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 Summary 

 A critical problem in systems neuroscience is determining what the neural code is. 
Many codes have been proposed — coarse codes, fi ne codes, temporal correlation 
codes, and synchronous fi ring codes, among others. The number of candidates has 
grown as more and more studies have shown that different aspects of spike trains 
can carry information (reviewed in Averbeck and Lee, 2004; Oram et al., 2002; 
Victor, 1999; Borst and Theunissen, 1999; Johnson and Ray, 2004; Theunissen and 
Miller, 1995; Nirenberg and Latham, 2003; Shadlen and Newsome, 1994; MacLeod, 
Backer, and Laurent, 1998; Bialek et al., 1991; Nirenberg et al., 2001; Parker and 
Newsome, 1998; Romo and Salinas, 2001; Dhingra et al., 2003; Gawne, Richmond, 
and Optican, 1991). 

 Here we present a strategy to reduce the space of possibilities. We describe a 
framework for determining which codes are viable and which are not, that is, which 
can and cannot account for behavior. Our approach is to obtain an upper bound on 
the performance of each code and compare it to the performance of the animal. 
The upper bound is obtained by measuring code performance using the same 
number and distribution of cells that the animal uses, the same amount of data the 
animal uses, and a decoding strategy that is as good as or better than the one that 
the animal uses. If the upper-bound performance falls short of the animal ’ s perfor-
mance, the code can be eliminated. We demonstrate the application of this approach 
to a model system, the mouse retina. 

 Introduction 

 Finding the neural code has been a long-standing problem. While we have known 
for decades that neural signals come in the form of trains of action potentials, we 
still do not know what the code is, that is, we do not know what the relevant quantity 
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in the spike train is. Is it the number of spikes produced over some behaviorally 
relevant time period (e.g., the length of a saccade, a  “ coarse ”  code), or is it the 
individual spike or some pattern of spikes (a  “ fi ne ”  code)? 

 This question has been the subject of much discussion and debate, since the 
answer affects essentially all work in systems neuroscience. For experimental work, 
it tells us the resolution we should use when analyzing our data, and for theoretical 
work, it tells us the quantity (the spike train feature) we should use when building 
models for neural computations. It also provides critical constraints on the structural 
design of such models. 

 Just to expand on this a little bit: Even if one thinks about it in the simplest terms, 
it becomes clear that fi nding the code (or codes) is a key step toward understanding 
how neural systems are designed. This is because different codes have different 
requirements for neural machinery, i.e., for implementation, for readout, and so on, 
and these differences lead to different models for how the system is set up. For 
example, take a simple case: a coarse code versus a fi ne code. These two codes have 
different strengths and weakness, and these differences have obvious implications 
for network structure. For example, one of the strengths of coarse codes is that the 
details of the spike train do not matter. This means that downstream neurons do 
not have to keep track of the spike arrival times; they just have to count spikes. The 
weakness, though, is that coarse codes cannot, at an individual cell level, carry much 
information. So, to get enough information to represent the outside world, which 
has, of course, many stimuli in it, one would almost certainly have to postulate a 
pooling mechanism, some neural machinery that would allow downstream neurons 
to pool signals from multiple cells or across time or both. Without this, coarse coding 
would not be viable. In contrast, with fi ne coding, much more information can be 
carried. The number of stimuli that can be represented is much larger, exponentially 
so, but fi ne codes impose their own constraints: downstream neurons  do  have to 
keep track of spike arrival times. 

 Thus, even at this simple level, the importance of fi nding the code(s) is clear. For 
more complex examples about what specifi c codes imply about network structure —
 or the reverse, what specifi c network structures imply about the code — see analyses 
of synfi re chains (Abeles et al., 1993) and balanced networks (van Vreeswijk and 
Somplinsky, 1996), reviewed in van Vreeswijk (2004). 

 A Strategy for Finding Neural Codes 

 It might seem, at fi rst, that fi nding the code — at least for a given brain area — is a 
straightforward problem, one that could be addressed as follows: Give an animal a 
task to perform and measure its performance; then take the spike trains the animal 
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uses to perform the task and decode them several times, each time making a differ-
ent assumption about what the relevant quantity is. For example, fi rst assume it is 
the number of spikes in a relatively long time period, such as the length of a stimulus 
presentation or a saccade, then assume it is the number of spikes in a shorter time 
period, etc. Then, with each assumption, measure how well the task was performed 
based on the spike trains and compare it to the performance of the animal. 

 While this approach is straightforward in principle, it is not so straightforward in 
practice. This is because several conditions have to be met in order to draw clean 
conclusions. First, the number and distribution of cells used for the decoding has to 
be the same as the number and distribution of cells the animal uses. To see why this 
matters, take coarse coding as an example. As mentioned above, with coarse coding, 
individual cells by themselves cannot carry much information, but, together, as a 
population, they can and this population information could be suffi cient. So unless 
one records spike trains from  all  the cells the animal uses to solve a task, one cannot 
reject the coarse coding hypothesis and assert that a fi ner code — one that carries 
more information per cell — is necessary. (From an experimental viewpoint, record-
ing from  all  the cells remains challenging; see, however, the approach herein with 
respect to retinal ganglion cells.) Second, the time period over which the spike trains 
are evaluated has to be the same as the time period the animal uses. For example, 
when an animal evaluates a stimulus, it typically looks at it several times. Unless 
data are collected from multiple looks as well as multiple cells, again, codes cannot 
be eliminated. Finally, the last condition is that the decoding algorithm used to test 
codes has to be at least as good as the one the animal uses. Since no one knows the 
algorithm the animal uses, the only option is to use optimal, that is, Bayesian, 
decoding — a strategy that extracts as much information from the spike trains as can 
be extracted ( Gelman et al., 1995 ). 

