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Random variable

A random variable (abbrev. rv) is a quantity whose value is
determined by the outcome of a random experiment.

• One outcome s ∈ S occurs at random

• Then the outcome s determines X (s)

• Event {X = a} := {s∈S : X (s)=a}
• The events {X = a}, for all possible values a, make a

partition of the sample space. −→ BLACKBOARD

Example (Two rolls of a die)

Sample space S = {(s1, s2) : s1, s2 = 1, . . . , 6}
• Sum of the two results N(s) = s1 + s2 is a random variable

• Their maximum M(s) = max(s1, s2) is a random variable

• The first result X1(s) = s is also a random variable!



Random variables: Theory and practice

Observe the two steps of abstraction:

• The sample space S and its probability function P describe all
of the randomness in the situation.

• Once the (random) outcome occurs, it determines all the
“random variables” we have defined.

In one random experiment (e.g. “deal one card” or “deal five
cards”) we may define any number of random variables: whatever
functions of the outcome s we are interested in.

Mathematically, a random variable X is a (deterministic) function
from outcomes s to values X (s).

In practice, we just write X for the (random) value, and e.g.
{X = 5} or X = 5 for the event that it happens to be 5. And
P(X = 5) for the probability of this event.



Different kinds of random variables

Typically the values X (s) are real numbers, but they can be
something else. Here are some examples.

Name Target set Explanation or example

Random number R
Random vector Rn (X1,X2, . . . ,X10) from 10 dice rolled;

or (Min,Max) of the dice; now n = 2
Random matrix Rm×n

Random string An Random DNA sequence (A = {A,C,T,G})
Stochastic process RI Real-valued functions on time interval I
Random graph {0, 1}V×V Graphs on vertex set V

On this course we focus in random numbers in R and random
vectors in R2.

A random variable is discrete if it takes values in a finite set like
{1, 2, 3, 4}, or in a countably infinite set like ”positive integers”.
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Distribution

The distribution of a random variable X is a table or a function
that determines its possible values and their probabilities.

Example (Two rolls of a die)

The first result X1 has distribution

k 1 2 3 4 5 6

P(X1 = k) 1
6

1
6

1
6

1
6

1
6

1
6

i.e. uniform distribution on {1, . . . , 6}.

The second result X2 has the same distribution, but it is not the
same variable! It may well happen, when you roll the dice, that
X1 6= X2.



Example. Maximum of two dice

M = max(X1,X2), where X1 ja X2 are two rolls of a die.

P(M = 4) = P(M ≤ 4)− P(M ≤ 3)

= P(X1 ≤ 4 and X2 ≤ 4)− P(X1 ≤ 3 and X2 ≤ 3)

= P(X1 ≤ 4) × P(X2 ≤ 4)− P(X1 ≤ 3) × P(X2 ≤ 3)

=

(
4

6

)2

−
(

3

6

)2

=
16− 9

36
=

7

9
.

Other values similarly, so distribution of M:

k 1 2 3 4 5 6

P(M = k) 1
36

3
36

5
36

7
36

9
36

11
36

0.0

0.1

0.2

0.3

1 2 3 4 5 6



New random variables from old

From one or more random variables, you can define a new random
variable by some rule (function).

Example (A sample statistic)

Three die results X1,X2,X3, their maximum Y = max(X1,X2,X3),
minimum Z = min(X1,X2,X3). Let us define one more random
variable W = Y − Z , which tells how widely the results were
scattered.

If e.g. results were (4, 2, 5), then Y = 5, Z = 2, and further
W = 5− 2 = 3.

• W is now also a random variable, with some distribution, i.e.
possible values and their probabilities.

• Such a number, computed from data, is called a statistic.

• Such numbers (statistics) are often used to describe some
properties of the data.

• Another example of a statistic is the average of the data.



