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Frequency Synthesizers (SX)

• System level & concepts

• SX principles 

• Phase-locked loop
• ”theory” / CP-PLL  / ADPLL

• Oscillators
• Ring & LC

• Frequency dividers

• Quadrature generation
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SX Requirements

• Frequency span  --- cover the required bandwidth + margin for PVT 

• Channel spacing & settling time

• Phase noise  

• IQ-generation  --- Amplitude and phase imbalance (IRR)
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Impact of Phase Noise

Phase noise requirement depends on:

• Channel spacing

• Modulation method (eg. compare QAM-16 vs. QAM-256)

• Required sensitivity and selectivity

• Specified environment (”hostile” / ”friendly”)

• TX: emission mask
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Phase noise impacts

IQ-constellation 
Reciprocal mixing

In TX, phase noise causes out-of-band spurious emission. 
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Frequency Synthesis Methods

1. Direct analog synthesis

2. Direct digital synthesis

3. Indirect digital synthesis

4. Indirect analog synthesis

”DDS”

”PLL”

”DAS”
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Direct Analog Synthesis (DAS)

Main problem for RF IC implementation: good filters can not be integrated.

DAS is in use e.g. in measurement instruments – High perf, high price
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• Filters are filter banks and/or tunable filters

• Amplifiers not drawn

• Chain may include dividers as well
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Direct Analog Synthesis

At RF IC context we may use simplified versions of DAS.

”Manipulate a frequency tone with basic mathematical operators” 

- addition → mixer

- substraction → mixer

- division → frequency divider

- multiplication  → frequency doubler / tripler
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Direct Digital Synthesis (DDS)

Problems: 

needs a high-speed D/A

needs fclock > 3* fout

DDS is used in base stations and LF radios (e.g. military)

Enables very complex modulations (military)

Phase 

Accumulator

clock

data ROM D/A

time-sampled

phase

time-sampled

amplitude

analog

signal



Department of Electronics and Nanoengineering
Kari Stadius, Saeed Naghavi, Kimi Jokiniemi

Integrated RF circuits

Spring 2023

Indirect Frequency Synthesis -- Phase-Locked Loop

Basic idea is to lock the oscillator into the incoming signal using a feedback loop.

Compare to: feedback amplifier analysis in electronics

feedback systems in control theory and automation

 VCO PDf
Ref

f
out

 VCO PDf
Ref

f
out

1/N



Department of Electronics and Nanoengineering
Kari Stadius, Saeed Naghavi, Kimi Jokiniemi

Integrated RF circuits

Spring 2023

Integer-N PLL:

• reference frequency = channel spacing

• if N is very large

• stability requires loop-BW < fref/10   → loop-BW small 

→ long settling time & poor phase noise reduction at high offset

• ref. source & PD noise is multiplied by N  

• Recall: GSM1800 ch. spacing=200 kHz, N~10000 

Basic integer-N PLL is not good for small channel-spaced systems

 Improvments on PLL architecture (mixers in loop, dual-loop, frac-N PLL)
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• With the aid of dual-modulus divider division ratio can be set to N...N+1

Example: TA/(TA+TB)=90%, TB/(TA+TB)=10% and N=100 => Neff  100.1

→ Frac-N PLL provides small channel step and still large loop-BW.

• Main problem : ”fractional spurs” 

→Can be partly compensated by randomizing the timing

and using  noise shaping.
(for details, Razavi presents an easy-to-read presentation in RF Microelectronics)

• Frac-N PLL requires more hardware and suffers from high spurios content

and increased noise level compared to int-N PLL.

→ use only when integer-N is not feasible.

Fractional-N Concept
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Charge-Pump PLL

PFD

1/N1

fOUT

VCO

1/N2

Loop Filter

Phase-Frequency 

Detector
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DW
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Impact of Technology Evolution

“Simple PD” (mixer)

PLL

Charge-pump

PLL

All-digital

PLL

1990 2000 2010

Recall our earlier paradigm changes, e.g.