 If these conditions are met, one gets an upper bound on the performance of a 
code. The code is, essentially, being given its best chance — it is being tested using 
the same number and distribution of cells the animal uses, the same amount of 
data as the animal uses, and using a decoding algorithm that is as good as or better 
than the animal ’ s. If one has an upper bound on the performance of a code, and 
that upper bound falls short of the animal ’ s performance, then one can rule that 
code out. 

 Application of the Strategy to a Model System 

 In this section, we describe a set of experiments where it was possible to meet these 
conditions ( Nirenberg, 2006; Jacobs et al., 2009 ). One of the few places this can be 
done is the retina. The reasoning is as follows: First, the retinal output cells, the 
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ganglion cells, form one of the few bottlenecks in the nervous system — they are the 
sole source of visual information to the brain. This means that all the cells needed 
for the recording are confi ned to one small, well-defi ned location. Second, the infor-
mation fl ow from the retina to the brain is feedforward. Because there is no feed-
back, it is possible to remove the retina from the animal and record from it in vitro. 
This is a major advantage, because it allows one to use multi-electrode arrays, which 
make it possible to obtain a large dataset, that is, one large enough to match the 
number and distribution of cells the animal uses (Balkema and Pinto, 1982; Carcieri, 
Jacobs, and Nirenberg, 2003; Stone and Pinto, 1993). Third, the number of cells one 
needs to record from can be controlled by regulating the size of the stimulus: a 
stimulus subtends a certain number of degrees of visual angle, which corresponds 
to a known area on the retina, and, therefore, a known number of ganglion cells 
( Remtulla and Hallett, 1985 ). Finally, the time period over which data need to be 
collected can be controlled by regulating the duration of the stimulus and the 
number of times it is presented. 

 With these conditions met, we set out to test the performance of a set of widely 
proposed codes using a combined in vivo and in vitro approach. We started  in vivo . 
We gave animals a task to perform, as shown in   fi gure 2.1 . The animal was the mouse, 
and the task was a two-alternative, forced-choice visual discrimination task ( Prusky 
et al., 2000 ) that proceeded as follows: On each trial of the task, two stimuli were 
fl ashed on. One was a uniform gray fi eld, the other, a sine wave grating, where the 
spatial frequency of the grating was chosen at random from a set of uniformly 
spaced frequencies. The animal ’ s job was to determine which of the two stimuli was 
the grating. A schematic of the task is shown in   fi gure 2.1a , and the behavioral per-
formance for a set of eight animals is shown in   fi gure 2.1b . As shown in the fi gure, 
when the spatial frequency of the grating was low, the animal performed well (i.e., 
the fraction correct was at or near 100 percent). As the spatial frequency increased, 
the grating and gray became increasingly diffi cult to distinguish, and performance 
dropped, eventually to chance (50 percent correct).    

 To measure code performance, we presented the same task to the retina in vitro, 
matching all stimulus conditions (stimulus size on the retina, stimulus presentation, 
intensities, spatial frequencies, phases, contrasts, and position, see Jacobs et al., 2009). 
We then decoded the ganglion cell spike trains several times, each time making a 
different assumption about what the code is, that is, what the relevant quantity in 
the spike train is. We started with a simple coarse code, a spike count code. Here 
the assumption was that the relevant quantity is just the number of spikes in a 
stimulus presentation. We then advanced to a fi ner code, a spike timing code, also 
referred to as an  “ instantaneous rate ”  code. Here the assumption was twofold — that 
the relevant quantity is, essentially, the individual spike, and that the occurrence of 
a spike does not depend on the occurrence of other spikes. Last, we advanced to a 
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 Figure 2.1 
 Performance of the animal on a two-alternative, forced-choice visual discrimination task. (a) Schematic 
of the task. On each trial the animal is dropped into a pool, where the only escape is a hidden platform. 
The animal can determine the location of the platform by viewing the stimuli on the computer monitors 
at the front of the pool. One monitor will show a grating, the other a uniform gray fi eld. The platform is 
always placed on the side with the grating. If the animal can determine which of the two stimuli is 
the grating, it can fi nd the platform and escape. For these experiments, each stimulus, which subtended 
10  ×  15 degrees of visual angle at the choice line (see fi gure), was fl ashed on eight times, and each fl ash 
lasted for 300 ms, shorter than the time between saccades. A barrier was set up so that the animal could 
see only one stimulus at a time. (b) Mean performance for eight animals, plotted as the fraction of times 
the animal chose the grating as a function of spatial frequency. Error bars were computed using binomial 
statistics: the standard deviation was [  p (1  –   p )/ n ] 1/2 , where  p  is the probability of choosing the grating 
and  n  is the number of trials ( n  ranged from 10 to 115 trials/spatial frequency). (c) Performance of each 
animal shown separately. Figure adapted from Jacobs et al. (2009). 

temporal correlation code. For this, the underlying assumption was also that the 
relevant quantity is the individual spike, but this time the occurrence of a spike  was  
assumed to depend on the occurrence of other spikes — in this case, we made it 
depend specifi cally on the time of the previous spike. (See the appendix, where a 
mathematical description of each code is provided.) In sum, then, we decoded spike 
trains using three widely proposed codes — a spike count code, a spike timing code, 
and a temporal correlation code — and measured each one ’ s performance against 
the performance of the animal. 

