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Motivational example: Coin tossing

A coin, presumed fair, was tossed 5 times. We obtained data (0 =
tails, 1 = heads)

~x = (0, 0, 0, 0, 0).

The data set is small, individual data are not normal. Traditional
“CLT” statistics might not be useful (or easy, or valid).

Yet it seems the data has something to say. The ML-estimator
p̂ = 0.0 seems pretty low. What should we do?

• Have absolute faith that p = 0 exactly? (Not wise.)

• Obtain more data? (Might be difficult or impossible.)

• Disregard the result, continue believing “the coin is fair”?
(Then we are not learning from the data at all.)

• Try to combine the data with our prior knowledge of the
heads probability? — Then we need to define what we mean
by (prior) knowledge.



Modelling knowledge and uncertainty

• We are interested in the value of an unknown quantity, for
example, a parameter θ of a data-generating model.

• If we have some information about the quantity, model it by
assigning probabilities for its possible values.

• We then say that the quantity is a random variable Θ.
“Random” should be understood in a broad sense.

• P(a ≤ Θ ≤ b) = 95% means that based on the available
information, the quantity is within [a, b] with probability 95%.

The information could be from e.g.

• symmetry assumptions or measurements (homogeneous coin)

• understanding the physical process (mechanics of coin tossing)

• empirical observations (coin toss statistics)



Frequentist and Bayesian statistics

Frequentist statistics assigns probabilities only to quantities that
result from a stochastic process, usually repeatable.

• Eg. the results of coin tossing X1,X2,X3,X4,X5 and their
statistics such as (X1 + X2 + X3 + X4 + X5)/5.

Bayesian statistics extends the notion of probabilities and
distributions to quantities whose value is unknown, even if
traditionally speaking they do not result from “random processes”,
or are not repeatable.

• Eg. the parameter p that describes the coin tossing process.

(Then one usually applies Bayes’ formula, hence name “Bayesian”.)



Compare Frequentist and Bayesian approaches — Polling

In the population, the proportion of party-A supporters is p.

• (Fr) p is unknown, but fixed, so not random, no distribution,
no probabilities on it.

• (Ba) p is unknown, so we treat it as a random variable that
has a distribution.

Choose 1000 persons randomly. Out of them, K support party A.

• (Fr&Ba agree) K is a random variable, whose distribution
depends on p.

Both approaches use exactly the same rules of probability. The
difference is which quantities we treat as “random”.



Compare Frequentist and Bayesian approaches — Coin

We have a coin that turns up “heads” with probability p.

• (Fr) p is unknown, but fixed quantity, so not random, no
distribution, no probabilities on it.

• (Ba) p is unknown, so we treat it as a random variable that
has a distribution.

Toss the coin 5 times and obtain K heads.

• (Fr&Ba agree) K is a random variable, whose distribution
depends on p.

Both approaches use exactly the same rules of probability. The
difference is which quantities we treat as “random”.
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Example: Unknown coin
In a box, there are 10 coins: six fair (heads probability θ = 0.5), two
biased (θ = 0.25 and 0.75) and two complete scams (θ = 0 and 1).
A coin is chosen from the box at random. Then its type Θ has
distribution

θ 0 0.25 0.5 0.75 1

P(Θ = θ) 0.1 0.1 0.6 0.1 0.1

E.g. the down-biased coin (θ = 0.25) is chosen with probability 1/10.

The coin we chose is tossed once, and we observe tails.
What is now the probability that we chose the down-biased coin?
Applying the law of total probability

P(tails) = (0.1 · 1) + (0.1 · 0.75) + (0.6 · 0.5) + (0.1 · 0.25) + (0 · 1) = 0.5

and applying Bayes’s rule

P(Θ = 0.25 | tails) =
P(Θ = 0.25) · P(tails |Θ = 0.25)

P(tails)
=

0.1 · 0.75

0.5
= 0.15



Unknown coin, continued

We tossed the coin once, and observed tails.

For each possible coin type θ, compute the probability that our
coin is of that type. (Similar calculation in each case.)

θ 0 0.25 0.5 0.75 1

P(Θ = θ | tails) 0.20 0.15 0.60 0.05 0.00

This the posterior distribution of the coin type, after one toss.

How did the one observation affect our probabilities?

• Types that often result “tails” had probabilities increased.

• Types that seldom result “tails” had probabilities decreased.

• Type Θ = 1 went to probability zero. Makes sense: The coin
does not result only heads, because we already saw tails.



