # name can be anything, will be parsed from outfile

Examples

The two examples are shown using pre-defined scripts, but it is totally possibly to use the
Python package directly. The full Python API is available via the Sphinx-documentation
of the aimsutils package.

Rotation of a single system: The script RotateSingle.py can be used to create
the rotated geometry and restart for a single calculation.

$: # RotateSingle alpha beta gamma -t x y z
’-----.-----’ ’---.---’
Euler angles translation vector

https://gitlab.lrz.de/theochem/aimsutils
https://gitlab.lrz.de/theochem/aimsutils

4.7. Restarting FHI-aims calculations 467

$: RotateSingle 45 0 123 5.4 2.3 6.3

$: # RotateSingle x_i x_j x_k x_l -t x y z
’------.------’ ’---.---’

quaternion translation vector
$: RotateSingle 0.33 -0.12 0.44 0.84 5.4 2.3 6.3

This will create a subfolder rotated with the new restart.combined and geometry.in.

Rotation and combination of wavefunctions The script RotateMany.py reads a
instruction file (rotations.in) with the following format:

Comments or empty lines are ignored

title will also be foldername
title project_x
lattice vector for new cell if any
lattice_vector 11.2 0.00 0.00
lattice_vector 0.00 10.5 0.00
lattice_vector 0.00 0.00 10.7
now all rotated molecules
Euler angles (zyz)
alpha beta gamma x y z parent_molecule
33.4 12.4 167.0 10. 0. 0. calc_2
0. 45. 0. 3.5 2.1 5.4 calc_1

130. 90. 23. 0. 2.6 12. calc_3
OR Quaternion
x_i x_j x_k x_l x y z
-0.4 0.15 0.33 -0.84 4 0 0 calc_2
-0.2 0.45 0.13 0.84 0 2 0 calc_1
0.0 0.00 0.00 -0.32 4 4 5 calc_3

The necessary converged FHI-aims calculations must be in subfolders with the appropri-
ate name:

- calc_something/ (main calculation folder)
|
+-- rotations.in
+-- calc1/

|
+-- ...

+-- calc2/
|
+-- ...

+-- calc3/
|

468 Chapter 4. Running FHI-aims: Guides to specific tasks

+-- ...

This will create a subfolder project_x with the rotated wavefunction assembled from
the individual calculations defined in the script (restart.combined) and geometry
(geometry.in).

Theory

The following should give a summary of how the rotation of wavefunctions can be done
with FHI-aims. For details on the used methods and mathematics, please have a look
at the references.

In FHIaims, a basis function is defined as

Φi,lm = ui(r)
r
· Sl,m(θ, φ), (4.8)

with Sl,m(θ, φ) being real valued spherical harmonics. These are obtained from the
complex spherical harmonics Ylm via

Sl,m(θ, φ) =

(−1)m√
(2)

(Ylm + Y ∗lm) m > 0

Yl0 m = 0
(−1)m

i
√

(2)
(Yl|m| − Y ∗l|m|) m < 0

(4.9)

A wavefunction is then given by

Ψk(r) =
n_basis∑
i=1

cki Φi(r) (4.10)

with the coefficients cki .

A rotation of the molecule (rotation matrix R leads to the same set of YLMs Y (as
they are fixed with respect to the xyz-coordinate system), but with different coefficients
c (new linear combination of basis functions):

c′ = Rc (4.11)

The rotation of complex YLMs can be done with Wigner D matrices (Dl
mm′). For

real YLMs different schemes are available[144, 12, 24]. Due to the non-default YLM
convention in FHIaims we construct our rotation matrices for different l from the complex
Wigner D matrices via the transformation matrix Cl (reference: [24]):

Sl,m = ClYl,m (4.12)

4.7. Restarting FHI-aims calculations 469

The matrix C is constructed according to [24] with the constraint of the different sign
convention in FHIaims. The real rotation matrix ∆l(R),

∆l(R) =
(
Cl
)∗

Dl(R)
(
Cl
)t
, (4.13)

is then used to obtain the rotated coefficients for each l,m for each basis function in
the system.

c′l = ∆l(R)cl (4.14)

470 Chapter 4. Running FHI-aims: Guides to specific tasks

4.8 Finding Transition States: the aimsChain

This project aims to provide an all-in-one package for various flavours of the chain
of states methods for finding the minimum energy path(MEP). Currently the nudged
elastic band method (NEB)[85, 96], the string method[227], and the growing string
method[179] are included.

Please direct any questions or suggestions to yaoyingyu@hotmail.com, we need your help
to improve the package.

The aimsChain code is distributed under the Lesser General Public License as published
in Version 3, 29 June 2007, at http://www.gnu.org/licenses/lgpl.html . Some of the
optimizer routines in the code originated within the Atomic Simulation Environment
(ASE). We wish to give full credit to the developers of these routines. The aimsChain
code can also be found in a separate distribution maintained by Yingyu Yao. The reason
we distribute them directly within the FHI-aims repository is for the convenience of all
FHI-aims users, but again: We wish to give full credit to the work and the license of the
original authors within ASE.

4.8.1 Installation

The package is located in src/aimsChain.

In general, any computer/cluster that is capable of running FHI-ams and has numpy/scipy
support can be used. To install, user should follow these simple steps:

1. Copy the package to the directory where you normally install softwares, e.g.
~/local/bin or your home directory.

2. Modify your ~/.bashrc to include the following lines

export PATH=$PATH:<package path>/tools
export PYTHONPATH=$PYTHONPATH:<package path>
module load python/scipy/2012.10

These modifications are recommended but not necessary. You can also add them
to your job script instead if you do not want to pollute your .bashrc.
The last line serves to load scipy into your system. On clusters you can normally
find the corresponding keyword using module avail, and this could also be done
by including scipy and numpy in your $PYTHONPATH.
Although unlikely, future updates of numpy/scipy may cause compatibility issues.
If you observe anything strange in this regards, please let me know.

3. You are done.

To test your installation, source the .bashrc file and start a python shell. The package
is successfully linked if executing

4.8. Finding Transition States: the aimsChain 471

import aimsChain
import scipy
import numpy

reports no error. Otherwise please double check your configurations and search for
installation problems.

4.8.2 A Quick Start

While offering an extensive list of keywords, the package is aimed to work with most
systems out of the box. Often very little configuration is required to conduct a successful
path search. The keywords are available, on the other hand, to make the package as
adjustable as possible, so that it can be finely tuned to tackle the less conventional
systems.

In the package directory, a few sample jobs have been prepared, imitating several different
possible use cases. Please modify chain.in in each sample (other than sample 1) so
that run_aims links to your own aims executable.

• sample 1: This is a graphical example on a 2D analytic surface that demonstrates
the principles behind the chain-of-states methods. You can skip it if you have used
NEB/SM elsewhere.

You can and should run this demo in your personal computer instead of the cluster,
since it is not actually calling FHI-aims for calculations.

To start, you should go to samples/sample1/run and execute job.sh. This
will execute the MEP finding algorithm on the 2D LEPS potential energy surface.
To see the resulting process, proceed to samples/sample1 and run gnuplot
plot.gnu to see the evolving path on the surface.

This is also the perfect test bench for testing with different configurations. How-
ever keep in mind that performance in 2D is very different from the 3N-D space in
reality, and therefore this example should not be used for performance optimiza-
tion.

• sample 2: The inversion of an ammonia molecule. This example surveys the MEP
with 8 images, using an very tight convergence setting(force_thres =0.01),
which is too tight for most of the more complex systems, and will require tremen-
dous amount of computation for non trivial systems in general. The resulting path
would represent a very accurate representation of the MEP.

• sample 3: This example measures the energy barrier to transfer a methyl group
from one chlorine atom to another. It is using 6 images, coupled with a relatively
loose convergence setting(force_thres =0.2). The resulting MEP from this
is in general not accurate enough for a quantitative analysis. However, climbing
image is turned on with a relatively tight convergence setting(climb_thres
=0.05). The result is an accurate energy barrier calculation.

472 Chapter 4. Running FHI-aims: Guides to specific tasks

Note that in this example we are also utilizing constrain_relaxation in our
input geometries to limit the movement of atoms. In this particular case, one of
the chlorine atom is fixed at the origin, and the others are constrained to move
along the x-axis.

• sample 4: In this example we demonstrate how to start from an external set of
initialization images . We are calculating the MEP for a non-trivial isomerization.
Geometries from an previous calculation is provided as the starting geometries.

• sample 5: This sample provides an insight into MEP searching with periodic sys-
tems. It involves only the interpchain.py provided in aimsChain/tools, which
should be already in your $PATH if you followed the installation process. This tool
will generate an initial path exactly the same way as the actual job script does.
The result is printed into a directory named interpolation. A multi-frame .xyz
file is written, as well as one .in geometry file for each image.
Sample 5.1 and 5.2 are the same geometry, the only difference is that pe-
riodic interpolation is set to true in the former, and false in the latter. Run
interpchain.py in each directory and inspect the resulting path with your favourite
visualization software. In sample 5.1 we acquire a smooth interpolation, but in
sample 5.2 with periodic interpolation turned off, one row of atoms had to travel
across the entire cluster.
Another way to do a correct interpolation is shown in sample 5.3. You can man-
ually adjust the coordinate of the atoms so that they are set at the correct co-
ordinate with respect to the initial geometry. fin.in is adjusted in this case to
reflect the change. This way, the interpolated path is again correct, even though
periodic_interpolation is turned off. This is the preferred method of deal-
ing with periodic systems, because the automatic interpolation finds the shortest
path, but not necessarily the correct path. When working with periodic systems
you should always do a interpchain.py first and inspect the result before running
the actual job.

• sample 6: Here we show when and why the growing string(GSM) method should
be used. Here the isomerization process involves rotation of in dihedral angles,
and linear interpolations would result in overlapping atoms, which can be checked
using the interpchain tool.
The traditional approach dealing with these cases is to rotate the atoms manually
and generate a non-overlapping initial path. GSM provides an alternative to this
approach by growing the string from end points, which eliminates the need for
manually generated initial path.

• sample hydra: It is essentially the same as sample 1, but prepared for the hydra
cluster. This demonstrates the required modifications when transferring between
different platforms.

The samples include the following files.

• ini.in: initial geometry in the standard aims format

4.8. Finding Transition States: the aimsChain 473

• fin.in: final geometry in the standard aims format

• control.in: standard control file for aims. This control will be used for all aims
calculations.

• job.sge: job submission script, which you submit into the cluster.

• chain.in: control file for aimsChain, see below for a detailed description

If everything is set up properly, you can simply qsub job.sge to get the job running.
When running on clusters not using SGE, the job scripts must be changed accordingly.

4.8.3 Configuration

aimsChain control file

The chain control file is the file that governs the evaluation of MEP. It follows the same
configuration convention set by the aims control.in, namely a list of key value pairs.
The control file should be named chain.in.

This is a sample control file.

#A sample chain.in
run_aims mpiexec -ppn 8 -n $NSLOTS ~/bin/aims.062812.scalapack.mpi.x
initial_file ini.in
final_file fin.in
n_images 6
force_thres 0.2
use_climb true
climb_thres 0.05

All the available keywords for the control are listed below:

Tag: run_aims (chain.in)

Usage: run_aims your command
Purpose: Provide the command that is used to call aims in your environment.
Default value: mpiexec -ppn 8 -n $NSLOTS ~/bin/aims.081912.scalapack.mpi.x

You will need to change the default value for whatever command you are using.

There is no need to quote your command, simply type it as you would in a bash shell.
Everything after the keyword are concatenated into a single string.

Tag: initial_file (chain.in)

Usage: initial_file filename
Purpose: Provide the initial geometry file for the path.
Default value: ini.in

474 Chapter 4. Running FHI-aims: Guides to specific tasks

The format should be the same as the aims geometry.in. Flags such as constraints
are interpreted, and will affect the evaluation of MEP. All the intermediate images will
have the same constraints as the initial geometry.

Atoms in the initial and final geometry must establish a one to one correspondence.
The ith line in the initial geometry and the final geometry must correspond to the same
atom. Often there are many possible combinations, it is the user’s responsibility to use
the most physical one and/or check different combinations. You can perform a test
interpolation with the interpchain.py tool provided.

Tag: final_file (chain.in)

Usage: final_file filename
Purpose: The final geometry for the path. Refer to initial_file .
Default value: fin.in

Tag: n_images (chain.in)

Usage: n_images value
Purpose: The number of images used for MEP calculation.
Default value: 5

Suitable value for this variable is highly dependent on the desired degree of resolution
and the complexity of the system. A simple single barrier reaction will require 5 images
to achieve a good result, while more complex potential energy surfaces require roughly
3 or more images per hill/trough.

If the geometry is not computationally expensive(tens of seconds per calculation with a
reasonable # of CPUs), the simple principle of “the more the merrier” can always be
applied.

Tag: external_geometry (chain.in)

Usage: external_geometry file_name
Purpose: If this variable is set, the initial set of images will be obtained from a
external source instead of a linear interpolation.
Default value: None

This flag should be set to the filename of a text file listing all of the intermediate
geometries in order, e.g.

./geo/1.in

./geo/2.in

./geo/3.in

It is advised that if you have anything better than a direct linear interpolation, you should
use it as the initial guess. Linear interpolation can be highly inefficient, and would result
in cases which never converges. When in doubt, you can always use the growing string
method.

4.8. Finding Transition States: the aimsChain 475

Tag: periodic_interpolation (chain.in)

Usage: periodic_interpolation true/false
Purpose: Whether or not interpolation is done while considering periodic bound-
ary.
Default value: False

This setting affects periodic systems only. If set to true, each atom’s final geometry will
be checked against all periodic counterparts to find the shortest path between the initial
and final geometry. This can resolve some problems caused by the periodic boundary con-
dition. Consult sample 4 for detailed usage. Always use the provided interpchain.py
tool to check the resulting interpolation and confirm that it’s physical before running.

Tag: resample (chain.in)

Usage: resample true/false
Purpose: Resample the input path into arbitrary number of images.
Default value: False

This tag is effective only when external_geometry is set. When resample is
set to true, the package will resample the path you provided and interpolate it to have
of images equal to n_images . This can be very useful if you find your calculation
to have an inadequate number of images. You can extract the geometries from the final
iteration, and start a new job by resampling them.

Tag: aims_restart (chain.in)

Usage: aims_restart value
Purpose: Reuse the wave function restart file to speed up the calculation. This
should set to be the same as restart in control.in.
WARNING! This function is not compatible with aims as of July 2013, and only
works occasionally.
Default value: None

Value should be the same as restart in your control.in. The wave function
restart file will be copied from iteration to the next, so that the scf cycles can start from
an existing configuration. When working correctly, this can cut the computation time
required by half or more.

However, at this stage restart has very limited check on the input restart file,
resulting in an error when the wave functions don’t match. Do not use this keyword
unless you are sure that your version of aims will start a new scf initialization instead
of reporting errors when the wrong restart file is provided. If certain of which, however,
the keyword should always be used to speed up the calculation.

Setting restart will consume a decent amount of disk space. You may want to
remove the restart files if you are planning to store the calculation permanently.

476 Chapter 4. Running FHI-aims: Guides to specific tasks

Tag: restart (chain.in)

Usage: restart true/false
Purpose: Whether the package will allow restarts. When set to true, you can
simply submit the job again to continue from the previous calculations.
Default value: true

When set to true, a restart file will be written as the path iterates. When the job is
submitted/resubmitted, it will first check for the restart file to see if it’s possible to start
from a previous calculation. This is useful, when, for example, your job is killed due to
time limitations on the cluster. Please refrain from changing settings between restarts,
which is always error prone. If you are planning to change some settings, it’s always
safer to extract the most recent geometries and use them as the initial path for a new
calculation.

There is still the risk that the job is killed while the restart file is been written, in which
case anything could happen when the job is resumed. However, considering the rarity of
such event, it should not be a problem in practice.

Tag: method (chain.in)

Usage: method neb/string
Purpose: Pick the method to use for the MEP calculation.
Default value: string

Currently only string method and NEB are supported. In our testing, string method have
shown to be slightly more stable than NEB, and therefore is our recommended method.

Tag: neb_spring_constant (chain.in)

Usage: neb_spring_constant value
Purpose: This sets the spring constant used in NEB calculation, and has no effect
if method is string.
Default value: 20.0

It should be set to have the same magnitude as the force felt by the geometry, which is
hard to determine before hand. However a generic value of 20 is good in general. Please
try method string first if you suspect that the spring constant have to be changed
for the system to converge.

Tag: force_thres (chain.in)

Usage: force_thres value
Purpose: The threshold for convergence.
Default value: 0.2

Optimization will stop when the residual forces in the system is smaller than this preset

4.8. Finding Transition States: the aimsChain 477

value. If use_climb is true, climbing-image calculation will start after this threshold
has reached. 0.2eV is always a good starting point, and for more rigorous calculations
0.1eV or 0.05eV can be used. Do not set it too small, since some numerical noises in
the forces will always exist even when the path is well converged.

Also note that adequate value is dependent on the system. A reaction with a 3eV barrier
can be much more well converged at 0.05eV threshold than a reaction with a 0.3eV
barrier at the same threshold, because the former, very often, has a steeper barrier and
hence larger force by nature.

Tag: optimizer (chain.in)

Usage: optimizer dampedBFGS/BFGS/LBFGS/trm/CG/FIRE
Purpose: This picks the optimizer used for optimization.
Default value: dampedBFGS

BFGS is a textbook implementation of BFGS optimizer, which was observed to have wild
behaviour is some situations. The fact that BFGS series of optimizer can be used for this
type of calculations is in fact purely coincidental. The series of force projections involved
in the chain of states methods can severely hamper the effectiveness of quasi-Newton
optimizers. Please resort to FIRE optimizer whenever you observe wild behaviour in the
optimization process.

dampedBFGS damps the original BFGS optimizer using several techniques, and is slightly
more stable in those situations. (But they still get stuck from time to time!) This is the
default setting that should always be tried first.

LBFGS is the limited memory version of BFGS, which uses less memory for extremely
large systems. However, given that in general FHI-aims is applied to systems with
hundreds of atoms at most, this optimizer has little advantage in this front. However,
due the fact that LBFGS uses only recent iterations for approximation, the results can
be quite different from BFGS in a some PES. Therefore it’s worth trying if BFGS fails.

trm is the same trust-radius method ported from FHI-aims. In our tests it has proven
to be reasonably stable and efficient. We would recommend this as another alternative
along with FIRE when dampedBFGS fails.

CG is the textbook implementation of conjugate-gradient algorithm using finite difference
scheme. In our tests it has not shown any advantage over other algorithms, ans is
provided for the sake of completeness.

FIRE is the Fast Inertial Relaxation Engine, one of the better non-Newton type op-
timizers. It is slower than BFGS series of optimizers in general, but is immune to the
aforementioned instability because it does not approximate the Hessian. If dampedBFGS
fails, try FIRE with global_optimizer off as an alternative.

Tag: global_optimizer (chain.in)

478 Chapter 4. Running FHI-aims: Guides to specific tasks

Usage: global_optimizer true/false
Purpose: Whether all images are optimized as a single object, or if individual
images are optimized as separated object.
Default value: true

The global version, when coupled with BFGS-series of optimizer, is often faster than
the non-global optimizer. However, this combination is less stable, and can lead to wild
results. The non-global optimizer coupled with FIRE seems to be the most stable one
in our tests, but is much slower than the former. Non-global optimizer combined with
BFGS, on the other hand, slows the calculation significantly due to overestimation, and
should be avoided.

Tag: xyz_lattice (chain.in)

Usage: xyz_lattice a b c
Purpose: This key only affects the .xyz file written in paths directory. It governs
how the lattice is repeated in each lattice vector. The default is a standard 2 2
1 setting, valid for most surfaces.
It has no effect on clusters.
Default value: 2 2 1

Tag: map_unit_cell (chain.in)

Usage: map_unit_cell true/false
Purpose: This key only affects the .in file written in paths directory. It determines
whether atoms in these geometries are mapped back to the central unit cell.
It has no effect on clusters
Default value: false

Tag: use_climb (chain.in)

Usage: use_climb true/false
Purpose: This will turn on the climbing image[95] feature.
Default value: false

The points with highest energies will move toward a higher energy location along the path
until the saddle point is reached. Please consult climb_mode for a detailed explanation
of this process. If you are only interested in finding the energy barrier, it’s possible to set
force_thres to some larger value, such as 0.2, and set climb_thres smaller(e.g.
0.05) for a reasonably tight convergence. In this case decreasing force_thres will
not affect the accuracy of climbing image, so long as the climbing image converges.
Transition state finding can be sped up significantly this way by reducing the number of
single point calculations required.

Tag: climb_thres (chain.in)

4.8. Finding Transition States: the aimsChain 479

Usage: climb_thres value
Purpose: Set the convergence criterion for the climbing image.
Default value: same as force_thres

The climbing image will stop when the residual forces in the system is smaller than
this value. It is normally, although not necessarily, set to a value smaller or equal to
force_thres . In simple systems, the climbing image is capable of pushing the system
done to meV/Å2 range, but that’s not as plausible in larger systems.

Tag: interpolated_climb (chain.in)

Usage: interpolated_climb true/false
Purpose: Determine whether the climbing image is chosen from one of the existing
images or interpolated from known energies and geometries.
Default value: true

When set to true, the current energies and geometries will be fitted with a cubic spline
to identify the point with highest energy. If this geometry is sufficiently far from existing
nodes, then the interpolated geometry is used. If the geometry is close to one of the
existing images, than that image is set to be the climbing image.

When set to false, the image with highest energy is set to be the climbing image.

Tag: climb_mode (chain.in)

Usage: climb_mode 1/2/3
Purpose: This determines the “mode” of the climbing image.
Default value: 2

Increasing mode corresponds to increasing stability and decreasing efficiency. The main
difference lies in the number of images that are allowed to move during the climbing
process.

climb_mode 1: Only the image with highest energy is allowed to move. This setting
can manage many circumstances, provided that force_thres is small enough so
that the converged path provides a stable basin.

climb_mode 2: The image with highest energy and its two neighbouring images are
allowed to move. The two additional image provides an evolving tangent estimate as the
central image climbs. This mode can tackle nearly all cases where climb_mode 1 fails
under the same force_thres setting. It is safe, in general, to set force_thres
to 0.3 if you are only interested in energy barrier.

climb_mode 3: All of the images excluding the end points are allowed to move. This
is the most stable, but rarely necessary setting. The efficiency drop is highly dependent
on the system and the force_thres setting. In general this should be used as a last
resort when force_thres can be converged to a tight setting but climbing image
on other modes fails.

Tag: climb_global_optimizer (chain.in)

480 Chapter 4. Running FHI-aims: Guides to specific tasks

Usage: climb_global_optimizer true/false
Purpose: The same as global_optimizer , except this keyword is dedicated
for climbing image.
Default value: true

The tag has no effect when climb_mode is 1, in which case the global and non-global
optimizer are equivalent. Unlike global_optimizer , BFGS+Non-global setting can
be a good combination for climb_mode 2 if the default setting fails, mainly due to
the well behaving local basin for a roughly converged string.

Tag: climb_optimizer (chain.in)

Usage: climb_optimizer dampedBFGS/BFGS/LBFGS/CG/TRM/FIRE
Purpose: The same as optimizer , but dedicated for climbing image.
Default value: fire

Tag: climb_control (chain.in)

Usage: climb_control file_name
Purpose: Specify a different control.in for the climbing image.
Default value: control.in

It’s possible, for example, to converge the entire path with a light setting, and then
converge the climbing image with tight setting, which consumes far less computational
power.

However, there are a few things to note if this feature is utilized. First, force_thres
must be set smaller than normal, perhaps even the same value as climb_thres .
Since a different control file can produce a radically different PES, you would like to be
as accurate as possible when converging the string, so that the error is not amplified
with a tighter setting. Secondly, it’s better to use climb_mode 2 or 3 for these kind
of computations, since the single image climbing mode can rarely recover from a bad
starting point.

This feature is best suitable for production works where a tighter setting which will
dramatically increase the time required for single point calculations.

As an alternative, you can also kill your running process and change the control.in
file manually before restarting the process.

Tag: use_gs_method (chain.in)

Usage: use_gs_method true/false
Purpose: This controls whether the growing string method is used or not.
Default value: False

The growing string method(GSM) is explained in sample 6. It is best suitable for cases
where it is certain that linear interpolations between initial and final images will not lead
to a correct path. This can be caused by movements such as rotations. It is also useful

4.8. Finding Transition States: the aimsChain 481

when doing large-scale automated scanning, where the user does not have the time to
look at geometries on a case by case basis.

When set to true, the path will start from the two end point and slowly grow inward
to generate a physical path. When the path is completely grown, it will be passed onto
NEB/SM for further calculations.

Beware that when direct interpolation can lead to correct paths, e.g. surface dispersion,
using growing string method may reduce efficiency.

Tag: gs_thres (chain.in)

Usage: gs_thres true/false
Purpose: The GSM counterpart for force_thres .
Default value: force_thres *1.5

When the forces in the system goes below this preset value, a new node will be added
to the path. It should not be set too small, since the purpose of GSM is to generate a
physical path, not a well-converged path. The default value gives a good guideline for
this key.

Tag: gs_n_images (chain.in)

Usage: gs_n_images value
Purpose: The GSM counterpart for n_images .
Default value: n_images

In some circumstances, you may want to specify a different number of images for the
growing stage of the calculation. This key serves this purpose. After the growing process,
the path will be re-sampled to match the value of n_images

Tag: gs_optimizer (chain.in)

Usage: gs_optimizer dampedBFGS/BFGS/LBFGS/trm/CG/FIRE
Purpose: The GSM counterpart for optimizer .
Default value: trm

For GSM, dampedBFGS, trm, and FIRE are optimizers worth trying.

Tag: gs_global_optimizer (chain.in)

Usage: gs_global_optimizer true/false
Purpose: The GSM counterpart for global_optimizer .
Default value: false

We have not done enough testings to determine conclusively the better set of optimizers.
The default provided here have performed well in our benchmarks, but feel free to try
other combinations.

482 Chapter 4. Running FHI-aims: Guides to specific tasks

Tag: lbfgs_alpha (chain.in)

Usage: lbfgs_alpha value
Purpose: Set the curvature used to initialize the Hessian(in eV/Å2) in LBFGS.
In general any value that is not magnitudes off are acceptable.
Default value: 120.0

Tag: lbfgs_memory (chain.in)

Usage: lbfgs_memory value
Purpose: Set the number of past iteration that LBFGS is going to remember. A
larger value will increase memory consumption, and a small value will decrease
accuracy.
Default value: 30

Tag: lbfgs_maxstep (chain.in)

Usage: lbfgs_maxstep value
Purpose: The maximum step in Å that an atom can take in a single iteration.
This is similar to max_atomic_move , but defaulted to a much smaller value
due to the increasing complexity.
Default value: 0.04

Tag: bfgs_alpha (chain.in)

Usage: bfgs_alpha value
Purpose: Same as lbfgs_alpha , but used by BFGS, trm, and dampedBFGS
optimizers.
Default value: 120

Tag: bfgs_maxstep (chain.in)

Usage: bfgs_maxstep value
Purpose: Same as lbfgs_maxstep , but used for BFGS and dampedBFGS
optimizers.
Default value: 0.04

Tag: fire_dt (chain.in)

Usage: fire_dt value
Purpose: The initial time step used by the FIRE optimizer.
Default value: 0.02

It is set to a very conservative value because FIRE is intended to be used as a fall back
when BFGS fails. Values up to 0.1 can be used to speed up the calculation, provided

4.8. Finding Transition States: the aimsChain 483

that the PES is smooth enough. Internally, the time step is dynamically adjusted, and
this key only serves to initialize the value.

Tag: fire_maxstep (chain.in)

Usage: fire_maxstep value
Purpose: Same as lbfgs_maxstep , but used for FIRE optimizer.
Default value: 0.04

4.8.4 Preparation before running

Creating a project directory

You should create a directory for each and every aimsChain calculation you are planning
to run. It should contain the following files.

-Project directory
|
|--chain.in
|
|--control.in
|
|--ini.in*
|
|--fin.in*
|
|--extgeo.lst*+
|
|--images*+

|
|-image1.in*+
|
|-image2.in*+
|
|-...

*The filename can be set by the user
+The files are only necessary for starting from external geometry.

geometry file

The initial and final geometry should be in the standard aims input format. Keywords
such as constraints will be interpreted. The constrain_relaxation tag should be
used with caution–it acts as a double-edged sword in terms of MEP evaluation. You
can try to remove the constraint tag from sample 2 and observe the efficiency boost for
example. In other cases, setting it may help convergence by reducing degree of freedoms.

484 Chapter 4. Running FHI-aims: Guides to specific tasks

In addition, you should pre-align your initial and final geometries to remove any rota-
tional/translational component in the geometry, this will reduce the computational effort
required.

The ordering of atoms in the geometry file is very crucial. The atoms in the initial and
final geometry must establish a one to one correspondence, so that the ith line in the
initial and final geometry represents the same atom. Changing the order can change the
result from the evaluation dramatically.

For example, consider the diffusion of benzene on a surface. By changing the ordering
of atoms you may force the diffusion to be done via rotational or translational motion,
which would result in very different MEP. If you can visualize more than one possible
combination, try all of them to find the lowest barrier. It is a matter of fact that there
often exists more than one MEP between two geometries, but the overall barrier is only
determined by the MEP with lowest barrier. Chain of states methods will evolve toward
the MEP that’s closest to the initial path, but not necessarily the lowest in energy.

aims control file

The aims control file should contain two lines.

compute_forces .true.
final_forces_cleaned .true.

This will turn on the force evaluation for aims, which is required for any chain of states
method. relativistic , when required, must be set to atomic_zora scalar,
since we require force evaluations.