   Figure 2.2  shows the results. The fi rst result was that the spike count code per-
formed much worse than the animal (  p   <  <  0.0001, psignifi t test) ( Wichmann and 
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Hill 2001a, 2001b ). While the animal performed the task well ( > 70 percent correct 
up to 0.4 cpd), the spike count code was only able to maintain this level up to about 
0.1 cpd. This argues that the animal cannot be using this code. The claim is strong 
because, as mentioned earlier, the code was given its best chance, that is, it was 
assessed using the same number and distribution of cells the animal uses, taking 
data for as long as the animal does, and using a decoding strategy that can extract 
as much information from the code as can be extracted. This means that for the 
animal to be performing as well as it does, it has to be using a more information-rich 
code. This latter assertion follows because there is no other way for the animal ’ s 
brain to be getting information: (1) as mentioned before, the retinal output cells are 
the only source of visual input to the brain, and (2), the brain cannot create infor-
mation  de novo . As stated by the data processing inequality, a well-known theorem 
in signal processing ( Cover and Thomas, 1991 ) information cannot be generated by 
postprocessing. A system can manipulate the information it receives, perform com-
putations on it, and so forth, but it cannot create new information.    

 The second result was that the spike timing code also performed worse than the 
animal ( p   <  0.02). This argues that this code is not viable either. It does, though, 
perform considerably better than the spike count code. If one views it from a practi-
cal level, that is, from the point of view of building a prosthetic, one could say that 
a prosthetic constructed using a spike count code would fall seriously short, whereas 
one built with a spike timing code would put the animal in the ballpark of normal 
acuity. 

 Finally, the last result was that the temporal correlation code  did  perform the task 
as well as the animal (  p   >  0.3, psignifi t test). While this result does not prove that 

 Figure 2.2 
 The spike count code and spike timing code performed worse than the animal, while the temporal cor-
relation code did not (spike count code:  p   <  <  0.0001; spike timing code:  p   <  0.02; temporal correlation 
code:  p   >  0.3). As in   fi gure 2.1 , error bars were computed using binomial statistics: the standard deviation 
was [  p (1  –   p )/ n ] 1/2 , where  p  is the probability of choosing the grating and  n  is the number of trials (for 
the codes,  n =  98 trials/spatial frequency; for the animals,  n  ranged from 10 to 115 trials/spatial frequency). 
Figure adapted from Jacobs et al. (2009). 
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this is the code the animal uses, it does show that it carries suffi cient information 
and constitutes a viable candidate code. To see different code performances at the 
raw data level, see   fi gure 2.3  (plate 2).    

 These results made strong claims, that two of the most widely proposed codes —
 the standard spike count and spike timing codes — are not viable. How confi dent 
could we be of these claims? The answer depended on how well they stood up to 
potential errors we might have made in the estimates of the critical parameters: 
specifi cally, the estimates of cell number, cell distribution, priors on the stimulus, 
and shapes of the response distributions. The fi rst source of potential error was the 
estimate of the number of ganglion cells the animal uses. The stimulus covers 0.144 
mm 2  of retina. Two recent electron microscopic estimates of ganglion cell number 
( Jeon, Strettoi, and Masland, 1998; Williams et al., 1996 ) indicated a range of 300 to 
360 cells for this area. We measured the performance of each code using both 
numbers, and there was essentially no difference (  fi gure 2.4a ). The fi gure shows 
performance as a function of cell number, and, as indicated in the fi gure, perfor-
mance growth slowed down at numbers much lower than these.    

 The second source of potential error was in the estimation of the ganglion cell 
distribution. Physiological reports suggest that the distribution is skewed toward 
ON-type ganglion cells ( Balkema and Pinto, 1982; Carcieri, Jacobs, and Nirenberg, 
2003; Stone and Pinto, 1993; Sagdullaev and McCall, 2005 ), but anatomical studies 
suggest a more even representation, specifi cally, a more even representation of ON 
and OFF-type cells ( Doi et al., 1995 ). The latter is based on the relative density of 
the projections into the ON and OFF layers in the innerplexiform (processing) 
layer, which refl ects the relative proportions of cells with ON and OFF responses 
( Doi, Uji, and Yamamura, 1995 ). We measured the performance of each code, build-
ing the distribution of cell types both ways  (   fi gure 2.4b ). While the choice of distribu-
tion shifted the performance slightly, the conclusions remained the same: the spike 
count and spike timing codes still performed worse than the animal (spike count, 
 p   <  <  0.0001; spike timing code,  p   <  0.02); the temporal correlation code did not per-
form worse than the animal ( p   >  0.3). 

 The third issue is the estimation of stimulus priors. We measured performance 
using both uniform priors ( p (gray) = 1/2;  p ( k ) is a constant, where  k  is spatial 
frequency) and natural priors (  p (gray) = 1/2;  p ( k )  ∝  1/ k  2 ), the latter following 
from Ruderman and Bialek (1994). As shown in   fi gure 2.4c , column 3, there was 
essentially no effect: the spike count and timing codes still performed worse than 
the animal (spike count,  p   <  <  0.0001, spike timing,  p   <  0.02); temporal correlation 
code did not perform worse than the animal ( p   >  0.3). 

