
freeworld.posterous.com

Linux Bash Shell
 Cheat Sheet

(works with about every distribution, except for apt-get which is Ubuntu/Debian exclusive)

Legend:

Everything in “<>” is to be replaced, ex: <fileName> --> iLovePeanuts.txt
Don't include the '=' in your commands
'..' means that more than one file can be affected with only one command ex: rm
file.txt file2.txt movie.mov

http://freeworld.posterous.com/

Linux Bash Shell Cheat Sheet
Basic Commands

Basic Terminal Shortcuts Basic file manipulation

CTRL L = Clear the terminal cat <fileName> = show content of file
CTRL D = Logout (less, more)
SHIFT Page Up/Down = Go up/down the terminal head = from the top
CTRL A = Cursor to start of line -n <#oflines> <fileName>
CTRL E = Cursor the end of line
CTRL U = Delete left of the cursor tail = from the bottom
CTRL K = Delete right of the cursor -n <#oflines> <fileName>
CTRL W = Delete word on the left
CTRL Y = Paste (after CTRL U,K or W) mkdir = create new folder
TAB = auto completion of file or command mkdir myStuff ..
CTRL R = reverse search history mkdir myStuff/pictures/ ..
!! = repeat last command
CTRL Z = stops the current command (resume with fg in foreground or bg in background) cp image.jpg newimage.jpg = copy and rename a file

Basic Terminal Navigation cp image.jpg <folderName>/ = copy to folder

cp image.jpg folder/sameImageNewName.jpg
ls -a = list all files and folders cp -R stuff otherStuff = copy and rename a folder
ls <folderName> = list files in folder cp *.txt stuff/ = copy all of *<file type> to folder
ls -lh = Detailed list, Human readable
ls -l *.jpg = list jpeg files only mv file.txt Documents/ = move file to a folder
ls -lh <fileName> = Result for file only mv <folderName> <folderName2> = move folder in folder

mv filename.txt filename2.txt = rename file
cd <folderName> = change directory mv <fileName> stuff/newfileName

if folder name has spaces use “ “ mv <folderName>/ .. = move folder up in hierarchy
cd / = go to root
cd .. = go up one folder, tip: ../../../ rm <fileName> .. = delete file (s)

rm -i <fileName> .. = ask for confirmation each file
du -h: Disk usage of folders, human readable rm -f <fileName> = force deletion of a file
du -ah: “ “ “ files & folders, Human readable rm -r <foldername>/ = delete folder
du -sh: only show disc usage of folders

touch <fileName> = create or update a file
pwd = print working directory

ln file1 file2 = physical link
man <command> = shows manual (RTFM) ln -s file1 file2 = symbolic link

Linux Bash Shell Cheat Sheet
Basic Commands

Researching Files Extract, sort and filter data

The slow method (sometimes very slow): grep <someText> <fileName> = search for text in file
-i = Doesn't consider uppercase words

locate <text> = search the content of all the files -I = exclude binary files
locate <fileName> = search for a file grep -r <text> <folderName>/ = search for file names
sudo updatedb = update database of files with occurrence of the text

find = the best file search tool(fast) With regular expressions:
find -name “<fileName>”
find -name “text” = search for files who start with the word text grep -E ^<text> <fileName> = search start of lines
find -name “*text” = “ “ “ “ end “ “ “ “ with the word text

grep -E <0-4> <fileName> =shows lines containing numbers 0-4

Advanced Search: grep -E <a-zA-Z> <fileName> = retrieve all lines
with alphabetical letters

Search from file Size (in ~)
find ~ -size +10M = search files bigger than.. (M,K,G) sort = sort the content of files

sort <fileName> = sort alphabetically
Search from last access sort -o <file> <outputFile> = write result to a file

find -name “<filetype>” -atime -5 sort -r <fileName> = sort in reverse
('-' = less than, '+' = more than and nothing = exactly) sort -R <fileName> = sort randomly

sort -n <fileName> = sort numbers
Search only files or directory’s

find -type d --> ex: find /var/log -name "syslog" -type d wc = word count
find -type f = files wc <fileName> = nbr of line, nbr of words, byte size