Sometimes additional configurations can require more than the two lines listed above.
For example, when using b3lyp you need to set

RI_method lvl_fast

for a correct force evaluation. Generally you can find these information in the aims
output. A rule of thumb is to relax the geometry using your configurations and skim
through the aims output for any warnings. This will force aims to provide all warnings
related to the calcualtion of forces. When you have confirmed that the configuration if
warning-free, just comment out the relax_geometry for aimsChain calculation.

You can also set sc_iter_limit to a lower value, which should still be much higher
than the normal number of cycles that your system consumes. As the path evolves, it
can be the case that during a few iterations the geometry become non-physical, and
its scf cycle will never converge. Such cases often recover itself within a few iteration,
and will not affect the final result. However, a default limit of 1000 will consume lots
of computational power in these cases, which is a complete waste especially for larger
systems.

The control file should not have relax_geometry , any molecular dynamic keywords,
and etc. The geometry should not be altered by aims. It is advised that you always use

4.8. Finding Transition States: the aimsChain 485

a light setting for the first run, so that tunning settings and confirming convergence can
be done efficiently. If a more accurate result is desired, you can submit a tight run using
the resulting geometries from the light run, which is always faster than a direct tight
run from linear interpolation.

To ensure efficiency, you should configure your control file so that each single point
calculation takes at most few minutes to finish. If a tighter setting is desired, consider
using climb_control for a different control file during climbing image.

aimsChain control file

It is unlikely that you will need a long list of keywords in your control. Tags should be
added gradually if you find that the default settings is not sufficient for your purpose.
Keys that should be included on the first run are run_aims , initial_file ,
final_file , n_image , force_thres , restart , and external_geometry
if so desired. Simply grabbing the control from the samples will also work most of the
times.

If you believe that your system follows a rather straightforward path geometrically(i.e.
diffusion, small rotation, etc.), you can set the climbing image on your first run and see
if it works out correctly. For any complex paths, such as non-trivial isomerization, fine
tunning of the control file can be required for the system to converge.

job script

The job script should contain a call to runchain.py, as well as loading the necessary
modules if that is not done in .bashrc. No post processing should be included unless
you are certain that the system will converge and terminate within the time limit.

external geometry

If you have any information about the path you are trying to find, please include them
here. This can be a guess for transition state, geometry reported by papers, or your own
interpolation by tweaking atoms in a visualization software. Coupled with resample
, any number of external geometries can help speed up the calculation process, making
the process very flexible.

It is a common practice to take the intermediate path from a previous calculation (per-
haps before it has gone wild) and use them as the initialization path for a new job.
This is perfectly fine, and aimsChain outputs intermediate paths just for this purpose.
However, when doing so please remember to remove the first and last image from the
path, which are the same geometry as the initial and final states. The list of external
geometries should only contain intermediate images, entering initial/final states in there
will most likely lead to a dead end.

486 Chapter 4. Running FHI-aims: Guides to specific tasks

growing string method

GSM offers another possibility for no-trivial calculations. If you believe your geometry
will result in a geometrically complex reaction path, then using GSM will be your best
bet.

GSM works by starting from the two end point, and gradually adding images toward
the centre of the path. Whenever an image is added, it will be evolved until its forces
falls below a threshold. This way we are not requiring any a priori knowledge on the
intermediate path, where the standard SM/NEB method approximates with a linear
interpolation.

test the interpolation

One of the most important step you can take to ensure a successful MEP evaluation is
to ensure that the initial path is physical. This is especially true for periodic systems
where the periodic boundary condition plays an unwanted part in this.

We have provided a tool in aimsChain/tools, the interpchain.py. This gadget
performs the resampling and interpolation process exactly the same way that the actual
script is doing it, and therefore is a good way to check if the initial path is reasonable.

When ran, the program will create the interpolation directory in your project directory
(and will clear that folder if it already exists!).

-Project directory
|
|--interpolation

|
|-image001.in
|
|-image002.in
|
|-...
|
|-path.xyz

There will be n_images +2 aims geometry created, including initial and final geometry.
A multi-frame .xyz file is also created in the directory for use with visualization softwares
that doesn’t support multi-file animation. If the geometry is periodic, the .xyz file is
repeated in each lattice vector according to xyz_lattice to make visualization
easier. (because the standard xyz does not encode periodic information) Always check
the interpolation if you are working with a new project, which can save you lots and lots
of time if you happen to spot a bad interpolation(as shown in sample 4).

4.8. Finding Transition States: the aimsChain 487

a note on periodic systems

Running aimsChain on periodic systems requires extra precaution, because initial files
from a periodic system can often provide misleading initial path.

The default interpolation algorithm when periodic_interpolation works as fol-
lows. For each atom in the final geometry, the coordinates are offset by each lattice
vector in both the positive and negative direction. The results are compared with the
same atom in the initial geometry, and the coordinate with the shortest distance is used
as the actual coordinate for the final atom. This method is good in general.

However, it’s still possible to imagine cases where a longer path is the actual path. For
example, when trying to simulate the effect of an edge on one end. The shortest path
may corresponds to climbing over the edge to reach the other end, while the true path,
moving in the other direction, is to simply walk away from the edge.

In these cases, the coordinate of the final geometry must be adjusted manually, so that
its coordinate corresponds to its true coordinate after the move, and does not involve
any periodic boundary condition. periodic_interpolation should be turned off,
and the interpolated path should be looked in details to ensure that the atoms in the
base are also correctly interpolated.

4.8.5 Running the script

When the script is running, it will first generate a few directories and files in the project
directory.

-Project directory
|
|--forces.log
|
|--climbing_forces.log+
|
|--growing_forces.log*
|
|--iterations
| |
| |-iteration0000
| | |
| | |-aims-chain-node-0.00000
| | | |
| | | |-aims-chain-node-0.00000.out
| | | |
| | | |-control.in
| | | |
| | | |-geometry.in
| | |

488 Chapter 4. Running FHI-aims: Guides to specific tasks

| | |-aims-chain-node-0.10000
| | | |
| | | |-...
| |
| |-...
|
|--paths

|
|-iteration0000
| |
| |-image001.in
| |
| |-image002.in
| |
| |-...
| |
| |-path.xyz
| |
| |-ener.lst
| |
| |-path.lst
|
|-iteration0001
| |
| |-...
|
|-...

+only generated if climbing image is used
*only generated if growing string method is used

Warning! Directories named optimized, paths, and iterationsmay be cleared/changed
if they already exist. Don’t leave useful information there!

The iterations directory is where all the aims single point calculations are done. Each
iteration has its own directory, where each single point calculation is again put in its
own directory. They are labelled by the unique id of the particular images as well as the
iteration it is in. This is also the place where aimsChain stores optimizer and restart
related files.

The paths directory contains useful information for you while aimsChain is running. A
directory is created for each iteration, containing all the necessary information you might
be interested in. The geometry.in for each image is written, including the initial and
final state. This is the perfect place to extract intermediate path if you would like to
start a new job from there. Remember not to include the initial and final geometry in
your external geometry list. A .xyz animation is written, governed by xyz_lattice ,
which is handy for visualizing the current stage. ener.lst stores the current energy of
the system, which is extracted from the aims outputs. The energies are offset so that

4.8. Finding Transition States: the aimsChain 489

the initial state is at the zero point. This will give a rough idea of the energy landscape
along the path at the current iteration. path.lst lists the corresponding path in the
iterations directory, in case you want to check the aims output for diagnostics.

ener.lst and path.lst also labels the state each image is in. A “FIXED” label
indicates that the images is not been moved from iteration to the next, which can be
the case for the initial and final geometry, as well as during climbing image calculation.
A “CLIMB” label indicates that this image is the climbing image, and when converged,
represents the geometry of the saddle point. Normal nodes are simply labelled “Normal”.

There are also files named forces.log, growing_forces.log, and climbing_forces.log
in your project directory, which records the residual forces in the system for each iteration.
They are the most straightforward way to check the current state of the system.

When the path is converged, the result will be put into a directory named optimized.
They will have the same geometry as the last iteration in the paths directory, but they
are copied from iterations directory so that the aims outputs are included. The same
is down for growing string method. Once the growing process is completed all the
relevant info are write to the grownstring directory, so you don’t have to re-grow your
geometries for different calculations.

4.8.6 Tips & Guides On Running

It is important to inspect the calculation once in a while when it’s running, so that it
can be stopped when going astray.

If the forces are going to extremely big values (several hundreds) after reaching a rel-
atively small value, please have a look at the most recent geometry in paths to see if
it’s physical. Any non-physical path is most likely to have been caused by the BFGS
optimizer. You should go backward and find the last iteration at which the geometries
are physical (most likely corresponding to a small residual forces), and use that as the
initial geometry for a new calculation with non-global FIRE optimizer or trm optimizer.

If the forces goes up and down repeatedly, try switching off the global optimizer. If that
doesn’t help, try FIRE or trm.

When climbing image is not converging, your force_thres might be too large for
the system. If you are using climb_mode 1, consider extract the converged path
before climbing started, and experiment with mode 2. Otherwise start a new calculation
with the converged path and a higher threshold.

If you are focusing on achieving a very precise calculation, and your system is not
computationally intensive, you may want to do the following. Increase number of images
used. Utilize climb_control for tighter convergence at climbing image. Use
climb_mode 2 or 3 for climbing image. Start with non-global FIRE in the first place to
avoid potential problems with BFGS.

If you are working with systems that are computationally expensive for aims, try these.
Decrease the number of images, but use at least 3. (or more, if you have a complex
reaction) First converge a path to a reasonable value.(below 1 eV/Å2 for example)

490 Chapter 4. Running FHI-aims: Guides to specific tasks

Extract the path and try aims_restart . Your system may be one of the few that
has a consistent wave function configuration as the string evolves to MEP. If the job
stops after one iteration, then that has failed, simply re-submit the job after turning the
flag off. Set restart in both control.in and chain.in, even if you are not using
aims_restart . This will save time when your calculation is stopped when exceeding
the time limit. Try to use the lightest setting possible for the calculation. Only switch
to tight settings after a good result is achieved on the light setting.

When the climbing image is converged, the image that’s labeled “CLIMB” in ener.lst
is the transition state. It may be the case sometime that when using climb_mode
1, the converged transition state has a lower energy than its neighbour. This is not a
problem in general, its neighbour was not well converged to the path. If you are worried
about it, set a tighter convergence threshold or using a different climb mode will help.

4.9. Plugin for free-energy calculations with molecular dynamics: PLUMED 491

4.9 Plugin for free-energy calculations with
molecular dynamics: PLUMED

Molecular dynamics based free-energy calculations can be performed with the aid of the
external plugin PLUMED.
Methods included are metadynamics [136], well-tempered metadynamics [15], umbrella
sampling [219, 134, 195], Jarzynski-equation based steered molecular dynamics [114, 50].
A large and nearly exhaustive set of collective variable (CV) is accessible through a simple
input script.

PLUMED is a free package that, after registration, can be downloaded from http://
merlino.mi.infn.it/~plumed/PLUMED/Home.html Currently, a copy of the PLUMED
library is kept in the external directory of the FHI-aims source code, and must be com-
piled separately using the makefile Makefile.meta (see section I.2). In the future a patch
for modifying FHI-aims in order to compile it with PLUMED will be available on the
PLUMED webpage.

4.9.1 Usage

The actual use of the plugin is switched on by this single line in control.in:

plumed .true.

With plumed .false. (default) or nothing, the code would behave exactly as compiled
without this plugin. It is implied that some MD scheme must be used in control.in, in
order to see PLUMED acting. What PLUMED does, in facts, is to modify the molecular
dynamics forces according to the selected scheme.
All the specific controls of the free energy calculation are contained in the file plumed.dat
(which must be in the working directory, together with control.in and geometry.in,
if plumed .true. is set). For all the details on plumed.dat, we defer to PLUMED
manual which can be found on the project website.
Here we report a minimal example for metadynamics:

PRINT W_STRIDE 10
DISTANCE LIST 1 <g1> SIGMA 0.35
g1->
2 3 4
g1<-
HILLS HEIGHT 0.003 W_STRIDE 10
ENDMETA

This script would make PLUMED deposit Gaussians (HILLS) of HEIGHT 0.003 hartree,
every W_STRIDE timesteps. The (only) CV that will be biased by metadynamics is a
distance between atom ‘1’ and the center of mass of atoms ‘2’, ‘3’, and ‘4’. The number

http://merlino.mi.infn.it/~plumed/PLUMED/Home.html
http://merlino.mi.infn.it/~plumed/PLUMED/Home.html

492 Chapter 4. Running FHI-aims: Guides to specific tasks

labelling the atoms follows their order of appearance in geometry.in. The results will
be printed (see below) every PRINT W_STRIDE time steps. The width of the Gaussian
for the distance CV is specified by SIGMA

A note on the units: the units in plumed.dat and in the output(s) are the internal ones
in FHI-aims, i.e. energies in hartree, distances in bohr, forces in hartree/bohr.

When using PLUMED, some extra output files are created. In log.dat the specifics of
the run are given. COLVAR contains the trajectory of the selected CVs. Notably, if no
biasing method is selected, but one or more CVs are defined in plumed.dat, PLUMED
prints nonetheless the trajectory of those CVs in COLVAR (one can also explicitly switch
off the biasing of some CVs via the NOHILLS directive).
In case metadynamics is used, then also HILLS is generated, which contains the infor-
mations for reconstructing the free energy profile. This is done with the postprocessing
tool, “sum_hills”, which is given with the distribution.
For umbrella sampling a powerful tool for reconstructing the free-energy from COLVAR,
can be downloaded from: http://membrane.urmc.rochester.edu/Software/WHAM/
WHAM.html.

http://membrane.urmc.rochester.edu/Software/WHAM/WHAM.html
http://membrane.urmc.rochester.edu/Software/WHAM/WHAM.html

4.10. Script based parallel tempering (a.k.a. replica exchange) 493

4.10 Script based parallel tempering (a.k.a. replica
exchange)

A script based parallel tempering implementation is available. Part of the script is depen-
dent on the particular batch-queueing system in use; with the distribution, we provide
a solution that has been tested on linux machines with SGE batch-queueing system.
Whereas the overall structure of the batch script would not change by changing the
batch-queueing, few crucial lines might need intervention.

4.10.1 Usage

In order to run the parallel tempering the batch script “submit.rex” must be submitted
to the queueing system. The batch script:

1. creates a subdirectory “rex_??” for each replica,

2. copies the files needed for the FHI-aims run and runs them

3. manages the swaps between replicas.

4. prints outputs

The files that have to be present in the working directory are:
control.in.basic
control.in.rex
geometry.in.basic
optional: list_of_geometries
rex.AIMS.pl
submit.rex
The last two files are provided with the distribution and are contained in the subdirectory
utilities/REX.

• control.in.rex, it must contain the following lines:
n_rex number of replicas
temps list of target T separated by a space; the number of T’s must agree with
the above line
freq time interval between rex swaps, in ps, as in control.in
MAX_steps maximum number of replica exchange steps (i.e., the whole simulation
will contain MAX_steps*freq ps per replica)

• control.in.basic, as in FHI-aims. Note, though, that the script will delete any
keywords about geometry relaxation and MD, with the exception of MD_time_step,
and appends at the end of each control.in in each subdirectory the MD_settings
for the replica exchange. In detail, the following are the lines which are managed

494 Chapter 4. Running FHI-aims: Guides to specific tasks

by the script:
MD_run $t NVT_parrinello $temp[$i+1] 0.1
MD_MB_init $temp[$i+1]
MD_restart .true.
MD_clean_rotations .true.
output_level MD_light
where $t is a multiple of the “freq” keywords in control.in.rex, updated at
each MD substep between swaps, and $temp[$i+1] is the target temperature for
the particular replica and parallel tempering step. These lines are hard coded in
the perl script rex.AIMS.pl.

• geometry.in.basic, written in the geometry.in format. It will be copied into
each subdirectory, so that each replica would start form the same geometry.

• optional: list_of_geometries If present, it must contain a list of geometry
files (each in the geometry.in format), one line each, that must be present in
the working directory. The script will copy the file in the first line into the first
subdirectory (i.e. related to the first temperature in control.in.rex), and so
on. In case list_of_geometries contains less lines than the defined number
of replicas, the “exceeding” replicas will start with the geometry contained in
geometry.in.basic.

• rex.AIMS.pl, managing perl script. Nothing to be done here, in principle. If
invoked as
perl rex.AIMS.pl stat <log_file>
in a directory that contains a log_file created by rex.AIMS.pl itself (see next
section), it provides useful statistics (even on the fly).

• submit.rex is the batch script. Some attention form the user is required here,
too.

– select the total number of slots with the keyword "# $ -pe impi", according
to the number of replicas. For performance reasons only, it is a good idea to
have the number of slots be a multiple of the number of replicas (n_rex in
geometry.in.rex). Informations and warnings concerning this issue will be
written to log_rex.

– give the variable type the value ‘init’ or ‘restart’, according to the kind of
run. Note that by running a ‘restart’, the script will complete the possibly
interrupted parallel tempering steps (also only in some of the subdirectories)
and then will continue with the replica exchange algorithm.

– set the proper name and path for the aims binary

– set the number of slots per node (host) with ncpupn=<#SlotsPerNode>.
This is particularly important for the right distribution of available slots. For
performance reasons only, it is a good idea to have the number of slots per
replica be a multiple of the number of slots per node (ncpupn) or vice versa.
Informations and warnings concerning this issue will be written to log_rex.

4.10. Script based parallel tempering (a.k.a. replica exchange) 495

Below, the relevant area for the settings is reported:
################### to be taken care of by the user ###############
binary=’<binary path and name>’
put type=’init’, if initializing, ’restart’ if restarting
type=’init’
type=’restart’
number of CPU per node (host)
ncpupn=<#SlotsPerNode>
###

• run_rex.sh is a bash script in order to run locally

– serves as a substitution for submit.rex if the SGE is not available
– if possible, use submit.rex because of performance reasons due to the more

sophisticated distribution of jobs over the available slots (CPU)

4.10.2 Output

• in each of the subdirectories rex_?? there are the files:

– temp.out full FHI-aims output for the parallel tempering tempering step
– control.in and control.in, the usual FHI-aims input files. They will

change at each parallel tempering step, managed by the script.
– energy.trajectory. Cumulative (i.e. appended after each attempted

swap) energy trajectory for the replica.
– out.xyz. Cumulative geometry trajectory, in xyz format.

• in the working directory: log_rex. It contains useful information on the swapping
process. Below there is a commented example for a four replicas run.

> Mon Apr 5 03:51:05 CEST 2010
The time at the attempeted swap
> Tt 100.0 200.0 150.0 250.0
The list of the running target temperatures, first place for rex_00, and so on
> map 1 3 2 4
Map of the temperatures in the “Tt” line, into the original list given in control.in.rex
> TE -6963471.3877 -6963471.2516 -6963471.4951 -6963471.3286
Total Energy (“Total energy (el.+nuc.)”) in each replica (first item in rex_00
and so on)
> swapping 3 1 @T 150.0 100.0 accepted
> swapping 4 2 @T 250.0 200.0 rejected
Detail of attempeted swaps, with outcome
> temp 150.0 200.0 100.0 250.0
List of running target temperatures, after swaps.
> vfact 1.04880884817015 1 0.9534625892455937218 1

496 Chapter 4. Running FHI-aims: Guides to specific tasks

Rescaling coefficients for the velocities in each replica, for the next step
> ####### End of rex step #################

WARNING: when wall-clock ends in the middle of a prallel tempering step, it will
always be printed the message:

WARNING: rex_??/temp.out Not converged?
Please check this problem before continuing.
If the reason that any of temp.out’s does not reach not the end of the parallel
tempering step is the end of the wall-clock time, then the run can be safely
restarted by putting ‘type=restart‘ in submit.rex

• It is also possible to restart (prolong) a job that has been completed successfully, i.e.
after the desired number of Replica Exchange steps has been performed. In order
to do so, set ‘type=restart‘ in submit.rex, set ‘MAX_steps <#MaxSteps>‘ in
control.in.rex according to the (new) desired maximum number of steps, and
replace the third number in rex_par with that same number ‘<#MaxSteps>.

• in the working directory: out.????, where ???? is a temperature, in 4 digits.
Constructed by appending the temp.out temporary outputs at the same tempera-
ture, each out.???? contains the full FHI-aims output at the given temperature.

4.11. Formation energies of charged defects 497

4.11 Formation energies of charged defects

The Gibbs free energy of formation of a defect is given by

∆GD
f = ED

tot − Eperf
tot −

∑
i
niµrefi + qεrefF −

∑
i
ni∆µi + q∆εF, (4.15)

where ED
tot and Eperf

tot are the total energies of the defected and the perfect sytem, ni is
the number of atoms of type i added (> 0) or removed (< 0), ∆µi are the corresponding
atomic chemical potentials referenced to µrefi , ∆εF is the Fermi level referenced to εrefF
and q is the charge of the system.
A common choice as a reference for the electron chemical potential εrefF is the valence
band maximum (VBM), so that the Fermi level can be assumed in the range between the
VBM and the conduction band minimum (CBM), but in principle the choice of references
for the chemical potentials is arbitrary.
FHI-aims uses the Ewald summation technique to calculate the electrostatic Hartree
potential for a periodic system. For a charged periodic system (specified by the keyword
charge in control.in) a neutralizing homogeneous background charge density is
introduced to remove the divergent G = 0 component of the long-range part of the
electrostatic potential.
This scheme is not suitable for periodic surface models, because the background charge
density would be spread over the whole unit cell including the vacuum region. Instead
charged surface defects can be treated within a virtual crystal approach (VCA), which
corresponds to distributed doping of the material. The following scheme can be used
for an insulating system with a localized defect level in the bandgap. By modifying the
charge of the atomic nuclei (using the keyword nucleus in control.in), while
keeping the system neutral, additional delocalized states can be introduced at the top
of the valence band or at the bottom of the conduction band. The occupation of the
defect levels can thus be tuned by the amount of charge distributed on the cations or
anions in the system. To ensure that the defect has the desired charge q, the sum of the
modified nuclear charges Z′i should differ from the sum of the original nuclear charges
Zi by the value of q:

Natoms∑
i

Z′i =
Natoms∑
i

Zi − q.

Note that for calculating the formation energy of a charged defect within the VCA
the reference system should be the doped undefected system, not the perfect undoped
system. Since doping pins the Fermi level ∆εF vanishes for this method.
For example, a way to model a positively charged oxygen vacancy at a metal oxide
MexOy surface is to distribute the charge uniformly on the metal atoms Me by changing
their nuclear charge from Z(Me) to

Z(MeVCA) = Z(Me)− q
N(Me) ,

where N(Me) is the number of metal atoms in the system. This introduces vacant states
at the VBM which in the defected system will be occupied by electrons from the defect
level.

498 Chapter 4. Running FHI-aims: Guides to specific tasks

When using the neutralizing background method for bulk systems the additional term
may introduce an arbitrary shift, so that it is necessary to find a common energy reference
for the charged and the neutral periodic system to which the respective potentials can
be aligned. For example alignment of the core levels of an atom far away from the defect
can be done according to

∆εF = (εF − εDcore)− (εperfVBM − εperfcore).

Plot the atom projected density of states (output option output atom_proj_dos
in control.in) for this atom for the charged defected and the neutral perfect system
to visualize changes in the core states. (Be aware that in an all-electron approach the
deeply lying core states are sensitive to local changes in electron density due to relaxation
and charge redistribution, so that their shift in a defected system with respect to the
perfect host system may not include only the average potential shift.)
Due to spurious electrostatic interaction as a result of the employed periodic boundary
conditions the formation energy of a charged defect depends on the dimensions of the
supercell. The formation energy scales as ∆GD

f (L) ≈ a 1
L

+ c for sufficiently large super-
cells [149]. For a simple cubic unit cell L corresponds to the supercell lattice constant
and can take up integer multiples of the unit cell lattice constant L(0). For differently
shaped unit cells with lattice constants L(0)

1 , L(0)
2 , L(0)

3 set for example L:=L1 and build
supercells L1 = n ·L(0)

1 , L2 = n ·L(0)
2 , L3 = n ·L(0)

3 with integer n. The desired formation
energy of a single defect in an infinite supercell ∆GD

f (L→∞) can then be obtained by
extrapolation. Note, that the convergence of the extrapolated energy with respect to the
supercell size should be tested carefully. Taking into account geometric relaxation can
improve the convergence significantly. Alternatively postprocessing correction schemes
that allow to remove the spurious interaction terms have been suggested in literature
[149, 66].

499

Chapter 5

The AITRANSS package

The aitranss (ab initio transport simulations) package is a project under continuous
development at the Institute of Nanotechnology of the Karlsruhe Institute of Technology
(KIT), Germany, since 2002. In brief, when combined with FHI-aims, aitranss provides
a post-processor module that enables, e.g., calculation of the electron transport char-
acteristics of molecular junctions based on a Landauer formalism in a (non-equilibrium)
Green’s function formulation.

Currently, the version of the code accessible to FHI-aims users is limited to computation
of the ballistic (Landauer-Büttiker) transmission function and partial atom-projected
density of states. According to current planning advanced options, e.g., out of equilibrium
transport response, will be available in the future releases.

A discussion of the underlying physical formalism and details of the implementation are
described in the references [11, 228, 13]:

A. Arnold, F. Weigend, and F. Evers, "Quantum chemistry calculations for
molecules coupled to reservoirs: Formalism, implementation, and application
to benzenedithiol." J. Chem. Phys. 126, 174101 (2007).

J. Wilhelm, M. Walz, M. Stendel, A. Bagrets, and F. Evers, "Ab initio simula-
tions of scanning-tunneling-microscope images with embedding techniques and
application to C58-dimers on Au(111)." Phys. Chem. Chem. Phys. 15, 6684
(2013).

A. Bagrets, "Spin-polarized electron transport across metal-organic molecules: a
density functional theory approach." J. Chem. Theory Comput. 9, 2801 (2013).

Please, cite the above works together with FHI-aims publications, when using aitranss.

For questions and bug reports, contact Alexej Bagrets (Alexej.Bagrets@kit.edu).

500 Chapter 5. The AITRANSS package

5.1 Source code and supporting materials

The source code and supporting material of the aitranss-module for the FHI-aims
package is placed in the subdirectory aitranss/. This directory contains subdirectories:

• source/ : with the Fortran90 code and the example Makefile ;

• tcontrol.script/ : contains a script tcontrol.aims.x, which is served to
prepare a mandatory input file tcontrol for the transport-type calculation ;

• electrodes.library/ : contains a library of representative gold (Au) clusters
(xyz-files) which should be linked, via anchoring groups, to your molecular system
to create an “extended molecule”: its electronic structure (Kohn-Sham molecular
orbitals and energies) is a prerequisite to compute transport characteristics ;

• examples/ : contains examples, with input and output files of the FHI-aims and
aitranss; README files found in this subdirectory contain also short guidelines
on how an input for a particular transport calculation has been created.

5.2 Compiling the AITRANSS module

Please, use a template of the Makefile found in the directory source/, and adjust
variables referring to compiler (FC and LD), compiler’s options (FLAGS) and a path to
libraries (LIBS) at your computer system. A mandatory prerequisite to build the code
is a Fortran 90/95 capable compiler and a compiled version of LAPACK and BLAS (for
example, Intel’s MKL). A binary (aitranss.x) built by the Makefile will go to the
bin/ directory of the FHI-aims.

In contrast to FHI-aims, the current release of aitranss is not yet based on MPI.
However, you are encouraged to use a fortran compiler option(s), aka "-openmp" and
"-O2" for Intel’s ifort, to enable the auto-parallelizer to build a multithreaded code
based on OpenMP directives.

According to our experience, a generated code can be safely executed in parallel within a
single compute node with multiple processors, and with a significant gain in computation
time.

We advise you as well to copy a script tcontrol.aims.x found in the directory
tcontrol.script/ to the directory bin/ of the FHI-aims installation, and to make
files in that directory accessible for the execution from a command line by adjusting your
shell variable PATH.

5.3. How to set-up and run transport calculations 501

5.3 How to set-up and run transport calculations

5.3.1 FHI-aims run: input and output

Having your molecule "at hands", use your favorite modeling and visualization tools/-
software, and prepare an extended structure by linking the molecule via anchoring groups
to two atomic clusters, representing parts of macroscopic source and drain electrodes.
Consult the electrodes.library/ directory, and use predefined Au clusters found
there. A typical example of an “extended molecule”, which you are requested to build,
is shown in Fig. 5.1.

Include a line

output aitranss

into your control.in file. Furthermore, following settings are recommended for the
self-consistent DFT calculation:

occupation_type gaussian 0.1
mixer pulay

n_max_pulay 10
charge_mix_param 0.2

sc_accuracy_rho 1E-4
sc_accuracy_eev 1E-2
sc_accuracy_etot 1E-6

relativistic zora scalar 1.0e-10

Invoke FHI-aims exploiting a cluster type (non-periodic) calculation. After the FHI-aims
run is finished, you’ll find in your directory three ASCII files: basis-indices.out,
omat.aims and mos.aims. These files contain: some limited information on basis
functions; overlap integrals; and data on Kohn-Sham molecular orbitals & energies of
the “extended molecule”, respectively. If spin channels of your system are not identical,
mos.aims will be substituted by two other files called alpha.aims and beta.aims.

5.3.2 What to be aware of before running AITRANSS module

The aitranss module should be run from the same directory, where output files of
FHI-aims are placed. A file geometry.in is mandatory and should also be there.

