Lecture 6B -- miscellaneous

- Two approaches: Analytical and empirical. Case study: sums of fair dice
- A refresher of some continuous distributions
- Empirical histograms: How do they behave?
- How to understand transformations of R.V.
- Monte Carlo integration

Rolling two fair dice: How is the sum distributed?

Value of the sum	Favorable outcomes (that have this particular sum)	Number of outcomes	Probability
2	"11"	1	1/36
3	"12", "21"	2	2/36
4	"13", "22", "31"	3	3/36
5	"14", "23", "32", "41"	4	4/36
6	"15", "24", "33", "42", "51"	5	5/36
7	"16", "25", "34", "43", "52", "61"	6	6/36
8	"26", "35", "44", "53", "62"	5	5/36
9	"36", "45", "54", "63"	4	4/36
10	"46", "55", "64"	3	3/36
11	"56", "65"	2	2/36
12	"66"	1	1/36
total		36	1

Rolling two fair dice: Empirical distribution of the sum

```
n = 10000;
a = dice(n);
b = dice(n);
s = a+b;
hist(s, 1:12)
```


Rolling three fair dice: How is the sum distributed?

Value of the sum	Favorable outcomes (that have this particular sum)	Number of outcomes	Probability
3	"111"	1	$1 / 216$
4	"112", "121", "211"	3	3/216
5	"113", "122", "131", "212", "221"	5	5/216 correct?
6	"114", ..., "231", ..., many
7	Ouch! Getting complicated
...
17	"556", "565", "655"	3	$3 / 216$
18	"666"	1	$1 / 216$
total		216	$216 / 216=1$

Rolling three fair dice: Empirical distribution of the sum

```
n = 10000;
a = dice(n);
b = dice(n);
c = dice(n)
s = a+b+c;
hist(s, 1:18)
```


DEALING WITH CONTINUOUS RANDOM VARIABLES

Density function (of a continuous r.v.)

- If X has density function f, then $f(x)$ expresses a coefficient of proportionality: prob. of X being on a short interval near x is $f(x)$ * interval length
- Obs: $f(x)$ is not the probability that $X=x$
- Eg. Predicted temperature, uniform distribution over [20,30]
- Because $f(x)$ is not a probability, it can easily be bigger than 1 . (What does it then mean?)

Cumulative distribution function (CDF)

- Although density is perhaps easier to grasp intuitively and visually, CDF is a nice tool for calculations with a given distribution.
- $F(x)$ answers the question
" what is the probability that $\mathrm{X} \leq \mathrm{x}$ ".
- E.g. for the temperature: $F(25)=1 / 2$ means we have $1 / 2$ probability for temperature at most 25 .
- CDF always monotonically increasing (when you move from left to right)
- CDF and density are related to each other (integral \leftrightarrow derivative)

Density, CDF and mean E(X)

- Refresh four different continuous distributions

$\operatorname{Unif}(a, b)$

$\mathbf{N}\left(\mu, \sigma^{2}\right)$

$\operatorname{Exp}(\lambda)$

Arbitrary density
- Probability for an interval
- From density:
integral of density difference of values at endpoints
- Expected value
- From density: integral of (density times x)

Uniform distribution

- Metro waiting time
$x \sim \operatorname{Unif}(0,10)$
- Density
- CDF

$$
\begin{array}{ll}
f(x)=1 / 10 & \text { when } 0<x<10 \\
F(x)=x / 10 & \text { when } 0<x<10
\end{array}
$$

- Probability for an interval: integrate the density over that integral, or just apply CDF:

$\mathrm{P}(2<X<5)$	$=F(5)$	$-F(2)=0.5-0.2$	$=0.3$
$\mathrm{P}(X>7)$	$=1$	$-F(7)=1.0-0.7$	$=0.3$
$\mathrm{P}(X<5)$	$=F(5)$	$=0.5$	

- Easy to show that the expected value equals the average of the endpoints

$$
E(X)
$$

$$
=(0+10) / 2=5.0
$$

But surely you could do the integral:
$E(X)$

$$
=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{10} x \cdot 0.1 d x=5.0
$$

Normal distribution

- Bus travel time
$X \sim N\left(15,3^{2}\right)$
Two parameters $\mu=15, \sigma=3$

- Density $\quad f(x)=c \cdot \exp (-\ldots)$
- CDF
$F(x)=\Phi((x-15) / 3)$
- Integrating the density is difficult, so use the CDF.