New from old: Transformation of one random variable

Example (Square of random size)

A machine produces square-shaped tiles, whose side length X is
determined (as if) by rolling a die.

i 1 2 3 4 5 6

P(X = i) 1
6

1
6

1
6

1
6

1
6

1
6

The area of a tile A = X 2 is also a r.v. What is
its distribution? Find out (1) what values X 2

may possibly take and (2) with what probability.

a ? ? ? ? ? ?

P(A = a) ? ? ? ? ? ?



New from old: Transformation of one random variable

Example (Square of random size)

A machine produces square-shaped tiles, whose side length X is
determined (as if) by rolling a die.

i 1 2 3 4 5 6

P(X = i) 1
6

1
6

1
6

1
6

1
6

1
6

The area of a tile A = X 2 is also a r.v. What is
its distribution? Find out (1) what values X 2

may possibly take and (2) with what probability.

a 1 4 9 16 25 36

P(A = a) 1
6

1
6

1
6

1
6

1
6

1
6

(More about transformations on Lecture 2A.)



Example. Waiting time for the metro

X = waiting time for the next metro (in minutes, as a real
number), where trains arrive at 10-minute intervals. What is the
distribution of X?

• P(2 ≤ X ≤ 3) = 1
10 = 0.1

• P(2.9 ≤ X ≤ 3) = 0.1
10 = 0.01

• P(2.999999 ≤ X ≤ 3) = 0.000001
10 = 0.0000001

• P(X = 3) = 0

Similarly we deduce that P(X = t) = 0 for all t.

Did calculate something wrong?

No we didn’t. Because the X takes values on the continuous interval
[0, 10], the event {X = 3} means that X equals 3 with infinite precision.
Surely this is very unlikely (indeed, has probability zero).

The distribution of X must be characterized in some other way.



Example. Waiting time for the metro

X = waiting time for the next metro (in minutes, as a real
number), where trains arrive at 10-minute intervals. Probabilities
of single values are not useful here. Instead, we define probabilities
of intervals.

P(a ≤ X ≤ b) = P(a < X ≤ b)

= P(X ≤ b)− P(X ≤ a)

= FX (b)− FX (a),

where

FX (t) =


0, t ≤ 0,
t

10 , 0 < t < 10,

1, t ≥ 10.
0.0

0.5

1.0

0 5 10

is the cumulative distribution function for the distribution of X .



Cumulative distribution function (CDF)

The cumulative distribution function (abbrev. CDF) of a random
number is FX (t) = P(X ≤ t).

Fact
The CDF is enough to determine the distribution completely. From
it, we can compute the probabilities of all events {X ∈ B}.

Example (Metro waiting time)
With what probability is X either in [1, 2] or in [3, 4]?

P(X ∈ [1, 2] or X ∈ [3, 4]) = P(X ∈ [1, 2]) + P(X ∈ [3, 4])

= (FX (2)− FX (1)) + (FX (4)− FX (3))

=

(
2

10
− 1

10

)
+

(
4

10
− 3

10

)
= 0.2.
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Density function

X is discrete, if its distribution can be
characterized by a function fX (x) ≥ 0
such that

P(X ∈ A) =
∑
x∈A

fX (x).

X is continuous, if its distribution can be
characterized by a function fX (x) ≥ 0
such that

P(X ∈ A) =

∫
A

fX (x) dx .

0.0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10

0.0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10

In both cases we can call fX the (probability) density (function) of
X . (Abbreviate PDF.) The subscript X is often dropped.



Density of a discrete distribution

The density function of a discrete distribution is simply

fX (x) = P(X = x)

and it fulfills conditions

fX (x) ≥ 0 and
∑
x

fX (x) = 1.

Also, any function that fulfills the above, is indeed the density of a
discrete distribution.

A discrete density function is also called probability mass function
(PMF) (= function determining the mass of probability at each point).



Density of a discrete distribution
If X takes few different values, its distribution can be presented as
a table of the values and their probabilities.