 Finally, the last issue concerns the estimation of the response distributions. 
Because we are using a Bayesian decoding approach, the response distribution for 
each stimulus has to be estimated, and its quality depends on the number of 
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 Figure 2.3 (plate 2) 
 Rasters for three cells; the purpose is to show that the differences in the performances of the codes can 
be seen at the level of the raw spike trains. Each set of 21 rasters corresponds to 1 cell. On each raster 
are a number and a red trace. The number is the mean number of spikes per trial for the raster and gives 
a measure of spike count, and the red trace is the peristimulus time histogram, and gives a measure of 
spike pattern. To get a feel for how a given performance curve arises (see blue and green performance 
curves in the plot at the right), one can compare the mean spike counts for the gray stimulus with the 
mean spike counts for each of the spatial frequencies, and then compare the mean spike patterns for the 
gray stimulus with the mean spike patterns for each of the spatial frequencies. For example, for the fi rst 
cell, the mean spike counts for the three rasters at the lowest spatial frequency, 0, 0, and 1.5, are very 
different from those for the gray stimulus, 8, 10, and 8. As the spatial frequency gets higher, though, the 
mean spike counts for the gratings become less and less different from those for the gray. In contrast, 
the spike patterns for the gratings remain visibly different out to much higher spatial frequencies. Thus, 
where spike count starts to fail as a useful parameter for distinguishing among stimuli, spike pattern 
continues to perform.  Methods : To remind the reader, the stimuli are fl ashed. Between fl ashes the screen 
is black; thus, each stimulus produces a step increase in mean illumination. Note that the phases are a 
small fi xed distance apart (50 microns) to mimic normal displacements due to eye movements (rather 
than equally spaced phases). 
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 Figure 2.4 
 The failure of the spike count code and the spike timing code was robust to potential errors in the esti-
mation of the critical parameters: cell number, cell distribution, priors on the stimulus, and shapes of the 
response distributions. (a) Performance of spike count and spike timing codes remained worse than the 
animal with cell numbers up to 360 (the upper bound estimate on cell number, see text), whereas per-
formance of the temporal correlation code reached that of the animal (was not signifi cantly different 
(  p   >  0.3). For spike count, the traces indicate 1, 2, 4, 8, 16, 32, 64, 128, 256, 300, and 360 cells. For the spike 
timing and temporal correlation codes, the traces indicate 1, 64, 128, 256, 300, and 360 cells. Note that for 
all three codes, performance became very slow growing at numbers well below 360 suggesting a satura-
tion in performance (for this task) with relatively small numbers of cells. Error bars were computed as 
in   fi gure 2.2 . (b) Performance for all codes shifted slightly when the distribution of cell classes was drawn 
from anatomical versus physiological estimations, but the conclusions remained the same: the spike count 
and spike timing codes still performed worse than the animal (  p  <   <  0.0001,  p   <  0.02, respectively); the 
temporal correlation code did not perform worse than the animal ( p   >  0.3). Error bars were computed 
as in   fi gure 2.2 . (c) Performance of the codes remained essentially the same whether uniform or natural 
priors were used; again, all conclusions remained the same. Error bars were computed as in   fi gure 2.2 . 
(d) No signifi cant trend in performance occurred when the number of trials was systematically varied. 
The numbers 10, 20 and 30 on the fi gure indicate the number of trials used to build the response distribu-
tion for each phase of each spatial frequency; this gives a total of 30, 40, and 60 trials respectively for 
each spatial frequency, since each spatial frequency was represented by three phases. The error bars 
indicate the standard deviation for three cross-validations. Figure adapted from Jacobs et al. (2009). 
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responses. Too few repetitions could lead to a misestimate of code performance. To 
address this, we ran the analysis such that the response distributions were built with 
different numbers of stimulus repeats (  fi gure 2.4d ). The results show that for the 
spike count and spike timing codes, there was no signifi cant trend as the number of 
repeats was increased, that is, the performance of these two codes did not signifi -
cantly change, and both remained below the performance curve of the animal. For 
the temporal code, there was also no signifi cant trend as the number of repeats 
increased, but, here, nearly all points in the performance curves reached the animals ’  
behavioral performance curve. This supports the claim that this code cannot be ruled 
out and stands as a viable candidate code. We also performed this analysis with 
multiple cross-validations; this is represented by the error bars in panel  d . This 
further demonstrates the robustness of the results: even when the variance that 
occurs with different cross validations in taken into account, the differences in the 
performances of the codes is clear: the spike count code performs considerably 
worse than the animal, the spike timing code performs slightly worse, and the tem-
poral correlation code reaches the animals ’  performance. 

 In sum, we described here a strategy for testing the viability of neural codes. The 
approach was to obtain an upper bound on the performance of each code and 
compare it to the performance of the animal. The upper bound was obtained by 
measuring code performance using the same number and distribution of cells the 
animal uses, the same amount of data the animal uses, and a decoding strategy that 
is as good as or better than the one the animal uses. If the upper bound performance 
fell short of the animal ’ s performance, the code was eliminated, as this indicated 
very strongly that the animal cannot be using it. 