About notation that we will use

Full notation Shorthand Explanation

fX (x) f (x) density of X
fΘ(θ) f (θ) density of Θ (“prior”)
fX |Θ(x | θ) f (x | θ) density of X , if Θ = θ (“likelihood”)
fΘ|X (θ | x) f (θ | x) density of Θ, if X = x (“posterior”)

In full notation, the subscripts indicate which random variable(s)
we are talking about.

In shorthand, we drop subscripts, so f can refer to different
functions. It should be understood from the argument inside the
parentheses.

Note that f (x | θ) and f (θ | x) are both conditional densities (in
opposite ways).

Caveat: What does f (5 | 3) mean? Use the subscripts to clarify if
needed!



Knowledge update formula — Discrete model

Knowledge about Θ before observing the data:

• Prior density fΘ(θ) = P(Θ = θ)

Knowledge about Θ after observing data X = x :

• Posterior density fΘ|X (θ | x) = P(Θ = θ |X = x)

Stochastic model of the data source:

• Likelihood function fX |Θ(x | θ) = P(X = x |Θ = θ)

Fact
The posterior density is obtained by multiplying pointwise (= for
each value of θ) prior times likelihood, then

f (θ | x) =
f (θ) f (x | θ)∑
θ′ f (θ′) f (x | θ′)

.



Knowledge update formula — Proof

The law of total probability (or addition law) says

P(X = x) =
∑
θ′

P(Θ = θ′)P(X = x |Θ = θ′)

=
∑
θ′

f (θ′) f (x | θ′),

and then applying Bayes’ formula

f (θ | x) = P(Θ = θ |X = x)

=
P(Θ = θ)P(X = x |Θ = θ)

P(X = x)

=
f (θ)f (x | θ)

P(X = x)

=
f (θ)f (x | θ)∑
θ′ f (θ′) f (x | θ′)

.



Example: Unknown coin

Unknown parameter: Type Θ of the coin

Prior distribution fΘ(θ) = P(Θ = θ)

Data x = 0 (result was heads)

Likelihood fX |Θ(x | θ) = P(X = x |Θ = θ)

θ Prior f (θ)
Likelihood
f (0 | θ)

Product
Posterior
f (θ | 0)

0 0.1 1.00 0.100 0.20
0.25 0.1 0.75 0.075 0.15
0.5 0.6 0.50 0.300 0.60
0.75 0.1 0.25 0.025 0.05
1 0.1 0.00 0.000 0.00

sum 1.0 0.5 1.00

“Product” is the product of prior and likelihood; also called unnormalized posterior.
By normalizing (so that sum=1), it becomes the posterior distribution.

Note. The values of the likelihood function do not form any probability distribution.



Prior vs. posterior distributions in coin tossing

Prior Posterior after heads Posterior after tails



Unknown coin: Many observations

Box contains 10 coins as before. One coin chosen randomly. That coin
tossed twice. We observe 2 tails, that is, sequence (0, 0).
What is now the posterior distribution of the coin type?
Likelihood for data (x1, x2) = (0, 0) is

θ 0 0.25 0.5 0.75 1

f (0, 0 | θ) 1.0000 0.5625 0.2500 0.0625 0.0000

θ Prior f (θ)
Likelihood
f (0, 0 | θ)

Product
Posterior
f (θ | 0, 0)

0 0.1 1.0000 0.1000 0.32
0.25 0.1 0.5625 0.0563 0.18
0.5 0.6 0.2500 0.1500 0.48
0.75 0.1 0.0625 0.0063 0.02
1 0.1 0.0000 0.0000 0.00

“Product” is the product of prior and likelihood; after normalization (so that sum=1),
it becomes the posterior distribution.



Prior vs. various posteriors

f (θ) f (θ | 0) f (θ | 00) f (θ | 00000) f (θ | 0 . . . 0)

f (θ | 0000 . . .) f (θ | 0000011111) f (θ | 00 . . . 11 . . .)



Variation: Updating in two phases
Knowledge of Θ before any data:

• Prior f (θ) = P(Θ = θ)

Knowledge of Θ after seeing some data:

• Posterior f (θ | x1) = P(Θ = θ |X1 = x1).

• Posterior f (θ | x1, x2) = P(Θ = θ |X1 = x1,X2 = x2).

Stochastic model of the data source:

• Likelihood f (x1 | θ) = P(X1 = x1 |Θ = θ)

• Likelihood f (x2 | θ, x1) = P(X2 = x2 |Θ = θ,X1 = x1)

Fact
The posterior f (θ | x1, x2) can be obtained by taking f (θ | x1) as the prior,
multiplying by the likelihood f (x2 | θ, x1, and normalizing:

f (θ | x1, x2) =
f (θ | x1) f (x2 | θ, x1)∑
θ′ f (θ′ | x1) f (x2 | θ′, x1)

.