Example (Number of heads from 5 coin tosses)

k 0 1 2 3 4 5

P(X = k) 1
32

5
32

10
32

10
32

5
32

1
32

For a large target set, a functional expressions is more convenient.

Example (Number of heads from n = 5 000 000 coin tosses)

fX (k) =

(
n

k

)(
1

2

)k (
1− 1

2

)n−k
, k = 0, 1, . . . , n.

This is the so-called binomial distribution with parameters
n = 5 000 000 and p = 1

2 .



Density of a continuous distribution

The density of a continuous distribution fulfills

fX (x) ≥ 0 and

∫ ∞
−∞

fX (x) dx = 1,

Also, any function fulfilling those conditions is indeed the density
of some continuous distribution.

A continuous density at point x does not represent the probability
of the event {X = x}. (That probability is zero!).

Instead, if fX is continuous at x , then fX (x) approximates the
probability of any small interval around x , in proportion to the
interval length. For a small h > 0, we have

P(X = x ± h/2) ≈ fX (x) · h

Note: Density can be arbitrarily large (much bigger than 1), but
only over a short interval (why?).



CDF ↔ PDF

For a continuous distribution,

• CDF is the integral of density

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (t) dt

• density is the derivative of CDF

fX (x) = F ′X (x)

at the points where the density function is continuous.



Example. Continuous uniform distirbution

The function

f (t) =

{
1

b−a , a < t < b,

0, otherwise,
1/(b−a)

a b

is the density of a continuous distribution, namely the (continuous)
uniform distribution over the interval [a, b].
The CDF can be calculated as

F (t) =

∫ t

−∞
f (s) ds =


0, t < a,
t

b−a , a ≤ t ≤ b,

1, t > b. 0

1

a b

The constants a and b are parameters of the distribution. When you fix
their values, you get a particular uniform distribution. (With a = 0 and
b = 10 you get our metro waiting time distribution.)



Another example. Exponential distribution

The exponential distribution with
parameter λ > 0 has density

f (x) =

{
λe−λx , x > 0

0, x ≤ 0.
x

f(x
)

−1 0 1 2 3 4 5

0

λ

By integrating the density, we get
the CDF

F (x) =

{
0, x ≤ 0,

1− e−λx , x > 0
x

F
(x

)
−1 0 1 2 3 4 5

0

1

This is typically used for the waiting time of an event, that has a
constant probability λh of happening in any small interval h of
time (if it did not happen yet). E.g. insects hitting windshield, or
radioactive particles decaying.



Exponential distribution: Memorylessness

F (t) = 1− e−λt , t ≥ 0

P
(
X > s + t |X > s

)
=

P(X > s + t and X > s)

P(X > s)

=
P(X > s + t)

P(X > s)
=

1− F (s + t)

1− F (s)

=
e−λ(t+s)

e−λs
= e−λt = P(X > t)

Thus P(X > s + t |X > s) = P(X > t) for all s, t ≥ 0.

Interpretation

It does not matter whether we have driven 0 or 5 km after the
previous insect hitting the windshield. In both cases we have the
same probability of getting another insect in the next e.g. 1
kilometer.



Random numbers — summary

Discrete distribution Continuous distribution

X takes values in a finite set or count-

ably infinite

X takes values continuously in an un-

countably infinite set

P(X = x) = fX (x) P(X = x) = 0

Density gives probabilities by

P(X ∈ A) =
∑
x∈A

fX (x)

Density gives probabilities by

P(X ∈ A) =

∫
A

fX (x) dx

Density values are probabilities

fX (x) = P(X = x)

Density values are proportional ap-
proximate probabilities

fX (x) ≈ h−1P(X = x ± h/2)

E.g. uniform distribution in the set
{1, . . . , 6}

E.g. uniform distribution over the
interval [0, 10]
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Joint distribution of two variables 1 (Dice)
The joint distribution of a pair random variables (X ,Y ), in the
same random experiment, is a table or a function that determines
the possible values of (X ,Y ) and their probabilities.