 We tested three widely proposed codes, and our results showed that two of them, 
the spike count and spike timing codes, did, in fact, fall short. Interestingly, the 
performance of the spike count code fell substantially short, as shown in   fi gures 2.2 
and 2.4 . This result also held when we counted spikes in windows smaller than the 
length of the stimulus presentation. This shows that the failure of this code was not 
being exaggerated by counting spikes in the full 300 ms window. Even when spikes 
were counted only in 100 ms and 50 windows, the spike count code performed sub-
stantially worse than the animal (  fi gure 2.5 ). The second result was that the spike 
timing code also fell short, although the failure of this code was much less dramatic 
(see   fi gures 2.2 and 2.4 ). Finally, the last result was that the temporal correlation 
code did perform as well as the animal. While this does not demonstrate that this 
is the code the animal uses, it does show that it carries suffi cient information and 
constitutes a viable candidate code. We emphasize, though, that we only tested a 
small number of codes; other spike pattern permutations (e.g., a coarse code with 
temporal correlation, a code with multicell correlations [e.g., see chapters 3 and 21] 
remain candidates for testing).     
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 Figure 2.5 
 Decoding with the spike count code using responses shorter than the complete stimulus period. In   fi gures 
2.2 and 2.3 , we evaluated the spike count code for the whole stimulus presentation, which was 300 ms 
long. Since not all of the 300 ms response may contain informative spikes, this raises the possibility that 
we might be  “ diluting ”  the performance of the spike count code, that is, we might be underestimating 
its performance by including response periods that are essentially only adding noise. Here we measured 
performance using epochs within the 300 ms response. The results show that with some epochs the 
performance showed an increase relative to the performance with the complete 300 ms response, but 
the increase was very small: In all cases the performance fell substantially short of the performance of 
the animal ( p  <   <   – 0.001 for all tests), supporting the notion that the failure of the spike count code is a 
robust result. Note that these performances were expected to fall short of animal performance, because, 
barring data limitation issues, the spike count code must do worse than the spike timing code, and the 
spike timing falls short of the animal (as shown in   fi gures 2.2 and 2.3 ). The data presented here are just 
to show the magnitude of the failure with different epochs. (a) Performance when spikes were counted 
only for fi rst 100 ms, then only for the second 100 ms, etc. (b) Performance when spikes were counted 
only for fi rst 50 ms, then only for the second 50 ms, etc. Upper trace: performance of the animal; lower 
trace: performance when spikes were counted only for the period indicated at the top of the panel. 
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 These fi ndings about the neural codes have signifi cant implications for how down-
stream neurons must perform their computations — they argue that simple coarse 
coding algorithms built around spike counting, pooling, and so on, are not realistic, 
at least at the retina/brain interface, and new models — those that take into account 
additional features of the spike train — need to take their place, as these additional 
features, such as temporal correlations, carry essential meaning. 

 The fi ndings also raise the intriguing issue of generalization. The problem of 
fi nding the neural code has often been likened to the problem of fi nding the 
genetic code, but while there is one genetic code (the relevant quantity or  “ unit of 
information ”  is always 3 nucleotides = 1 codon), it is not clear that there will 
be only one neural code. The results we presented here apply to the transfer of 
information from a periphery to the brain, a transfer that may require a particularly 
information-rich code. There is the intriguing possibility that the brain switches 
coding strategies when faced with problems with different constraints (e.g., motor 
control). 

 Other Indexes for Testing the Viability of Neural Codes 

 In the preceding experiments, we used the best performance of a Bayesian decoder 
as an index to test the viability of neural codes. Another index that can be used for 
this purpose is Shannon ’ s mutual information. These two indexes represent the 
extremes of a continuum of indexes that provide rigorous tests of neural codes 
( Victor and Nirenberg, 2008 ). A recent study discusses the merits of the different 
indexes, that is, under what conditions to use them, as they differ in numerous ways, 
such as their sensitivity to the loss of information that occurs when neural activity 
is converted into a behavioral response (response discretization), their sensitivity to 
the decision criterion used in performing a task, as well as in their bias and variance 
characteristics. 

 The main fi ndings can be summarized as follows: Shannon-like indexes fall short, 
that is, they fail to eliminate codes that are nonviable, under conditions where the 
fi ring patterns that represent the different stimuli differ substantially in certainty, 
because these differences get suppressed (i.e., information gets lost) when the code 
is converted to a behavior. Bayes-like indexes provide stronger tests than Shannon-
like indexes under these conditions, but the advantage can depend on knowing what 
the decision rule for the task is; for quantitative discussion, see  Victor and Nirenberg, 
2008 ). With respect to statistical properties, Bayes-like indexes tend to have greater 
bias and variance than Shannon-like indexes for responses close to threshold, but 
smaller bias and variance away from threshold.   
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 Appendix 

 Decoding Ganglion Cell Spike Trains 

 Briefl y, we estimate the probability that a particular stimulus,  s , was presented, given 
that a particular set of ganglion cell responses,  r , occurred. We denote this probabil-
ity  p ( s | r ). We fi nd it by presenting each stimulus repeatedly, recording the resulting 
ganglion cell responses, and estimating the conditional response distribution,  p ( r | s ). 
We then use Bayes theorem,  p ( s | r ) =  p ( r | s ) p ( s )/ p ( r ), to determine  p ( s | r ) from  p ( r | s ). 

 We then use  p ( s | r ) to perform the task. In the task, there are two stimuli, a grating 
and a gray screen. Each produces a set of responses. The question we ask on each 
trial of the task is: which of the two sets of responses corresponds to the grating? 
Letting  r  1  and  r  2  be the responses to the two stimuli,  s 1   and  s 2   respectively, we answer 
this by comparing  p ( s 1   = grating| r  1 ) to  p ( s 2   = grating| r  2 ). If the fi rst quantity is larger, 
we say that  r  1  corresponds to the grating; otherwise, we say that  r  2  does. (We use 
half the responses, chosen at random, to generate  p ( r | s ), and the other half to 
perform the task, i.e., standard cross-validation.) 

 This approach gives us natural way to test different codes, as different codes cor-
respond to different treatments of  r . To test the spike count code, we treat  r  as spike 
count; to test the spike timing code, we treat  r  as a set of spike arrival times and 
assume that the occurrence of a spike is independent of the occurrences of other 
spikes; and to test the temporal correlation code, we also treat  r  as a set of spike 
arrival times, but, this time, assume that the occurrence of a spike is  not  independent 
of the occurrences of other spikes; the specifi c dependence we assumed was a depen-
dence on the time of the previous spike on the same spike train. (Note that the same 
length of response is used; the difference is in the treatment of the responses.) 