-l (lines), -w (words), -c (byte size), -m
More info: man find, man locate (number of characters)

cut = cut a part of a file
-c --> ex: cut -c 2-5 names.txt

(cut the characters 2 to 5 of each line)
-d (delimiter) (-d & -f good for .csv files)
-f (# of field to cut)

more info: man cut, man sort, man grep

Linux Bash Shell Cheat Sheet
Basic Commands

Time settings (continued)

date = view & modify time (on your computer) crontab = execute a command regularly
-e = modify the crontab

View: -l = view current crontab
date “+%H” --> If it's 9 am, then it will show 09 -r = delete you crontab
date “+%H:%M:%Ss” = (hours, minutes, seconds) In crontab the syntax is
%Y = years <Minutes> <Hours> <Day of month> <Day of week (0-6,

Modify: 0 = Sunday)> <COMMAND>
 MMDDhhmmYYYY

Month | Day | Hours | Minutes | Year ex, create the file movies.txt every day at 15:47:
47 15 * * * touch /home/bob/movies.txt

sudo date 031423421997 = March 14th 1997, 23:42 * * * * * --> every minute
at 5:30 in the morning, from the 1st to 15th each month:

Execute programs at another time 30 5 1-15 * *

at midnight on Mondays, Wednesdays and Thursdays:
use 'at' to execute programs in the future 0 0 * * 1,3,4

every two hours:
Step 1, write in the terminal: at <timeOfExecution> ENTER 0 */2 * * *
ex --> at 16:45 or at 13:43 7/23/11 (to be more precise) every 10 minutes Monday to Friday:
or after a certain delay: */10 * * * 1-5

at now +5 minutes (hours, days, weeks, months, years)

Step 2: <ENTER COMMAND> ENTER Execute programs in the background
repeat step 2 as many times you need

Step 3: CTRL D to close input Add a '&' at the end of a command
ex --> cp bigMovieFile.mp4 &

atq = show a list of jobs waiting to be executed
nohup: ignores the HUP signal when closing the console

atrm = delete a job n°<x> (process will still run if the terminal is closed)
ex (delete job #42) --> atrm 42 ex --> nohup cp bigMovieFile.mp4

sleep = pause between commands jobs = know what is running in the background
with ';' you can chain commands, ex: touch file; rm file

you can make a pause between commands (minutes, hours, days) fg = put a background process to foreground
ex --> touch file; sleep 10; rm file <-- 10 seconds ex: fg (process 1), f%2 (process 2) f%3, ...

Linux Bash Shell Cheat Sheet
Basic Commands

Process Management Create and modify user accounts

w = who is logged on and what they are doing sudo adduser bob = root creates new user
sudo passwd <AccountName> = change a user's password

tload = graphic representation of system load average sudo deluser <AccountName> = delete an account
(quit with CTRL C)

addgroup friends = create a new user group
ps = Static process list delgroup friends = delete a user group

-ef --> ex: ps -ef | less
-ejH --> show process hierarchy usermod -g friends <Account> = add user to a group
-u --> process's from current user usermod -g bob boby = change account name

usermod -aG friends bob = add groups to a user with-
top = Dynamic process list out loosing the ones he's already in
While in top:

• q to close top File Permissions
• h to show the help

• k to kill a process chown = change the owner of a file
ex --> chown bob hello.txt

CTRL C to top a current terminal process chown user:bob report.txt = changes the user owning
report.txt to 'user' and the group owning it to 'bob'

kill = kill a process -R = recursively affect all the sub folders
You need the PID # of the process ex --> chown -R bob:bob /home/Daniel

ps -u <AccountName> | grep <Application>
Then chmod = modify user access/permission – simple way

kill <PID> u = user
kill -9 <PID> = violent kill g = group

o = other
killall = kill multiple process's

ex --> killall locate d = directory (if element is a directory)
l = link (if element is a file link)

extras: r = read (read permissions)
sudo halt <-- to close computer w = write (write permissions)
sudo reboot <-- to reboot x = eXecute (only useful for scripts and

programs)