Example (Two dice)
The joint distribution of the two results X1 and X2 is

X2

X1 1 2 3 4 5 6

1 1
36

1
36

1
36

1
36

1
36

1
36

2 1
36

1
36

1
36

1
36

1
36

1
36

3 1
36

1
36

1
36

1
36

1
36

1
36

4 1
36

1
36

1
36

1
36

1
36

1
36

5 1
36

1
36

1
36

1
36

1
36

1
36

6 1
36

1
36

1
36

1
36

1
36

1
36

that is, the (discrete) uniform distribution over the product set
{1, . . . , 6} × {1, . . . , 6}.



Joint distribution of two variables 2 (Households)
• This table shows the shares of Finnish households, by room

count and inhabitant count.

• If one household is picked at random, then its room count R
and inhabitant count I are random variables (depending on
which household is picked).
• Each cell contains the probability of (R, I ) getting a particular

pair of values. (Source: Tilastokeskus; excluded households
where R > 6 or I > 6)

I

R 1 2 3 4 5 6

1 0.1263 0.0129 0.0019 0.0009 0.0003 0.0001
2 0.1961 0.0857 0.0124 0.0048 0.0014 0.0004
3 0.0727 0.0966 0.0336 0.0190 0.0050 0.0013
4 0.0382 0.0793 0.0306 0.0298 0.0100 0.0028
5 0.0154 0.0414 0.0169 0.0206 0.0087 0.0023
6 0.0042 0.0117 0.0055 0.0065 0.0034 0.0010



Discrete joint distribution

For two discrete random numbers X and Y , we can define the
(discrete) joint density function

fX ,Y (x , y) = P(X = x and Y = y)

= P({X = x} ∩ {Y = y}),

which assigns a probability for each possible pair (x , y).
We can drop the subscripts, and write f (x , y) if it causes no confusion.

Then the probability of any event {(X ,Y ) ∈ A}, where A is a
collection of pairs, is simply the sum of probablities over A:

P((X ,Y ) ∈ A) =
∑

(x ,y)∈A

fX ,Y (x , y)



Continuous joint distribution

A pair of random numbers has a continuous joint distribution if the
probability of any event is determined by a continuous joint density
function

P((X ,Y ) ∈ A) =

∫
(x ,y)∈A

fX ,Y (x , y).

Taking an integral over an area is a topic of multivariate calculus.
On this course we will not see much of these.



Marginal distributions 1 (Dice)
If we calculate the row sums and column sums from a joint
distribution, we get two one-variable distributions, one for each.
They are called the marginal distributions.

X2

X1 1 2 3 4 5 6 sum

1 1
36

1
36

1
36

1
36

1
36

1
36

1
6

2 1
36

1
36

1
36

1
36

1
36

1
36

1
6

3 1
36

1
36

1
36

1
36

1
36

1
36

1
6

4 1
36

1
36

1
36

1
36

1
36

1
36

1
6

5 1
36

1
36

1
36

1
36

1
36

1
36

1
6

6 1
36

1
36

1
36

1
36

1
36

1
36

1
6

sum 1
6

1
6

1
6

1
6

1
6

1
6

Row sums are the distribution of X1

Column sums are the distribution of X2



Marginal distributions 2 (Households)

I

R 1 2 3 4 5 6 Sum

1 0.1263 0.0129 0.0019 0.0009 0.0003 0.0001 0.1424
2 0.1961 0.0857 0.0124 0.0048 0.0014 0.0004 0.3010
3 0.0727 0.0966 0.0336 0.0190 0.0050 0.0013 0.2282
4 0.0382 0.0793 0.0306 0.0298 0.0100 0.0028 0.1908
5 0.0154 0.0414 0.0169 0.0206 0.0087 0.0023 0.1053
6 0.0042 0.0117 0.0055 0.0065 0.0034 0.0010 0.0324
Sum 0.4530 0.3277 0.1010 0.0816 0.0289 0.0078