Updating in two phases — Proof
If D1 = {X1 = x1} and D2 = {X2 = x2}, applying the product rule

P(Θ = θ,D1,D2) = P(D1)P(Θ = θ |D1)P(D2 |Θ = θ,D1)

= P(D1) f (θ | x1) f (x2 | θ, x1),

and the law of total probability

P(D1,D2) =
∑
θ′

P(Θ = θ′,D1,D2)

=
∑
θ′

P(D1) f (θ′ | x1) f (x2 | θ′, x1),

and combining them,

f (θ | x1, x2) =
P(Θ = θ,X1 = x1,X2 = x2)

P(X1 = x1,X2 = x2)

=
P(D1) f (θ | x1) f (x2 | θ, x1)∑
θ′ P(D1) f (θ′ | x1) f (x2 | θ′, x1)

=
f (θ | x1) f (x2 | θ, x1)∑
θ′ f (θ′ | x1) f (x2 | θ′, x1)

.



Updating knowledge — Summary

• Prior distribution fΘ(θ) models the knowledge of the unknown
parameter Θ, before observations

• Likelihood function f (x | θ) models the stochastic model —
how the data is generated

• Posterior distribution models the knowledge obtained by
combining prior and data

• Posterior distribution f (θ | x) computed by multiplying prior
and likelihood, and then normalizing (so it becomes a
distribution)

• This approach is called Bayesian inference
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Unknown coin

We tossed an unknown coin, and observed data
~x = (0, 0, 0, 0, 0, 0, 1, 0, 1, 0), where 0=tails, 1=heads. We assume the
coin has a parameter Θ (heads probability), but have no prior reasons to
think some values are more probable than others. Find the posterior
distribution of Θ.

Let the prior distribution be uniform over interval [0, 1], with density

f (θ) =

{
1, θ ∈ [0, 1],

0, otherwise.

Likelihood f (~x | θ) = θ2(1− θ)8

Posterior density

f (θ | ~x) = c f (θ)f (~x | θ) =

{
c θ2(1− θ)8, θ ∈ [0, 1],

0, otherwise,

where the normalizing constant is c = (
∫ 1

0
t2(1− t)8 dt)−1



Unknown coin

Data: ~x = (0, 0, 0, 0, 0, 0, 1, 0, 1, 0)

Prior

0.0 0.2 0.4 0.6 0.8 1.0

f (θ) = 1

Posterior

0.0 0.2 0.4 0.6 0.8 1.0

f (θ|~x) = c θ2(1− θ)8



Beta distribution

The distribution Beta(a, b), called the beta distribution with parameters
a > 0 and b > 0, has density

f (θ) =

{
c θa−1(1− θ)b−1, when θ ∈ [0, 1],

0, otherwise,

where the normalizing constant c = (a+b−1)!
(a−1)!(b−1)! .

Beta(1, 1)

0.0 0.2 0.4 0.6 0.8 1.0

Beta(3, 9)

0.0 0.2 0.4 0.6 0.8 1.0

Beta(9, 3)

0.0 0.2 0.4 0.6 0.8 1.0

Beta(9, 9)

0.0 0.2 0.4 0.6 0.8 1.0

• Possible values are in the interval [0, 1]
• Expected value µ = a

a+b and standard deviation σ =
√

µ(1−µ)
a+b+1

R: dbeta(theta,a,b); pbeta(theta,a,b)

Matlab: betapdf(theta,a,b); betacdf(theta,a,b)



Unknown coin

Data: ~x = (0, 0, 0, 0, 0, 0, 1, 0, 1, 0)

Prior: Uniform, that is Beta(1, 1)
Posterior: Beta(3, 9)

Prior

0.0 0.2 0.4 0.6 0.8 1.0

f (θ) = 1

Posterior

0.0 0.2 0.4 0.6 0.8 1.0

f (θ|x) = c θ2(1− θ)8



Variation: Posterior from number of heads
Coin tossed n times, observed x heads. Prior assumed uniform. Find
posterior density of Θ (heads probability).

Prior density: f (θ) = 1, θ ∈ [0, 1]
Likelihood for x is according to Bin(n, θ)

f (x | θ) =

(
n

x

)
θx(1− θ)n−x

This leads to posterior density

f (θ | x) =
f (θ)f (x | θ)∫
f (t)f (x | θ′) dθ′

= c θx(1− θ)y

which is Beta(x + 1, y + 1), where y = n − x is number of tails.