Probability for an interval obtained as difference of CDF at endpoints

$\mathrm{P}(10<X<15)$	$=F(15)-F(10)=0.500-0.048$	$=0.452$	
$\mathrm{P}(X>20)$	$=1$	$-F(20)$	$=1.000-0.952$
$\mathrm{P}(X<10)$	$=F(10)$		$=0.048$

- Known that the expected value equals the parameter μ
$\mathrm{E}(X)$
$=15$

Exponential distribution

- Lamp lifetime
$X \sim \operatorname{Exp}(0.1)$
One parameter $\lambda=0.1$

- Density
- CDF

$$
\begin{array}{ll}
f(x)=0.1 \exp (-0.1 x) & \text { when } x>0 \\
F(x)=1-\exp (-0.1 x) & \text { when } x>0
\end{array}
$$

- Probabilities of intervals: either integrate the density, or just apply the CDF:

$\mathrm{P}(5<X<10)$	$=F(10)-F(5)$	$=0.632-0.394$	$=0.239$
$\mathrm{P}(X>20)$	$=1$	$-F(20)$	$=1.000-0.865$
$\mathrm{P}(X<5)$	$=F(5)$		$=0.135$
$\mathrm{P}(X)$			$=0.394$

- Known that the mean equals $1 / \lambda$
$\mathrm{E}(X)$

$$
=1 / 0.1=10
$$

You could actually calculate that integral (need to know "integration by parts")

Arbitrary density

- Meteorologist tells you that tomorrow morrning temperature has density

$$
f(x)=\left\{\begin{array}{cc}
0.1 & (10 \leq x \leq 14) \\
0.3 & (14 \leq x \leq 16) \\
0 & \text { otherwise }
\end{array}\right.
$$

- Probabilities and expected values
 by integrating

$$
P(12<X<15)=\int_{12}^{15} f(x) d x=\int_{12}^{14} 0.1 d x+\int_{14}^{15} 0.3 d x=0.2+0.3=0.5
$$

$$
E(X)=\int_{10}^{16} x \cdot f(x) d x=\int_{10}^{14} x 0.1 d x+\int_{14}^{16} x 0.3 d x=4.8+9.0=13.8
$$

INDEPENDENT SAMPLING FROM UNIFORM DISTRIBUTION

Quiz

Each histogram here represents 100 numbers "from some process".
Which histogram(s) was/were made by taking
a random sample from the uniform distribution over $[0,1]$?

Sampling from uniform

Take independent random numbers
$X_{1}, X_{2}, X_{3} \ldots \sim \operatorname{Unif}(20,30)$.

Where are they located?
1 pistettä

Sampling from uniform

Take independent random numbers
$X_{1}, X_{2}, X_{3} \ldots \sim \operatorname{Unif}(20,30)$.

Where are they located?

2 pistettä

Sampling from uniform

Take independent random numbers
$X_{1}, X_{2}, X_{3} \ldots \sim \operatorname{Unif}(20,30)$.

Where are they located?

3 pistettä

Sampling from uniform

Take independent random numbers
$X_{1}, X_{2}, X_{3} \ldots \sim \operatorname{Unif}(20,30)$.

Observe independence: Previous points do not affect later points.

1st point in $(20,21)$ does not prevent 4th point being there too
(does not even affect the probability of that event, which is still $1 / 10$)

4 pistettä

Sampling from uniform

5 pistettä

Sampling from uniform

Sampling from uniform

100 pistettä

100 pistettä:

For each bar, the expected height
is 10 , (why?)
but the observed heights have a lot of (random) variation.

Sampling from uniform

1000 pistettä

1000 points: Difficult to even see the points.

Histogram gives better rough idea of where the points are located.

Sampling from uniform

10000 pistettä

10000 pistettä:
Fairly "uniform".

Distribution of a bar height

Let's go back to 100 points. Consider the random variable
$Y_{i}=$ height of i th bar
= number of points that land in the ith interval

We can see that Y_{i} has a
binomial distribution. (why?)
Next question: Probability of all bars equal? Difficulty: Bar heights not independent.

100 pistettä

Distribution of a bar height

Let's go back to 100 points.
Consider the random variable
$Y_{i}=$ height of i th bar
= number of points that land in the ith interval

We can see that Y_{i} has a
binomial distribution. (why?)
Next question: Probability of all bars equal? Difficulty: Bar heights not independent.