 The following shows how the response distribution,  p ( r | s ), for each code was 
constructed: For the spike count code,  r  =  n  = {the number of spikes in a stimulus 
presentation (which was 300 ms long, shorter than the time between saccades). 
Since each trial of the task involves multiple cells and multiple looks (i.e., multiple 
stimulus presentations), we use  n il   to denote spike count from cell  i  on look  l , and 
write 

  
p r p nil

il
spike count code |s |s( ) = ( )∏

   
(2.1)

 

 This assumes independence among cells and also across looks. 
 For the spike timing code, the probability of a response given a stimulus follows 

that of an inhomogeneous Poisson process. Here  r  is a list of spike times at resolu-
tion  dt , denoted  t ijl   where  t ijl   is the  j th spike on the  l th look of cell  i , this probability 
is given by 
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p r s t s dt dtvi ijl

ijl
i

T

spike timing code  (( | ) | ) exp=
⎡

⎣
⎢

⎤

⎦
⎥ −∏∏ ν

0∫∫∑⎡
⎣⎢

⎤
⎦⎥i

t s( | )
   

(2.2) 

 where  ν   i  ( t | s ) is the fi ring rate of cell  i  at time  t , given that stimulus  s  was presented, 
and the upper and lower limits (0 and  T ) correspond to the start and end of each 
trial. Equation (2.2) was obtained in the standard way, as follows: Time is discretized 
into bins of size  dt  with  dt  small enough to ensure that that there is at most one 
spike per bin. One then proceeds though the bins and writes down the probability 
of observing a spike or  “ no-spike ”  in each bin. If there is a spike, the probability is 
 ν   i  ( t | s ) dt ; if there is no spike (i.e., the bin is empty), the probability is (1  –   ν   i  ( t | s ) dt ). 
Multiplying the terms together for all bins and taking the small  dt  limit gives us 
equation (2.2). (In the small  dt  limit, the product of all the terms with (1  –   ν   i  ( t | s ) dt ) 
results in the exponential term in equation (2.2).) 

 For the temporal correlation code, again  r  is a list of spike times at resolution  dt , 
denoted  t ijl  , but this time the fi ring rate has an additional dependence on the time 
of the previous spike on the same spike train, 

  
p r s v t t s

i ijl ijl
ij

temporal correlation code  (( | ) , ( ) | )=
⎡

⎣
⎢

⎤∏ τ
⎦⎦
⎥ −⎡

⎣⎢
⎤
⎦⎥∫∑∏ exp , ( ) | )dtv t t s

i

T

il

( τ
0

  
(2.3) 

 where   τ   ( t ) is the time interval between  t  and the spike that preceded  t  on the same 
neuron (e.g.,   τ   ( t ijl  ) =  t ijl    –   t i,j-1,l  ). 

 Note that we fi nd  p ( r | s ) in equations (2.1) – (2.3) by factorizing it, that is, we 
compute it from the marginals. Thus, when we decode, we fi nd  p ( s | r ) from the factor-
ized  p ( r | s ), as given in equations (2.1) – (2.3). The justifi cation for this comes from 
studies by several different groups (Nirenberg et al., 2001; Golledge et al., 2003; 
Petersen, Panzeri, and Diamond, 2001; Averbeck and Lee 2003; Oram et al., 2001; 
Meytlis et al., 2009) that show that factorizing  p ( r | s ) has little or no effect on the 
estimation of  p ( s | r ) for all  r  that occur. ”  

 Note also that equations (2.1) – (2.3) do not imply that spatial relations are dis-
rupted. (The subscripts on the equations indicate this.) Within each retina, each 
neuron retains its spatial position relative to the stimulus and relative to the other 
neurons, as shown in   fi gure 2.6  (plate 3).    

 Computing Instantaneous Firing Rates for Equations (2.2) and (2.3) 

 The procedure for fi nding   ν  ( t | s ) and   ν  (t , τ  ( t ) |s ) from spike train data was as follows: 
For   ν  ( t | s ), we followed the method of Kass and Ventura ( 2001 ). Briefl y, we presented 
the stimulus repeatedly, binned the responses at 1 ms, and on each trial determined 
whether or not there was a spike in each of the bins. Given this trial-by-trial data, 
we parameterized   ν  ( t | s ) with cubic splines, and used maximum likelihood to esti-
mate the spline parameters. We used cubic splines because they provide a way to 
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capture fi ring rate changes, including sharp transitions, but require a small number 
of parameters ( DiMatteo et al., 2001 ). In the experiments described here, the ratio 
of spikes to parameters was large: the mean number of knots (and thus the mean 
number of parameters) averaged over our dataset was 4.6, with a maximum of 12 
and a minimum of 3. Given that we had, on average, 210 spikes/trial, this means we 
had ~46 spikes per parameter. 

 To fi nd the fi ring rate conditioned on previous spikes (as well as stimulus), 
  ν  (t , τ  ( t ) |s ), we again presented the stimulus repeatedly and determined, on each trial, 
whether or not there was a spike in each 1 ms bin. We then wrote the fi ring rate as 
the product of two terms:   ν  ( t, τ  ( t ) |s ) =   ν  1  ( t | s )  ν  2  (  τ   ( t ) |s ) ( Berry and Meister, 1998; 
Miller and Mark, 1992 ). Both terms were parameterized, based on the trial-by-trial 
data, using cubic splines and, again, maximum likelihood was used to estimate the 
spline parameters. We used four knots for the second term, and the same number 
(but not placement) of knots for the fi rst. Thus, for the correlation code, we had 
approximately 24 (210/(4.6 + 4)) spikes per parameter, again, a large spike to param-
eter ratio. The strong performance of this code compared to behavior suggests that 
(at least within the current experimental conditions) it is not necessary to look for 
more complex codes (e.g., those involving higher order correlations among spikes).   