• GaAs MESFET → Si Bipolar → CMOS

• Superheterodyne receiver → DCR

• Monolithic capacitors:  vertical field → lateral field

• Gilbert cell mixer → current-mode passive mixer

“In a highly-scaled CMOS technology, time-domain resolution of a digital 

signal edge transition is superior to voltage resolution of analog signals”

R. Bogdan Staszewski

Manager of 

TI’s DRP group 
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All-Digital PLL

TDC

1/N

fOUT

DCO

Loop 

Filter Dither
fREF

FCW ∑ Tune

• Frequency control word (FCW) defines the target frequency

• Time-to-Digital converter (TDC) describes the output frequency with a digital word

• Error signal (digital) is filtered in the digital loop filter  

• Digital-controlled oscillator (DCO) is tuned accordingly

• Dithering (compare to frac-N principle) is used to achieve fine frequency step

• Prescaler used to lower fout (only if needed!) (65-nm CMOS: TDC fmax~1.7 GHz)
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Oscillators

Oscillator is an autonomous device which generates a waveform

→ It converts power from DC to  ”AC”

Variable frequency oscillator converts a control signal into frequency

→ information is converted from one mode to another

• VCO – voltage-controlled oscillator

• ICO – current-controlled oscillator

• DCO – digitally controlled oscillator

Oscillator waveform can be

• Sinusoidal  : low level of higher harmonics

• Square : high level of higher harmonics, ”clock signal”

• ramp or triangular is used at LF control circuits
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Oscillator Classification

oscillation mode oscillator structure 

• Stable (no oscillation)

• Harmonic (sinusoidal)

• Relaxation

• Chaotic

• Phase shift (RC)

• Gm-C

• Crystal

• Multivibrator

• Ring 

• LC

No correlation !!
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Oscillator Terms and Figures of Merit  

• Tuning Range : ratio of maximum and minimum oscillation frequency

• VCO gain (KVCO) and its deviation (linearity)

• Output power (preferably constant)

• supply voltage / current consumption / power efficiency

• Distortion in ”sinusoidal” oscillators

• Temperature stability (freq/T)

• Pushing (PSRR) (freq/supply)

• Pulling (load) : Frequency shift caused by load impedace variation

• Pulling (injection) : Frequency shift caused by external disturbance

• Phase Noise / Jitter

• Die Area (IC implementation) / Component count (discreate circuits)

nconsumptioPowerNoisePhase

RangeTuning
FOM






Department of Electronics and Nanoengineering
Kari Stadius, Saeed Naghavi, Kimi Jokiniemi

Integrated RF circuits

Spring 2023

Ring Oscillator

0 1 0 1

1 0 1 0

0 1 0 1
Real implementation is differential and 

simple cross-coupling creates proper fb.

+ can be transistor-only circuit 

→ small area

+ Easy to tune, large tuning range

 power cons. is relative to freq.

(although follows technology-nodes)

moderate (poor) phase noise  
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LC Oscillator

Is negative resistor a plausible device at all?

Gloss Gneg
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−
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negloss
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GG
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LC Oscillator

Is negative resistor a plausible device at all?

Transconductor in unity feedback Gunn diode

Gloss Gneg

0

1

−

=

negloss

osc

GG

LC


i=gmvin
vin

vout

-vout

I

V

)( outm

out
in

vg

v
R

−
=



Department of Electronics and Nanoengineering
Kari Stadius, Saeed Naghavi, Kimi Jokiniemi

Integrated RF circuits

Spring 2023

Negative Conductance : Unity Feedback 
(most of modern RFIC VCOs use these)

• Cross-coupled pair (CCP) :  NMOS / PMOS / CMOS

• Biasing : top / bottom / none

• Advanced techniques like noise filtering

→ Really many different topologies exist
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CMOS Cross-Coupled Pair
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Negative conductance : reactive feedback
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Some Classical Oscillators
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Linear Analysis Methods
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3) Nodal Equation
See details:

L. Larson : RF and microwave circuit

design for wireless communications
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Example: Common-Drain Colpitts
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Oscillator Phase Noise

Intuitive approach : ”noise mixing”

• Oscillator is a nonlinear circuit

• oscillation swing is ”internal LO”

• noise (int. & ext.) is mixed into carrier

• fb-loop performs filtering 

Intuitive approach II : ”Frequency modulation”

• Oscillator is a VCO & ICO

• noise is modulating the oscillator frequency

noise
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Low phase noise

→ Minimize nonlinearity

→ Minimize KVCO and other sensitivities

Narrowband FM

approximation
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Oscillator Phase Noise 

Consider ideal parallel LCR-type oscillator with noiseless Gneg.