Row sums are the distribution of R
Column sums are the distribution of I



Formulas for the marginal densities

Marginals from a discrete joint distribution (i.e. taking the row or
column sum):

fX (x) =
∑
y∈SY

fX ,Y (x , y)

fY (y) =
∑
x∈SX

fX ,Y (x , y),

where SX and SY are the sets of possible values. Marginals from a
continuous joint distribution:

fX (x) =

∫ ∞
−∞

fX ,Y (x , y) dy

fY (y) =

∫ ∞
−∞

fX ,Y (x , y) dx .
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Conditional distribution (Households)
Let’s look at the first row of the joint distribution: the case R = 1
(one-room households, six different inhabitant counts).

I

R 1 2 3 4 5 6 Sum

1 0.1263 0.0129 0.0019 0.0009 0.0003 0.0001 0.1424

The row sum is 0.1424 6= 1, so this row cannot be a probability
distribution. In fact, the cells contain the shares of different one-room
households out of all households.

Now divide by row sum −→ shares out of the one-room households.

I

R 1 2 3 4 5 6 Sum

1 0.8870 0.0909 0.0131 0.0062 0.0021 0.0006 1.0000

This is a valid distribution: the conditional distribution of I , when R = 1.



Conditional distribution (Dice)

From rolling two fair dice, the conditional distributions would be very
simple (uniform).

More interesting with unfair dice. Consider two dice (X1,X2) with:

• P(X1 = 2) = 0.5, and P(X1 = i) = 0.1 for i 6= 2

• P(X2 = 6) = 0.9, and P(X1 = i) = 0.02 for i 6= 6

• The two dice are independent from each other, i.e. what happens
with one die, does not change the conditional distribution of the
other; on every row X1 = i we have the same conditional
distribution for X2.

Compare now the conditional distributions and the joint distribution
(BLACKBOARD).



Conditional distribution (discrete)

The conditional density function of Y , given the value of X , is
defined as

fY |X (y |x) =
fX ,Y (x , y)

fX (x)
.

In the discrete case, it simply gives the conditional probabilities

fY |X (y |x) = P(Y = y |X = x) =
P(Y = y and X = x)

X = x
.

If fX (x) > 0, we observe that fY |X is a density function.
It defines the conditional distribution of Y in the case that X = x .

For continuous variables we define the conditional density with the same formula, but
it has a slightly different interpretation.



Stochastic dependence / independence

Random variables X and Y are (stochastically) independent, if for
all sets A,B it is true that

P(X ∈ A and Y ∈ B) = P(X ∈ A)× P(Y ∈ B).

Or (equivalently) if either of the following are true for all A,B:

P(Y ∈ B |X ∈ A) = P(Y ∈ B)

or
P(X ∈ A |Y ∈ B) = P(X ∈ A).

Then the event X ∈ A (whether it is true or not) does not affect
the distribution of Y ; knowing X does not help to predict Y .

If (for any A,B) these equations do not hold, then A and B are
dependent.



Stochastic independence / dependence

Fact
Random variables X ,Y (whether discrete or continuous) are
independent if their joint density function can be expressed as

fX ,Y (x , y) = fX (x)fY (y)

(for all values of x , y).

An equivalent condition is

fY |X (y |x) = fY (y),

i.e. the conditional distribution of Y given X is equal to the
“unconditional” distribution of Y as such.



Example. Random sampling

How many of the students in the room have been to Argentina?

• S = ”All students, #S = 80

• A = ”Those who have been to Argentina, #A = 3.

(In reality #A would be unknown, we would try to estimate it)

Take a random sample of n = 2 students, ask them, and let

X1 =

{
1, if 1st student ∈ A

0, otherwise

X2 =

{
1, if 2nd student ∈ A

0, otherwise

What is the joint distribution of X1,X2? For example,
P(X1 = 1,X2 = 1) = ?