 Figure 2.6 (plate 3) 
 Decoding ganglion cell responses, an illustration. The grating indicates a stimulus, and the circles indicate 
the receptive fi eld positions of an array of cells relative to it. The traces below show the responses of 
several of the cells to one presentation of the stimulus. When we decode, we decode the joint response 
for the population — that is, we decode a vector, whose components are the responses of the cells on that 
stimulus presentation. When we assume the spike count code, the components are single numbers, spike 
counts. When we assume the spike timing or temporal correlation codes, the components are sets of spike 
arrival times. For the formal description of each code, see the appendix. 



68 Sheila Nirenberg

 Acknowledgments 

 We thank Jonathan Victor and Chethan Pandarinath for helpful discussion and 
Cassie Youngstrom for comments on the manuscript. We also thank the Proceedings 
of the National Academy of Sciences, for several of the fi gures were adapted from 
Jacobs et al. (2009). 

 References 

   Abeles   M ,  Bergman   H ,  Margalit   E ,  Vaadia   E .  1993 .  Spatiotemporal fi ring patterns in the frontal cortex 
of behaving monkeys.    J Neurophysiol    70 :  1629  –  1638 .  

   Averbeck   BB ,  Lee   D .  2003 .  Neural noise and movement-related codes in the macaque supplementary 
motor area.    J Neurosci    23 :  7630  –  7641 .  

   Averbeck   BB ,  Lee   D .  2004 .  Coding and transmission of information by neural ensembles.    Trends Neurosci   
 27 :  225  –  230 .  

   Balkema   GW ,  Jr ,  Pinto   LH .  1982 .  Electrophysiology of retinal ganglion cells in the mouse: a study of 
a normally pigmented mouse and a congenic hypopigmentation mutant, pearl.    J Neurophysiol    48 : 
 968  –  980 .  

   Berry   MJ ,  Meister   M .  1998 .  Refractoriness and neural precision.    J Neurosci    18 ( 6 ):  2200  –  2211 .  

   Bialek   W ,  Rieke   F ,  de Ruyter van Steveninck   RR ,  Warland   D .  1991 .  Reading a neural code.    Science    252 : 
 1854  –  1857 .  

   Borst   A ,  Theunissen   F .  1999 .  Information theory and neural coding.    Nat Neurosci    2 :  947  –  957 .  

   Carcieri   SM ,  Jacobs   AL ,  Nirenberg   S .  2003 .  Classifi cation of retinal ganglion cells: a statistical approach.  
  J Neurophysiol    90 :  1704  –  1713 .  

   Cover   TM ,  Thomas   JA .  1991 .   Elements of information theory .   New York :  Wiley .  

   Dhingra   NK ,  Kao   YH ,  Sterling   P ,  Smith   RG .  2003 .  Contrast threshold of a brisk-transient ganglion cell 
in vitro.    J Neurophysiol    89 :  2360  –  2369 .  

   DiMatteo   I ,  Genovese   CR ,  Kass   RE .  2001 .  Bayesian curve-fi tting with free-knot splines.    Biometrika    88 : 
 1055  –  1071 .  

   Doi   M ,  Uji   Y ,  Yamamura   H .  1995 .  Morphological classifi cation of retinal ganglion cells in mice.    J Comp 
Neurol    356 :  368  –  386 .  

   Gawne   TJ ,  Richmond   BJ ,  Optican   LM .  1991 .  Interactive effects among several stimulus parameters on 
the responses of striate cortical complex cells.    J Neurophysiol    66 ( 2 ):  379  –  389 .  

   Gelman   A ,  Carlin   JB ,  Stern   HS ,  Rubin   DB .  1995 .   Bayesian data analysis .   London :  Chapman and 
Hall .  

   Golledge   HD ,  Panzeri   S ,  Zheng   F ,  Pola   G ,  Scannell   JW ,  et al .  2003 .  Correlations, feature-binding and 
population coding in primary visual cortex.    Neuroreport    14 :  1045  –  1050 .  

   Jacobs   AL ,  Fridman   G ,  Douglas   RM ,  Alam   NM ,  Latham   PE ,  Prusky   GT ,  Nirenberg   S .  2009 .  Ruling out 
and ruling in neural codes.    Proc Natl Acad Sci USA    106 :  5936  –  5941 .  

   Jeon   CJ ,  Strettoi   E ,  Masland   RH .  1998 .  The major cell populations of the mouse retina.    J Neurosci    18 : 
 8936  –  8946 .  

   Johnson   DH ,  Ray   W .  2004 .  Optimal stimulus coding by neural populations using rate codes.    J Comput 
Neurosci    16 :  129  –  138 .  

   Kass   RE ,  Ventura   V .  2001 .  A spike-train probability model.    Neural Comput    13 :  1713  –  1720 .  

   MacLeod   K ,  Backer   A ,  Laurent   G .  1998 .  Who reads temporal information contained across synchronized 
and oscillatory spike trains?    Nature    395 :  693  –  698 .  



Strategies for Finding Neural Codes 69

   Meytlis ,  M ,  Bomash ,  I ,  Pillow ,  JW , Nirenberg. S.  2009 . Assessing the importance of correlated fi ring using 
large populations of neurons. SFN abstract, in press.  

   Miller   MI ,  Mark   KE .  1992 .  A statistical study of cochlear nerve discharge patterns in response to complex 
speech stimuli.    J Acoust Soc Am    92 ( 1 ):  202  –  209 .  

   Nirenberg   S .  2006 .  Ruling out neural codes.    J Vis    6 :  889a .  

   Nirenberg   S ,  Carcieri   SM ,  Jacobs   AL ,  Latham   PE .  2001 .  Retinal ganglion cells act largely as independent 
encoders.    Nature    411 :  698  –  701 .  

   Nirenberg   S ,  Latham   PE .  2003 .  Decoding neuronal spike trains: how important are correlations?    Proc 
Natl Acad Sci USA    100 :  7348  –  7353 .  

