
Testing+
Nikolai Denissov

1



0. ToC

1. Testing (I talk)
2. Example (I show & talk, you talk and guess)
3. Tooling (I talk again)
4. Real world project example (I show, you investigate)
5. Discussion (everybody dance talk)

2



1. Testing

3



1.1 What is testing?

● Practice that allows to verify and validate the software.

Verify is for ensuring it works as it should.

Validate is for confirming the quality of the software (that it does not crash and 
burn of the very first use).

4



1.2. Testing flavours (1)

● Testing pyramid by the book

5



1.3. Testing flavours (2)

● Testing pyramid

Whatever 
tests

Unit tests

6

As automated 
as possible



1.4. What and how much to test?

What to test?

● Methods/functions
● Units (several methods/functions together)
● Service Interactions (Integration)
● UI
● ...

What to take into account?

● Effort
● Service expected lifespan
● Execution time

7



1.5. When to make tests?

● Whenever, as long as done

8



2. Example*

9



2.1. Task as a user story (yeeeey!)

As a researcher, I want to classify animals from the “Cat” family (Felidae).

We build an API endpoint, that takes a name of the animal from the “Cat” family as an input, and 
responds with a corresponding classification. 

AC:

We will “create” a “transformer” tool.

10



2.2. Task + AC

As a researcher, I want to classify animals from the “Cat” family (Felidae).

We build an API endpoint, that takes a name of the animal from the “Cat” family as an input, and 
responds with a corresponding classification. 

Acceptance Criteria aka AC:

1. CAT is a domestic animal.
2. TIGER is a wild animal.
3. …

Acceptance criteria are mostly about verify.

11



2.3. Task + better* AC

AC:

● Given a “CAT”, 

When the transformer is called, 

Then the result is “domestic animal”.

● Given a “TIGER”, 

When the transformer is called, 

Then the result is “wild animal”.

● Given no animal, 

When the transformer is called, 

Then the result is “no animal”.

● Given any animal, 

And the animal is neither “CAT nor 
“TIGER”,

When the transformer is called, 

Then the result is “unknown animal”.

12



2.4. Task + better* AC + quality parameters

How to ensure the proper quality:

● Common sense
● Peer review
● Team internal quality parameters aka DoD
● Quality verification tools

Continuing with the example:

● Access roles must be defined (also if none)
● For any endpoint, the @Swagger annotation must be provided to generate the docs
● Docs must contain basic use cases (at least the “sunny path”)
● Error handling, at least 4xx and 5xx must be provided
● Unit/Integration/e2e tests pass (from DoD)
● Response time is less than 2ms for valid input

13

Ask google/wiki about:
non-functional 
requirements

https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirement


2.4. OK, let’s code (Scala 2.13 styled)

14

What is the minimal amount of test 
cases is reasonable to have here?

● 0, it won’t compile even
● 2
● 4
● 5



2.5. Task change

AC:

● Given a “LION”, 

When the transformer is called, 

Then the result is “wild animal”.

15



2.5. OK, let’s code again (Scala 2.13 styled)

16

What happens to the existing tests?

How many test cases we should 
change?

● 0
● 1
● 2
● 5



2.6. OK, error handling (Scala 2.13 styled)

17

What is the minimal amount of test 
cases is reasonable to have here?

● 0, it won’t compile even
● 2
● 4
● 5



2.7. Unit vs. Other tests

● It’s mostly the scope, that matters

2.9. How often to run tests?

● As often as possible...

2.8. What about the Testing Frameworks?

● Implementation language specific stuff: Play, ScalaTest, Jest, Cypress, Selenium, etc.

18



3. Tooling

19



3.1. Automation

● How to run the tests often?
● How to run the tests with the least effort?
● When to use automation (and when not to)?

20



3.2. Automated Quality Analysis Tools

● Code static analysis tools I
○ IDE itself or via extensions 
○ linters
○ the compiler

● Code static analysis tools II
○ Sonar
○ Black Duck
○ Snyk
○ Fossa
○ Etc.