Note

• From n = 10 and x = 2, we get exactly the same posterior
Beta(3, 9), as if we used the detailed data vector
~x = (0, 0, 0, 0, 0, 0, 1, 0, 1, 0).

• The normalizing constant c is determined from
∫ 1

0
f (θ | x)dθ = 1. It

can be shown that c = (x+y+1)!
x!y !



Unknown coin: Posteriors after x heads, y tails

n = 10

0.0 0.2 0.4 0.6 0.8 1.0

x = 2, y = 8⇒ Beta(3, 9)

0.0 0.2 0.4 0.6 0.8 1.0

x = 5, y = 5⇒ Beta(6, 6)

n = 100

0.0 0.2 0.4 0.6 0.8 1.0

x = 20, y = 80⇒ Beta(21, 81)

0.0 0.2 0.4 0.6 0.8 1.0

x = 50, y = 50⇒ Beta(51, 51)
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Calculating the posterior in nutshell
For each possible value of the parameter θ,

posterior =
prior · likelihood

normalizing constant

or

f (θ | x) =
f (θ) · f (x | θ)

. . .
where . . . on vakio (same for all θ), it is needed to so that∑

θ f (θ | x) = 1.

Easiest (usually): First calculate the unnormalized posterior

f (θ) · f (x | θ).

• It is not a probability distribution, but . . .
• it already shows in relative terms which θ are more probable,
• to find its maximum point, normalizing is not needed,
• to get a genuine probability distribution, just normalize it.



Normalizing the posterior

The unnormalized posterior

f (θ) · f (x | θ)

is almost a distribution for Θ, except that its sum

c =
∑
θ

(
f (θ) · f (x | θ)

)
could be 6= 1. So just divide its values by c , ⇒ you get the
genuine posterior distribution for Θ.

If Θ is continuous, replace sums with integrals.



Coin from box (discrete parameter)

Parameter Θ indicates what kind of coin we have

Prior f (θ) = P(Θ = θ)

Data x = 0 (one heads)

Likelihood f (0 | θ) = P(X = 0 |Θ = θ) = 1− θ

θ Prior f (θ)
Likelihood
f (0 | θ)

Product
Posterior
f (θ | 0)

0 0.1 1.00 0.100 0.20
0.25 0.1 0.75 0.075 0.15
0.5 0.6 0.50 0.300 0.60
0.75 0.1 0.25 0.025 0.05
1 0.1 0.00 0.000 0.00∑

1.0 0.500 1.00

Already from the unnormalized posterior we see (in relative terms) which parameter
values are more probable than others. other).

Genuine posterior obtained by dividing by the sum (here 0.5).



Coin, continuous parameter — unif prior, first result 1

0 0.2 0.4 0.6 0.8 1
0

1

2

prior Beta(1,1)

0 0.2 0.4 0.6 0.8 1
0

1

2

likelihood

0 0.2 0.4 0.6 0.8 1
0

1

2

unnormalized posterior

0 0.2 0.4 0.6 0.8 1
0

1

2

posterior Beta(2,1)

1

θ

θ

2θ



Update with second observation which is 0

0 0.2 0.4 0.6 0.8 1
0

1

2

prior Beta(2,1)

0 0.2 0.4 0.6 0.8 1
0

1

2

likelihood

0 0.2 0.4 0.6 0.8 1
0

1

2

unnormalized posterior

0 0.2 0.4 0.6 0.8 1
0

1

2

posterior Beta(2,2)

2θ

(1− θ)

2θ(1− θ)

6θ(1− θ)



Update with third observation which is 1

0 0.2 0.4 0.6 0.8 1
0

1

2

prior Beta(2,2)

0 0.2 0.4 0.6 0.8 1
0

1

2

likelihood

0 0.2 0.4 0.6 0.8 1
0

1

2

unnormalized posterior

0 0.2 0.4 0.6 0.8 1
0

1

2

posterior Beta(3,2)

6θ(1− θ)

θ

6θ2(1− θ)

12θ2(1− θ)



What about the prior?

The uniform prior Beta(1,1) says that (before observing anything)
we thought all parameter values within [0, 1] equally probable.
This is one way of saying “unknown kind of coin”.

In the real world, when we encounter a coin, we might already
have prior beliefs that they are probably approximately fair. How
could we state such prior belief?

What if we make our prior Beta(10,10), which is also symmetric
like Beta(1,1) but more concentrated?

Let’s try. Start with “probably approximately fair” and then
observe 80 heads, 20 tails.