Sampling with and without replacement

• With replacement = Second student chosen again from the
same population “replace” = “put back”

• Without replacement = Second student chosen from the
remaining population

With replacement

X2

X1 0 1 Sum

0 77
80 ×

77
80

77
80 ×

3
80

77
80

1 3
80 ×

77
80

3
80 ×

3
80

3
80

Sum 77
80

3
80

Without replacement

X2

X1 0 1 Sum

0 77
80 ×

76
79

77
80 ×

3
79

77
80

1 3
80 ×

77
79

3
80 ×

2
79

3
80

Sum 77
80

3
80

Surprise: Both cases have same marginals.

However the joint distributions are different.



Sampling with and without replacement

With

X2

X1 0 1 Sum

0 77
80 ×

77
80

77
80 ×

3
80

77
80

1 3
80 ×

77
80

3
80 ×

3
80

3
80

Sum 77
80

3
80

fX1,X2 (i , j) = fX1 (i)fX2 (j)

Without

X2

X1 0 1 Sum

0 77
80 ×

76
79

77
80 ×

3
79

77
80

1 3
80 ×

77
79

3
80 ×

2
79

3
80

Sum 77
80

3
80

fX1,X2 (i , j) 6= fX1 (i)fX2 (j)

Marginal distributions are same in both cases.

With replacement, X1 and X2 are independent.
Without replacement, X1 are X2 are dependent.



Conditional distribution (with replacement)

What is the conditional distribution of X2 if {X1 = 0} occurs?

X2

X1 0 1 Sum

0 77
80 ×

77
80

77
80 ×

3
80

77
80

1 3
80 ×

77
80

3
80 ×

3
80

3
80

Sum 77
80

3
80

fX2|X1
(0|0) =

77
80 ×

77
80

77
80

=
77

80
.

fX2|X1
(1|0) =

77
80 ×

3
80

77
80

=
3

80
.

Now conditional and unconditional distributions of X2 are the
same.



Conditional distribution (without replacement)

What is the conditional distribution of X2 if {X1 = 0} occurs?

X2

X1 0 1 Sum

0 77
80 ×

76
79

77
80 ×

3
79

77
80

1 3
80 ×

77
79

3
80 ×

2
79

3
80

Sum 77
80

3
80

fX2|X1
(0|0) =

77
80 ×

76
79

77
80

=
76

79
.

fX2|X1
(1|0) =

77
80 ×

3
79

77
80

=
3

79
.

Now the conditional distribution of X2 is different from the
unconditional distribution.
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Discrete distribution on an infinite set
A discrete random variable can have infinitely many possible values.

Example (Rolling dice until six)

Roll a die repeatedly until you get a six. Let N be the number of
rolls done.

P(N = k) = P(X1 6= 6, . . . ,Xk−1 6= 6,Xk = 6)

= P(X1 6= 6) · · ·P(Xk−1 6= 6)P(Xk = 6)

=

(
1− 1

6

)k−1(1

6

)
The random variable N has a geometric distribution (with
parameter “success probability” p = 1/6) over all positive integers
{1, 2, . . . }. It is a discrete distribution with density

fN(k) = (1− p)k−1p, k = 1, 2, . . .



Mixed discrete-continuous distribution
Y = waiting time (minutes) when trains arrive each 10 minutes,
and stay 1 minute. If you arrive during that minute, no waiting.

X = time after previous train arrived is uniform over [0, 10].
For t ∈ [0, 9],

P(Y ≤ t) = P(Y = 0) + P(0 < Y ≤ t)

= P(X ≤ 1) + P(0 < 10− X < t).

=⇒ FY (t) =


0, t < 0,
1

10 + t
10 , 0 ≤ t ≤ 9,

1, t > 9.

Is Y discrete or uniform? Neither! It is a mixture of a discrete
distribution and a continuous one.

• with probability 0.1, we have Y = 0 exactly

• with probability 0.9, Y is uniformly distributed over [0, 9].

(Further details omitted for now.)



Next lecture concerns the expected value of a random variable. . .
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