Multinomial distribution to the rescue!

100 pistettä

Multinomial distribution

- n independent trials, each has (e.g.) 3 exclusive possible outcomes.
- In each trial the outcomes have probabilities p, q, r.
- Probability that the outcomes have counts (a, b, c) [recall Lecture5B]

$$
\binom{n}{a, b, c} \cdot p^{a} \cdot q^{b} \cdot r^{c}
$$

- The count vector (a, b, c) has multinomial distribution with params n and (p, q, r).
- The three counts are random and dependent from each other
- For example, if $a=n$, then necessarily $b=c=0$. (why?)
- If more than 3 possibilities, it generalizes in the obvious way.
- If only 2 possibilities, you get back your familiar binomial distribution.

Joint distribution of the 10 bar heights

Let's go back to 100 points. Consider the random variable
$Y_{i}=$ height of i th bar
= number of points that land in the ith interval

The random vector $\left(Y_{1}, Y_{2}, Y_{3}, \ldots, Y_{10}\right)$ has the multinomial distribution with parameters
$\mathrm{n}=10$
$p_{1}, p_{2}, p_{3}, \ldots, p_{10}=0.1$

100 pistettä

Calculate: 100 points, 10 bars

- To have "all equal bars" we need counts exactly (10,10,10,...,10).
- That has probability =

$$
\binom{100}{10,10, \ldots, 10} \cdot 0.1^{10} \cdot 0.1^{10} \cdot \ldots \cdot 0.1^{10} \approx 2.4 \cdot 10^{-8}
$$

- which is pretty small.
- Next question: What is the probability that every bar is "near" the expected value, say, in interval [7,13] ?
- Perhaps this has a much larger probability?

Calculating probability of "nearly" equal bars

- Probability that each of the 10 bars has height in $[7,13]$?
- One method (EXACT): Consider each such count vector separately, for example ($9,8,11,7,12,10,10,12,8,13$) and many others.
- For each vector, compute the multinomial probability, and add up.
- Not nice manually. Can be done by computer (code will be on course page)
- We get that the ten bars of the histogram are
- ... all equal (10) with probability 2.3571e-08
- ... all in $[9,11]$ with probability $1.5528 \mathrm{e}-04$
- ... all in[8,12] with probability 0.0083
- ... all in $[7,13]$ with probability 0.0747
- Second method (EMPIRICAL APPROXIMATION): Make many such (random) empirical histograms, and check HOW MANY of them have "nearly equal bars"

Food for thought

- Sample n=100 points from uniform over [20,30]
- Make a 10-bar histogram
- Probability of heights $(10,10,10,10,10,10,10,10,10,10)$ is $2.3571 \mathrm{e}-08$
- Probability of heights $(9,8,11,7,12,10,10,12,8,13)$ is $4.1796 e-09$
- All-equal bars has bigger probability (in the random process).
- Why does it still arouse more suspicions that it might not have come from such a random process?

Food for thought

- Sample n=100 points from uniform over $[20,30$]
- Make a 10-bar histogram
- Probability of heights $(10,10,10,10,10,10,10,10,10,10)$ is $2.3571 \mathrm{e}-08$
- Probability of heights $(9,8,11,7,12,10,10,12,8,13)$ is $4.1796 \mathrm{e}-09$
- All-equal bars has bigger probability (in the random process).
- Why does it still arouse more suspicions that it might not have come from such a random process?
- Hint:

Are there any other processes how the result might have been obtained?
Is it possible that such a process was being used?
How probable is that? Could you apply Bayesian inference here?

Transformations of random variables

- There are many kinds of transformations (functions) you could apply to a RV.
- If $X=$ tomorrows rainfall (in mm), perhaps we are interested in the water volume raining on a 1000 square-meter plot of land, in liters $Y=1000 \cdot X$, which is a new random variable.
- (but not independent from X; it is completely dependent because value of X determines value of Y)
- The general way of finding out the distribution of any transformation:
$P(Y$ is something $)=P(X$ is such that Y is something $)$
- Sometimes the CDF is very handy for this.