A file control.in is not used. Instead, another mandatory file for the transport calcu-
lation is tcontrol. Please, always use a script tcontrol.aims.x to create this file.
Executing a script tcontrol.aims.x without arguments outputs a help information:

502 Chapter 5. The AITRANSS package

[...]
--
"tcontrol.aims.x" script creates a mandatory file "tcontrol"

which is required to run the "aitranss"
post-processing module after FHI-aims

--
USAGE: tcontrol.aims.x [-option <argument>] ...

where options & arguments are:

! electrodes geometry:
-lsurc <atom1> three atoms which define an outermost
-lsurx <atom2> LEFT surface layer of the extended
-lsury <atom3> molecule

-rsurc <atom4> three atoms which define an outermost
-rsurx <atom5> RIGHT surface layer of the extended
-rsury <atom6> molecule

-nlayers <number> number of atomic layers coupled to
reservoirs via a self-energy

! energy window, in Hartree [H], to
! output transmission function T(E) :

-ener <E1[H]> initial energy point, E1
-estep <dE[H]> energy step, dE
-eend <E2[H]> final energy point, E2

! output :
-outfile <file_name> output file name for T(E) [default: TE.dat]

When executed with options and arguments, a script tcontrol.aims.x checks for the
geometry.in file and other mandatory FHI-aims output files (basis-indices.out,
omat.aims, mos.aims or alpha.aims & beta.aims) in your directory, reads from
these files information on a system size and the Hamiltonian H and overlap matrix
dimension, and exports this information together with your arguments to an ASCII file
tcontrol. Options and arguments are used: (i) to provide information on the self-energy
construction; (ii) to introduce an energy window for the calculation of the transmission
function T (E), and (iii) (optionally) to introduce an output file name for T (E).

Comment on the self-energy. When an “extended molecule” is contacted to macroscopic
reservoirs, a propagation of an electron with energy E within a subspace limited by the
“extended molecule” is described by the Green’s function: G−1(E) = E −H − Σ(E),
where a self-energy Σ(E) accounts for the interaction between a finite system and
macroscopic reservoirs. As argued in Refs. [11, 62], if atomic clusters introduced to
model parts of metallic electrodes are large enough, the reservoirs can be modeled by

5.3. How to set-up and run transport calculations 503

n
1n

2

n
3

m
1

m
2

m
3

N
a

N
a

Outermost left
plane: n1,n2,n3

Interface region SL Interface region SR

Outermost right

plane: m1,m2,m3

Figure 5.1: A schematic view of the “extended molecule”. The shaded regions are interfaces
to the two reservoirs. Within the interface regions absorbing boundary conditions are
active and the self-energy Σ is introduced. A user defines interface regions by specifying
the outermost left and right atomic planes (introducing indices of three different atoms
that form a triangle, n1, n2, n3, and m1,m2,m3, respectively) and the amount of atomic
layers, Na.

absorbing boundary conditions which become active at the interface regions SL and
SR (labeled by a gray color in Fig. 5.1) where the “extended molecule” is coupled to
reservoirs. Within this model, the self-energy is approximated by an energy-independent,
diagonal matrix,

Σµµ′

nn′ ≈ −iηnδnn′δµµ′ ,

where indices n and n′ label atoms, and µ and µ′ label corresponding internal degrees of
freedom (i.e., atom-centered basis functions). Here absorption rates ηn are allowed to
have non-zero weights only within the interface regions SL and SR. A user defines inter-
face regions by specifying the outermost left and right atomic planes (introducing indices
of three different atoms forming a triangle, n1, n2, n3, and m1,m2,m3, respectively) and
the amount of atomic layers, Na.

5.3.3 How to create a mandatory file tcontrol

To create a tcontrol file, a tcontrol.aims.x script should be launched with the
following options and arguments:

tcontrol.aims.x -lsurc n1 -lsurx n2 -lsury n3 -rsurc m1 -rsurx m2 -rsury
m3 -nlayers Na -ener E1 -estep dE -eend E2

• where integer numbers n1, n2, n3 are indices of three different atoms fixing the
outermost left atomic plane of the “extended molecule” (see Fig. 5.1); atoms are
numbered according to their appearance in file geometry.in ;

• integer numbers m1, m2, m3 are indices of three different atoms fixing the outer-
most right atomic plane of the “extended molecule” (see Fig. 5.1);

504 Chapter 5. The AITRANSS package

• an integer Na indicates the number of atomic layers defining the interface regions
SL and SR (see Fig. 5.1); users are strongly advised to take Au clusters of similar
size from the directory electrodes.library/ and use a parameter Na suggested
in the header of a library file. Using Au clusters of similar size insures that Na can
be consistently chosen to be the same for both left and right interface regions;

• real numbers E1, E2 and a positive real number dE define the energy window
[E1, E2] and energy step dE to calculate transmission function T (E);

• optionally, you can launch the script with "-output filename" where filename is
a string, specifying a name of the output file for T (E).

An example of the transport calculation set-up for the Au-benzene-dithiol-Au junction
can be found in the directory examples/au-c6h6-au/. A script tcontrol.aims.x has
been executed there with the following options and arguments:

tcontrol.aims.x -lsurc 34 -lsurx 30 -lsury 36 -rsurc 35 -rsurx 33
-rsury 31 -nlayers 2 -ener -0.4000 -estep 0.0001 -eend 0.0000

to create the following file tcontrol:

#input data for the aitranss module
$aims_input on
$landauer on
$coord file=geometry.in
$natoms 50
$basis file=basis-indices.out
$read_omat file=omat.aims
$scfmo file=mos.aims
$nsaos 2268
$ecp on
$lsurc 34
$lsurx 30
$lsury 36
$rsurc 35
$rsurx 33
$rsury 31
$nlayers 2
$s1i 0.1d0
$s2i 0.05d0
$s3i 0.025d0
$ener -0.4000
$estep 0.0001
$eend 0.0000
$output file=TE.dat
$testing off
$end

Detailed description of keywords in file tcontrol are given in the paragraph 5.4.

5.3. How to set-up and run transport calculations 505

5.3.4 How to submit a transport calculation and its output

Assuming a binary file aitranss.x is placed in the directory bin/ of the FHI-aims
installation which is referenced in your shell variable PATH, you can run the transport
type calculation from a command line, like

> aitranss.x | tee my.transport.calc.out

or

> nohup aitranss.x > my.transport.calc.out &

FHI-aims output files together with information provided from files tcontrol and
geometry.in will be used by the aitranss module to reconstruct a Kohn-Sham Hamil-
tonian (H) of the “extended molecule”, to supplement H with the self-energy Σ, and to
compute a ballistic (Landauer-Büttiker) transmission function, exploiting Green’s func-
tion formalism.

After calculation is finished, you’ll get two files. The first file with a default name TE.dat
contains information on the transmission function, T (E). Data in this file are arranged
in columns as indicated in a file’s header: (i) first column is energy in Hartree (atomic)
units; (ii) second column is energy in eV units given with respect to the Fermi energy,
which is also stated in the file’s header; (iii) third column contains data on ballistic
transmission per spin. If spin channels of your system are different, there will be present
third and forth columns, referring to transmission in up-spin (α) channel and down-spin
(β) channel, respectively. A contribution to conductance due to spin σ electrons is given
by transmission at the Fermi energy, Tσ(EF), in units e2/h.

The second file has a name self.energy.in, and contains information about the model
self-energy construction. A format of this file is similar to the format of geometry.in,
where each line corresponds to one atom in the structure, and atom’s specific data are
arranged in columns: (i) columns from 1st till 5th are atom index n, its x, y and z-
coordinates (in Å), and atomic symbol, respectively; (ii) 6th column can contain entries
left, right or empty, depending on whether a given atom n is a part of the left interface
region SL, right interface region SR, or does not belong to none of them (see Fig. 5.1
for details); (iii) last column contains a real number in a “double precision” fortan-like
format: this number is a local leakage rate ηn, in Hartree units, at given atom n (for
details, please see a comment on the model self-energy construction, section 5.3.2).

Default leakage rates ηn’s, used for construction of the model self-energy, have exten-
sively been tested in numerous previous transport studies with Au-electrodes. These
rates are referenced also in the tcontrol file and controlled by the keywords (tags)
$s1i , $s2i and $s3i as explained in detail in the following paragraph 5.4.

Warning: If you are not a transport-expert user and employ the aitranss module as
a “black-box” for routine transport calculations, we advise you against modifying the
default parameters. This may easily lead to misleading or even completely incorrect
results.

If the post-processor transport calculation is resubmitted, a previously created file
self.energy.in will be used to initialize the self-energy matrix, as controlled by the
keyword $self_energy in file tcontrol, see section 5.4.

506 Chapter 5. The AITRANSS package

5.3.5 Further option: local density of states

Besides a calculation of the ballistic transmission function, you may use aitranss to
output local density of states projected on groups of atoms forming a molecular junction.
This option is controlled by a keyword $ldos and described in detail in the subsequent
section 5.4.

5.4 Keywords of file tcontrol

All keywords (tags) of tcontrol file begin with a special symbol $. Lines starting from #
are comment lines. All lines after a keyword $end are ignored.

Tag: $aims_input (tcontrol)

Usage: $aims_input on

Purpose: mandatory flag, sets up the FHI-aims like format of input/output files.

Tag: $landauer (tcontrol)

Usage: $landauer flag

Purpose: mandatory keyword; flag should take values either on or off. If flag
is on, ballistic transmission function is computed. If flag is off, calculation
of the transmission function is not performed. In this case you, however, may
wish to compute atom projected local density of states that is controlled by the
keyword $ldos .

Tag: $ldos (tcontrol)

Usage: $ldos flag

Purpose: optional keyword; flag can take values on or off. If flag is on, atom
projected local density of states (LDoS) is computed; otherwise (flag is off)
calculation of LDOS is not performed.

On output, the (energy dependent) density of states of the system is projected onto
atomic orbitals of atoms marked by the same chemical symbols and is redirected to corre-
sponding files, which have the self-explanatory names, e.g. ldos.au.dat, ldos.c.dat,
ldos.h.dat and ldos.s.dat in the case of benzene-dithiol molecular junction shown
in Fig. 5.1. For example, the file ldos.c.dat would contain LDoS summed up over all
six C atoms of the molecule. Furthermore, only LDoS projected onto those electrodes’
atoms of the “extended molecule” which are not part of the interfaces to the reservoirs
(shown in grey color in Fig. 5.1) is redirected to the file ldos.au.dat.

Data in the output files are arranged in columns as indicated in the file’s header, namely:

5.4. Keywords of file tcontrol 507

energy in Hartree (atomic) units; energy in eV units given with respect to the Fermi
energy; LDoS (in 1/eV units) in the α spin channel; if open shell calculation is chosen,
next column contains LDoS (in 1/eV units) in the β spin channel; last column contains
LDoS summed up over two spin channels.

There is a possibility to arrange atoms having the same chemical symbol in groups by
using the sixth field of the line staring from ’atom’ as appears, e.g., in the geometry.in
file (see also a keyword $coord). For example, LDoS projected on the two Au atoms
indicated by the mask ’apex’ as shown in the example below,

atom 0.1424445 0.1134435 4.4557346 Au apex
...
atom -0.1689195 0.0042317 -4.4601905 Au apex

would appear in the file ldos.au_apex.dat. Caution: maximum 16 characters can be
used to designate a group of atoms.

Tag: $coord (tcontrol)

Usage: $coord file=geo-filename
Purpose: mandatory keyword; sets up a file name with atomic positions (in FHI-
aims format); geo-filename is a text string without spacings, e.g., geometry.in

A specified file should be present in your directory. The whole string, file=geo-filename,
should not contain any spacings.

Tag: $natoms (tcontrol)

Usage: $natoms n

Purpose: mandatory keyword, specifies number of atoms in the “extended
molecule”; n is a positive integer number.

Tag: $basis (tcontrol)

Usage: $basis file=basis-filename
Purpose: mandatory keyword; sets up a file name with information on basis
functions quantum numbers as written out by the FHI-aims; basis-filename is a
text string without spacings, default file name is basis-indices.out

A specified file should be present in your directory. The string file=basis-filename
should not contain spacings.

508 Chapter 5. The AITRANSS package

Tag: $read_omat (tcontrol)

Usage: $read_omat file=overlap-filename
Purpose: mandatory keyword, sets up a file name with overlap matrix elements
as written out by the FHI-aims; overlap-filename is a text string without spacings,
default file name is omat.aims.

A specified file should be present in your directory. The string file=basis-filename
should not contain spacings.

Tag: $scfmo (tcontrol)

Usage: $scfmo file=mos-filename
Purpose: mandatory keyword in case of non-spin-polarized calculation; sets up
a file name with self-consistent-field molecular orbitals (e.g., Kohn-Sham wave
functions) as written out by the FHI-aims; mos-filename is a text string without
spacings, default file name is mos.aims.

A specified file should be present in your directory. The string file=mos-filename should
not contain spacings.

Tags: $uhfmo_alpha (tcontrol)
$uhfmo_beta (tcontrol)

Usage: $uhfmo_alpha file=alpha-filename
$uhfmo_beta file=beta-filename

Purpose: mandatory keywords in case of spin-polarized calculation; set up
file names with self-consistent-field molecular orbitals (e.g., Kohn-Sham wave
functions) as written out by the FHI-aims for α (up-spin) and β (down-spin)
electrons, respectively; alpha-filename and beta-filename are text strings without
spacings, default file names are alpha.aims and beta.aims.

Specified files should be present in your directory. The strings file=alpha-filename and
file=beta-filename should not contain spacings.

Tag: $nsaos (tcontrol)

Usage: $nsaos N

Purpose: mandatory keyword, specifies dimension N of the overlap matrix and a
single-particle Hamiltonian of the “extended molecule”.
N is a positive integer number; its value can be found in the header line of
default output FHI-aims files omat.aims and mos.aims (or alpha.aims and
beta.aims).

5.4. Keywords of file tcontrol 509

Tag: $ecp (tcontrol)

Usage: $ecp flag

Purpose: optional keyword, flag can take values on or off. Default (and
recommended) value is set to on and serves to substantially accelerate electron
transport calculations.

In that case, exploiting Green’s function formalism, "core" electronic states of atoms with
Z ≥ 19 are integrated out and projected on a subspace of the remaining ("valence") elec-
tronic states. Thus, dimension of the effective Hilbert space of the "extended molecule"
is reduced (see $valence_electrons), and only valence states are coupled to macro-
scopic reservoirs via model self-energies. For atoms from the n-th period of the periodic
table, core states are associated with those "atomic" basis functions, which have the
principle quantum numbers up to n− 2.

Tag: $valence_electrons (tcontrol)

Usage: $valence_electrons Nval

Purpose: optional keyword, Nval is integer number, which is evaluated automa-
tically and specifies amount of valence states in the "extended molecule" when a
keyword $ecp is switched on.

Tags: $lsurc (tcontrol)
$lsurx (tcontrol)
$lsury (tcontrol)

Usage: $lsurc n1
$lsurx n2
$lsury n3

Purpose: mandatory keywords; integer numbers n1, n2 and n3 are indices of
three different atoms according to their appearance in file geometry.in, which
define in a unique way an outermost left atomic surface of the “extended
molecule” (see Fig. 5.1 for details).

Tags: $rsurc (tcontrol)
$rsurx (tcontrol)
$rsury (tcontrol)

510 Chapter 5. The AITRANSS package

Usage: $rsurc m1
$rsurx m2
$rsury m3

Purpose: mandatory keywords; integer numbers m1, m2 and m3 are indices of
three different atoms according to their appearance in file geometry.in, which
define in a unique way an outermost right atomic surface of the “extended
molecule” (see Fig. 5.1 for details).

Tag: $nlayers (tcontrol)

Usage: $nlayers Na

Purpose: integer number Na specifies amount of atomic layers within interface
regions at the boundaries of “extended molecule” where absorbing boundary
conditions are active and self-energy matrix elements (leakage rates) are
non-zeros, see Fig. 5.1 for details.

An integer number Na should be taken from a header line of library files for Au electrodes
which are placed in electrodes.library/ directory.

When using tcontrol.aims.x, the number Na is passed to a script by the option:
-nlayers Na.

Tags: $s1i (tcontrol)
$s2i (tcontrol)
$s3i (tcontrol)

Usage: $s1i η1
$s2i η2
$s3i η3

Purpose: positive real numbers η1, η2 and η3 define local leakage rates (in
Hartree units) which parametrize self-energy matrix elements.

Default values of leakage rates for Au clusters, written by the script tcontrol.aims.x
to the file tcontrol, reflect a gradual switching of perturbation and are given by:
η1 = 0.1 for the outermost atomic layer of the “extended molecule” (see Fig. 5.1 for
details); η2 = 0.05 for the next-to-the-outermost atomic layer; and η3 = 0.025 for the
rest of atomic layers within the interface regions of the “extended molecule”.

See also a keyword $self_energy .

Disclaimer: ’Black-box’-users of aitranss are strongly advised to work with the Au-
electrodes listed in the library and use default parameters for the self-energy, only. The
transport code will print out a warning message if other chemical elements are employed
as electrodes material. Unexpected modification of electrodes or self-energy settings
will, in general, lead to misleading or incorrect scientific results.

5.4. Keywords of file tcontrol 511

Tags: $ener (tcontrol)
$estep (tcontrol)
$eend (tcontrol)

Usage: $ener E1
$estep dE
$eend E2

Purpose: real numbers E1, dE and E2 should be given in Hartree units and
define the energy window [E1, E2], and the energy step dE for calculation and
output of the transmission function T (E).

If any of above mentioned keywords is missing, only conductance at the Fermi energy is
calculated.

Tag: $self_energy (tcontrol)

Usage: $self_energy file=self-energy-file
Purpose: sets up a name of the file with atom specific values parameterizing the
self-energy matrix; a format of the self-energy file is explained in section 5.3.4.
self-energy-file is a text string, a default file name is self.energy.in. The
string file=self-energy-file should not contain spacings.

If a keyword $self_energy is present in tcontrol, the diagonal elements of the
self-energy matrix are read from the referenced file. In that case, parameters and values
given by keywords $lsurc , $lsurx , $lsury , $rsurc , $rsurx , $rsury
, $nlayers , $s1i , $s2i , and $s3i do not have an effect.

Tag: $testing (tcontrol)

Usage: $testing flag

Purpose: optional keyword, reserved for testing purposes; flag can take values
on or off. Default value is set to off.

If flag is set to on, several internal checks are performed to insure that employed
numerical procedures give correct results, e.g.: (i) eigenvalues of the reconstructed
Kohn-Sham Hamiltonian H coincide with values stored in files mos.aims, alpha.aims
or beta.aims, and eigenvectors of H are orthogonal to each other; (ii) eigenvalues of
the overlap matrix are positive, and the square-root of the overlap matrix multiplied
by itself gives back the overlap matrix; (iii) a matrix B of eigenvectors of the complex
valued operator H+ Σ multiplied by the inverse B−1 gives a unitary matrix, BB−1 = 1,
etc. Furthermore, there appear many .tmp files: one of them called zmos.tmp (or
zalpha.tmp and zbeta.tmp) contains information on the complex poles En = εn− iδn
of the Green’s function G−1(E) = E −H − Σ.

512 Chapter 5. The AITRANSS package

Tag: $end (tcontrol)

Usage: $end

Purpose: mandatory keyword, indicates the last line of file tcontrol, which is
read by the transport module aitranss. All lines below this one are ignored.

Acknowledgment: A. Bagrets and F. Evers acknowledge the help of Richard Korytár in
writing a manual on aitranss.

513

Appendix A

Trouble-shooting

We sincerely hope that FHI-aims will largely “do the job” for you as it comes; in fact,
a large amount of work has gone into ensuring sane responses and understandable out-
put from code when something was requested that was not safe or reasonable to do.
Nonetheless, as with every piece of software, non-trivial issues can happen that are not
immediately obvious to the user. In this appendix, we provide a list of known conditions
that have taken unwary users by surprise, how to detect and how to fix them.

If you know of an issue that is not discussed below, but that should be included because
it presents an easy stumbling block especially for new/inexperienced users, please let us
know, and we will address the issue here.

A.1 Format flags required by some compilers

FHI-aims contains source code files in different formats (.f or .f90), and sometimes
containing rather long lines in the .f90 versions.

The Makefile therefore contains two different versions of the compiler flags, FFLAGS and
F90FLAGS, which can be the same for some compilers, but do not have to be the same.

For specific compilers, flags that must be added to account for the diffent file formats
properly are:

• xlf90 compiler (IBM): FFLAGS must contain the option “-qfixed” in addition to all
other options specified with the F90FLAGS.

• g95 compiler: F90FLAGS should contain the option -ffree-line-length-none in ad-
dition to all other options found in FFLAGS.

514 Appendix A. Trouble-shooting

A.2 FHI-aims aborts with a segfault at the
beginning of the first test run.

We here repeat the information given already in Chapter 1:

If you are not familiar with Unix or Unix-like operating systems, the following will perhaps
clarify what is going on. In Unix, the operating system kernel will allow a program to
allocate / deallocate the variables it requires on the so-called heap. For small quick
variables needed at runtime, this is not always the most efficient procedure (you do not
want to allocate / deallocate every single loop counter in your code, for example). Such
small variables can instead be requested from a stack, available per process, and also
controlled by the kernel.

In principle, using the stack is not a great problem on current computers available for
scientific computing, because you will rarely ever find more than a few processes at the
same time that make excessive use of the stack. So, technically it should not matter
whether you get your memory from the heap, or from the stack.

Unfortunately, for reasons unbeknownst to us, some opertaing system vendors limit the
default user stack size to ≈5 MB in a time when typical available RAM per processor
is 2 GB or more. For some purposes, FHI-aims requires that the execution stack size
available to you be large enough for some initial internal operations. If too little stack is
available, your FHI-aims run will segfault shortly after the command was launched. In
that case, type:

> ulimit -s unlimited

(when using the bash shell or similar), or

> limit stacksize unlimited

(when using the tcsh or similar).

> echo $SHELL

will tell you which shell you are using. Ideally, this same setting should be specified in
your .profile, .bashrc, or .cshrc login profiles. If “unlimited” does not work, try setting a
large value instead, e.g., ulimit -s 500000.

If any of these steps are not allowed, you will have to contact the system manager of
your computer in order to modify the stack size limits set by the kernel of your operating
system.

FHI-aims prints at startup the settings of the stacksize as they are found on your system.
As mentioned, here “unlimited” or a large value should be reported.

A.3. Use of FHI-aims with multithreaded BLAS (e.g., Intel’s MKL) 515

A.3 Use of FHI-aims with multithreaded BLAS
(e.g., Intel’s MKL)

The performance of FHI-aims depends critically on the basic linear algebra subroutine
(BLAS) library used to perform matrix operations. Such libraries are highly CPU-specific,
and should be provided and optimized by yourself or your computer vendor for your
particular computer.

Unfortunately, with the advent of multi-core CPUs for PCs, some computer vendors
(Intel, IBM) have decided that their proprietary BLAS implementations will, by default,
use all available CPU’s by way of threads, since they do not expect a user to know how
to create parallel code.

In contrast, FHI-aims makes great efforts to distribute its workload evenly itself (much
more efficient than leaving the task up to the BLAS, which are used for some, but by no
means all operations in the code). Thus, FHI-aims invokes the correct number of sub-
processes via the message-passing interface (MPI), then distributing any further basic
numeric operations (matrix multiplications) using BLAS routines correctly itself.

If the default settings provided by a vendor are to use all CPUs for every single call or
the BLAS operations, on a system with n CPUs this will lead to n× n tasks running in
parallel – not good at all for efficiency.

The problem is easily fixed by setting the system variable OMP_NUM_THREADS (number
of threads invoked by OpenMP-parallelized libraries, e.g., BLAS) to 1:

export OMP_NUM_THREADS=1

(This syntax is correct for the bash shell). When using Intel’s MKL, you may likewise
wish to set MKL_NUM_THREADS to 1. On top of this, Intel will still ignore your choice
unless you set the less well documented variable MKL_DYNAMIC to FALSE.

Another, much simpler and equally well performing option is to use the freely available
Goto BLAS subroutines that can be downloaded and compiled on standard architectures.

Some versions of Intel’s MKL are known to have an error in a function called “pdtran”.
Thus at startup FHI-aims tests the version of pdtran it is currently using for correctness.
Should FHI-aims abort with an error message “pdtran test failed! Aborting...” you will
have to use a different version of Intel’ MKL or replacements like Goto BLAS.

A.4 Parallel runs across different file systems

In parallel runs on distributed computers (clusters), FHI-aims expects its input files in
the directory from which it is invoked. Its standard output can be redirected by hand to
any given location, and other (optional, see keyword output) output files are again
written in the same directory from which FHI-aims is invoked.

516 Appendix A. Trouble-shooting

This procedure works well on most standard cluster and/or high-performance computing
architecture available today, but you must make sure that the directories for input and
output are visible and readable / writable on all the nodes across which FHI-aims is
parallelized for a given run.

A.5 I’m running a calculation for a large system,
and it exits abrutply. What’s going on?

It is possible that you are indeed running out of memory. See the next section, “What
do I do if I run out of memory?”

However, do check if you really did set “ulimit -s unlimited” before running the calcula-
tion. If FHI-aims is compiled with an additional C compiler (this is as simple as defining
the “CC” environment variable in make.sys or in the Makefile), then FHI-aims’ stan-
dard output also writes the stack size that is set for each MPI task. Sometimes the
result can be surprising – for example, some MPI libraries’ mpirun command does not
propagate the stack size limit to all compute nodes.

A.6 What do I do if I run out of memory?

Like all other electronic structure codes, the current bottleneck for FHI-aims when per-
forming calculations for large systems is memory usage. A number of flags exist to alle-
viate memory usage, but as many of them have an associated trade-off of performance
overhead, poor scaling for small system sizes, or breaking post-processing techniques,
they have not been enabled by default. For large systems where memory usage becomes
an issue, however, enabling them will be worth it. This list of flags may be found at
in Section 3.35, “Large-scale, massively parallel: Memory use, sparsity, communication,
etc.”

For hybrid functionals please make sure that you really need the basis set that you are
requesting. For example, the tier 2 basis sets specified by tight and really_tight settings
for light elements can be far too large. You may be able to get away with “intermediate”
settings instead. Especially for hybrid functionals, large numbers of basis functions per
atom really increase the time and memory consumption much more drastically than for
semilocal DFT.

Please ask regarding intermediate settings in our forum – especially for hybrid functionals
or for many-body perturbation theory. It’s worth it.

A.7. Nearly singular basis sets: Strange results from small-unit-cell periodic
calculation with many k-points 517

A.7 Nearly singular basis sets: Strange results from
small-unit-cell periodic calculation with many
k-points

We have observed numerous times that periodic bulk calculations with small unit cells
and many k-points are apparently much more prone to ill-conditioning of the basis set
than any other type of calculation. The symptom is that, with the usual accuracy
and grid settings, large but still affordable basis sets (e.g., tier 3) will show reasonable
convergence behavior at the outset, but then suddenly show a large jump and unphysical
total energies at some point in the s.c.f. cycle.

The underlying reason is that the basis sets used by FHI-aims are overlapping and non-
orthogonal. As the basis functions located at each atom of the structure approach
completeness, the basis set as a whole becomes overcomplete. The result may be that
certain linear combinations of basis functions are approximately expressable as linear com-
binations of some others. The eigenvalue problem Eq. (3.27) becomes ill-conditioned,
and small amounts of numerical noise in the Hamiltonian / overlap matrix elements can
group together to produce large unphysical effects in the eigenvakue spectrum.

If this happens, a number of strategies are available to deal with this situation. These
are summarized in the following. Note, however, that ill-conditioning does indicate that
your chosen basis set is already closer to completeness than even your computer can
handle, and a smaller basis set for production calculations should be equally sufficient
(and much faster) for high-quality results.

• Employ the basis_threshold keyword. This allows to identify the near-
linear dependent components of the overlap matrix and eliminate them from the
calculation. The successful threshold value depends on your chosen basis set and
system, so test different choices (typically, 10−4 or 10−5). Note, however, that a
large basis_threshold value may also impact the the total energy found at
a level of a few meV/atom.

• In addition, the keyword override_illconditioning must be set in order to
run with a basis set that is reduced by basis_threshold . This should serve as
an indicator that extra care is required in this situation—in particular, a detailed
convergence analysis of the behaviour of the problem with increasing basis set size,
and (separately!) with increasing cutoff radius, up to the value you are using. In
most cases, it should turn out that either the basis set, or the cutoff radius, or
both, were chosen to be far overconverged.

• Increase the accuracy of the integration grids via radial_base and angular_grids
. This is an expensive strategy (use for proof-of-principle only!), but it will serve
to reduce the numerical noise in your calculations and thus increase the validity
range of the eigenvalue solution, Eq. (3.27).

Again, note that we do not usually observe any ill-conditioning related problems for
large periodic structures (e.g., surface slabs) or even very large molecules, even when
employing very large basis sets.

518 Appendix A. Trouble-shooting

A.8 No convergence of the s.c.f. cycle even after
many iterations

One first thing first: If you encountered unexpected s.c.f. convergence issues, did look
at your exact geometry.in file in a viewing program, such as jmol? One of the most
common reasons to find unexpectedly bad s.c.f. convergence for apparently harmless
structures are issues such as the wrong lattice parameter for the structure in question,
an atom in the wrong location, or the wrong structure altogether. Structures that are
chemically unstable are often not happy at all when it comes to the stability of their
electronic structure, and slow or no s.c.f. convergence can be an indicator of a simple
geometry mistake.

Successful strategies for s.c.f. convergence in standard electronic structure problems
have been developed in the field for a long time. Still, there remain some particular
pathological classes of calculations, and even some of particular physical interest: large
metallic slabs, where charge oscillations can occur; spin-polarized systems with closely
competing spin states; systems near the crossing of two Kohn-Sham eigenvalues at the
Fermi level; etc.

Visualizing the actual s.c.f. convergence behavior of your run can be a first step to
success. See Sec. 3.10.1 for a brief description of how to do this.

The adjust_scf keyword now automatically controls s.c.f. convergence. It may be
best to first remove all scf-convergence related keywords from control.in and see if
this works. Sometimes, problems arise from mis-setting such keywords. As a result, for
example we no longer recommend setting any of the sc_accuracy_* keywords explicitly.