Linux Bash Shell Cheat Sheet
Basic Commands

File Permissions (continued) Flow Redirection (continued)

'+' means add a right terminal output:
'-' means delete a right Alex
'=' means affect a right Cinema

Code
ex --> chmod g+w someFile.txt Game

(add to current group the right to modify someFile.txt) Ubuntu

more info: man chmod Another example --> wc -m << END

Flow redirection Chain commands

Redirect results of commands: '|' at the end of a command to enter another one
ex --> du | sort -nr | less

'>' at the end of a command to redirect the result to a file

ex --> ps -ejH > process.txt Archive and compress data
'>>' to redirect the result to the end of a file

Archive and compress data the long way:

Redirect errors:
Step 1, put all the files you want to compress in

'2>' at the end of the command to redirect the result to a file the same folder: ex --> mv *.txt folder/
ex --> cut -d , -f 1 file.csv > file 2> errors.log

'2>&1' to redirect the errors the same way as the standard output Step 2, Create the tar file:
tar -cvf my_archive.tar folder/

Read progressively from the keyboard -c : creates a .tar archive
-v : tells you what is happening (verbose)

<Command> << <wordToTerminateInput> -f : assembles the archive into one file
ex --> sort << END <-- This can be anything you want

> Hello Step 3.1, create gzip file (most current):
> Alex gzip my_archive.tar
> Cinema to decompress: gunzip my_archive.tar.gz
> Game
> Code Step 3.2, or create a bzip2 file (more powerful but slow):
> Ubuntu bzip2 my_archive.tar
> END to decompress: bunzip2 my_archive.tar.bz2

Linux Bash Shell Cheat Sheet
Basic Commands

Archive and compress data (continued) Installing software

step 4, to decompress the .tar file: When software is available in the repositories:
 tar -xvf archive.tar archive.tar sudo apt-get install <nameOfSoftware>

ex--> sudo apt-get install aptitude
Archive and compress data the fast way:

If you download it from the Internets in .gz format
gzip: tar -zcvf my_archive.tar.gz folder/ (or bz2) - “Compiling from source”

decompress: tar -zcvf my_archive.tar.gz Documents/ Step 1, create a folder to place the file:
mkdir /home/username/src <-- then cd to it

bzip2: tar -jcvf my_archive.tar.gz folder/
decompress: tar -jxvf archive.tar.bz2 Documents/ Step 2, with 'ls' verify that the file is there

(if not, mv ../file.tar.gz /home/username/src/)
Show the content of .tar, .gz or .bz2 without decompressing it:

Step 3, decompress the file (if .zip: unzip <file>)
gzip: <--

gzip -ztf archive.tar.gz Step 4, use 'ls', you should see a new directory
bzip2: Step 5, cd to the new directory

bzip2 -jtf archive.tar.bz2 Step 6.1, use ls to verify you have an INSTALL file,
tar: then: more INSTALL

tar -tf archive.tar If you don't have an INSTALL file:
Step 6.2, execute ./configure <-- creates a makefile

tar extra: Step 6.2.1, run make <-- builds application binaries
tar -rvf archive.tar file.txt = add a file to the .tar Step 6.2.2 : switch to root --> su

Step 6.2.3 : make install <-- installs the software
You can also directly compress a single file and view the file Step 7, read the readme file
without decompressing:

Step 1, use gzip or bzip2 to compress the file:
gzip numbers.txt

Step 2, view the file without decompressing it:
zcat = view the entire file in the console (same as cat)
zmore = view one screen at a time the content of the file (same as more)
zless = view one line of the file at a time (same as less)

http://freeworld.posterous.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/