Cumulative distribution function (CDF)

- Although density is perhaps easier to grasp intuitively and visually, CDF is a nice tool for calculations with a given distribution.
- $F(x)$ answers the question
" what is the probability that $\mathrm{X} \leq \mathrm{x}$ ".
- E.g. for the temperature: $F(25)=1 / 2$ means we have $1 / 2$ probability for temperature at most 25 .
- CDF always monotonically increasing (when you move from left to right)
- CDF and density are related to each other (integral \leftrightarrow derivative)

Some typical transformation tasks

1. We know the CDF F_{X} and the transformation function $Y=g(X)$.

Then what is the CDF of Y ?
\rightarrow In principle this is easy: Solve $\mathrm{P}(Y \leq y)$
2. We know the density f_{X} and the transformation function $Y=g(X)$.

Then what is the density of Y ?
\rightarrow Not quite easy.
One method is to go through the CDF route:
density of $X \rightarrow$ CDF of $X \rightarrow$ CDF of $Y \rightarrow$ density of Y
3. We have a method for taking random numbers $X_{1} \ldots X_{n}$ iid from distribution of X, and we know the transformation function $Y=g(X)$.
How do we take random numbers from the distribution of Y ?
\rightarrow Extremely easy: apply the transformation: $Y_{i}=g\left(X_{i}\right)$

We illustrate some simple transformations with method 3.

Transformation: Adding a constant

$X \sim \operatorname{Unif}(0,5)$
$Y=X+10$
$Y \sim$?

Transformation: Multiplying by constant

$X \sim \operatorname{Unif}(0,5)$
$Y=3 \cdot X$

Y~?

Apparently Y is
also uniform.

What parameters?

Observe the "flattening", you can actually see this in the formula of the density.

Tranformation: Natural logarithm

$$
\begin{aligned}
& X \sim \operatorname{Unif}(0,5) \\
& Y=\ln X \\
& Y \sim ?
\end{aligned}
$$

It seems that Y has some more exotic distribution?

Solving the CDF for transformation

```
X~Unif(0,5)
Y= ln}
Y ?
```

Solve the CDF of Y by elementary probability calculus.

```
F
    = P(ln}X\quad\leqa)\quad Because Y= 皕X
    = P(X < exp(a)) exp is an order-preserving function.
    = F
    = exp(a)/5 The CDF of a uniformly distributed }X\mathrm{ .
```

Then take the derivative to obtain the density function.
$f_{\gamma}(a)=(1 / 5) \exp (a)$
This is in the interval $(-\infty, \ln 5)$, because that's where the original interval $(0,5)$ goes when taking the logarithm!
\rightarrow Analytical expression that seems to match the empirical histogram!

An application of the LLN:

Monte Carlo integration

Original problem, contains no probabilities

What is the area of this very complicated plane figure \mathbf{A} ?
Suppose the only tool we have is a "black box" way of testing if a point is inside A or not.

(inside the black box is a test whether $\operatorname{sqrt}\left(x^{2}+y^{2}\right)<1$)

Change the problem, introduce probability

- What is the area of the complicated figure \mathbf{A} ? The only thing we know is whether a given point is in or out.
- Solution: We envelope A inside a bigger figure \mathbf{B},
- whose area (= 4) we know

Change the problem, introduce probability

What is the area of the complicated figure A? The only thing we know is whether a given point is in or out.
Solution: We envelope A inside a bigger figure \mathbf{B},

- whose area (=4) we know
- and such that we can easily pick random points uniformly in B

Monte Carlo integration

- Random point inside with probability

$$
p=m(A) / m(B), \quad m=\text { area }
$$

- Repeat n times
- Law of large numbers says relative freq
- Thus estimate

$$
\begin{aligned}
& f_{n} \approx p \\
& m(A)=p m(B) \approx f_{n} m(B)
\end{aligned}
$$

Monte Carlo integration

\boldsymbol{n}	points in \boldsymbol{A}	$\boldsymbol{m}(\boldsymbol{A}) \approx$
100	80	3.200000
1000	783	3.132000
10000	7849	3.139600
100000	78544	3.141760
1000000	785132	3.140528

$$
\pi \approx 3.1
$$

Same method can be applied to more complicated shapes, also in higher-dimensional spaces.
E.g. what is the "volume" of a d-dimensional hyperball?

Such methods are commonly applied in modern science when you cannot (or do not want to) solve a complicated integral analytically.

Main pitfall is accuracy: obtaining 1 more decimal requires 100 * more repetitions.