If a control.in file without any scf-convergence related keywords does not solve the
problem, the next steps are to adjust the available keywords carefully and step by step.

The standard s.c.f. convergence strategy within FHI-aims is to use mixer pulay, with
a configurable charge_mix_param and number of mixed iterations n_max_pulay
. These, possibly together with a preconditioner , should be modified first in order
to see whether the problem can be contained.

A first line of defense against bad s.c.f. convergence is the sc_init_iter keyword.
This keyword resets the Pulay mixer completely after a specified number of s.c.f. it-
erations. This is done only for the first s.c.f. cycle and can dramatically improve the
covergence behaviour of problematic cases. The current default (as of this writing) is
for the mixer to reset itself after 1001 iterations.

Typical settings that work for wide varieties of systems are as follows:

• Semiconducting or insulating solids or molecules (i.e., insulating systems with an
appreciable band gap):

mixer pulay
charge_mix_param 0.2
occupation_type gaussian 0.01

A.8. No convergence of the s.c.f. cycle even after many iterations 519

are usually enough to work for such systems.

• Metallic systems with no appreciable band gap, slabs to model surface phenomena,
etc.:

mixer pulay
charge_mix_param 0.02
occupation_type gaussian 0.1

or similar should usually work. Note that charge_mix_param 0.02 is not a small
value for a mixing parameter, since this is employed with a Pulay mixer. After several
iterations, the Pulay mixer has usually figured out what the right mixing parameters
should be and thereby tends to undo the slowing effect of a small mixing parameter.

• Periodic slab models that are still problematic:

In periodic systems, FHI-aims uses a Kerker preconditioner by default, in addition to the
usual Pulay mixer. For very anisotropic metallic systems (think graphene sheet with a
10x10 unit cell and a large vacuum), the Kerker preconditioner may not be appropriate
– switching it off may help:

preconditioner kerker off

• Slow convergence for spin polarized systems:

Only ever run a spin polarized calculation if there is a good reason to do so. Running a
clearly non-spin-polarized system with spin none just for aesthetic reasons is a bad
idea: It will double your computer time usage in the best of cases, and it will require
you to begin the calculation from some finite spin initialization that may not be close to
the self-consistent electronic structure you are seeking. Thus, spin polarization may add
additional s.c.f. cycles and cost extra time in any case.

Obviously, please do run spin polarized calculations if there is a good physical reason to
do so. Just do not underestimate the cost. It is also wise (= essential!) to think about
the initial moments chosen for the initialization of the calculation. The closer the initial
moment distribution matches the expected self-consistent result, the better (faster) the
convergence.

In contrast, beginning every spin-polarized calculation with a high spin state for every
atom may be a highly bad idea. In particular, do not run molecular or condensed phase
calculations (i.e., anything other than single free atoms) with default_initial_moment
hund. Hund’s rules, which can be read up on Wikipedia and a host of other sources,
apply to free atoms. Condensed systems have very different spin moment distributions.

Beyond this, s.c.f. convergence issues can be highly system-specific in our experience,
and general guidelines are hard to give. Things that will always work to some extent are:

520 Appendix A. Trouble-shooting

• a linear mixer with a (very!!) small charge_mix_param , which in the
limit will guarantee convergence, albeit at the expense of excessively many s.c.f.
cycles to reach convergence

• A increased broadening specified with occupation_type . This is essential
especially for metalic systems, but for small clusters, the quality of the obtained
total energies will deteriorate somewhat as a result, since these suddenly correspond
to fractional (very high temperature) occupation numbers around the Fermi level.

For particularly hard cases, we also recommend to review in detail all the options available
in Sec. 3.10; better yet, contact us (see Section 1.7).

While trying out all these options, however, we strongly suggest to use the output_level
full keyword, in order to have the actual eigenvalue spectrum printed across different
s.c.f. iterations, and then to visualize the behaviour of the eigenvalue spectrum as a
function of s.c.f. iteration. In many cases, this step may yield some critical physical
insight into the nature of the problem. For example, Kohn-Sham density functional
theory may sometimes be forced to place competing electronic levels (d and f in rare
earth elements are a good example, but there are many others!) at the Fermi level in
order to ensure a given (ground-state) fractional occupation. The search for the correct
occupation of these levels will then oscillate between different iterations, and could be
the source of the instability. Stabilizing such a problem is still not easy, but at least,
looking at the electronic structure as it develops may give some critical hint as to what
is happening, instead of leaving the user groping in the dark.

521

Appendix B

Structure of the code

The bulk of this manual is concerned with the available options to build and run FHI-
aims for a particular purpose. In our experience, most users will probably remain at this
level in their use of the code, already due to the time constraints of a normal research
schedule.

Nonetheless, we strongly believe that running a “physics” code as a complete black-box
package is not a good idea. Our branch of physics is based on (mostly) well-understood
differential equations, and the solution technique applied, including its limitations, must
be well understood, or at least understandable, to gauge the outcome of a particular
calculation. In order to achieve this, the source code to the method used must be
available. While we do not expect most users to go through the code in its entirety with
a fine-tothed comb, we do encourage any user to look into the source code and try to
understand in which way FHI-aims produces its exact solution to a problem.

The purpose of this appendix is to facilitate this understanding, by outlining the overall
structure of the code, specifically, the high-level subdivision of physical tasks.

B.1 Flow of the program

The uppermost level of FHI-aims is the subroutine main.f90, the structure of which is
shown as a structogram in Fig. B.1. As a subroutine, main.f90 can also be called by
external code as a library subroutine, with the restriction that, for parallel execution, this
can happen only once [by definition of the message passing interface (MPI) for parallel
communication, there can only be one call to mpi_init per program run].

The purpose of main.f90 is to provide a logical separation of groups of computational
tasks by way of high-level wrapper subroutines (listed in typewriter font in Fig. B.1).
With the exception of global convergence checks, no outright physical quantities are
directly manipulated in main.f90. All physically relevant quantities are handled inside
the lower-level structure of the code and, if necessary, are passed between them by
way of specific modules. For example, the module physics.f90 handles all variables of
tangible physical importance (Hamiltonian and overlap matrices, Kohn-Sham wave func-
tion, electron densities, potentials, ...). The geometry information for a given electronic

522 Appendix B. Structure of the code

Figure B.1: High-level program flow of FHI-aims

B.1. Flow of the program 523

structure cycle (coordinates) are found in module geometry.f90; etc.

More details regarding these and other modules are included with the code distribution
as a separate document. The point here is that main.f90 should never need to use any
but the highest-level modules explicitly, i.e.:

• dimensions.f90 : Inclusion of array dimensions for consistent allocations across
the code, and wrapper flags to prevent access to unallocated variables which are
not needed for a given task.

• localorb_io.f90 : Wrapper module for consistent writing of output in parallel
runs

• mpi_utilities.f90 : Wrapper module for MPI initialization, finalization (first
and last tasks of a run, respectively), and task distribution

• timing.f90 : Wrapper module including all timing and accounting information,
including the count of s.c.f. iterations, relaxation or MD steps.

The first task of main.f90 is to initialize any accounting (timing etc.) information, the
infrastructure required for MPI (or, to silently switch off the use of MPI entirely in the
case of non-parallel runs), and to record all this information (initial time stamps, code
version, number of parallel tasks and computer system layout) in the standard output.

The obvious next task is to read and process all input information given in control.in
and geometry.in. Internally, this is handled in three steps (see the wrapper subroutine
read_input_data.f90): First, both input files are parsed once, while extracting only
the dimension information needed to set up any necessary arrays / array dimensions
needed to house the following input data. Organizing this information is the task of
module dimensions.f90. Next, the information in control.in is read and checked
for consistency, using read_control.f90 for all general information, and repeated calls
to read_species_data.f90 for all species -related information. Finally, subroutine
read_geo.f90 reads the input data of geometry.in, and verifies its consistency with
the data contained in control.in.

At the end of this step (subroutine read_input_data.f90), all input data from all input
files should have been read and processed. It is important that any known conflicts, or
incomplete settings, should have been verified at this stage, stopping the code with an
error message if outrightly conflicting input information is detected. For completeness,
we mention that any technical input settings of global interest (e.g., the handling of
spin, relativity, or exchange-correlation) are collected and accessible through the top-
level module runtime_choices.f90.

The following steps are the “household” steps of electronic structure theory.

Wrapper subroutine prepare_scf.f90 sets up all structure-independent, fixed pieces of
the calculation, and stores them for easy access in the actual self-consistency cycle. This
includes all free-atom quantities (densities and potentials for the initialization), radial
basis functions for all species , one-dimensional logarithmic and three-dimensional
radial and angular integration grids, and fixed coefficients for the analytic long-range
part of the Hartree potential.

524 Appendix B. Structure of the code

Wrapper subroutine initialize_scf.f90 performs the initial s.c.f. cycle of the elec-
tronic structure calculation. In this step, the full three-dimensional integration grid is
filled with fixed initial quantities (superposition of free-atom densities, potentials, and
partition functions), the overlap and Hamiltonian matrix integrals are performed for the
first time, and the initial Hamiltonian and overlap matrices are used to determine the
storage requirements in the event of sparse matrix storage. If a two-electron Coulomb
operator is needed (hybrid functionals, Hartree-Fock, MP2, GW etc.), the three-center
overlap matrix elements (ij|µ) of Eq. (3.52) (see Sec. 3.22 for details) and the Coulomb
matrix of the auxiliary “resolution of the identity” basis set [denoted Vµν in Eq. (3.52)]
are precomputed. The most important task in initialize_scf.f90 is the initial so-
lution of the Kohn-Sham equations Eq. (3.27), providing a first solution of the wave
function coefficients cjl. These are the starting point of every iteration of the s.c.f. cycle
in the following step, subroutine scf_solver.f90.

With all preliminary information available, the task of scf_solver.f90 is to produce a
self-consistent electron density, wave function, and all associated observables for a given,
fixed nuclear geometry. The order of the cycle until convergence is reached is:

1. Calculation of the Kohn-Sham electron density associated with the current wave
function, cjl

2. electron density mixing and preconditioning, to produce the input electron density
for the next set of Kohn-Sham equations

3. decomposition of the electron density into atom-centered multipole fragments
δñat,lm(r) [see Eq. (Eq;mp)], and construction of the multipole components of
the Hartree potential, δṽat,lm(r)

4. construction of the full electrostatic potential ves(r) on all points r of the three-
dimension integration grid

5. Integration of the updated Hamiltonian matrix elements, hij

6. possible addition of two-electron exchange matrix elements to hij

7. solution of the Kohn-Sham equations Eq. (3.27), to produce an updated wave
function cjl

8. computation of updated total energy components, and check of all convergence
criteria.

After convergence is reached, scf_solver.f90 also performs some inevitable post-
processing steps, including “scaled ZORA” perturbative corrections for the appropriate
relativistic treatment, and band structure and density of states data output.

With a converged self-consistent solution at hand, the code can now perform any num-
ber of similar calculations for updated geometries, e.g., for a geometry optimization,
molecular dynamics, etc. If so, an updated geometry is first produced by subroutine
predict_new_geometry.f90. Note that this simple subroutine should also serve as
the starting point for any other calculations involving multiple geometries, such as the

B.2. Commenting and style requests 525

calculation of “serial” geometries along a given set of coordinates, etc. For the updated
geometry, all geometry-related storage arrays in the calculation and the overlap matrix
must be recomputed in subroutine reinitialize_scf.f90. Following this, subroutine
scf_solver.f90 is invoked again, and a new self-consistent solution is obtained.

The final step of the code is to produce, by post-processing, any information that can be
obtained from the converged self-consistent wave function or electron density, including
electrostatic moments, charge analyses, etc. Beyond this, only necessary cleanup tasks
follow, most notably the deallocation of all storage arrays and the MPI infrastructure,
and the final time accounting information.

B.2 Commenting and style requests

Generally, no strong style conventions are enforced within FHI-aims, recognizing the
fact that most programmers follow their own style conventions and preferences when
it comes to details. There are, however, some conventions that should be followed in
order to keep the code as a whole legible, and maintainable. When writing additional
code, please adhere to these, using existing modules or subroutines as models where
appropriate.

A current set of “code conventions” is maintained at the Wiki at aimsclub. A
subset of these recommendations includes:

1. Please comment your work. Any necessary functionality should be accompanied
with comments, enough so that at least someone familiar with the underlying
mathematics can follow your code.

2. Please provide regular comment headers for your work. Every module and subrou-
tine comes with comment headers in the style used by the Robodoc code manage-
ment system (see, e.g., http://www.xs4all.nl/~rfsber/Robo for details and a
manual). Beyond the possible use of Robodoc, we follow this convention because
it provides a clear and unambiguous laundry list of items that are needed in any
subroutine header: a description of the subroutine purpose, possibly its input and
output data, and most importantly a copyright statement that is needed for every
file in the code distribution.

3. Please keep your usage of Fortran conservative. Some ambitious constructs, while
desirable when following formal techniques such as fully object-oriented program-
ming, can still expose compiler bugs when too “un-Fortran-like” syntax is used.

4. In particular, compiler-dependent bugs are the reason why the use of pointers is
strongly discouraged in FHI-aims. Even when following the textbook, allocating
and deallocating pointers works differently with different compilers, opening the
possibility of unexpected memory leaks outside our control. Please don’t do it —
this problem has bitten us before.

Again, please consult the “aimsclub” wiki for the full and current recommended code
conventions.

http://www.xs4all.nl/~rfsber/Robo

526

Appendix C

Debug Manager - a centralized
debugging facility for developers

FHI-aims features a centralized utility for controlling debug output. This utility keeps
track of all registered modules (in a physical sense, e.g. the DFPT features are a module
in this context) and can enable their debug output selectively via the control.in file.

The main idea behind this utility is to provide a simple tool to generate debug-flags that
can be set in the control.in without having to register them manually in the input parsing
routines. Furthermore, it also provides a central debug interface to the user, instead of
having to use different flags, flags that can only be toggled in the sourcecode or even
no toggles at all.

You can enable debugging for any registered module in the input file by adding a
debug_module my_module. The list of currently supported modules can be found in
the file init_debug.f90.

To register your module, you only need to add a single line to the init_debug.f90 :

register_debugmodule("your_tag")

Afterwards, you can conveniently activate debugging in the control.in by using the flag:

debug_module your_tag

This tells the code to enable debugging for your code. Just call

debugprint(message, your_tag)

in your code to only print the message if debugging for your module is enabled. For
more complicated debug functionality, there also is

module_is_debugged(your_tag)

This function returns a logical value and thus can be used as condition in an enclosing
if-block. Both functions are located inside the debugmanager module, which you can
import like any other module with a use-statement.

527

Appendix D

XML output

The FHI-aims can print results of the calculations in an XML format. This functionality is
provided by the xml_write module. The module is quite general and capable of printing
any XML, but also has convenient functions for printing scalars, vectors, matrices and
n-dimensional arrays. The formatting of the data in the XML elements is both human-
readable and machine-readable. The obvious advantage is that such an output from the
code is extremely easy and fast to parse.

There are two ways how the XML module can be used. There is a global XML file which
can be turned on with xml_file <filename> in control.in. Printing to this file is
as simple as loading the module and calling one of its routines. Note however that if the
block of code that prints to this global file calls another code also printing to the global
file, the XML output of these two codes might get intertwined, resulting in a valid but
nonsensical XML file.

A second way how to use the XML module is to create a new “local” XML file with the
open_xml_file routine and use that one by calling the module printing routines with
the optional argument file=<xml_file_instance>.

528

Appendix E

Optional Libraries to be Linked into
FHI-aims

A core principle for FHI-aims is that it should be possible to build all essential functionality
with only a minimal set of dependencies, typically a Fortran compiler, BLAS and LAPACK
libraries, an MPI library, and the ScaLAPACK library. These packages are essential for
performance and usually available on every relevant supercomputer architecture.

We note that while it is often easy to fulfil other, far more complex dependencies on
standard Linux type systems with household tools, this is not always true for highly
specialized supercomputers. Yet, that computer may be precisely one the multi-million
dollar machine which would help solve an advanced scientific problem. It is essential
that a mere human be able to compile FHI-aims with the appropriate performance on
such a machine.

That said, it may be beneficial to connect other libraries to FHI-aims for special purposes,
including libraries which require cross-compilation with a C compiler. This section is
intended to be developed into a list of such libraries. Please also see Section I.1.1 for
some basic information.

E.1 Adding Optional Libraries into FHI-aims: Stubs

The optional presence or absence of certain libraries from FHI-aims at compile time
means that the main FHI-aims code must be able to deal with the possible absence of
certain subroutine or function calls to those libraries at compile time.

In many codes, this is handled by adding preprocessor statement. In FHI-aims, prepro-
cessor flags are NOT the way forward. The simple reason is that a single preprocessor
flag may remain understandable for an ordinary user; the proliferation of ten or more
preprocessor flags will create a serious obstacle for others to obtain a reasonably com-
piled code. Code that introduces preprocessor statements into FHI-aims will be removed
from the code base.

In FHI-aims, the recommended way to optionally add or circumvent a given library is by

E.2. Spglib 529

creating a “stub” file for those library calls – essentially, empty subroutines that inform
a user that they should not have ended up here with a given version of the code (i.e.,
without linking to a certain external library). At compile time, an appropriate flag in the
Makefile and Makefile.backend should be created that switches between the real external
library (if available) or the “stub” file. Please follow the example of “libxc” etc. in the
“CMakeLists.txt” file, the Makefile, and Makefile.backend for more information. The
principle is simple and easy to apply for any other optional library.

E.2 Spglib

Spglib is a library for finding and handling crystal symmetries, written by Atsushi Togo
(http://spglib.sourceforge.net). FHI-aims can be interfaced to the spglib.

So far, FHI-aims supports the determination of the crystal symmetry for a given (pe-
riodic) geometry file and k-point reduction based on this analysis (local and semi-local
functionals only). Theoretical background and keywords are described in Section 3.37.

Prerequisites:

spglib is written in C and therefore needs a C compiler with appropriate options in
addition to the usual Fortran compiler with which FHI-aims is built.

Ideally the spglib source files should be placed in the folder external/spglib contained
within the FHI-aims source (src) directory.

Tag: use_symmetry_analysis (control.in)

Usage: use_symmetry_analysis .true. / .false.

Purpose: This flag activates the interface to the spglib to obtain symmetry
information for the provided geometry file once. The symmetry information is
directly written after the geometry printout in the FHI-aims standard output.
spglib needs to be compiled with FHI-aims to get the output.
Default: .true.

Tag: sym_precision (control.in)

Usage: sym_precision value

Purpose: This value determines the accuracy for identifying symmetric atoms.
The lower the value, the more strictly the atomic positions must overlap.
Default: 10−5

530 Appendix E. Optional Libraries to be Linked into FHI-aims

E.3 Libxc

Libxc is, accordingly to its website, “a library of exchange-correlation functionals for
density-functional theory. The aim is to provide a portable, well tested and reliable set
of exchange and correlation functionals that can be used by all the ETSF codes and also
other codes.” More information may be found at http://octopus-code.org/wiki/
Libxc. The version distributed with the FHI-aims source code is 4.0.2.

Compiling FHI-aims with Libxc provides opportunity to perform SCF calculations with
either the internal FHI-aims routines or the large repository of options available in Libxc.
Libxc support is beneficial for extended functionality in FHI-aims, such as calculations of
NMR parameters and the atom_sphere radial solver. If a particular method requested
by the user requires Libxc, the calculation will stop and inform the user to re-compile
with Libxc support. Most users running standard DFT/hybrid SCF calculations will not
need to compile with Libxc support.

Prerequisites:

Libxc is written in C and therefore needs a C compiler with appropriate options in addition
to the usual Fortran compiler with which FHI-aims is built.

Specifically for Libxc, include in Makefile or make.sys:

USE_LIBXC = yes

E.4 cffi — Python 2/3 interface to FHI-aims

cffi provides options to execute arbitrary Python code or launch an interactive Python
console from within FHI-aims. Various Fortran runtime variables are accessible from
the Python environment. At the time of writing, the interface is limited to the grid
point batches, electron density, grid partition function Hirshfeld volumes and atomic
coordinations. Adding further objects is a fairly straightforward process (see below) and
the author of these lines (jhermann@fhi-berlin.mpg.de) will gladly do so upon request.

Tag: python_hook (control.in)

http://octopus-code.org/wiki/Libxc
http://octopus-code.org/wiki/Libxc
mailto:jhermann@fhi-berlin.mpg.de?subject=%5Baims%20cffi%5D

E.4. cffi — Python 2/3 interface to FHI-aims 531

Usage: python_hook <label> (<filename> | REPL) <attribute>

Purpose: Register a Python hook to a specified location.
<label> is a string, specifying the location in the FHI-aims run, at which the
hook is activated (see below for a complete list).
<filename> is a string, specifying the Python source file that should be executed
(details below). If REPL is given instead, FHI-aims launches an interactive Python
console at the given location. The latter option is available only in serial runs.
<attribute> is a string, specifying optional attributes of the hook. Currently,
this can be only parallel, which specifies that the hook should be run in all
MPI tasks. The default is to run only in the root task.
The tag can be specified repeatedly. There can be only one hook registered to a
given location, since it can easily invoke other scripts.

Prerequisites

The extension can be linked to aims using both Make. Note that when you compile with
Python 2 or 3, you then need to use that particular version in your user scripts.

• To compile with Make, define USE_CFFI=yes. This also requires specifying a
Python interpreter with PYTHON=<path to python>. The Python include files
and libraries are detected automatically and printed at the top of the Make output.

The interface is written using the iso_c_binding module, which is a Fortran 2003
feature. It is supported by all major compilers.

The build extension links FHI-aims to a dynamic Python library. Under ideal circum-
stances, everything should work out without any intervention, but manual intervention
may be needed in non-standard environments. The Python installation needs to have
packages cffi (≥1.5.2), Numpy/Scipy. The mpi4py package is not required, but its
absence severely limits the functionality.

Troubleshooting

In Linux, dynamic libraries are usually recorded only by their names during linking and
found dynamically at runtime at several standard locations. If you link against your
own Python installation, such as Anaconda, you need to make sure that FHI-aims can
find the Python library at runtime. This can be done by adding anaconda/lib to
$LD_LIBRARY_PATH. Since Anaconda now packages includes its own version of the Intel
Math Kernel Library, which could clash with any system MKL, it is recommended to
uninstall MKL from Anaconda if you include it in $LD_LIBRARY_PATH.1

On OS X, dynamic libraries are supposed to contain their absolute installation path,
in which case these paths are recorded during linking and used at runtime. This

1A more user-friendly behaviour could be setup using RPATH in the future.

https://docs.continuum.io/mkl-optimizations/index#uninstalling-mkl

532 Appendix E. Optional Libraries to be Linked into FHI-aims

is the case with the system Python and Homebrew Python, but not with Anaconda
Python. To use this extension with Anaconda Python on OS X, either set the vari-
able $DYLD_LIBRARY_PATH to the Anaconda library directory anaconda/lib or (bet-
ter) change the install path of the Python library in the compiled FHI-aims binary with
the system install_name_tool. Furthermore, some version of Anaconda Python on
OS X do not seem to properly initialize Python paths when embedded, in which case
$PYTHONHOME needs to be set when running FHI-aims.

Usage

The Python interface can be used either in an interactive or non-interactive mode. The
interactive mode is activated by the option REPL (see python_hook). In this mode,
AIMS launches an interactive Python console at a given location. This is available only
in a serial run. In the console, connection to the running FHI-aims instance is provided
via a local variable ctx. Various quantities are accessible as attributes of this context
object. For example,

Self-consistency cycle converged.
[...]

--
Executing Python hook: post_scf

There is a local variable ‘ctx‘.
See ‘help(ctx)‘ for details.
Press CTRL+D to
continue the aims run.
Type ‘exit(1)‘ to abort aims.
+>>> ctx
<AimsContext ’rho, batches, coords, partition_tab’>
+>>> ctx.coords
array([[-3.77945226, 3.77945226],

[0., 0.],
[0., 0.]])

+>>> ctx.rho
array([[5.81201802e-02, 3.72428091e-01, 3.72426419e-01, ...,

1.54065044e-05, 4.86078607e-12, 1.17640761e-29]])
+>>> ctx.rho[:] = 0
+>>>

The context object provides also several convenience functions which are documented in
help(ctx). When the console is quit normally (CTRL+D), the FHI-aims run continues.
When the return code is non-zero (for example with exit(1)), the FHI-aims run is
aborted.

In the non-interactive mode, which is available also in parallel runs, the context object
is passed to the user-defined function run which is loaded from the specified file. Two

E.4. cffi — Python 2/3 interface to FHI-aims 533

locations are currently available at which the run function is executed, as specified by
the argument to the python_hook keyword:

post_scf immediately after the end of the self-consistent loop, before any post-processing

post_hirshfeld immediately after the end of the Hirshfeld analysis, that is, before
any van der Waals routines

A minimal user script (can be both Python 2 and 3) could look for example like this:

import json

def run(ctx):
with open(’coords.json’, ’w’) as f:

json.dump(ctx.coords.tolist(), f)

Note that the provided variables are local to a given MPI process. For synchronization,
one can use the mpi4py Python package. Some convenience synchronisers are defined in
ctx. For exampeles of how to use the mpi4py package, see the commented implemen-
tation of ctx.gather_all_grids() in cffi/python_interface.py. The user script
can optionally define also function parse, which is then called without any arguments
during parsing of control.in. This can be used to verify or precompute certain data
before launching the full calculation. Any uncaught exceptions in the both parse() and
run() cause aims to abort immediately. To recapitulate, a user script has one or two
entry points: (i) the mandatory run is executed at the location specified in control.in
and takes the single context argument and (ii) the optional parse function, which does
not take any arguments, and is always called at the end of parsing control.in.

At the time of writing, two example hooks are provided in aimsfiles/utilities/python_hooks/.
The first one plots the electron density in the xy plane. Below is a shortened glimpse to
get a general idea, see the original file for the complete implementation.

~~ imports ~~

bohr = 0.52917721067

def run(ctx):
points, rho = ctx.gather_all_grids([’rho’])
if ctx.rank == 0: # the grids are gathered only on the root process

points = points.T # (3, npts) -> (npts, 3)
rho = rho.sum(0) # sum over spin
in_plane = abs(points[:, 2]) < 1e-10 # points in xy plane
points = bohr*points[in_plane, 0:2] # filter & take x, y & scale
rho = np.log10(1+rho[in_plane]) # filter & log scale
X, Y = np.mgrid[-4:4:400j, -2:2:200j] # get rectangular grid
interpolate density to rectangular grid
rho = griddata(points, rho, (X, Y), method=’cubic’)
~~ matplotlib plotting ~~

534 Appendix E. Optional Libraries to be Linked into FHI-aims

Figure E.1: Electron density of an argon dimer in the xy plane produced by FHI-aims via
interface to Python.

Saving this file into plot-density.py and putting python_hook plot-density.py parallel
into control.in produces Figure E.1 for an argon dimer.

The other example hook loads Hirshfeld volumes from the output of a previous FHI-aims
calculation. The parsing part of the hook is executed when FHI-aims parses control.in
and searches for the Hirshfeld analysis section in hirshfeld.out. The actual modi-
fication in all processes happens after the normal Hirshfeld analysis is performed by
specifying python_hook load-hirshfeld.py parallel.

import numpy as np

volumes = None

def parse():
global volumes # otherwise volumes would be local to function
with open(’hirshfeld.out’) as f:

while ’Performing Hirshfeld analysis’ not in next(f):
pass # find the Hirshfeld section

volumes = np.array(list(get_volumes(f)))

def get_volumes(f):
for line in f:

if not line.strip():
return

if ’Free atom volume’ in line:
free = float(line.split()[-1])

elif ’Hirshfeld volume’ in line:

E.4. cffi — Python 2/3 interface to FHI-aims 535

hirsh = float(line.split()[-1])
yield hirsh/free

def run(ctx):
ctx.hirshfeld_volume[:] = volumes # replace values in-place

The two-step operation saves computation time if the parsing ended with an error, since
it would abort FHI-aims right after start. By specifying also

sc_iter_limit 0
postprocess_anyway .true.

in control.in, one can skip the SCF cycle completely and evaluate only the van der
Waals part of the energy.

Extending the interface

To extend the range of objects provided by the context object, several simple steps need
to be followed.

python_interface.f90 The Fortran type AimsContext_t needs to be extended and
the added component needs to be initialized in get_aims_context() and poten-
tially deallocated in destroy_aims_context() if it required any allocation. The
latter is of concern only for mapping Fortran types, not simple arrays.

cffi/python_interface.h The corresponding C struct AimsContext_t needs to be
updated accordingly. When these two steps are done, the object is already available
in its raw form in ctx._c_ctx.

cffi/python_interface.py The initialization of the Python object AimsContext in
call_python_cffi_inner() needs to be updated accordingly. For simple arrays,
this amounts to simply wrapping the raw C pointers with Numpy arrays. For
wrapping Fortran types, see how BatchOfPoints and GridPoints are wrapped.

To add new hook labels, add the following lines to the desired location:

use python_interface, only: run_python_hook, python_hooks

% ...

if (python_hooks%<hookname>%registered) then
call run_python_hook(python_hooks%<hookname>)

end if

and extend HookRegister_t and register_python_hook() in python_interface.f90
by adding <hookname>.

536

Appendix F

Split large cluster allocation to
multiple aims instances

Specific tasks need to perform many small jobs rather than a few big ones. The job
submission of such tasks on large compute facilities, which typically require at least a
few hundreds MPI processes, can be cumbersome. FHI-aims allows for running multiple
instances of itself and split a global MPI communicator into smaller, independent parts.
This allows for a unified approach to submit one large job and let the splitting happening
in aims.