Prior “prob. app. fair” + Observations 80+20

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

2

4
prior Beta(10,10)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

1

2
10

-22 likelihood

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

10
-23 unnormalized posterior

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

5

10
posterior Beta(90,30)

∝ θ9(1− θ)9

∝ θ80(1− θ)20

∝ θ89(1− θ)29

∝ θ89(1− θ)29



Contents

Quantifying knowledge and uncertainty

Updating knowledge — discrete data, discrete parameter

Discrete data, continuous parameter

Calculating the posterior in nutshell

Continuous data, continuous parameter

Benefits of the approach



Example. Noisy measurement

• Star (A) has absolute brightness θ

• Scientist (B) measures distorted brightness X ∼ N(θ, σ2),
with σ = 2 known

A sends light with same brightness θ, measured three times. B
measures values ~x = (3, 8, 7) and tries to estimate θ.

• The ML-estimate is simply the average
m(~x) = (3 + 8 + 7)/3 = 6

However, B has prior knowledge that the brightness Θ has normal
distribution with parameters µ0 = 5 and σ0 = 1.



Bayesian normal model

Prior: Θ ∼ N(µ0, σ0
2),

f (θ) = (2πσ2
0)−1/2e

− (θ−µ0)2

2σ2
0

Likelihood: (Xi | θ) ∼ N(θ, σ2),

f (xi | θ) = (2πσ2)−1/2e−
(xi−θ)2

2σ2

f (x1, . . . , xn | θ) = f (x1 | θ) · · · f (xn | θ)

Example. Noisy channel:

• Prior for brightness: Θ ∼ N(µ0, σ
2
0), µ0 = 5, σ0 = 1

• Measured brightness: (Xi | θ) ∼ N(θ, σ2), σ = 2



Bayesian normal model: Posterior distribution

Prior: Θ ∼ N(µ0, σ
2
0)

Likelihood: (Xi | θ) ∼ N(θ, σ2)

Fact
In the Bayesian normal model, with data ~x = (x1, . . . , xn), the
posterior is also normal N(µ1, σ

2
1), where

µ1 =

1
σ2

0
µ0 + n

σ2m(~x)

1
σ2

0
+ n

σ2

, σ1 =
1√

1
σ2

0
+ n

σ2

,

and m(~x) = 1
n

∑n
i=1 xi is the average of the observed data.



Example: Noisy measurement

Brightness measured by B has normal distribution, mean θ,
standard deviation σ = 2.
Furthermore, we have prior information that the brightness Θ is
normal with mean µ0 = 5, standard deviation σ0 = 1.

Then the posterior for brightness, after observing three data points
~x = (3, 8, 7), is N(µ1, σ

2
1), where

µ1 =

1
σ2

0
µ0 + n

σ2m(~x)

1
σ2

0
+ n

σ2

=
1
12 × 5 + 3

22 × 6
1
12 + 3

22

≈ 5.43

and

σ1 =
1√

1
σ2

0
+ n

σ2

=
1√

1
12 + 3

22

≈ 0.756



Noisy measurement: Point and interval estimates
After data ~x = (3, 8, 7), the posterior distribution for Θ is
N(µ1, σ

2
1), where µ1 = 5.43 ja σ1 = 0.756.

Since we have a genuine distribution for Θ, we can find for
example

• Posterior mean: µ1 = 5.43 (mean of the distribution)

• Posterior mode: µ1 = 5.43 (maximum point of the
distribution)

Task. Find an interval that contains the star brightness, with
probability 90%.
Solution Solve c from equation

0.90 = P(Θ = µ1±c) = P
(

Θ− µ1

σ1
= 0± c/σ1

)
= P(|Z | ≤ c/σ1)

From tables: P(|Z | ≤ 1.64) = 0.90, thus c = 1.64× 0.756 = 1.24.
Interval 5.43± 1.24 = [4.19, 6.67] contains the brightness with
probability 90%.
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Some benefits of the Bayesian approach

If you are willing to treat Θ as a random variable (and assign a
prior distribution to it), you gain:

• Mathematical unification. “Parameters” and
“observations” are unified as “quantities” that follow the
same mathematical laws of probability.
• General applicability. With the same framework, you can

calculate posteriors
• for small data, even n = 1, where e.g. “normal

approximations” would not apply at all
• for big data
• for non-normal data, e.g. exponential observations
• for more complicated models

• Full posterior distribution of Θ. It gives you a richer
understanding of Θ’s possible values than just a single point
estimate or interval estimate. You can inspect it visually, and
ask and answer any questions like mean, mode, median,
probability of this interval . . .



Next lecture: How to use the Bayesian posterior distributions for
various tasks
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