There are losses in the resonator and corresponding noise source is 

Impedance of the LC-tank 

Tank quality factor 

We have

Noise voltage is

This is both amplitude and phase noise. Oscillator performs amplitude 

clipping → no amplitude noise. Thus, divide above by two. Also recall

Noise-to-carrier ratio is 
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Leeson’s Phase Noise Model
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Heurestical model (based on experiments) 

• fc is 1/f-noise corner → close-in noise 

• constant term ”1” is included to 

describe the noise floor

• F is for additional noise due to –gm
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 fc is not the same as device’s 1/f-corner

 F is difficult to estimate a priori

 Based on linear time-invariant model
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Frequency Dividers

→ There is a frequency limit, set by  the limited speed of dynamic logic or increased power 

consumption, where static logic becomes superior.

With 65-nm CMOS this limit is in range of 2-3 GHz, in 28-nm at  5-7 GHz. 

CVfP ddDC = 2

Static logic (SCL = source-coupled logic)

• ”memory” element has continious current

• devices have constant bias (no saturation)

• no speed limitation (as with dyn. logic)

• power – frequency dependency weaker

• differential signals (dyn. logic single-ended)

→ Better immunity to noise, glitches etc.

Dynamic logic: 

• ”memory” element needs to be refreshed

• transistors operate as switches

• many logic families 

• on/off switching → limited speed 

• power consumption is related to speed :

• speed scales with the technology

• power consumption scales with the technology

From RF designer’s point of view there are two types of logic: dynamic & static
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SCL D-flipflop divider

• D-flipflop in unity feedback is a divide-by-two circuit 

• D-flipflop consists of two D-latches

D-latch
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f
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TRACK HOLD
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Divider Chains
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Asynchronous chain

Divide by  2N

Johnson counter

Divide by  2N

Dual-modulus

dividers

D    Q

  DFF

 QX  
D    Q

  DFF

 QX  
D    Q

  DFF

 QX  

D    Q

  DFF

 QX  
D    Q

  DFF

 QX  
D    Q

  DFF

 QX  
D    Q

  DFF

 QX  

• Power consumption

lower after each division

• Higher noise (jitter)

• Each DFF runs at fin
→higher power cons.

• smaller noise (jitter)
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IQ Generation
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Four LO signals needed:

0° / 90° / 180° / 270°

IQ amplitude and phase 

balance (IRR) very important.

1. RC phase shifters → polyphase RC filter

2. Divide-by-two circuit

3. Quadrature oscillators
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RC Phase Shifters

vin

vinI Q
Qp  ( 90 deg)

Im   ( 180 deg)

Qm ( 270 deg)

Ip   ( 0 deg)

constant IQ phase balance constant IQ amplitude balance

• Narrow bandwidth

• Sensitive to process spread

• Post-tuning possible

• Clipping amplifier helps

RC-CR network
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Divide-by-two IQ Generation

D-latch

D                 Q

DX            QX

        CLK

D-latch

D                 Q

DX            QX

        CLK

DFFIN

I Q

• Wide bandwidth

• Compact size, easy to design well

• IRR limited by latch matching

• Requires double-freq signal

• Non-perfect input signal:

• Amplitude error => phase error

• Phase error attenuates a bit
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Quadrature Oscillators

  

0° 90° 180° 270° 0°

Oscillator 2Oscillator 1     0    90  180 

 270      0  180 

• Quadrature coupling results

in increased phase noise

• Large die area
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Summary

• SX requirements, impact of phase noise, IQ imbalance (IRR)

• DAS /  DDS  /  PLL  

• CP-PLL  

• ADPLL

• Oscillators: Ring & LC

• LC-oscillators: unity feedback / reactive feedback

• Phase noise

• Frequency Dividers: dynamic ”CMOS” / static ”SCL”

• IQ signal generation: RC polyphase / Div-2 / quadrature osc. 
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Self-Learning Assignment 5

Objective is to familiarize yourself with frequency synthesizers.

All-digital phase-locked loops have become the main research and 

product development trend in the field of RF IC frequency synthesizers. 

This topic also serves as an example of "digital RF".

Read a journal paper and find answers to some questions.

You can find the assignment from 

MyCourses / Self-learning Assignments /  SLA 5

Return your answer as a pdf-file to Return Box in the same page.
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Last Meeting Tuesday 16.5. 

Wrap-up & project presentations

PROJECT PRESENTATION

1) Create a slide set that represents your circuit and simulation results.

2) Return it to MyCourses / Project Work Return Box as a PDF file.

3) Prepare to present your work. Presentation should last about 10 

minutes (= 5…7 slides).

4) Participation as audience is a part of the course. Therefore, reserve 

enough time for the last meeting.