To use this feature, you need to compile the multiaims executable by compiling the
multiaims target. When using CMake, this is controled via the MULTIAIMS option.
When using Makefile, the target multi.scalapack.mpi should be used. In either case,
a C compiler is mandatory in addition to the usual requirements.

The multiaims environment needs its jobs distributed in subdirectories labeled 1 to N ,
where N is the total number of jobs. In the main directory one additional control file
multiaims.in needs to be specified. This file contains two keywords:

Tag: tasks_per_subjob (multiaims.in)

Usage: tasks_per_subjob value

Purpose: Specifies the number of processes working on one subtasks. Should be
a divisor of total number of processes.

Tag: start_id (multiaims.in)

Usage: start_id value

Purpose: Specifies the first job folder to start with.

537

Appendix G

GPU Acceleration of FHI-aims

G.1 Introduction

G.1.1 Overview of GPU Acceleration Philosophy in FHI-aims

FHI-aims uses a batch integration scheme[91] in which the real-space integration points
are broken up into spacially localized batches of points. Each batch of points is assigned
to an MPI rank, and each MPI rank processes its assigned batches sequentially. After
all batches have been processed, the MPI ranks communicate the final results to one
another.

The batch integration scheme is at the heart of FHI-aims’ O(N) scaling in number of
atoms for most of the steps of the SCF cycle. (An important exception is the solution
of the Kohn-Sham equations, which is handled by the ELSI infrastructure.) Only basis
elements that touch an integration point will contribute to the quantity being calculated
for a given batch. As basis elements have finite spacial extent, for a sufficiently large non-
periodic system or unit cell of a periodic system, the number of basis elements needed
for a given fixed-sized batch will be saturated. Adding more atoms to the system, i.e.
increasing the size of a non-periodic system or using a larger unit cell for a periodic
system, will increase the number of batches linearly, but not the work done per batch,
leading to linear scaling in number of atoms.

The batch integration scheme in FHI-aims lends itself naturally to GPU acceleration.
The details vary based on the task being accelerated, but the general strategy is:

1. The MPI rank sets up a batch.

2. The MPI rank communicates batch details to its assigned GPU.

3. The GPU performs work on the batch.

4. If the MPI rank needs to process the batch further, the GPU communicates the
results back to its assigned MPI rank.

5. After all batches have been processed, the GPU communicates its final results
back to its assigned MPI rank.

538 Appendix G. GPU Acceleration of FHI-aims

As each MPI rank processes its batch independent of other MPI ranks, no significant
effort is needed to use GPU acceleration in an MPI environment. The batches are small
enough that they fit into memory on an NVIDIA GPU. As each batch is statistically
similar in size, the memory usage of a given batch is independent of system size; the
GPU will not run out of memory as the system size increases for a fixed number of
MPI ranks. Furthermore, most of the computation time for tasks utilizing the batch
integration scheme is taken up by a small number of BLAS/LAPACK subroutine calls
occurring at the end of the batch processing. These subroutine calls can be easily
replaced by cuBLAS (https://developer.nvidia.com/cublas) calls.

The pseudocode for this process is:

do i_batch = 1, n_batches
set_up_batch_on_cpu
copy_batch_information_to_gpu
call cuBLAS_Function()
if gpu_data_needed_on_cpu

copy_partial_gpu_data_back_to_cpu
cpu_performs_work_on_partial_gpu_data

end if
end do

copy_gpu_final_data_back_to_cpu

G.1.2 Current State of GPU Acceleration in FHI-aims

The steps needs to use GPU acceleration in FHI-aims are:

1. Make sure prerequisites are installed.

2. Compile FHI-aims with GPU support. This may be accomplished by using CMake
or Makefile.

3. Add GPU acceleration keywords to control.in.

4. Run FHI-aims as normal.

It cannot be stressed enough that the user should consult the documentation for their
architecture, as their architecture may require additional steps to use GPU acceleration
beyond what is listed here.

The GPU acceleration code is considered stable and suitable for production calculations.
An example scaling plot for timings of the first SCF step for 128 atoms of GaAs on Titan
Cray XK7 is shown in Figure G.1. We generally find that the charge density update shows
the largest GPU acceleration speed-up. Larger speed-ups are observed as the basis set
size is increased. If a non-periodic system or unit cell of a periodic system is too small
(say, a primitive cell of GaAs running on 32 MPI ranks), a slow-down may actually be
observed.

https://developer.nvidia.com/cublas

G.1. Introduction 539

128 256 512 1024
Number of MPI Ranks

2

4

8

16

32

64

128

Ti
m

e
[s

]

Total Time (GPU)
Total Time (No GPU)
Kohn-Sham Equation Solution (GPGPU ELPA)
Kohn-Sham Equation Solution (CPU ELPA)
Charge Density Update (CUDA)
Charge Density Update (No CUDA)
Integration (CUDA)
Integration (No CUDA)
Hartree Multipole Summation (Both)

Timing of First SCF Step on Titan for GaAs
128 atoms, PBE, 1x1x1 k-grid, tight integration settings, tight basis set (n_basis = 4352), 16 MPI ranks/node

Figure G.1: Example scaling plot for GPU acceleration. The solid lines are CPU-only
calculations, and the dotted lines are GPU-accelerated calculations. At present, there is
no GPU acceleration in the Hartree multipole summation, so both CPU-only and GPU-
accelerated calculations have the same timings for this task.

The list of tasks we have GPU accelerated natively in FHI-aims is:

• Integration of the Hamiltonian matrix

• Charge density update via density matrices

• Pulay forces

• Stress tensor

In the future, we plan to natively GPU accelerate the following tasks:

• Hartree multipole summation

• Construction of the Fock matrix (for Hartree-Fock, hybrid-functional, and beyond)

540 Appendix G. GPU Acceleration of FHI-aims

G.2 Prerequisites

The CUDA Toolkit package is needed to enable GPU acceleration in FHI-aims. Sup-
plied by NVIDIA, CUDA may be downloaded free of charge at https://developer.
nvidia.com/cuda-toolkit. It is recommended to use the NVIDIA Multi-Process
Service (MPS, see https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_
Service_Overview.pdf).

The GPU acceleration in FHI-aims requires at least CUDA versions 10.1.

G.3 Installation

Compiling the FHI-aims executable with support for GPU acceleration requires CMake
≥ 3.8. A set of GPU acceleration flags should be included in the CMake initial cache file.
The installation procedure is otherwise the same as a standard FHI-aims installation. We
have only tested the GPU code for the scalapack.mpi target.

G.3.1 Example initial_cache.cmake file for GPU Acceleration

Note The example below, created for ‘node18‘ of the Timewarp cluster at Duke uni-
versity, covers the GPU-related flags in initial_cache.cmake. It may be used as a
template for the user’s initial_cache.cmake. We encourage users to put their own
GPU acceleration compilation flags on the “Known compiler settings” section of the FHI-
aims GitLab wiki (https://aims-git.rz-berlin.mpg.de/aims/FHIaims/wikis).

Architecture of Timewarp ‘node18‘:

• CentOS Linux 7

• Intel Xeon Silver 4114 CPU 2.20GHz

• NVIDIA Titan V100

• Intel Fortran 18.0.2

• CUDA 10.1

• CMake 3.17.3

initial_cache.cmake:

set(CMAKE_C_COMPILER icc CACHE STRING "")
set(CMAKE_C_FLAGS "-O3 -ip -fp-model precise -DNDEBUG -std=gnu99" CACHE STRING "")
set(CMAKE_Fortran_COMPILER mpiifort CACHE STRING "")
set(CMAKE_Fortran_FLAGS "-O3 -ip -fp-model precise" CACHE STRING "")
set(Fortran_MIN_FLAGS "-O0 -fp-model precise" CACHE STRING "")

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://aims-git.rz-berlin.mpg.de/aims/FHIaims/wikis

G.4. Running FHI-aims with GPU Acceleration 541

set(USE_CUDA ON CACHE BOOL "")
set(CMAKE_CUDA_FLAGS "-O3 -DAdd_ -arch=sm_70" CACHE STRING "")

set(LIB_PATHS "$ENV{MKLROOT}/lib/intel64 $ENV{CUDA_HOME}/lib64" CACHE STRING "")
set(LIBS "cublas cudart mkl_scalapack_lp64 mkl_blacs_intelmpi_lp64

mkl_intel_lp64 mkl_sequential mkl_core" CACHE STRING "")

• How to determine the -arch or -gencode CUDA flags? Your CUDA installation
should come with a utility called deviceQuery, which is located in
samples/1_Utilities/deviceQuery in the CUDA root directory. Copy that di-
rectory into your work directory, enter, and build. If you get any build errors, edit
the Makefile accordingly. When successful, run the executable deviceQuery. The
line “CUDA Capability Major/Minor version number” contains the relevant infor-
mation. For example, if it says 6.0 then use sm_60 with the -arch or -gencode
flags.

• How to choose between multiple GPU cards installed on the system? Use the
environment variable CUDA_VISIBLE_DEVICES.

• When using gfortran with CMake version ≥ 3.8 and < 3.11, it can happen that
the executable wants to link to the wrong libgfortran library at runtime. This can
be prevented by pointing CUDA_LINK_DIRS to directories that contain the CUDA
libraries (e.g., “/opt/cuda/lib64/stubs /opt/cuda/lib64”). For more information,
see this: gitlab.kitware.com/cmake/cmake/issues/17792.

G.4 Running FHI-aims with GPU Acceleration

Compiling the FHI-aims executable with GPU acceleration support will not automatically
turn on GPU acceleration. To use GPU acceleration when running FHI-aims, the user
specifies which tasks should be GPU accelerated independently using the control.in
keywords below:

Tag: use_gpu (control.in)

Usage: use_gpu flag

Purpose: Use GPU acceleration methods that are considered stable. flag is
optional. It can be either .true. or .false.. When not present, .true. is
assumed. This keyword currently enables gpu_density , gpu_hamiltonian
, gpu_forces , and elsi_elpa_gpu . These keywords can also be used
individually to turn on GPU acceleration in a specific part of FHI-aims.

Tag: gpu_density (control.in)

gitlab.kitware.com/cmake/cmake/issues/17792

542 Appendix G. GPU Acceleration of FHI-aims

Usage: gpu_density flag

Purpose: Use GPU acceleration when updating the charge density via density
matrices. flag is optional. It can be either .true. or .false.. When
not present, .true. is assumed. This keyword does nothing when using
orbital-based density update.

Tag: gpu_hamiltonian (control.in)

Usage: gpu_hamiltonian flag

Purpose: Use GPU acceleration when integrating the Hamiltonian matrix. flag
is optional. It can be either .true. or .false.. When not present, .true. is
assumed.

Tag: gpu_forces (control.in)

Usage: gpu_forces flag

Purpose: Use GPU acceleration when calculating the Pulay forces and analytical
stress tensor. flag is optional. It can be either .true. or .false.. When not
present, .true. is assumed.

GPU aceleration of the ELPA eigensolver is controlled by elsi_elpa_gpu . See also
Section 3.9.

One important keyword when running GPU-accelerated calculations is points_in_batch
, which sets the targeted number of points per batch. This parameter is a trade-off: in-
creasing the number of points per batch increases the work done by the GPU per batch,
increasing the efficiency of the GPU, but it also increases the number of basis elements
interacting with a batch, increasing the memory usage. Due to technical details, some
of this additional work is unnecessary, as it does not appreciably add to the integrals
being evaluated.

The default value for points_in_batch based on early CPU-only benchmarks was
set to 100. We have found that increasing this value to 200 is a better choice for our test
architecture (Kepler Tesla GPUs) when using GPU acceleration, and we have set 200
as the default value when running any GPU-accelerating any tasks involving the batch
integration scheme. The user should also play around with this parameter for their own
architecture, particularly if they are using a different GPU architecture.

All GPU keywords may be set independently. We have found that the charge density
update shows a significantly higher GPU-accelerated speed-up than the Hamiltonian
integration (c.f. Figure G.1). If the user’s architecture uses fast CPUs but slow GPUs,
enabling GPU acceleration may actually slow down the calculation.

G.4. Running FHI-aims with GPU Acceleration 543

G.4.1 Memory Usage with GPU Acceleration

One hypothetical limitation in the current implementation of GPU acceleration in FHI-
aims is GPU memory usage. All MPI ranks are assigned to one of the available GPUs,
implying that a GPU will generally have more than one MPI rank assigned to it. All MPI
ranks will offload their work during the compute-intensive cuBLAS call onto the assigned
GPU. This creates two bottlenecks: not only do MPI ranks need to “wait their turn”
behind other MPI ranks before the GPU processes their current batch, but each MPI
rank will take up a portion of the GPU’s memory. If a calculation runs out of memory
when using GPU acceleration, some possible solutions are:

• Read Section 3.35, “Large-scale, massively parallel: Memory use, sparsity, commu-
nication, etc.” of the manual. In particular, consider setting use_local_index
to .true. . While there will be a time cost associated with enabling this keyword,
the memory savings can be considerable.

• Use less MPI ranks per node. By having less MPI ranks per node, less MPI ranks
will be bound to the GPUs on each node, reducing the overall GPU memory usage.

Summary

• Use keywords in control.in to enable GPU acceleration.

• Optimize points_in_batch for the architecture used.

• Test each GPU acceleration keyword individually to make sure there is a speed up
compared to the CPU-only version for the architecture used.

• Try use_local_index .true. if your calculation runs out of memory. (This
is true for all calculations, not just GPU-accelerated calculations.)

544

Appendix H

More on CMake

H.1 The build process

CMake itself is usually obtained from an official repository of a Linux distribution or built
from source. When building from source, the only prerequisite is a C++ compiler.

The build process with CMake consists of two steps: the configuration stage, which
generates the platform’s native build files, and the compilation stage. (This is vaguely
similar to the standard configure and make steps associated with Autotools.)

The configuration stage creates a set of persistent variables, which are contained in a file
called CMakeCache.txt in the build directory. These are referred to as cache variables
and they are the user-configurable settings for the project. All the important decisions
such as which compiler to use, which libraries to link against, etc., are stored as cache
variables. There are three main ways to perform the configuration stage (or set the
contents of the CMake cache):

• Running cmake and specifying all the configuration variables on the command line.
For example, running

cmake -D CMAKE_Fortran_COMPILER=mpif90 ~aims

from within the build directory, where ∼aims is the root source directory, sets
mpif90 as the Fortran compiler. This approach is good for debugging and quick
testing purposes but if a large number of variables is to be specified, it might not
be very convenient. Also, no logic can be included this way.

• A better way is to keep the configuration variables in a separate file, an example
of which is initial_cache.example.cmake in the root source directory of FHI-
aims. It contains example initial values for some configuration variables, which
you can edit to reflect your environment. Make a copy of it first, for example
initial_cache.cmake. When done editing, run

cmake -C ~aims/initial_cache.cmake ~aims

H.1. The build process 545

from the build directory. The -C option tells CMake to load a script, in this case
initial_cache.cmake, which populates the initial cache. The loaded entries
take priority over the project’s default values. A change of the content of
the initial cache file has no effect after the first configuring. Instead, it
would be necessary to empty the build directory before using the cache file again.
Alternatively, one could use a cache editor like ccmake to modify the configuration
variables without emptying the whole build directory, as explained next.

• Run cmake first and then configure using a CMake GUI. In the case of FHI-aims, a
bare cmake run is disallowed, since specifying at the least the Fortran compiler is
required. In general, this is not a requirement for CMake projects. Two commonly
used graphical front ends (or cache editors) are the curses based ccmake and the
Qt-based cmake-gui. When using ccmake, issue

cmake -D CMAKE_Fortran_COMPILER=mpif90 ~aims
ccmake .

from the build directory. Some CMake variables and options appear with a short
help text to each variable displayed at the bottom in a status bar. Pressing ’t’
reveals all options. When done editing, press ’c’ to reconfigure and ’g’ to generate
the native build scripts (e.g., makefiles). Pay attention when ccmake warns you
that the cache variables have been reset. This will happen, for example, when
changing the compiler, and will necessitate the reconfiguring of some variables.
After configuring, it is a good idea to go through all the variables once more to
check that everything is correct. Using cmake-gui is similar to ccmake:

cmake -D CMAKE_Fortran_COMPILER=mpif90 ~aims
cmake-gui .

Besides a graphical window that opens, the usage of cmake-gui is analogous to
ccmake.

When done configuring, FHI-aims can be compiled by issuing a compile command de-
pending on the CMake generator used. A CMake generator is the function that writes
the build files. The default behavior is to generate makefiles for Make, in which case
the compile command is make. When using another generator such as Ninja (which
coincides with the name of the actual build system, Ninja), the compile command is
ninja. See cmake –help for which generators are available. It is actually unnecessary
to think about generators at all when you run

cmake --build .

which is a generic command that always uses the correct compile command. When done
compiling, an executable called aims<...> is produced in the root build directory. The
default base name of the final target is aims and the <...> part depends on details
such as the FHI-aims version number. An executable is not the only supported target.
For instance, when building a shared library in a Linux environment, a library called
libaims<...>.so is produced instead.

546 Appendix H. More on CMake

Note that in general, CMake can also run from the source directory, but this is not
allowed in FHI-aims due to certain conflicts. It is a good practice anyway to compile in a
separate build directory in order to support multiple build configurations simultaneously
and to keep the source directory clean.

H.2 All CMake variables

The following variables and options should be sufficient to build a well optimized FHI-
aims binary. In order to see all the CMake cache variables that the user has control over,
open a CMake GUI and toggle the advanced mode (many of those will have little or no
effect).

Attention! Take special care when setting the Fortran compiler, the compiler flags,
and any libraries, especially the linear algebra libraries. A nonoptimal choice here could
easily cost you a significant amount of computer time.

• CMAKE_Fortran_COMPILER — Name of the Fortran compiler executable. Use a
full path if location not automatically detected.

• CMAKE_Fortran_FLAGS — Compilation flags that control the optimization level
and other features that the compiler will use.

• CMAKE_EXE_LINKER_FLAGS—These flags will be used by the linker when creating
an executable (i.e. equivalent to LDFLAGS)

• LIB_PATHS — List of directories to search in when linking against external libraries
(e.g., “/opt/intel/mkl/lib/intel64”)

• LIBS—List of libraries to link against (e.g., “mkl_blacs_intelmpi_lp64 mkl_scalapack_lp64”)

• INC_PATHS — Additional directories containing header files.

• USE_MPI — Whether to use MPI parallelization when building FHI-aims. This
should always be enabled except for rare debugging purposes. (Default: automat-
ically determined by the compiler)

• USE_SCALAPACK — Whether to use Scalapack’s parallel linear algebra subroutines
and the basic linear algebra communications (BLACS) subroutines. It is recom-
mended to always use this option. In particular, large production runs are not pos-
sible without it. The Scalapack libraries themselves should be set in LIB_PATHS
and LIBS. (Default: automatically determined by LIBS)

• ARCHITECTURE—Can have multiple meanings, including specific handling of a few
compilers’ quirks (the PGI compiler, for example, needs a different call to erf())
and potentially optimization levels for CPU-specific extensions such as AVX. For
many purposes, leaving this variable empty (using the so-called generic architec-
ture) is good enough but do take the time to look into CPU-specific optimizations
if you intend to run very large, demanding calculations.

H.2. All CMake variables 547

• BUILD_STATIC_LIBS — Whether to build FHI-aims as a static library instead
of as an executable. This propagates to subprojects like ELSI unless overridden.
(Default: OFF, i.e. an executable)

• BUILD_SHARED_LIBS — Whether to build FHI-aims as a shared library instead
of as an executable. This propagates to subprojects like ELSI unless overridden.
(Default: OFF, i.e. an executable)

• CMAKE_BUILD_TYPE — If set to “Release”, any flags defined in
CMAKE_Fortran_FLAGS_RELEASE are appended to CMAKE_Fortran_FLAGS. If set
to “Debug”, any flags defined in CMAKE_Fortran_FLAGS_DEBUG are appended
instead.

• CMAKE_C_COMPILER — C compiler.

• CMAKE_C_FLAGS — C compiler flags.

• USE_CXX_FILES — Whether source files written in C++ should be compiled into
FHI-aims. (Default: OFF)

• CMAKE_CXX_COMPILER — C++ compiler.

• CMAKE_CXX_FLAGS — C++ compiler flags.

• CMAKE_ASM_COMPILER — Assembler. Usually not needed.

• EXTERNAL_ELSI_PATH — Path to the external ELSI installation. If empty, internal
ELSI is used instead. See also external ELSI notes below. FHI-aims requires at
least ELSI v2.8.2.

• ENABLE_PEXSI — Enable the PEXSI (pole expansion and selected inversion) den-
sity matrix solver. C and CXX compilers are mandatory for this purpose. PEXSI
relies on the SuperLU_DIST and PT-SCOTCH libraries. By default, redistributed
versions will be used. This option is ignored when an external ELSI installation is
in use. (Default: OFF)

• ENABLE_EIGENEXA — Enable the EigenExa eigensolver. Requires an externally
compiled EigenExa library. This option is ignored when an external ELSI installa-
tion is in use. (Default: OFF)

• ENABLE_MAGMA — Enable GPU-accelerated eigensolvers in the MAGMA library.
Requires an externally compiled MAGMA library. This option is ignored when an
external ELSI installation is in use. (Default: OFF)

• ENABLE_SIPS — Enable the SLEPc-SIPs eigensolver. Requires externally com-
piled SLEPc and PETSc libraries. This option is ignored when an external ELSI
installation is in use. (Default: OFF)

• ADD_UNDERSCORE— In the redistributed PEXSI and SuperLU_DIST code (written
in C and C++), there are calls to basic linear algebra routines such as dgemm.
When ADD_UNDERSCORE is enabled, which is the default behavior, the C/C++

548 Appendix H. More on CMake

code will call dgemm_ instead of dgemm. Therefore, turn this option off if you know
routine names in your linear algebra library are not suffixed with an underscore.
This option takes no effect if PEXSI is not enabled. It is ignored when an external
ELSI installation is in use. (Default: ON)

• ELPA2_KERNEL — The ELPA eigensolver comes with a number of linear algebra
“kernels” specifically optimized for some certain processor architectures. By de-
fault, FHI-aims uses a generic kernel which will compile with any Fortran compiler
and will give reasonable speed. However, if one knows which specific computer
chip one is using, it is possible to substitute this kernel with an architecture spe-
cific kernel and compile a faster version of ELPA. When using the internal version
of ELSI/ELPA, available “kernels” other than the generic one may be selected
by setting the ELPA2_KERNEL option to one of the following: “AVX” (Intel AVX),
“AVX2” (Intel AVX2), and “AVX512” (Intel AVX512). This option is ignored when
an external version of ELSI and/or ELPA is in use. (Default: a generic Fortran
kernel will be used)

• USE_EXTERNAL_ELPA — Use an externally compiled ELPA library. Relevant li-
braries and include paths must be present in LIBS, LIB_PATHS, and INC_PATHS.
This option is ignored when an external ELSI installation is in use. (Default: OFF)

• USE_EXTERNAL_PEXSI — When PEXSI is enabled, use an externally compiled
PEXSI library. Relevant libraries and include paths must be present in LIBS,
LIB_PATHS, and INC_PATHS. This option takes no effect if PEXSI is not enabled.
It is ignored when an external ELSI installation is in use. (Default: OFF)

• USE_CUDA — Whether to use GPU acceleration in certain subroutines. See also
appendix G. (Default: OFF)

– CMAKE_CUDA_COMPILER — CUDA compiler. Automatically detected with
CMake version ≥ 3.8.

– CMAKE_CUDA_FLAGS — Flags for the CUDA compiler. Example: “-O3 -
DAdd_ -arch=sm_70 -lcublas”. With CMake version ≥ 3.18, it is recom-
mended to define CMAKE_CUDA_ARCHITECTURES, which automatically sets
“-arch=” etc.

– ENABLE_CUDA_BY_DEFAULT — Automatically enable CUDA GPU accelera-
tion at runtime (wherever possible). (Default: OFF)

• USE_LIBXC — Whether additional subroutines for exchange correlation function-
als, provided in the LibXC library, should be used. It is advised to always use this.
Please respect the open-source license of this tool and cite the authors if you use
it. (Default: ON)

• LIBXC_VERSION — If given, this version of LibXC will be downloaded and com-
piled into FHI-aims. This variable is meant for developers for testing new fea-
tures of LibXC, and must match exactly the LibXC version numbering (e.g. ver-
sion.subversion.subsubversion). (Default: ““, i.e. the shipped version is used)

H.2. All CMake variables 549

• USE_EXTERNAL_LIBXC — Use an externally compiled LibXC library. Relevant
libraries and include paths must be present in LIBS, LIB_PATHS, and INC_PATHS.
(Default: OFF)

• USE_CFFI — Whether to provide a Python 2 or 3 interface to FHI-aims. (Default:
OFF)

• ELPA_MT — Whether the hybrid MPI OpenMP version of ELPA is used. (Default:
OFF)

• USE_IPC — Whether to support inter-process communication. (Default: OFF)

• USE_iPI — Whether to support path integral molecular dynamics through the
i-PI python wrapper. (Default: ON)

• USE_HDF5 — Whether to enable HDF5 support. If enabled, also set INC_PATHS,
LIB_PATHS, and LIBS accordingly. (Default: OFF)

• Fortran_MIN_FLAGS — Minimal flags to be used instead of the primary flags to
speed up compilation. (Default set by the current Fortran flags and the build type)

• KNOWN_COMPILER_BUGS — If set, reduced compiler flags are used instead of the
primary flags. Options: “ifort-14.0.1-O3”, “ifort-17.0.0-O3”. (Default: none)

• FFLAGS — Flags used for compiling .f files. (Default: same as for .f90 files)

• SERIAL_Fortran_COMPILER — Deprecated. No effect.

• USE_PLUMED — Whether to use the PLUMED library. (Default: OFF)

• USE_MPI_MODULE — Use MPI module instead of “mpif.h” in Fortran code. (De-
fault: OFF)

These variables do not affect performance in any way:

• TARGET_NAME — Base name for the primary target. Use this if you do not want
the FHI-aims target name to be affected by things like the version number.

• DEV — Ignore the Fortran compiler check when running CMake in an empty build
directory without initializing any cache variables.

External ELSI notes

• How to link to external ELSI built with external dependencies? For example,
ELSI could have been built with external ELPA. In such a scenario, the FHI-aims
variables INC_PATHS, LIB_PATHS, and LIBS need to point to the ELPA header
files and libraries. If ELSI has no external dependencies, it is sufficient to only set
EXTERNAL_ELSI_PATH in order to use that version of ELSI.

550 Appendix H. More on CMake

• When using CMake version less than 3.5.2, it is necessary to additionally point
LIB_PATHS and LIBS to the external ELSI libraries. See
cmake/toolchains/ext_elsi.intel.cmake as an example.

• FHI-aims requires at least ELSI version 2.8.2.

H.3 CMake for developers

The following is a very short overview of some of the more commonly used commands
to give you a rough idea of the CMake syntax. This is, however, but not a substitute
for a full tutorial, which you should work through yourself before contributing.

CMake support in FHI-aims is organized in files called CMakeLists.txt. There is one
CMakeLists.txt in the root directory, which contains most of the functionality, and one
in every subdirectory, containing primarily a list of source files.

In any CMake project, the first command in the topmost CMakeLists.txt is usually

cmake_minimum_required(VERSION x.x.x)

which sets the minimum required version of CMake for the project and ensures compat-
ibility with that version or higher. This is followed by

project(MyProject VERSION 1.0.0 LANGUAGES C)

which sets the project name, version, and any languages used in the project (more
languages can be enabled later). The basic syntax for setting a variable is set(<var>
<value>), like this:

set(LIBS mkl_sequential)

Variables can be referenced with the ${. . . } construct. For example,

set(LIBS ${LIBS} mkl_core)
message(${LIBS})

prints “mkl_sequential mkl_core” to the screen. This is a very basic usage of set, which
can actually take several more arguments. The full functionality of the set or any other
CMake command can be seen by either viewing the online CMake manual or using the
–help argument to cmake:

cmake --help set

There is only one variable type in the CMake language, which is the string type. Even if
some variables may be treated as numbers or booleans, they are still stored as strings.

H.3. CMake for developers 551

Every statement is a command that takes a list of string arguments and has no re-
turn value. Thus, all CMake commands are of the form command_name(arg1 ...).
No command can be used directly as input for another command. Even control flow
statements are commands:

if (USE_MPI)
message("MPI parallelism enabled")

endif() # This is also a command. It takes no arguments.

A CMake-based buildsystem is organized as a set of high-level logical targets. Each target
corresponds to an executable or library, or is a custom target containing custom com-
mands. Dependencies between the targets are expressed in the buildsystem to determine
the build order and the rules for regeneration in response to change. Executables and
libraries are defined using the add_executable and add_library commands. Linking
against libraries takes place via the target_link_libraries command:

add_library(mylib func_info.c mgga_c_scan.c xc_f03_lib_m.f90)
add_executable(myexe main.f90)
target_link_libraries(myexe mkl_intel_lp64 mkl_sequential mkl_core)

A library may be given by its full path, which is the standard practice, or by just the base
name where the “-l” part is optional (both “-lmkl_core” and “mkl_core” are fine). In
the latter case, directories to be linked against must be specified elsewhere. In addition
to the standard locations, additional header directories may be specified using

include_directories(...)

include_directories accepts an additional [AFTER|BEFORE] argument, which de-
termines whether to append or prepend to the current list of directories.

When do I need to reconfigure the build files? If a cache variable is modified,
for example by using a cache editor, or if there are any other changes to the build
settings, like when adding/removing a source file, the build files need to be regenerated.
Fortunately, CMake can detect this and regenerate the build files automatically whenever
the build command is issued. Thus, there is never a need to manually run cmake on
the build directory except for the very first time. However, depending on the extent of
your changes to the CMake scripts, the build configuration might sometimes have to be
reset manually. Because CMake is incapable of tracking all the files that are generated
during configuration, there is no cmake clean command. If you need to reset the build
configuration, simply run rm -rf on the build directory.