   Oram   MW ,  Hatsopoulos   NG ,  Richmond   BJ ,  Donoghue   JP .  2001 .  Excess synchrony in motor cortical 
neurons provides redundant direction information with that from coarse temporal measures.    J Neuro-
physiol    86 :  1700  –  1716 .  

   Oram   MW ,  Xiao   D ,  Dritschel   B ,  Payne   KR .  2002 .  The temporal resolution of neural codes: does response 
latency have a unique role?    Philos Trans R Soc Lond B Biol Sci    357 :  987  –  1001 .  

   Parker   AJ ,  Newsome   WT .  1998 .  Sense and the single neuron: probing the physiology of perception.    Annu 
Rev Neurosci    21 :  227  –  277 .  

   Petersen   RS ,  Panzeri   S ,  Diamond   ME .  2001 .  Population coding of stimulus location in rat somatosensory 
cortex.    Neuron    32 :  503  –  514 .  

   Prusky   GT ,  West   PW ,  Douglas   RM .  2000 .  Behavioral assessment of visual acuity in mice and rats.    Vision 
Res    40 :  2201  –  2209 .  

   Remtulla   S ,  Hallett   PE .  1985 .  A schematic eye for the mouse, and comparisons with the rat.    Vision Res   
 25 :  21  –  31 .  

   Romo   R ,  Salinas   E .  2001 .  Touch and go: decision-making mechanisms in somatosensation.    Annu Rev 
Neurosci    24 :  103  –  137 .  

   Ruderman   DL ,  Bialek   W .  1994 .  Statistics of natural images: Scaling in the woods.    Phys Rev Lett    73 : 
 814  –  817 .  

   Sagdullaev   BT ,  McCall   MA .  2005 .  Stimulus size and intensity alter fundamental receptive-fi eld properties 
of mouse retinal ganglion cells in vivo.    Vis Neurosci    22 :  649  –  659 .  

   Shadlen   MN ,  Newsome   WT .  1994 .  Noise, neural codes and cortical organization.    Curr Opin Neurobiol    4 : 
 569  –  579 .  

   Stone   C ,  Pinto   LH .  1993 .  Response properties of ganglion cells in the isolated mouse retina.    Vis Neurosci   
 10 :  31  –  39 .  

   Theunissen   F ,  Miller   JP .  1995 .  Temporal encoding in nervous systems: a rigorous defi nition.    J Comput 
Neurosci    2 :  149  –  162 .  

   van Vreeswijk   C .  2004 .  What is the neural code?  In   23 problems in system neuroscience  , ed.  J. L. 
  van Hemmen  and  T.   Sejnowski.  New York: Oxford University Press.  

   van Vreeswijk ,  C ,  Somplinsky ,  H.   1996 .  Chaos in neuronal networks with balanced excitatory and inhibi-
tory activity .   Science    274 :  1724  –  1726 .  

   Victor   JD .  1999 .  Temporal aspects of neural coding in the retina and lateral geniculate.    Network    10 : 
 R1  –  R66 .  

   Victor   JD ,  Nirenberg   S .  2008 .  Indices for testing neural codes.    Neural Comput    20 :  2895  –  2936 .  

   Wichmann   FA ,  Hill   NJ .  2001a .  The psychometric function: I. Fitting, sampling, and goodness of fi t.    Percept 
Psychophys    63 :  1293  –  1313 .  

   Wichmann   FA ,  Hill   NJ .  2001b .  The psychometric function: II. Bootstrap-based confi dence intervals and 
sampling.    Percept Psychophys    63 :  1314  –  1329 .  

   Williams   RW ,  Strom   RC ,  Rice   DS ,  Goldowitz   D .  1996 .  Genetic and environmental control of variation 
in retinal ganglion cell number in mice.    J Neurosci    16 :  7193  –  7205 .  

    

  


	Contents
	Series Foreword
	Preface
	Introduction: A Guided Tour to the book
	I THEORY AND EXPERIMENT
	Grandmother Cells and Distributed Representations
	Strategies for Finding Neural Codes
	Multineuron Representations of Visual Attention
	Decoding Early Visual Representations from fMRI Ensemble Responses
	Understanding Visual Representation by Developing Receptive-Field Models
	System Identifi cation, Encoding Models, and Decoding Models: A Powerful New Approach to fMRI Research
	Population Coding of Object Contour Shape in V4 and PosteriorInferotemporal Cortex
	Measuring Representational Distances: The Spike-Train Metrics Approach
	The Role of Categories, Features, and Learning for the Representation of Visual Object Similarity in the Human Brain
	Ultrafast Decoding from Cells in the Macaque Monkey
	Representational Similarity Analysis of Object Population Codes in Humans, Monkeys, and Models
	Three Virtues of Similarity-Based Multivariate Pattern Analysis: An Example from the Human Object Vision Pathway
	Investigating High-Level Visual Representations: Objects, Bodies, and Scenes
	To Err Is Human: Correlating fMRI Decoding and Behavioral Errors to Probe the Neural Representation of Natural Scene Categories
	Decoding Visual Consciousness from Human Brain Signals
	Probabilistic Codes and Hierarchical Inference in the Brain

	II BACKGROUND AND METHODS
	Introduction to the Anatomy and Function of Visual Cortex
	Introduction to Statistical Learning and Pattern Classifi cation
	Tutorial on Pattern Classifi cation in Cell Recording
	Tutorial on Pattern Classifi cation in Functional Imaging
	Information-Theoretic Approaches to Pattern Analysis
	Local Field Potentials, BOLD, and Spiking Activity: Relationships and Physiological Mechanisms

	Contributors
	Index
	Plates