Why is my compilation taking so long? CMake uses Make recursively when gen-
erating the build files, which has an adverse effect for projects with a large number of
source files. There is no way around it except to switch to a different build system. When
using a different generator (which generates build files for a different build system), the
only change is in the initial CMake call. For example,

552 Appendix H. More on CMake

cmake -G Ninja -C initial_cache.cmake ~aims

chooses Ninja as the build system (otherwise the default is Make in Linux), initializes the
cache using initial_cache.cmake, and specifies ∼aims as the source directory. The
generator cannot be changed without emptying the build directory first. For users, it
does not make a big difference which generator is used, but for developers it is advisable
to use Ninja instead of Make as it is faster, especially for small incremental builds.

553

Appendix I

Building FHI-aims with a make.sys

This section contains a quick and practical explanation of the main steps using a
make.sys file. This how FHI-aims used to be compiled in the past and is here for
legacy reasons.

1. In the src directory, create a file called make.sys and open it with a text editor. Make
sure you did not edit the file called Makefile as provided with the original distribution
of FHI-aims if you choose to use and edit the make.sys file (which is recommended).

2. In order to build FHI-aims, you will need to inform the computer about which
particular compilers, libraries, optimization flags and possible optional parts of the build
process you intend to use. This is the purpose of make.sys. We here only cover a
few most important keywords (variables) to be included in make.sys. Many more are
available, often documented in the actual Makefile or, if nothing else, in the more
detailed Makefile.backend, which controls the detailed pieces of the build process.
Note that the syntax, particularly the spaces around the “ = “ signs, in make.sys are
important since this file will be included in the Makefile and will have to be read by
the make command further below.

3. The following is what a typical make.sys file could look like (see the aimsclub wiki
for other examples for specific platforms). The explanation of all keywords follows below.
Note that this is the copy of make.sys on the author’s (VB’s) laptop. You will need
to edit every single variable – the directories to be used on other computers will be
different. Blind copying and hoping for the best will not work.

FC = ifort
FFLAGS = -O3 -ip -fp-model precise -module $(MODDIR)
FMINFLAGS = -O0 -fp-model precise -module $(MODDIR)
F90MINFLAGS = -O0 -fp-model precise -module $(MODDIR)
F90FLAGS = $(FFLAGS)
ARCHITECTURE = Generic
LAPACKBLAS = -L/opt/intel/mkl/lib -I/opt/intel/mkl/include \

-lmkl_intel_lp64 -lmkl_sequential -lmkl_core
USE_MPI = yes
MPIFC = mpif90

554 Appendix I. Building FHI-aims with a make.sys

SCALAPACK = /usr/local/scalapack-2.0.2/libscalapack.a
CC = gcc
CCFLAGS =
USE_LIBXC = yes

4. Here is a list of each of these keywords’ meanings:

• FC : The name of the Fortran compiler you intend to use. This choice is not
unimportant. On x86 platforms, Intel Fortran usually produces fast code, whereas
other compilers (unfortunately, particularly free compilers such as gfortran) can
lead to significantly slower (factor 2-3) FHI-aims runs later.

• FFLAGS : These are compile-time and linker flags that control the optimization
level that the compiler will use. Finding out which optimization level is fastest is
worth your time, but note that real-world compilers can have bugs. In the worst
case, this can mean numerically wrong results, something you should definitely care
about. One way to test the broader correctness of a given FHI-aims build (later) is
to run FHI-aims’ regression tests on the computer you intend to use and make sure
that all results are marked as correct. For example, for Intel Fortran, -fp-model
precise is highly recommended. Unfortunately, we have no way to foresee all
possible compiler bugs across all future platforms and compilers – testing is best.
Please ask if needed (see Sec. 1.7 for where to find help).

• FMINFLAGS specifies a lower optimization level for some subroutines that do not
need optimization. read_control.f90, the subroutine that reads one of FHI-
aims’ main input files, is one such file that does not need high levels of optimization
but could take very long to compile if a high optimization level were requested for
it.

• F90MINFLAGS and F90FLAGS are usually just copies of FMINFLAGS and FFLAGS,
except for the few compilers (IBM’s xlf) that might treat Fortran .f90 and (legacy)
.f files differently.

• ARCHITECTURE can have multiple meanings, including specific handling of a few
compilers’ quirks (the pgi compiler, for example, needs a different call to erf())
and potentially optimization levels for CPU-specific extensions (e.g., AVX - this
can be worthwhile). For many purposes, “Generic” is good enough but do take
the time to look into CPU-specific optimizations if you intend to run very large,
demanding calculations.

• LAPACKBLAS specifies the locations of numerical linear algebra subroutines, par-
ticularly the Basic Linear Algebra Subroutines (BLAS) and the higher-level Lapack
subroutines. The location and names of these libraries will vary from computer to
computer, but it is VERY important to select well-performing BLAS subroutines
for a given computer – the effect on performance will be drastic. An additional
item to ensure is that these BLAS libraries should NEVER try to use any internal
multithreading (for example, the mkl_sequential library quoted above is inher-
ently single-threaded, which is normally what we want). FHI-aims is already very

555

efficiently parallized for multiple processors. Requesting (say) 16 threads for each
of (say) 16 parallel tasks on a parallel computer with 16 physical CPU cores would
have the effect of trying to balance 256 threads within the computer, typically
slowing execution down to a crawl. With FHI-aims, only ever use only a single
thread per parallel task unless you have a special reason and know exactly what
you are doing.

• USE_MPI will make sure that the code knows and will use the process-based Mes-
sage Passing Interface (MPI) parallelization, which makes sure that FHI-aims can
run in parallel both inside a single compute node as well as across a large number
of nodes. In later production runs and unless you have a good reason not to do
so, always use as many MPI tasks as there are physical processor cores available
(no more, no less).

• MPIFC is the name of the wrapper command that ensures a correct compilation
with a given Fortran compiler and a given MPI library. This command (often
called mpif90) is also specific to a given computer system and to the installed
MPI library.

• SCALAPACK specifies the location of the library that contains scalapack’s parallel
linear algebra subroutines and the so-called basic linear algebra communications
(BLACS) subroutines. The author (VB) built his own version of this libary, but
usually these subroutines are also supplied with standard linear algebra libraries
such as Intel’s Math Kernel Library (mkl).

• CC is the C compiler to be used.

• CCFLAGS could house any compiler flags needed for the C compiler. It is not worth
doing this for performance reasons (very little impact) but some compilers may
need other special instructions to work with Fortran.

• USE_LIBXC decides whether additional subroutines for exchange correlation func-
tionals, provided in the libxc library, should be used. We are very much indebted
to the authors of this library. Please respect their open-source license and cite
them if you use their tools.

5. Phew. That was a lot of keywords. But this is computational science, and having a
reasonable command of these pieces is worth our while. If you did figure them all out,
close the make.sys file and continue to ...

6. ... build the code by typing make -j scalapack.mpi.

7. Do not despair. If the process above worked well, proceed to try a testrun and then,
if you are up for it, the regression tests. If you received an error message during the build
(that may well be the case), do not despair – try again and, if needed, seek help. This
process is ultimately not rocket science and only a finite amount of pieces are needed.
Look up examples on aimsclub or seek help through one of the channels mentioned in
Sec. 1.7 if needed.

8. There are other pieces that can help improve a build on a specific platform. For
example, it can be quite desirable to build and link instead to a separate (standalone

556 Appendix I. Building FHI-aims with a make.sys

build) of the ELPA library (high-performance eigenvalue solver) and of the ELSI electronic
structure infrastructure. For time and space reasons, this is not covered here presently,
but it’s worth investigating these libraries.

In general, the “aimsclub” Wiki is the appropriate place to look for detailed compiler
settings for specific platforms. If you have a successful ’make.sys’ file for your own setup,
please add it there. The information given in this section is essential as it explains the
process, but the platform specific remarks in the Wiki may help you save some time.

I.1 A more measured approach to building FHI-aims

This is a slower and step by step explanation of the build process, slightly different
and somewhat redundant with Sec. I. Ultimately, your build process should ideally look
somewhat like what is covered in Sec. I, and in particular, never edit the Makefile if
you already have a file make.sys around. What follows is based on direct editing of the
Makefile and should only be needed for practice purposes.

Starting from the end of Sec. 1.2 and once all prerequisites are in place, change directory
to the src/ directory, and open the Makefile in a text editor.

You must adjust at least some system-specific portions of the
Makefile—simply typing “make” and hoping that the problem will
go away will not work.

Usually, all you will have to do is to decide on one of the preconfigured make targets
– “serial”, “mpi”, or “scalapack.mpi”. Near the top of the Makefile, a number of
mandatory settings are commented for each target. Uncomment only the block of
settings relevant to your chosen make target, and fill in the correct values of each
variable (FC, FFLAGS, LAPACKBLAS, ...) for your computer system. Note that the
Makefile itself contains detailed instructions and explanations regarding the meaning of
these variables. Often, simply adjusting the compiler name, the location of your libraries
(LAPACKBLAS, possibly MPIFC or SCALAPACK) will be sufficient. In addition, we strongly
recommend that you consult the documentation of your compiler, in order to find out
which optimization options beyond the generic “-O3” optimization level suggested preset
in the Makefile will make a difference on your computer.

Finally, this brings us to the key step of the build process: Building the code. After the
Makefile is adjusted, type

make <target>

at the command line, where “〈target〉” should be replaced by the target of your choice:
“serial”, “mpi”, or “scalapack.mpi”.1 If successful, this should build the desired FHI-aims

1There is an additional target, parser, which builds an executable that stops after parsing the
input. This binary can be used to check the validity of input files. (The dry_run keyword
achieves the almost same effect with the full binary.)

I.2. Compilation options beyond the standard Makefile 557

binary (the compilation will take a while) and place it in the bin/ directory mentioned
above.

Building FHI-aims can take a while nowadays. If you have more than one processor on
the machine for building FHI-aims, try

make -j <number_of_processors> <target>

This choice should speed up the process greatly.

You may also wish to keep your own copy of the Makefile, for instance to be able to
work directly with the FHI-aims git repository without overwriting the general Makefile.
In that case, just copy the standard Makefile to something like Makefile.myname, and
use

make -j <number_of_processors> -f Makefile.myname <target>

Finally, we do note that there is some support for more sophisticated tasks, such as
cross-platform builds (building binaries for different architectures from the same home
directory) among the non-standard environment variables in the Makefile (see there).

I.1.1 Cross-Compiling with a C Compiler

As noted in Section I, FHI-aims does provide some functionality that can only be accessed
by compiling part of the code base with a C compiler, in some cases simply because a
system call in question is not available from a Fortran interface.

Cross-compiling with a C compiler can be simple if your Fortran and C compiler use
compatible interfaces. (This may not be always the case.) In the simplest case, adding
the following variable to your make.sys:

CC = gcc

The CC variable should specify a C compiler compatible with your Fortran compiler on
your specific computer system. Please make sure that the right C compiler is chosen for
your system.

An additional variable CCFLAGS can be set to specify C compiler flags along with the CC
variable above and will add C compiler flags that might be necessary for your particular
computer setup.

I.2 Compilation options beyond the standard
Makefile

The build provided by the standard Makefile in FHI-aims is designed for minimal com-
plexity to obtain the full functionality that most users should have. Separate “basic linear

558 Appendix I. Building FHI-aims with a make.sys

algebra subroutines” (BLACS), Lapack, parallel builds (if a parallel machine is available,
nowadays almost always), and scalapack support are so performance-critical that every
user should spend the time to investigate them in detail before doing serious production
work with FHI-aims. These dependencies of FHI-aims on external libraries are therefore
kept in the main Makefile.

In addition, FHI-aims provides further functionality that can be achieved by linking to
other external libraries. However, this functionality will not be needed by all users and/or
could seriously complicate the build process for everyone. Such functionality is therefore
available through separate, amended versions of the Makefile. We encourage everyone
to try these builds (they are not so difficult after all), but they should not become
stumbling blocks.

We also note that not all of these builds are routinely tested. At this time, it is not
certain that all of them will still work out of the box. The information is kept here to
make sure it is available. Please ask (see Section 1.7) if you encounter problems.

In particular, several optional Makefile with additional functionality exist (and could even
be combined):

• Makefile.cuba : Allows to compile in the separate “CUBA” Monte Carlo in-
tegration library, which enables the Langreth-Lundqvist van der Waals functional
based on noloco as a post-processing step. See Section 3.21 for more details.

• Makefile.meta : still experimental! Allows to interface FHI-aims to the PLUMED
library for free-energy calculations for molecular dynamics.
(see http://merlino.mi.infn.it/~plumed/PLUMED/Home.html , the PLUMED
project homepage). Currently, a copy of the PLUMED library is kept in the external
directory of the FHI-aims source code, and must be compiled separately using a C
compiler. Note that the token “-DFHIAIMS” must be included in the CCFLAGS
(at present, this is already specified in plumed.inc). For compiling on IBM power
machines, the flags -mpowerpc64 -maix64 should be included. In the future, this
will be corrected by housing the respective FHI-aims plugin directly in the PLUMED
library. We apologize that the linking process is not yet further documented, but
if this functionality is of interest to you, please contact us.
By selecting the correct target in Makefile.meta, the code can be compiled with
lapack or scalapack libraries, or with shared memory support (see next item).

• Makefile.ipi : Allows to interface with the i-PI path integral molecular dynamics
wrapper[41]. See the use_pimd_wrapper keyword for a few more details.

• Makefile.shm : Another example of a Makefile that cross-links C and Fortran
based functionality, although the actual functionality that Makefile.shm provides
– access to shared-memory arrays in the Hartree potential – is no longer needed
at this point.

• Makefile.amd64_SSE : This Makefile contains an example how to use FHI-aims
together with a version of the ELPA library which is especially tuned for SSE vector
instructions. Note that the GNU C compiler must be installed in order to produce
running code from the specific assembler files. As the name “amd64” indicates this

http://merlino.mi.infn.it/~plumed/PLUMED/Home.html

I.2. Compilation options beyond the standard Makefile 559

optimization is only reasonable on processors which support the amd64 instruction
set. Note that ”ELPA_ST” is set, to use the single-threaded version of ELPA.

• Makefile.amd64_SSE_mt : The same as Makefile.amd64_SSE, but by setting
”ELPA_MT” the hybrid MPI OpenMP version of ELPA is used.

• Makefile.amd64_AVX : This Makefile contains an example how to use FHI-aims
together with a version of the ELPA library which is especially tuned for AVX
vector instructions. Note that the GNU C and C++ compiler must be installed
in order to produce running code from the specific ELPA files which contain gcc
intrinsic functions. As the name “amd64” indicates this optimization is only rea-
sonable on processors which support the amd64 instruction set and which already
”understand” AVX, i.e. Intel Sandybridge or newer. Note that ”ELPA_ST” is set,
to use the single-threaded version of ELPA.

• Makefile.amd64_AVX_mt : The same as Makefile.amd64_AVX, but by setting
”ELPA_MT” the hybrid MPI OpenMP version of ELPA is used.

• Makefile.hdf5 : The HDF5 module provides functions and routines to efficently
make use of parallel writing and reading of data (mpi-io). The usual compiler
options have to be set in the same way as in the normal Makefie. Additionally
the path to your installation of hdf5 must be provided. If the environment vari-
able HDF5_HOME is already set on your system nothing else has to be changed
otherwise it has to be set in Makefile.hdf5.

560

Bibliography

[1] C. Adamo and V. Barone. J. Chem. Phys., 110:6158, 1999. 64

[2] Peter Albrecht. The Runge-Kutta Theory in a Nutshell. SIAM Journal on Numer-
ical Analysis, 33(5):1712–1735, 1996. 286

[3] C. Van Alsenoy. J. Comput. Chem., 9:620, 1988. 66 , 247

[4] C. Ambrosch-Draxl and J. O. Sofo. Linear optical properties of solids within
the full-potential linearized augmented planewave method. Computer Physics
Communications, (175):1–14, 2006. 331

[5] Alberto Ambrosetti, Anthony M. Reilly, Robert A. DiStasio, Jr., and Alexandre
Tkatchenko. Long-range correlation energy calculated from coupled atomic re-
sponse functions. The Journal of Chemical Physics, 140:18A508, 2014. 236

[6] H.C. Andersen. J. Chem. Phys., 72:2384, 1980. 180

[7] Oliviero Andreussi, Ismaila Dabo, and Nicola Marzari. Revised self-consistent
continuum solvation in electronic-structure calculations. J. Chem. Phys.,
136(6):064102–1–064102–20, 2012. 206 , 207 , 211 , 220

[8] V. I. Anisimov, editor. Strong Coulomb correlations in electronic structure calcu-
lations. Gordon and Breach, New York, 2000. 54

[9] V.I. Anisimov, J. Zaanen, and O. K. Andersen. Band theory and Mott insulators:
Hubbard U instead of Stoner I . Phys. Rev. B, 44:943–954, Jul 1991. 225

[10] R. Armiento and Ann E. Mattsson. Phys. Rev. B, 72:085108, 2005. 62

[11] A. Arnold, F. Weigend, and F. Evers. Quantum chemistry calculations for
molecules coupled to reservoirs: Formalism, implementation, and application to
benzenedithiol. J. Chem. Phys., 126:174101, 2007. 499 , 502

[12] G. Aubert. An alternative to Wigner d-matrices for rotating real spherical har-
monics. AIP Adv., 3(6):062121, June 2013. 468

[13] A. Bagrets. Spin-polarized electron transport across metal-organic molecules: a
density functional theory approach. J. Chem. Theory Comput., 9:2801, 2013.
499

Bibliography 561

[14] J. Baker, J. Andzelm, A. Scheiner, and B. Delley. J. Chem. Phys., 101:8894, 1994.
93

[15] A. Barducci, G. Bussi, and M. Parrinello. Well-tempered metadynamics:
A smoothly converging and tunable free-energy method. Phys. Rev. Lett.,
100:020603, 2008. 491

[16] Albert P Bartók and Jonathan R Yates. Regularized scan functional. The Journal
of chemical physics, 150(16):161101, 2019. 65

[17] C. I. Bayly, P. Cieplak, W. D. Cornell, and P. A. Kollman. A well-behaved electro-
static potential based method using charge restraints for deriving atomic charges:
The resp model. J. Phys. Chem., 97:10269–10280, 1993. 342

[18] A. D. Becke and K. E. Edgecombe. J. Chem. Phys., 92:5397, 1990. 405

[19] A.D. Becke. J. Chem. Phys., 88:1053, 1988. 62

[20] J. Behler, B. Delley, S. Lorenz, K. Reuter, and M. Scheffler. Phys. Rev. Lett.,
94:036104, 2005. 190

[21] J. Behler, B. Delley, K. Reuter, and M. Scheffler. Phys. Rev. B, 75:115409, 2007.
190

[22] Paul Bendt and Alex Zunger. Simultaneous relaxation of nuclear geometries and
electric charge densities in electronic structure theories. Physical Review Letters,
50(21):1684–1688, 1983. 167

[23] B. H. Besler, K. M. Merz, and P. A. Kollman. Atomic charges derived from
semiempirical methods. J. Comput. Chem., 11:431–439, 1990. 342

[24] Miguel A. Blanco, M. Flórez, and M. Bermejo. Evaluation of the rotation matrices
in the basis of real spherical harmonics. Comp. Theor. Chem., 419(1–3):19–27,
December 1997. 468 , 469

[25] Miguel A. Blanco, M. Flórez, and M. Bermejo. Evaluation of the rotation ma-
trices in the basis of real spherical harmonics. Journal of Molecular Structure:
THEOCHEM, 419(1–3):19 – 27, 1997. 381

[26] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Schef-
fler. Ab initio molecular simulations with numeric atom-centered orbitals. Comp.
Phys. Comm., 180:2175, 2009. 33 , 39 , 68 , 84 , 87 , 96 , 97 ,
98 , 108 , 109 , 114 , 130 , 132 , 137 , 141 , 144 , 146 ,
150 , 174 , 309 , 332 , 410 , 425 , 428 , 440

[27] S.D. Bond, B.J. Leimkuhler, and B.B. Laird. The Nose-Poincare method for
constant temperature molecular dynamics. J. Comp. Phys., 151(1):114–134, 1999.
174

[28] A. Bondi. van der waals volumes and radii. J. Phys. Chem., 68:441–451, 1964.
342

562 Bibliography

[29] Silvana Botti and Matteo Gatti. Fundamentals of Time-Dependent Density Func-
tional Theory, chapter The Microscopic Description of a Macroscopic Experiment,
pages 29–50. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. 334

[30] S.F. Boys and I. Shavitt. University of Wisconsin Rept., WIS-AF-13, 1959. 66
, 247

[31] C. J. Bradley and A. P. Cracknell. The mathematical theory of symmetry in solids
: representation theory for point groups and space groups. Clarendon Press, 1972.
381

[32] C. M. Breneman and K. B. Wiberg. Determining atom-centered monopoles from
molecular electrostatic potentials. the need for high sampling density in formamide
conformational analysis. J. Comput. Chem., 11:361–373, 1990. 342

[33] P. Bultinck, C. Van Alsenoy, P.W. Ayers, and R. Carbo-Dorca. Critical analysis
and extension of the hirshfeld atoms in molecules. J. Chem. Phys., 126:144111,
2007. 414

[34] G. Bussi, D. Donadio, and M. Parrinello. Canonical sampling through velocity
rescaling. J. Chem. Phys., 126:014101, 2007. 181

[35] C. Campana, B. Mussard, and T. K. Woo. Electrostatic potential derived atomic
charges for periodic systems using a modified error functional. J. Chem. Theory
Comput., 5:2866–2878, 2009. 342 , 343

[36] Mark E. Casida. Time-depenent density-functional response theory for molecules.
Theoretical and Computational Modeling of NLO and Electronic Materials, 1996.
275

[37] Alberto Castro, Miguel A. L. Marques, and Angel Rubio. Propagators for the Time-
dependent Kohn-Sham Equations. The Journal of Chemical Physics, 121(8):3425–
3433, 2004. 285 , 286

[38] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic
method. Phys. Rev. Lett., 45:566–569, 1980. 62

[39] Michele Ceriotti, Giovanni Bussi, and Michele Parrinello. Langevin equation with
colored noise for constant-temperature molecular dynamics simulations. Phys.
Rev. Lett., 102:020601, Jan 2009. 181 , 182

[40] Michele Ceriotti, Giovanni Bussi, and Michele Parrinello. Colored-noise ther-
mostats à la carte. Journal of Chemical Theory and Computation, 6(4):1170–1180,
2010. 181 , 182

[41] Michele Ceriotti, Joshua More, Michele, and David Manolopoulos. i-pi: A python
interface for ab initio path integral molecular dynamics simulations. Comp. Phys.
Comm., 185:1019–1026, 2014. 183 , 558

[42] Michele Ceriotti, Michele Parrinello, Thomas E. Markland, and David E.
Manolopoulos. Efficient stochastic thermostatting of path integral molecular dy-
namics. The Journal of Chemical Physics, 133(12):124104, 2010. 181 , 182

Bibliography 563

[43] D.J. Chadi and M.L. Cohen. Phys. Rev. B, 8:5747, 1973. 75

[44] Che Ting Chan, Klaus Peter Bohnen, and KM Ho. Accelerating the convergence
of force calculations in electronic-structure computations. Physical Review B,
47(8):4771–4774, 1993. 167

[45] D.-J. Chen, A. C. Stern, B. Space, and J. K. Johnson. Atomic charges derived
from electrostatic potential for molecular and periodic systems. J. Phys. Chem.
A, 114:10225–10233, 2010. 342 , 343

[46] L. E. Chirlian and M. M. Francl. Atomic charges derived from electrostatic po-
tentials: A detailed study. J. Comput. Chem., 8:894–905, 1987. 342

[47] L. A. Constantin, E. Fabiano, and F. Della Sala. Phys. Rev. B, 86:035130, 2012.
63

[48] S. R. Cox and D. E. Williams. Representation of the molecular electrostatic po-
tential by a net atomic charge model. J. Comput. Chem., 2:304–323, 1981. 342

[49] Christopher J. Cramer and Donald G. Truhlar. A universal approach to solvation
modeling. Acc. Chem. Res., 41(6):760–768, 2008. 207

[50] G. Crooks. Nonequilibrium measurements of free energy differences for microscop-
ically reversible markovian systems. J. Stat. Phys., 90:1481, 1998. 491

[51] Stefano de Gironcoli. Lattice dynamics of metals from density-functional pertur-
bation theory. Phys. Rev. B, 51:6773–6776, Mar 1995. 316

[52] B. Delley. J. Chem. Phys., 92:508, 1990. 87

[53] B. Delley. J. Comp Chem., 17:1152, 1995. 85

[54] Katharina Diller, Florian Klappenberger, Francesco Allegretti, Anthoula C. Papa-
georgiou, Sybille Fischer, David A. Duncan, Reinhard J. Maurer, Julian A. Lloyd,
Seung Cheol Oh, Karsten Reuter, and Johannes V. Barth. Temperature-dependent
templated growth of porphine thin films on the (111) facets of copper and silver.
The Journal of Chemical Physics, 141(14):144703, 2014. 196

[55] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, , and B. I. Lundqvist. Phys.
Rev. Lett., 92:246401, 2004. 60 , 66 , 233 , 239 , 240 , 244

[56] R. M. Dreizler and E. K. U. Gross. Density Functional Theory. Springer, Berlin,
1990. 9

[57] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sut-
ton. Electron-energy-loss spectra and the structural stability of nickel oxide: An
LSDA+U study. Phys. Rev. B, 57:1505–1509, Jan 1998. 226

[58] Brett I. Dunlap, Notker Rösch, and S. B. Trickey. Variational fitting methods for
electronic structure calculations. Mol. Phys., 108(21):3167, 2010. 261

564 Bibliography

[59] C Dupont, O Andreussi, and N Marzari. Self-consistent continuum solvation
(SCCS): the case of charged systems. J. Chem. Phys., 139(21):214110, December
2013. 206

[60] C. Eckart. Phys. Rev., 47:552, 1935. 164 , 167

[61] K. Eichkorn, O. Treutler, H. Öhm, M. Häser, and R. Ahlrichs. Chem. Phys. Lett.,
240:283, 1995. 66 , 247

[62] F. Evers and A. Arnold. Molecular conductance from ab initio calculations: Self
energies and absorbing boundary conditions. arXiv:cond-mat/0611401v1, 2006.
502

[63] E. Fabiano, L . A. Constantin, and F. Della Sala. Generalized gradient approxima-
tion bridging the rapidly and slowly varying density regimes: A pbe-like functional
for hybrid interfaces. Phys. Rev. B, 82:113104, 2010. 62

[64] J. L. Fattebert and F. Gygi. Density functional theory for efficient ab initio molec-
ular dynamics simulations in solution. J. Comput. Chem., 23(6):662–666, 2002.
220

[65] D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms
to Applications. Academic Press, second edition, 2002. 174

[66] Christoph Freysoldt, Jörg Neugebauer, and Chris G. Van de Walle. Fully ab initio
Finite-Size corrections for Charged-Defect supercell calculations. Phys. Rev. Lett.,
102:016402, 2009. 498

[67] C.-L. Fu and K.-M. Ho. Phys. Rev. B, 28:5480, 1983. 130

[68] Liang Fu and C. L. Kane. Topological insulators with inversion symmetry. Phys.
Rev. B, 76:045302, Jul 2007. 321

[69] Liang Fu, C. L. Kane, and E. J. Mele. Topological insulators in three dimensions.
Phys. Rev. Lett., 98:106803, Mar 2007. 320

[70] Martin Fuchs and Matthias Scheffler. Ab initio pseudopotentials for electronic
structure calculations of poly-atomic systems using density-functional theory. Com-
puter Physics Communications, 119(1):67–98, 1999. 71 , 202 , 203 ,
204

[71] L. Gallandi and T. Körzdörfer. Journal of Chemical Theory and Computation,
11:5391–5400, 2015. 64

[72] M.J. Gillan. J. Phys.:Condens. Matter, 1:689, 1989. 131

[73] S. Goedecker and K. Maschke. Transferability of pseudopotentials. Physical Review
A, 45:88–93, 1992. 71

[74] D. Golze. Dataset in NOMAD repository: Example
from “CORE65 benchmark set", 2020. https://nomad-
lab.eu/prod/rae/gui/entry/id/tncxyMTBTGikrP6sgMPuQw/l5TVvWyUkF2KWn
yQb3P1gwcMcm3W. 249

Bibliography 565

[75] D. Golze, M. Dvorak, and P. Rinke. The GW compendium: A practical guide to
theoretical photoemission spectroscopy. Front. Chem., 7:377, Dec 2019. 57 ,
248

[76] D. Golze, L. Keller, and P. Rinke. Accurate Absolute and Relative Core-Level
Binding Energies from GW . J. Phys. Chem. Lett., 11(5):1840–1847, 2020. 254
, 256

[77] D. Golze, J. Wilhelm, M. J. van Setten, and P. Rinke. Core-Level Binding Energies
from GW : An Efficient Full-Frequency Approach within a Localized Basis. J.
Chem. Theory Comput., 14(9):4856–4869, 2018. 247 , 248 , 249 , 252

[78] Adrián Gómez Pueyo, Miguel A. L. Marques, Angel Rubio, and Alberto Castro.
Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-
Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods. Jour-
nal of Chemical Theory and Computation, 14(6):3040–3052, 2018. 286

[79] B Grabowski, L Ismer, T Hickel, and J Neugebauer. Phys. Rev. B, 79:134106,
2009. 186

[80] Dominik Gresch, Gabriel Autès, Oleg V. Yazyev, Matthias Troyer, David Vander-
bilt, B. Andrei Bernevig, and Alexey A. Soluyanov. Z2pack: Numerical implemen-
tation of hybrid wannier centers for identifying topological materials. Phys. Rev.
B, 95:075146, Feb 2017. 320

[81] S. Grimme. J. Chem. Phys., 20:9095, 2003. 59 , 66

[82] Andreas Grüneis, Martijn Marsman, Judith Harl, Laurids Schimka, and Georg
Kresse. Making the random phase approximation to electronic correlation accurate.
J. Chem. Phys., 131:154115, 2009. 53

[83] P. Guetlein, L. Lang, K. Reuter, J. Blumberger, and H. Oberhofer. Toward first-
principles-level polarization energies in force fields: A gaussian basis for the atom-
condensed kohn–sham method. The Journal of Chemical Theory and Computa-
tion, 15:4516–4525, 2019. 392

[84] A. Gulans, M. Puska, and R. Nieminen. Linear-scaling self-consistent implemen-
tation of the van der waals density functional. Phys. Rev. B, 79:201105(R), 2009.
244

[85] G. Mills K. W. Jacobsen H. Jonsson. Nudged Elastic Band Method for Finding
Minimum Energy Paths of Transitions. World Scientific, 1998. 470

[86] A. J. S. Hamilton. Uncorrelated modes of the non-linear power spectrum. Mon.
Not. R. Astron. Soc., 312(2):257–284, 2000. 262

[87] Andrew J. S. Hamilton. Fftlog, 2000. 262

[88] B. Hammer, L.B. Hansen, and J.K. Nørskov. Phys. Rev. B, 59:7413, 1999. 62

566 Bibliography

[89] M. J. Han, T. Ozaki, and J. Yu. O(N) LDA+U electronic structure calculation
method based on the nonorthogonal pseudoatomic orbital basis. Phys. Rev. B,
73:045110, Jan 2006. 226

[90] Myung Joon Han, Taisuke Ozaki, and Jaejun Yu. O(N) LDA+U electronic struc-
ture calculation method based on the nonorthogonal pseudoatomic orbital basis.
Physical Review B, 73(4):045110, January 2006. 67

[91] V. Havu, V. Blum, P. Havu, and M. Scheffler. Efficient o(n) integration for all-
electron electronic structure calculation using numeric basis functions. J. Comput.
Phys., 228:8367, 2009. 84 , 85 , 86 , 89 , 429 , 537

[92] L. Hedin. Phys. Rev., 139:A796, 1965. 66

[93] Lars Hedin. On correlation effects in electron spectroscopies and the GW approx-
imation. J. Phys.: Condens. Matter, 11:R489, 1999. 253

[94] Joscha Hekele and Peter Kratzer. Real-time time-dependent density functional
theory within FHI-aims. arXiv:2008.08845, 2020. 279

[95] G. Henkelman, B. P. Uberuagga, and H. Jonsson. A climbing image nudged elastic
band method for finding saddle points and minimum energy paths. J. Chem. Phys.,
113:9901, 2000. 478

[96] Graeme Henkelman and Hannes Jonsson. Improved tangent estimate in the nudged
elastic band method for finding minimum energy paths and saddle points. Journal
of Chemical Physics, 113(22):9978–9985, 2000. 470

[97] John M. Herbert and Martin Head-Gordon. Accelerated, energy-conserving Born-
Oppenheimer molecular dynamics via fock matrix extrapolation. Phys. Chem.
Chem. Phys., 7:3269–3275, 2005. 175

[98] Jan Hermann. Libmbd. Code as git repository. 234 , 236

[99] Jan Hermann and Alexandre Tkatchenko. Density Functional Model for van der
Waals Interactions: Unifying Many-Body Atomic Approaches with Nonlocal Func-
tionals. Physical Review Letters, 124:146401, 2020. 237

[100] Jochen Heyd, Gustavo E. Scuseria, and Matthias Ernzerhof. J. Chem. Phys.,
118:8207, 2003. 63

[101] Jochen Heyd, Gustavo E. Scuseria, and Matthias Ernzerhof. J. Chem. Phys.,
124:219906, 2006. 63

[102] D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and
S. Curtarolo. The AFLOW Library of Crystallographic Prototypes: Part 2. ArXiv
e-prints, 2018. 158

[103] Nicholas J. Higham. The Scaling and Squaring Method for the Matrix Exponential
Revisited. SIAM J. Matrix Anal. Appl., 26(4):1179–1193, 2005. 289

Bibliography 567

[104] B. Himmetoglu, A. Floris, S. de Gironcoli, and M. Cococcioni. "Hubbard-corrected
DFT energy functionals: The LDA+U description of correlated systems". Int. J.
Quantum Chem., 114(1):14–49, 2014. 225

[105] F.L. Hirshfeld. Theor. Chim. Acta (Berl.), 44:129, 1977. 413

[106] P. Hohenberg and W. Kohn. Phys. Rev. B, 136:864, 1964. 9

[107] H. Hu, Z. Lu, and W. yang yang yang yang. Fitting molecular electrostatic poten-
tials from quantum mechanical calculations. J. Chem. Theory Comput., 3:1004–
1013, 2007. 342

[108] J. Hubbard. Electron Correlations in Narrow Energy Bands. Proc. R. Soc. A,
276(1365):238–257, 1963. 225

[109] William P. Huhn and Volker Blum. One-hundred-three compound band-structure
benchmark of post-self-consistent spin-orbit coupling treatments in density func-
tional theory. Phys. Rev. Materials, 1:033803, 2017. 50 , 109 , 110 , 111
, 113 , 440

[110] Kerwin Hui and Jeng-Da Chai. Scan-based hybrid and double-hybrid density func-
tionals from models without fitted parameters. J. Chem. Phys., 144:044114, 2016.
65

[111] Arvid Conrad Ihrig, Jürgen Wieferink, Igor Ying Zhang, Matti Ropo, Xinguo Ren,
Patrick Rinke, Matthias Scheffler, and Volker Blum. Accurate localized resolution
of identity approach for linear-scaling hybrid density functionals and for many-body
perturbation theory. New Journal of Physics, 17(9):093020, 2015. 159 , 246
, 247 , 248 , 260 , 261 , 264 , 267

[112] H. Ishida, Y. Nagai, and A. Kidera. Chem. Phys. Lett., 282(2):115, 1998. 180

[113] A. Itoh and H. Matsunami. Single crystal growth of sic and electronic devices.
Critical Reviews in Solid State and Materials Sciences, 22(2):111–197, 1997. 444

[114] C. Jarzynski. Nonequilibrium equality for free energy differences. Phys. Rev. Lett,
78:2690, 1997. 491

[115] Stig Rune Jensen, Santanu Saha, José A. Flores-Livas, William Huhn, Volker
Blum, Stefan Goedecker, and Luca Frediani. The elephant in the room of den-
sity functional theory calculations. The Journal of Physical Chemistry Letters,
8(7):1449–1457, 2017. PMID: 28291362. 68 , 71

[116] Jmol. An open-source java viewer for chemical structures in 3D.
http://www.jmol.org/. 449 , 450

[117] J. Junquera, O. Paz, D. Sanchez-Portal, and E. Artacho. Phys. Rev. B, 64:235111,
2001. 79

[118] C. L. Kane and E. J. Mele. Z2 topological order and the quantum spin hall effect.
Phys. Rev. Lett., 95:146802, Sep 2005. 319 , 320

568 Bibliography

[119] G.P. Kerker. Phys. Rev. B, 23:3082, 1981. 144

[120] R. D. King-Smith and David Vanderbilt. Theory of polarization of crystalline
solids. Phys. Rev. B, 47:1651–1654, Jan 1993. 318

[121] A. Klamt and G. Schüürmann. COSMO: a new approach to dielectric screening
in solvents with explicit expressions for the screening energy and its gradient. J.
Chem. Soc., Perkin Trans. 2, (5):799–805, January 1993. 207

[122] L. Kleinman and D. M. Bylander. Efficacious form for model pseudopotentials.
Phys. Rev. Lett., 48:1425–1428, May 1982. 202

[123] Florian Knoop, Matthias Scheffler, Christian Carbogno, et al. Fhi-vibes: _ab
initio_ vibrational simulations. Journal of Open Source Software, 5(56):2671,
2020. 461

[124] Franz Knuth, Christian Carbogno, Viktor Atalla, Volker Blum, and Matthias Schef-
fler. All-electron formalism for total energy strain derivatives and stress tensor
components for numeric atom-centered orbitals. Computer Physics Communica-
tions, 190:33–50, 2015. 159 , 267

[125] W. Kohn and L.J. Sham. Phys. Rev., 140:A1133, 1965. 9

[126] M. Kohout and A. Savin. Int. J. Quantum Chem., 60:875, 1996. 405

[127] Jiří Kolafa. Numerical integration of equations of motion with a Self-Consistent
field given by an implicit equation. Mol. Simul., 18:193, 1996. 175

[128] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations
for metals and semiconductors using a plane-wave basis set. Comp. Mat. Sci.,
6:15–50, 1996. 130 , 131

[129] J. B. Krieger, Y. Li, and G. J. Iafrate. Phys. Lett. A, 146:256, 1990. 71 , 72

[130] J. B. Krieger, Y. Li, and G. J. Iafrate. Int. J. Quantum. Chem., 41:489, 1992.
71 , 72

[131] J. B. Krieger, Y. Li, and G. J. Iafrate. Phys. Rev. A, 45:101, 1992. 71 , 72

[132] Aliaksandr V. Krukau, Oleg A. Vydrov, Artur F. Izmaylov, and Gustavo E. Scuseria.
J. Chem. Phys., 125:224106, 2006. 63 , 64

[133] Thomas D. Kühne, Matthias Krack, Fawzi R. Mohamed, and Michele Parrinello.
Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecu-
lar dynamics. Phys. Rev. Lett., 98:066401, 2007. 174

[134] S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman.
Multidimensional free-energy calculations using the weighted histogram analysis
method. J. Comput. Chem., 16:1339, 1995. 491

[135] T. Kunert and R. Schmidt. Non-adiabatic Quantum Molecular Dynamics: General
Formalism and case Study H2+ in Strong Laser Fields. The European Physical
Journal D, pages 15–24, 2003. 281

Bibliography 569

[136] A. Laio and M. Parrinello. Escaping free energy minima. Proc. Natl. Acad. Sci.,
20:12562, 2002. 491

[137] Ask Hjorth Larsen, Jens Jørgen Mortensen, Jakob Blomqvist, Ivano E Castelli,
Rune Christensen, Marcin Dułak, Jesper Friis, Michael N Groves, Bjørk Hammer,
Cory Hargus, et al. The atomic simulation environment—a python library for
working with atoms. Journal of Physics: Condensed Matter, 29(27):273002, 2017.
461

[138] V.I. Lebedev. Zh. Vychisl. Mat. mat. Fiz., 15:48, 1975. 85

[139] V.I. Lebedev. Zh. Vychisl. Mat. mat. Fiz., 16:293, 1976. 85

[140] V.I. Lebedev and D.N. Laikov. Doklady Mathematics, 59:477, 1999. 85

[141] C.L. Lee, W. Yang, and R.G. Parr. Phys. Rev. B, 37:785, 1988. 62

[142] Susi Lehtola, Conrad Steigemann, Micael JT Oliveira, and Miguel AL Marques.
Recent developments in libxc—a comprehensive library of functionals for density
functional theory. SoftwareX, 7:1–5, 2018. 65

[143] Kurt Lejaeghere, Gustav Bihlmayer, Torbjörn Björkman, Peter Blaha, Stefan
Blügel, Volker Blum, Damien Caliste, Ivano E. Castelli, Stewart J. Clark, An-
drea Dal Corso, Stefano de Gironcoli, Thierry Deutsch, John Kay Dewhurst,
Igor Di Marco, Claudia Draxl, Marcin Dułak, Olle Eriksson, José A. Flores-Livas,
Kevin F. Garrity, Luigi Genovese, Paolo Giannozzi, Matteo Giantomassi, Stefan
Goedecker, Xavier Gonze, Oscar Grånäs, E. K. U. Gross, Andris Gulans, François
Gygi, D. R. Hamann, Phil J. Hasnip, N. A. W. Holzwarth, Diana Iuşan, Do-
minik B. Jochym, François Jollet, Daniel Jones, Georg Kresse, Klaus Koepernik,
Emine Küçükbenli, Yaroslav O. Kvashnin, Inka L. M. Locht, Sven Lubeck, Mar-
tijn Marsman, Nicola Marzari, Ulrike Nitzsche, Lars Nordström, Taisuke Ozaki,
Lorenzo Paulatto, Chris J. Pickard, Ward Poelmans, Matt I. J. Probert, Keith Ref-
son, Manuel Richter, Gian-Marco Rignanese, Santanu Saha, Matthias Scheffler,
Martin Schlipf, Karlheinz Schwarz, Sangeeta Sharma, Francesca Tavazza, Patrik
Thunström, Alexandre Tkatchenko, Marc Torrent, David Vanderbilt, Michiel J.
van Setten, Veronique Van Speybroeck, John M. Wills, Jonathan R. Yates, Guo-
Xu Zhang, and Stefaan Cottenier. Reproducibility in density functional theory
calculations of solids. Science, 351(6280), 2016. 10 , 68 , 110 , 440

[144] C. Lessig, T. de Witt, and E. Fiume. Efficient and accurate rotation of finite
spherical harmonics expansions. J. Comput. Phys., 231(2):243–250, January 2012.
468

[145] Sergey V. Levchenko, Xinguo Ren, Jürgen Wieferink, Rainer Johanni, Patrick
Rinke, Volker Blum, and Matthias Scheffler. Hybrid functionals for large periodic
systems in an all-electron, numeric atom-centered basis framework. Computer
Physics Communications, 192:60 – 69, 2015. 246 , 260 , 267

[146] R. Lindh, A. Bernhardsson, G. Karlström, and P.-Å. Malmqvist. Chem. Phys.
Lett., 241:423, 1995. 158 , 161 , 169 , 172 , 435

570 Bibliography

[147] S. Lizzit, A. Baraldi, A. Groso, K. Reuter, M. V. Ganduglia-Pirovano, C. Stampfl,
M. Scheffler, M. Stichler, C. Keller, W. Wurth, and D. Menzel. Phys. Rev. B,
63:205419, 2001. 196

[148] Steven G. Louie, Sverre Froyen, and Marvin L. Cohen. Nonlinear ionic pseudopo-
tentials in spin-density-functional calculations. Phys. Rev. B, 26:1738–1742, Aug
1982. 204

[149] G. Makov and M. C. Payne. Phys. Rev. B, 51:4014, 1995. 498

[150] M. Manninen, R. Nieminen, and P. Hautojärvi. Phys. Rev. B, 12:4012, 1975.
144

[151] M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, and D. G. Truhlar.
Consistent van der waals radii for the whole main group. J. Phys. Chem. A,
113:5806–5812, 2009. 342

[152] Aleksandr V. Marenich, Christopher J. Cramer, and Donald G. Truhlar. Universal
solvation model based on solute electron density and on a continuum model of
the solvent defined by the bulk dielectric constant and atomic surface tensions. J.
Phys. Chem. B, 113(18):6378–6396, 2009. 207

[153] Aleksandr V. Marenich, Christopher J. Cramer, and Donald G. Truhlar. Generalized
born solvation model sm12. J. Chem. Theory Comput., 9(1):609–620, 2013. 207

[154] Miguel Marques, Neepa Maitra, Fernando Nogueira, Eberhard Gross, and Angel
Rubio. Fundamentals of Time-Dependent Density Functional Theory, volume 837.
01 2012. 279

[155] Miguel A. L. Marques, Micael J. T. Oliveira, and Tobias Burnus. Libxc: a library
of exchange and correlation functionals for density functional theory. Computer
Physics Communications, 183(10):2272–2281, 2012. 276

[156] Michael J. Mehl, David Hicks, Cormac Toher, Ohad Levy, Robert M. Hanson,
Gus Hart, and Stefano Curtarolo. The aflow library of crystallographic prototypes:
Part 1. Computational Materials Science, 136:S1 – S828, 2017. 158

[157] B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin,
S. Gabriel, and P. J. Stephens. Polarizable continuum model (pcm) calculations
of solvent effects on optical rotations of chiral molecules. J. Phys. Chem. A,
106(25):6102–6113, 2002. 207

[158] N.D. Mermin. Phys. Rev., 137:A1441, 1965. 130 , 186

[159] M. Methfessel and A. T. Paxton. Phys. Rev. B, 40:3616, 1989. 130

[160] Cleve Moler and Charles Van Loan. Nineteen Dubious Ways to Compute the
Exponential of a Matrix, Twenty-five Years Later. SIAM Review, 45(1):3–49,
2003. 288

Bibliography 571

[161] F. A. Momany. Determination of partial atomic charges from ab initio molecular
electrostatic potentials. application to formamide, methanol, and formic acid. J.
Chem. Phys., 82:592–601, 1978. 342

[162] H.J. Monkhorst and J.D. Pack. Phys. Rev. B, 13:5188, 1976. 74 , 442 ,
443

[163] R.S. Mulliken. J. Chem. Phys., 23:1833, 1955. 345 , 417

[164] D. Nabok, P. Puschnig, and C. Ambrosch-Draxl. Phys. Rev. B, 77:245316, 2008.
239

[165] Francesco Nattino, Cristina Díaz, Bret Jackson, and Geert-Jan Kroes. Phys. Rev.
Lett., 108(23):236104, 2012. 62

[166] R. Nieminen. J. Phys. F, 7:375, 1977. 144

[167] Anders M. N. Niklasson, C. J. Tymczak, and Matt Challacombe. Time-Reversible
Born-Oppenheimer molecular dynamics. Phys. Rev. Lett., 97:123001, 2006. 179

[168] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer, 2.
edition, 2006. 171

[169] H. Oberhofer and J. Blumberger. Revisiting electronic couplings and incoherent
hopping models for electron transport in crystalline c60 at ambient temperatures.
Phys. Chem. Chem. Phys, 14:13846–13852, 2012. 370

[170] Ari Ojanperä, Ville Havu, Lauri Lehtovaara, and Martti Puska. Nonadiabatic
Ehrenfest Molecular Dynamics within the Projector Augmented-wave Method. The
Journal of Chemical Physics, 136(14):144103, 2012. 281

[171] Jochen Heyd Aliaksandr V. Krukau Oleg A. Vydrov and Gustavo E. Scuseria. J.
Chem. Phys., 125:074106, 2006. 64

[172] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation
made simple. Phys. Rev. Lett., 77:3865–3868, 1997. 62

[173] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J.
Singh, and C. Fiolhais. Atoms, molecules, solids, and surfaces: Applications of
the generalized gradient approximation for exchange and correlation. Phys. Rev.
B, 46:6671–6687, 1992. 62

[174] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the
electron-gas correlation energy. Phys. Rev. B, 45:13244–13249, 1992. 62

[175] J. P. Perdew and A. Zunger. Self-interaction correction to density-functional
approximations for many-electron systems. Phys. Rev. B, 23:5048–5079, 1981.
62

[176] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, L.A. Constantin, and J. Sun. Workhorse
semilocal density functional for condensed matter physics and quantum chemistry.
Phys. Rev. Lett., 103:026403, 2009. 62

572 Bibliography

[177] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, L.A. Constantin, and J. Sun. Erratum:
Workhorse semilocal density functional for condensed matter physics and quantum
chemistry. Phys. Rev. Lett., 106:179902(E), 2011. 62

[178] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Con-
stantin, X. Zhou, and K. Burke. Phys. Rev. Lett., 100:136406, 2008. 62 ,
64

[179] Baron Peters, Andreas Heyden, Alexis T. Bell, and Arup Chakraborty. A growing
string method for determining transition states: Comparison to the nudged elastic
band and string methods. The Journal of Chemical Physics, 120(17):7877–7886,
2004. 470

[180] A. G. Petukhov, I. I. Mazin, L. Chioncel, and A. I. Lichtenstein. Correlated metals
and the LDA+U method. Physical Review B, 67(15):153106, April 2003. 56 ,
225 , 228

[181] R. Peverati and D.G. Truhlar. Improving the accuracy of hybrid meta-gga density
functionals by range separation. J. Phys. Chem. Lett., 2(21):2810, 2011. 65

[182] R. Peverati and D.G. Truhlar. M11-l: A local density functional that provides
improved accuracy for electronic structure calculations in chemistry and physics.
J. Phys. Chem. Lett., 3:117, 2011. 62

[183] Bernd G. Pfrommer, Michel Côté, Steven G. Louie, and Marvin L. Cohen. Re-
laxation of Crystals with the Quasi-Newton Method. Journal of Computational
Physics, 131(1):233–240, 1997. 169 , 171

[184] P. Pulay. Convergence acceleration of iterative sequences. the case of scf iteration.
Chem. Phys. Lett., 73:393–398, 1980. 141

[185] Peter Pulay and Géza Fogarasi. Fock matrix dynamics. Chem. Phys. Lett.,
386:272–278, 2004. 175

[186] P. Pyykkö. Chem. Rev., 88:563, 1988. 440

[187] X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A. Sanfilippo, K. Reuter,
and M. Scheffler. Resolution-of-identity approach to Hartree-Fock, hybrid density
functionals, RPA, MP2 and GW with numeric atom-centered orbital basis func-
tions. New J. Phys., 14:053020, 2012. 53 , 69 , 71 , 72 , 246 , 247
, 248

[188] X. Ren, P. Rinke, G. E. Scuseria, and M. Scheffler. in preparation. 53

[189] X. Ren, A. Tkatchenko, P. Rinke, and M. Scheffler. Beyond the random-phase
approximation for the electron correlation energy: The importance of single exci-
tations. Phys. Rev. Lett., 106:153003, 2011. 53

[190] Xinguo Ren, Florian Merz, Hong Jiang, Yi Yao, Markus Rampp, Hermann Lederer,
Volker Blum, and Matthias Scheffler. All-electron periodic G0W0 implementation
with numerical atomic orbital basis functions: Algorithm and benchmarks. Phys.
Rev. Materials, 5:013807, Jan 2021. 272

Bibliography 573

[191] Norina A. Richter, Sabrina Sicolo, Sergey V. Levchenko, Joachim Sauer, and
Matthias Scheffler. Concentration of vacancies at metal-oxide surfaces: Case
study of mgo(100). Physical Review Letters, 111:045502, 2013. 51

[192] S. Ringe, H. Oberhofer, C. Hille, S. Matera, and K. Reuter. Function-space-based
solution scheme for the size-modified poisson-boltzmann equation in full-potential
dft. Journal of Chemical Theory and Computation, 12(8):4052–4066, 2016. 219
, 224

[193] S. Ringe, H. Oberhofer, and K. Reuter. Transferable ionic parameters for first-
principles poisson-boltzmann solvation calculations: Neutral solutes in aqueous
monovalent salt solutions. Journal of Chemical Physics, 146(13):134103, 2017.
219 , 220

[194] H. N. Rojas, R. W. Godby, and R. J. Needs. Phys. Rev. Lett., 74:1827, 1995.
248

[195] B. Roux. The calculation of the potential of mean force using computer-
simulations. Comput. Phys. Comm., 91:275, 1995. 491

[196] R. S. Rowland and R. Taylor. Intermolecular nonbonded contact distances in
organic crystal structures: Comparison with distances expected from van der waals
radii. J. Phys. Chem., 100:7384–7391, 1996. 342

[197] Victor G. Ruiz, Wei Liu, and Alexandre Tkatchenko. Density-functional theory with
screened van der Waals interactions applied to atomic and molecular adsorbates
on close-packed and non-close-packed surfaces. Physical Review B, 93:035118,
2016. 234 , 238

[198] A. Savin, B. Silvi, and F. Colonna. Can. J. Chem., 74:1088, 1996. 405

[199] A. Sayvetz. J. Phys. Chem., 7:383, 1939. 164 , 167

[200] C. Schober, K. Reuter, and H. Oberhofer. A critical analysis of fragment orbital
dft schemes for the calculation of electronic coupling values. J. Chem. Phys.,
144:054103, 2016. 370 , 371 , 466

[201] G.E. Scuseria and V.N. Staroverov. Progress in the development of exchange-
correlation functionals. In C.E. Dykstra, G. Frenking, K.S. Kim, and G.E. Scuse-
ria, editors, Theory and Applications of Computational Chemistry: The First 40
Years, chapter 24. Elsevier, Amsterdam, 2005. The parameters for "VWN"-LDA
as implemented in the Gaussian code are given in Table 1. 62 , 63

[202] K. Senthilkumar, F. C. Grozema, F. M. Bickelhaupt, and L. D. A. Siebbeles. Charge
transport in columnar stacked triphenylenes: Effects of conformational fluctuations
on charge transfer integrals and site energies. J. Chem. Phys., 119(18):9809–9817,
2003. 370

[203] P. Sherwood, A. H. de Vries de Vries de Vries de Vries, M. F. Guest, G. Schreck-
enbach, R. A. Catlow, S. A. French, A. A. Sokol, S. T. Bromley, W. Thiel, A. J.
Turner, S. Billeter, F. Terstegen, S. Thiel, J. Kendrick, S. C. Rogers, J. Casci,

574 Bibliography

M. Watson, F. King, E. Karlsen, M. Sjøvoll, A. Fahmi, A. Schäfer, and C. Lennartz.
J. Mol. Struct (Theochem), 632:1, 2003. 200

[204] E. Sigfridsson and U. Ryde. Atomic charges from the electrostatic potential and
moments. J. Comput. Chem., 19(4), 1998. 342

[205] U. C. Singh and P. A. Kollman. An approach to computing electrostatic charges
for molecules. J. Comput. Chem., 5:129–145, 1984. 342

[206] Markus Sinstein, Christoph Scheurer, Sebastian Matera, Volker Blum, Karsten
Reuter, and Harald Oberhofer. J. Chem. Theory Comput., 2017. 206 , 207 ,
209 , 214

[207] Alexey A. Soluyanov and David Vanderbilt. Computing topological invariants
without inversion symmetry. Phys. Rev. B, 83:235401, Jun 2011. 320

[208] R Strange, FR Manby, and PJ Knowles. Automatic code generation in density
functional theory. Comp. Phys. Comm., 136:310–318, 2001. 65

[209] R.E. Stratmann, G.E. Scuseria, and M.J. Frisch. Chem. Phys. Lett., 257:213,
1996. 88

[210] Jianwei Sun, Adrienn Ruzsinszky, and John P. Perdew. Strongly constrained and
appropriately normed semilocal density functional. Phys. Rev. Lett., 115:036402,
2015. 63 , 65

[211] C. Tablero. Representations of the occupation number matrix on the LDA/GGA+
U method. J. Phys. Condens. Matter, 20(32):325205, 2008. 227

[212] James D. Talman. Numerical methods for multicenter integrals for numerically de-
fined basis functions applied in molecular calculations. Internat. J. Quant. Chem.,
93(2):72–90, 2003. 262

[213] J.D. Talman. NumSBT: a subroutine for calculating spherical bessel transforms
numerically. Comput. Phys. Comm., 180(2):332–338, February 2009. 262

[214] J.M. Tao, J.P. Perdew, V.N. Staroverov, and G.E. Scuseria. Climbing the density
functional ladder: Nonempirical meta-generalized gradient approximation designed
for molecules and solids. Phys. Rev. Lett., 91:146401, 2003. 63

[215] A. Tkatchenko and M. Scheffler. Phys. Rev. Lett., 102:073005, 2009. 60 , 66
, 232 , 233 , 235

[216] Alexandre Tkatchenko, Alberto Ambrosetti, and Robert A DiStasio Jr. Inter-
atomic methods for the dispersion energy derived from the adiabatic connection
fluctuation-dissipation theorem. J. Chem. Phys., 138:074106, 2013. 236

[217] Alexandre Tkatchenko, Robert A DiStasio Jr, Roberto Car, and Matthias Scheffler.
Accurate and efficient method for many-body van der waals interactions. Phys.
Rev. Lett., 108(23):236402, 2012. 236

Bibliography 575

[218] A Togo and I Tanaka. First principles phonon calculations in materials science.
Scr. Mater., 108:1–5, Nov 2015. 461

[219] G. Torrie and J. Valleau. Nonphysical sampling distributions in monte carlo free
energy estimation: Umbrella sampling. J. Comput. Phys., 23:187, 1977. 491

[220] L. Triguero, L. G. M. Pettersson, and H. Ågren. Calculations of near-edge x-ray-
absorption spectra of gas-phase and chemisorbed molecules by means of density-
functional and transition-potential theory. Phys. Rev. B, 58:8097–8110, Sep 1998.
197

[221] O. Vahtras, J. Almlöf, and M.W. Feyereisen. Chem. Phys. Lett., 213:514, 1993.
66 , 247

[222] E. van Lenthe van Lenthe van Lenthe van Lenthe, E.J. Baerends, and J.G. Snijders.
J. Chem. Phys., 101:9783, 1994. 114

[223] Michiel J. van Setten, Fabio Caruso, Sahar Sharifzadeh, Xinguo Ren, Matthias
Scheffler, Fang Liu, Johannes Lischner, Lin Lin, Jack R. Deslippe, Steven G.
Louie, Chao Yang, Florian Weigend, Jeffrey B. Neaton, Ferdinand Evers, and
Patrick Rinke. Gw100: Benchmarking g0w0 for molecular systems. Journal of
Chemical Theory and Computation, 11(12):5665–5687, 2015. PMID: 26642984.
249 , 251

[224] S.H. Vosko, L. Wilk, and M. Nusair. Can. J. Phys., 58:1200, 1980. 62 , 63

[225] L. Vočadlo and D. Alfè. Phys. Rev. B, 65:214105, 2002. 186 , 187

[226] F. Wagner, Th. Laloyaux, and M. Scheffler. Phys. Rev. B, 57:2102, 1998. 131

[227] E Weinan, Weiqing Ren, and Eric Vanden-Eijnden. Simplified and improved string
method for computing the minimum energy paths in barrier-crossing events. J.
Chem. Phys., 126:164103, 2007. 470

[228] J. Wilhelm, M. Walz, M. Stendel, A. Bagrets, and F. Evers. Ab initio simulations of
scanning-tunneling-microscope images with embedding techniques and application
to c58-dimers on au(111). Phys. Chem. Chem. Phys., 15:6684, 2013. 499

[229] E. R. Ylvisaker, W. E. Pickett, and K. Koepernik. Anisotropy and magnetism in
the LSDA+U method. Phys. Rev. B, 79:035103, Jan 2009. 225

[230] Zhi-Qiang You and John M. Herbert. Reparameterization of an accurate, few-
parameter implicit solvation model for quantum chemistry: Composite method
for implicit representation of solvent, cmirs v. 1.1. J. Chem. Theory Comput.,
12(9):4338–4346, 2016. 207

[231] Rui Yu, Xiao Liang Qi, Andrei Bernevig, Zhong Fang, and Xi Dai. Equivalent
expression of z2 topological invariant for band insulators using the non-abelian
berry connection. Phys. Rev. B, 84:075119, Aug 2011. 320

576 Bibliography

[232] Igor Ying Zhang, Xinguo Ren, Patrick Rinke, Volker Blum, and Matthias Scheffler.
Numeric atom-centered-orbital basis sets with valence-correlation consistency from
h to ar. New Journal of Physics, 15:123033, 2013. 30 , 35 , 46 , 61 ,
68 , 69 , 81 , 94

[233] I.Y. Zhang, N. Su, A.G. Bremond, C. Adamo, and X. Xu. Doubly hybrid density
functional xdh-pbe0 from a parameter-free global hybrid model pbe0. J. Chem.
Phys., 136:174103, 2012. 61 , 65

[234] Y Zhang, X Xu, and W. A. Goddard. Doubly hybrid density functional for accu-
rate descriptions of nonbond interactions, thermochemistry, and thermochemical
kinetics. Proc. Natl. Acad. Sci. USA, 106:4963–4968, 2009. 65

[235] Y. Zhang and W. Yang. Phys. Rev. Lett., 80:890, 1998. 62

[236] Y. Zhao and D.G. Truhlar. Density functional for spectroscopy: No long-range
self-interaction error, good performance for rydberg and charge-transfer states,
and better performance on average than b3lyp for ground states. J. Phys. Chem.
A, 110:13126, 2006. 64

[237] Y. Zhao and D.G. Truhlar. The m06 suite of density functionals for main
group thermochemistry, thermochemical kinetics, noncovalent interactions, ex-
cited states, and transition elements: Two new functionals and systematic test-
ing of four m06-class functionals and 12 other functionals. Theor. Chem. Acc.,
120:215, 2006. 64

[238] Y. Zhao and D.G. Truhlar. A new local density functional for main-group ther-
mochemistry, transition metal bonding, thermochemical kinetics, and noncovalent
interactions. J. Chem. Phys., 125(19):194101, 2006. 62

[239] Y. Zhao and D.G. Truhlar. Exploring the limit of accuracy of the global hybrid meta
density functional for the main-group thermochemistry, kinetics, and noncovalent
interactions. J. Chem. Theor. Comp., 4(11):1849, 2008. 64 , 65

Following pages: Index

(this page inserted to enforce proper hyperlink to index)

577

Index

$aims_input, 506
$basis, 507
$coord, 507
$ecp, 509
$eend, 511
$end, 512
$ener, 511
$estep, 511
$landauer, 506
$ldos, 506
$lsurc, 509
$lsurx, 509
$lsury, 509
$natoms, 507
$nlayers, 510
$nsaos, 508
$read_omat, 508
$rsurc, 509
$rsurx, 509
$rsury, 509
$s1i, 510
$s2i, 510
$s3i, 510
$scfmo, 508
$self_energy, 511
$testing, 511
$uhfmo_alpha, 508
$uhfmo_beta, 508
$valence_electrons, 509

abort_opt, 43
abort_scf, 43
Adams_Moulton_integrator, 427
adaptive_hartree_radius_th, 100
adjust_scf, 136
aggregated_energy_tolerance, 164
allow_restart_xc_pre, 137
anacon_type, 250
apply_boys, 155
atom, 47 , 188

atom_frac, 47
atomic_solver, 71
atomic_solver_xc, 72
auxil_basis, 256

basis_threshold, 118
batch_distribution_method, 427
batch_size_limit, 85
bse_s_t, 296

calc_analytical_stress_symmetrized,
164

calc_dens_superpos, 149
calc_spectral_func, 254
calculate_all_eigenstates, 119
calculate_atom_bsse, 72
calculate_friction, 326 , 330
casida_reduce_matrix, 278
casida_reduce_occ, 278
casida_reduce_unocc, 278
charge, 49
charge_mix_param, 137
check_cpu_consistency, 45
check_MD_stop, 176
check_stacksize, 45
clean_forces, 164
collect_eigenvectors, 364
communicate_pimd_wrapper, 184
communication_type, 427
compensate_multipole_errors, 100
compute_absorption, 334
compute_analytical_stress, 165
compute_dielectric, 333
compute_dipolematrix, 335
compute_dipolematrix_k_k, 335
compute_esp_charges, 348
compute_forces, 165
compute_kinetic, 113
compute_kubo_greenwood, 336
compute_momentummatrix, 334

578 Index

compute_numerical_stress, 165
constrain_relaxation, 160
constraint_debug, 192
constraint_electrons, 192
constraint_it_lim, 192
constraint_mix, 193
constraint_precision, 192
constraint_region, 191
contour_def_gw, 251
contour_eta, 252
contour_restart, 252
contour_spin_channel, 252
contour_zshot_offset, 253
control.update.in, 43
coulomb_threshold, 269
cpu_consistency_threshold, 45
cube_default_size_safeguard, 386

default_initial_moment, 138
default_max_l_prodbas, 257
default_max_n_prodbas, 257
default_prodbas_acc, 256
delta_numerical_stress, 166
density_update_method, 96
DFPT dielectric, 316
DFPT phonon, 315 , 462
DFPT phonon_gamma, 314
DFPT phonon_reduce_memory, 315 ,

462
DFPT polarizability, 315 , 461
DFPT vibration, 314 , 460
DFPT vibration_reduce_memory, 314

, 460
dfpt_accuracy_n1, 358
dfpt_iter_limit, 359
dfpt_linear_mix_param, 359
dfpt_pulay_steps, 359
DFPT_width, 316
dielectric_broadening, 333
distribute_leftover_charge, 428
distributed_hessian, 166
distributed_spline_storage, 364
dos_kgrid_factors, 387
dry_run, 46

elpa_settings, 118
elsi_eigenexa_method, 125
elsi_elpa_gpu, 123

elsi_elpa_n_single, 123
elsi_elpa_solver, 123
elsi_magma_solver, 126
elsi_method, 122
elsi_ntpoly_filter, 126
elsi_ntpoly_method, 125
elsi_ntpoly_tol, 126
elsi_omm_flavor, 124
elsi_omm_n_elpa, 124
elsi_omm_tol, 124
elsi_output, 387
elsi_output_matrix, 388
elsi_pexsi_np_symbo, 124
elsi_restart, 148
elsi_restart_use_overlap, 149
elsi_sips_n_elpa, 125
elsi_sips_n_slice, 125
elsi_solver, 122
empty, 70
empty_states, 119
energy_tolerance, 166
esp_constraint, 348 , 349
evaluate_work_function, 388
Ewald_radius, 100
ewald_radius, 101
excited_mode, 277
excited_states, 277
external_force, 166
external_pressure, 167
exx_band_structure_version, 269

fermi_acc, 119
final_forces_cleaned, 167
fixed_spin_moment, 49
fo_deltaplus, 376
fo_dft, 374

final, 374
fragment, 374

fo_flavour, 375
fo_folders, 375
fo_orbitals, 374
fo_verbosity, 376
force_constants, 188
force_correction, 167
force_lebedev, 85
force_mpi_virtual_topo, 364
force_new_functional, 428

Index 579

force_occupation_basis, 194
force_occupation_projector, 195
force_occupation_smearing, 197
force_potential, 140
force_single_restartfile, 148
force_smooth_cutoff, 428
freq_grid_type, 251
frequency_points, 257
friction_accuracy_eev, 327
friction_accuracy_etot, 327
friction_accuracy_potjump, 327
friction_accuracy_rho, 327
friction_broadening_width, 326
friction_coupling_matrix_mode, 328

friction_delta_type, 327
friction_discretization_length, 329

friction_double_delta, 327
friction_iter_limit, 326
friction_max_energy, 328
friction_numeric_disp, 326
friction_output_couplings, 328
friction_output_gamma, 329
friction_output_gamma2, 329
friction_output_jdos, 329
friction_read_matrices, 330
friction_temperature, 326
friction_window_size, 329
frozen_core, 54
frozen_core_postscf, 54
frozen_core_scf, 126
frozen_core_scf_core_correction, 127

frozen_core_scf_cutoff, 127
frozen_core_scf_valence_correction,

127
full_cmplx_sigma, 252
full_embedding, 200

gpu_density, 541
gpu_forces, 542
gpu_hamiltonian, 542
greenwood_method, 336
grid_partitioning_method, 85
grouping_factor, 428
gw_hedin_shift, 253

gw_zshot, 253

harmonic_length_scale, 168
hartree_convergence_parameter, 101

hartree_d_matrix_method, 384
hartree_fourier_part_th, 102
hartree_fp_function_splines, 101
hartree_partition_type, 102
hartree_radius_threshold, 102
hartree_worksize, 429
hessian_block, 160
hessian_block_lv, 161
hessian_block_lv_atom, 161
hessian_file, 161
hessian_to_restart_geometry, 168
hf_version, 250
homogeneous_field, 199
hse_unit, 55
hybrid_xc_coeff, 55
hydro_cut, 73

include_spin_orbit, 113
ini_linear_mix_param, 140
ini_linear_mixing, 140
ini_linear_mixing_constraint, 193
ini_spin_mix_param, 141
init_hess, 169
init_hess_lv_diag, 168
initial_charge, 135
initial_ev_solutions, 120
initial_moment, 135
isc_calculate_surface_and_volume, 214

isc_cavity_restart, 217
isc_cavity_restart_read, 218
isc_cavity_restart_write, 218
isc_cavity_type, 208

overlapping_spheres, 210
rho_free, 209
rho_multipole_dynamic, 209
rho_multipole_static, 209

isc_dt, 216
isc_dynamics_friction, 216
isc_g_k, 216
isc_gradient_threshold, 217
isc_kill_ratio, 215
isc_max_dyn_steps, 215

580 Index

isc_record_cavity_creation, 218
isc_rep_k, 216
isc_rho_k, 216
isc_rho_rel_deviation_threshold, 214

isc_surface_curvature_correction, 214

isc_try_restore_convergence, 215
isc_update_nlist_interval, 215
isotope, 361
iterations_sc_cd, 254

k_grid, 73
k_grid_density, 74
k_offset, 74
k_points_external, 74
kerker_factor, 146
KH_post_correction, 429
KS_method, 120

l_hartree_far_distance, 103
lattice_vector, 47 , 188
lc_dielectric_constant, 56
legacy_monopole_extrapolation, 103

load_balancing, 365
lopcg_adaptive_tolerance, 127
lopcg_auto_blocksize, 128
lopcg_block_size, 128
lopcg_preconditioner, 128
lopcg_start_tolerance, 128
lopcg_tolerance, 128

magnetic_moment, 360
magnetic_response, 358 , 360
many_body_dispersion, 237
many_body_dispersion_nl, 237
many_body_dispersion_pre2019, 238
max_atomic_move, 169
max_lopcg_iterations, 129
max_relaxation_steps, 170
max_zeroin, 129
maximum_frequency, 258
maximum_time, 258
mc_int, 241

absolute_accuracy, 243
kernel_data, 243
number_of_MC, 243

output_flag, 243
relative_accuracy, 243

MD_clean_rotations, 176
MD_gle_A, 182
MD_gle_C, 182
MD_maxsteps, 176
MD_MB_init, 176
MD_restart, 177
MD_restart_binary, 177
MD_run, 178

GLE_thermostat, 181
NVE, 180
NVE_4th_order, 180
NVE_damped, 180
NVT_andersen, 180
NVT_berendsen, 181
NVT_nose-hoover, 182
NVT_nose-poincare, 182
NVT_parrinello, 181

MD_schedule, 178
MD_segment, 178
MD_thermostat_units, 177
MD_time_step, 179
min_batch_size, 86
mixer, 141
mixer_constraint, 193
mixer_swap_boundary, 429
mixer_threshold, 143
mpe_degree_of_determination, 211
mpe_f_sparsity_threshold, 213
mpe_factorization_type, 212
mpe_lmax_ep, 211
mpe_lmax_rf, 211
mpe_n_boundary_conditions, 213
mpe_n_centers_ep, 213
mpe_nonelectrostatic_model, 210

linear_OV, 211
mpe_solvent_permittivity, 208
mpe_tol_adjR2, 212
mpe_tol_adjR2_wait_scf, 212
mpe_xml_logging, 217
mr_experimental, 360
mr_gauge_origin, 359
mu_determination_method, 129
multip_moments_rad_threshold, 103
multip_moments_threshold, 103
multip_radius_free_threshold, 104

Index 581

multip_radius_threshold, 104
multiplicity, 430
multipole, 199
multipole_threshold, 104

n_anacon_par, 251
n_max_broyden, 143
n_max_pulay, 143
n_max_pulay_constraint, 194
n_poles, 258
neutral_excitation, 276 , 295
nlcorr_i_leb, 245
nlcorr_nrad, 245
nocc_sc_cd, 255
normalize_initial_density, 105
nuclear_spin, 360
numerical_stress_save_scf, 170
nvirt_sc_cd, 255

occupation_acc, 129
occupation_thr, 430
occupation_type, 130
onsite_accuracy_threshold, 75
orthonormalize_eigenvectors, 170
output, 389

acks2_parameters, 392
aitranss, 392
atom_proj_dos, 393
atom_proj_dos_tetrahedron, 394

band, 395
band_during_scf, 397
band_mulliken, 397
basis, 398
batch_statistics, 399
cube, 400
density, 407
dgrid, 407
dipole, 407
dos, 408
dos_tetrahedron, 409
eigenvectors, 410
elpa_timings, 411
elsi_log, 411
esp, 347
grids, 411
h_s_matrices, 411
hamiltonian_matrix, 412

hessian, 412
hirshfeld, 413
hirshfeld-I, 414
hirshfeld_always, 413
json_log, 414
k_eigenvalue, 415
k_point_list, 415
ks_coulomb_integral, 412
matrices_2005, 415
matrices_elsi, 415
matrices_parallel, 416
memory_tracking, 416
moment_mat_soc, 416
mulliken, 417
nuclear_potential_matrix, 417
onsite_integrands, 418
overlap_matrix, 419
ovlp_spectrum, 419
postscf_eigenvalues, 419
quadrupole, 420
rho_and_derivs_on_grid, 420
rho_multipole, 420
soc_eigenvalues, 421
soc_subspace_in_band, 421
species_proj_dos, 422
species_proj_dos_tetrahedron, 423

v_eff, 424
v_hartree, 425
zero_multipoles, 425

output dielectric, 334
output friction_eigenvectors, 330
output friction_matrices, 330
output gw_regular_kgrid, 274
output polarization, 318
output Z2_invariant, 319
output_boys_centers, 389
output_cube_nth_iteration, 389
output_in_original_unit_cell, 390
output_level, 390
output_sxml, 359
override_illconditioning, 131
override_integration_accuracy, 76
override_relativity, 113
overwrite_existing_cube_files, 390

582 Index

packed_matrix_format, 365
packed_matrix_threshold, 366
partition_acc, 87
partition_type, 87
plus_u_matrix_control, 228
plus_u_matrix_error, 229
plus_u_matrix_release, 229
plus_u_out_eigenvalues, 228
plus_u_petukhov_mixing, 56 , 227
plus_u_ramping_accuracy, 229
plus_u_use_hydros, 229
plus_u_use_mulliken, 228
points_in_batch, 88
pole_max, 258
pole_min, 259
postprocess_anyway, 144
prec_mix_param, 144
precondition_max_l, 145
preconditioner, 144
print_self_energy, 253
printout_dft_components, 59
prodbas_nb, 259
prodbas_threshold, 259
prune_basis_once, 366
pseudocore, 203
python_hook, 530

qmmm, 200
qpe_calc, 56 , 274

read_write_qpe, 295
recompute_batches_in_relaxation, 430

reconstruct_proper_only, 383
relative_fp_charge_mix, 138
relativistic, 113
relax_geometry, 171
relax_unit_cell, 172
restart, 146
restart_read_only, 147
restart_save_iterations, 148
restart_write_only, 147
RI_method, 259
rlsy_symmetry, 384
rlsy_symmetry_refine_structure, 384

rpa_along_ac_path, 58
RT_TDDFT_ehrenfest, 289

RT_TDDFT_ehrenfest_full_nc_forces, 289

RT_TDDFT_ehrenfest_output_trajectory,
293

RT_TDDFT_ehrenfest_remove_com, 290

RT_TDDFT_ehrenfest_start_time, 289

RT_TDDFT_exponential_method, 288
RT_TDDFT_extrapolate_predictor, 287

RT_TDDFT_ham_extrapolation, 288
RT_TDDFT_initial_velocity, 294
RT_TDDFT_input_units, 282
RT_TDDFT_output_current, 292
RT_TDDFT_output_dipole, 292
RT_TDDFT_output_energies, 291
RT_TDDFT_output_level, 291
RT_TDDFT_output_state_dipoles, 292

RT_TDDFT_precor_steps, 287
RT_TDDFT_propagator, 285
RT_TDDFT_propagator_predictor, 288

RT_TDDFT_propagator_solver, 286
RT_TDDFT_restart_read, 294
RT_TDDFT_restart_write, 293
RT_TDDFT_restart_write_period, 293

RT_TDDFT_run, 283
RT_TDDFT_td_field, 284
RT_TDDFT_td_field_gauge, 283
RT_TDDFT_use_precor_tol, 287
RT_TDDFT_write_cube, 290
RT_TDDFT_write_ext_field, 290
RT_TDDFT_write_file_prefix, 290

sbtgrid_lnk0, 261
sbtgrid_lnr0, 261
sbtgrid_lnrange, 261
sbtgrid_N, 261
sc_abandon_etot, 149
sc_accuracy_eev, 150
sc_accuracy_etot, 150
sc_accuracy_forces, 150
sc_accuracy_potjump, 153
sc_accuracy_rho, 151

Index 583

sc_accuracy_stress, 152
sc_init_factor, 153
sc_init_iter, 153
sc_iter_limit, 154
sc_reiterate, 255
sc_self_energy, 57
scgw_it_limit, 58
scgw_mix_param, 58
scgw_print_all_spectrum, 58
screening_threshold, 270
scs_mp2_parameters, 59
set_vacuum_level, 105
solvent, 208
solvent mpb, 220

delta_rho_in_merm, 221
dielec_func, 220
dynamic_{quantity}_off, 221
Gnonmf_FD_delta, 222
ions_{parameter}, 220
MERM_atom_wise, 223
MERM_in_SPE_solver, 223
nonsc_Gnonmf, 222
not_converge_rho_mpb, 222
set_nonelstat_params, 224
solve_lpbe_only, 222
SPE_{setting}, 221

species, 49
nonlinear_core, 204
angular, 90
angular_acc, 90
angular_grids, 90
angular_min, 91
aux_gaussian, 264
basis_acc, 77
basis_dep_cutoff, 77
cite_reference, 46
confined, 77
core, 77
core_states, 78
cut_atomic_basis, 78
cut_core, 432
cut_free_atom, 91
cut_pot, 78
cutoff_type, 79
division, 92
element, 51
for_aux, 264

gaussian, 80
hirshfeld_param, 235
hubbard_coefficient, 230
hydro, 80
include_min_basis, 81
innermost_max, 92
ion_occ, 81
ionic, 82
l_hartree, 108
logarithmic, 92
mass, 51
max_l_prodbas, 266
max_n_prodbas, 265
nucleus, 51
outer_grid, 93
plus_u, 67 , 230
plus_u_ramping_increment, 231
pp_charge, 204
pp_local_component, 204
prodbas_acc, 265
pseudo, 203
pure_gauss, 82
radial_base, 93
radial_multiplier, 94
sto, 83
valence, 83

spectral_func_state, 254
spin, 49
spin_mix_param, 154
split_atoms, 270
squeeze_memory, 430
start_id, 536
state_lower_limit, 261
state_upper_limit, 262
store_EV_to_disk_in_relaxation, 366

stress_for_relaxation, 173
switch_external_pert, 154
sym_precision, 529
symmetry_frac, 162
symmetry_lv, 162
symmetry_n_params, 161
symmetry_params, 162
symmetry_reduced_k_grid, 76
symmetry_reduced_k_grid_spg, 383

tasks_per_subjob, 536

584 Index

tddft_c, 277
tddft_kernel, 276
tddft_x, 277
thermodynamic_integration, 187
time_points, 262
total_energy_method, 59
transport, 338

boundary_mix, 340
boundary_treshold, 340
energy_range, 339
epsilon_end, 340
epsilon_start, 340
fermi_level_fix, 340
lead_calculation, 338
lead_i, 339
number_of_boundary_iterations, 340

transport_calculation, 339
tunneling_file_name, 339

trust_radius, 161
try_zshot, 256

use_2d_corr, 61 , 367
use_alltoall, 367
use_angular_division, 431
use_density_matrix_hf, 155
use_dipole_correction, 106
use_gpu, 541
use_hartree_non_periodic_ewald, 106

use_hf_kspace, 270
use_local_index, 368
use_logsbt, 262
use_mpi_in_place, 367
use_ovlp_swap, 262
use_pimd_wrapper, 183
use_spg_full_Delta, 383
use_spg_mv_mm, 383
use_spin_texture, 115
use_symmetric_forces, 383
use_symmetry_analysis, 529

vdw_convergence_threshold, 232
vdw_correction, 234
vdw_correction_hirshfeld, 232
vdw_correction_hirshfeld_sc, 233
vdw_method, 245
vdw_pair_ignore, 234

vdw_ts, 234
vdwdf, 241

cell_edge_steps, 241
cell_edge_units, 242
cell_origin, 241
cell_size, 242

velocity, 175
verbatim_writeout, 391
vibrations, 456

free_energy, 456
trans_free_energy, 456

walltime, 369
wave_threshold, 76
wf_extrapolation, 179
wf_func, 179
write_restart_geometry, 173

xc, 61
xc_pre, 155

	How to use this manual
	Introduction
	1 Getting started with FHI-aims
	1.1 First step: Installation
	1.2 Prerequisites (libraries and software) you'll need
	1.3 Managing the build process with CMake
	1.3.1 Example CMake usage

	1.4 CMake variables
	1.4.1 MPI parallelization

	1.5 Running FHI-aims
	1.6 Compiling faster versions of FHI-aims on specific platforms
	1.7 Finding the other FHI-aims developers and users (talk to us!)

	2 Input Files: Basic Handling
	2.1 The mandatory input files: control.in and geometry.in
	2.2 Defaults for chemical elements: species_defaults
	2.3 A very quick guide to ensuring numerical convergence with FHI-aims
	2.3.1 Basis set
	2.3.2 Hartree potential
	2.3.3 Integration grid

	2.4 Why does my calculation take too long?
	2.5 Stopping a run: Files abort_scf and abort_opt

	3 The Full Monty: All Keywords and Capabilities
	3.1 Usability (convenience)
	3.2 Physical model: Geometry, charge, spin, etc.
	3.3 Electronic structure: Exchange, correlation (incl. DFT+U), and excited states
	3.4 Specifying the basis (functions, empty sites, k-points, ...)
	3.5 Integration, grids, and partitioning
	3.6 Electron density update
	3.7 Electrostatic (Hartree) potential
	3.7.1 Non-periodic Ewald method

	3.8 Kinetic energy, scalar relativity, spin-orbit coupling, and full relativity
	3.9 Eigenvalue solver and (fractional) occupation numbers
	3.10 SCF Cycle: Initialization, density mixing, preconditioning, convergence
	3.10.1 Visualizing the convergence of the s.c.f. cycle

	3.11 Energy derivatives (forces, stress) and geometry optimization
	3.12 Molecular dynamics
	3.12.1 Path integral molecular dynamics and advanced types of dynamics
	3.12.2 Running FHI-aims with i-PI over TCP/IP Sockets

	3.13 Thermodynamic Integration
	3.14 Electronic constraints
	3.15 Embedding in external fields
	3.16 QM/MM Embedding
	3.17 Continuum Solvation Methods
	3.17.1 MPE Implicit Solvent Model
	3.17.2 SMPB Implicit Electrolyte Model

	3.18 Hubbard corrected DFT (DFT+U)
	3.18.1 DFT+U correction as it is implemented in FHI-aims

	3.19 C6/R6 corrections for long-range van der Waals interactions
	3.20 Many-Body Dispersion (MBD) method
	3.21 Calculating nonlocal correlation energy within density functional approach
	3.21.1 Monte Carlo integration based vdW-DF
	3.21.2 Analytic integration scheme for non-selfconsistent and self-consistent vdW-DF

	3.22 Hartree-Fock, hybrid functionals, GW, et al.: All the details
	3.23 Hartree-Fock and hybrid functionals, including periodic systems
	3.24 Periodic GW in FHI-aims
	3.25 TDDFT - linear response
	3.26 Real-Time TDDFT
	3.27 Bethe-Salpeter equation: BSE
	3.28 DFPT - density functional perturbation theory for lattice dynamics and homogeneous electric fields
	3.29 Calculating polarization of solids with FHI-aims
	3.30 Molecular Dynamics with Electronic Friction
	3.31 Linear macroscopic dielectric function and Kubo-Greenwood transport
	3.32 Electronic Transport
	3.33 ESP charges
	3.34 Magnetic Response
	3.35 Large-scale, massively parallel: Memory use, sparsity, communication, etc.
	3.36 Fragment molecular orbital DFT calculations
	3.37 Symmetry
	3.38 Output options
	3.39 Deprecated keywords

	4 Running FHI-aims: Guides to specific tasks
	4.1 Ground state DFT: Total energies and relaxation
	4.2 Heavy elements (Z30): Modifications for scalar relativity
	4.3 k-point sampling in the Brillouin zone for semiconductors
	4.4 Plotting the band structure and density of states of a solid
	4.5 Visualizing charge densities and orbitals
	4.6 Computation of vibrational and phonon properties
	4.6.1 Perl script: aims.vibrations.*.pl (non-periodic systems)
	4.6.2 Python script: get_vibrations.py (non-periodic and periodic (-point only) systems)
	4.6.3 Vibrations and Polarizability by DFPT within FHI-aims (non-periodic systems)
	4.6.4 Phonons via FHI-vibes and Phonopy (periodic systems)
	4.6.5 Phonons by DFPT within FHI-aims (periodic systems)

	4.7 Restarting FHI-aims calculations
	4.7.1 General restart procedure
	4.7.2 Mixing variants - the "force_single_restartfile" option
	4.7.3 Comments on the 'restart' starting point and on self-consistency
	4.7.4 Rotating the FHI-aims wavefunction

	4.8 Finding Transition States: the aimsChain
	4.8.1 Installation
	4.8.2 A Quick Start
	4.8.3 Configuration
	4.8.4 Preparation before running
	4.8.5 Running the script
	4.8.6 Tips & Guides On Running

	4.9 Plugin for free-energy calculations with molecular dynamics: PLUMED
	4.9.1 Usage

	4.10 Script based parallel tempering (a.k.a. replica exchange)
	4.10.1 Usage
	4.10.2 Output

	4.11 Formation energies of charged defects

	5 The AITRANSS package
	5.1 Source code and supporting materials
	5.2 Compiling the aitranss module
	5.3 How to set-up and run transport calculations
	5.3.1 FHI-aims run: input and output
	5.3.2 What to be aware of before running aitranss module
	5.3.3 How to create a mandatory file tcontrol
	5.3.4 How to submit a transport calculation and its output
	5.3.5 Further option: local density of states

	5.4 Keywords of file tcontrol

	A Trouble-shooting
	A.1 Format flags required by some compilers
	A.2 FHI-aims aborts with a segfault at the beginning of the first test run.
	A.3 Use of FHI-aims with multithreaded BLAS (e.g., Intel's MKL)
	A.4 Parallel runs across different file systems
	A.5 I'm running a calculation for a large system, and it exits abrutply. What's going on?
	A.6 What do I do if I run out of memory?
	A.7 Nearly singular basis sets: Strange results from small-unit-cell periodic calculation with many k-points
	A.8 No convergence of the s.c.f. cycle even after many iterations

	B Structure of the code
	B.1 Flow of the program
	B.2 Commenting and style requests

	C Debug Manager
	D XML output
	E Optional Libraries to be Linked into FHI-aims
	E.1 Adding Optional Libraries into FHI-aims: Stubs
	E.2 Spglib
	E.3 Libxc
	E.4 cffi — Python 2/3 interface to FHI-aims

	F Multiple Instances of FHI-aims
	G GPU Acceleration of FHI-aims
	G.1 Introduction
	G.1.1 Overview of GPU Acceleration Philosophy in FHI-aims
	G.1.2 Current State of GPU Acceleration in FHI-aims

	G.2 Prerequisites
	G.3 Installation
	G.3.1 Example initial_cache.cmake file for GPU Acceleration

	G.4 Running FHI-aims with GPU Acceleration
	G.4.1 Memory Usage with GPU Acceleration

	H More on CMake
	H.1 The build process
	H.2 All CMake variables
	H.3 CMake for developers

	I Building FHI-aims with a make.sys
	I.1 A more measured approach to building FHI-aims
	I.1.1 Cross-Compiling with a C Compiler

	I.2 Compilation options beyond the standard Makefile

	Bibliography
	Index