Take a look at GitHub student pack: https://education.github.com/pack

21

https://alternativeto.net/software/sonarqube/
https://alternativeto.net/software/black-duck-software/
https://snyk.io/
https://education.github.com/pack


3.3. Automation Deployment Tools

● Jenkins
● GitHub Actions
● GitLab CI
● Travis/Circle/Whatever CI
● Cloud-specific ones (Azure, AWS, GCP)

22



4. Real World Example

23



4.1. Intro

https://github.com/Aalto-LeTech/aplus-courses
24



4.2. Tests (1)

● Unit tests: 
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalt
o/cs/apluscourses/utils/ArrayUtilTest.java

● Platform tests (contract testing, in a way): 
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalt
o/cs/apluscourses/intellij/services/PluginSettingsTest.java

● API/Integration tests (against the external platform): 
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalt
o/cs/apluscourses/integration/ApiTest.java

25

https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalto/cs/apluscourses/utils/ArrayUtilTest.java
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalto/cs/apluscourses/utils/ArrayUtilTest.java
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalto/cs/apluscourses/intellij/services/PluginSettingsTest.java
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalto/cs/apluscourses/intellij/services/PluginSettingsTest.java
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalto/cs/apluscourses/integration/ApiTest.java
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalto/cs/apluscourses/integration/ApiTest.java


4.3. Tests (2)

● Concurrency testing: 
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalt
o/cs/apluscourses/utils/PostponedRunnableTest.java

● Manual testing: 
https://github.com/Aalto-LeTech/aplus-courses/blob/master/TESTING.md

● e2e testing: 

(private access) Forte DSL example

26

https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalto/cs/apluscourses/utils/PostponedRunnableTest.java
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalto/cs/apluscourses/utils/PostponedRunnableTest.java
https://github.com/Aalto-LeTech/aplus-courses/blob/master/TESTING.md
https://github.com/FinnishRail/forte-e2e-acceptance-tests/blob/91d84323635e26a451030ce3e796abad70b8c5a4/src/acceptance-tests/resources/features/SalesPayments/cash/sales_payments_station_clerk_flows_cash.feature


4.4. Tools

● Sonar: https://sonarcloud.io/project/issues?resolved=false&id=Aalto-LeTech_intellij-plugin
● Snyk: 

https://snyk.io/test/github/Aalto-LeTech/intellij-plugin?targetFile=build.gradle&tab=dependenci
es

● GitHub Dependabot: https://github.com/Aalto-LeTech/aplus-courses/pull/962
● GitHub Actions: 

https://github.com/Aalto-LeTech/aplus-courses/blob/redo-platform-tests-scala/.github/workflo
ws/build.yml

● Fossa: 
https://app.fossa.com/projects/git%2Bgithub.com%2FAalto-LeTech%2Fintellij-plugin/refs/bran
ch/master/141352a6ce81d4a5fa35e7066dc660644eef0b51/issues/licensing/2534509?filter=p
olicy_flag&revScanId=34721709

27

https://sonarcloud.io/project/issues?resolved=false&id=Aalto-LeTech_intellij-plugin
https://snyk.io/test/github/Aalto-LeTech/intellij-plugin?targetFile=build.gradle&tab=dependencies
https://snyk.io/test/github/Aalto-LeTech/intellij-plugin?targetFile=build.gradle&tab=dependencies
https://github.com/Aalto-LeTech/aplus-courses/pull/962
https://github.com/Aalto-LeTech/aplus-courses/blob/redo-platform-tests-scala/.github/workflows/build.yml
https://github.com/Aalto-LeTech/aplus-courses/blob/redo-platform-tests-scala/.github/workflows/build.yml
https://app.fossa.com/projects/git%2Bgithub.com%2FAalto-LeTech%2Fintellij-plugin/refs/branch/master/141352a6ce81d4a5fa35e7066dc660644eef0b51/issues/licensing/2534509?filter=policy_flag&revScanId=34721709
https://app.fossa.com/projects/git%2Bgithub.com%2FAalto-LeTech%2Fintellij-plugin/refs/branch/master/141352a6ce81d4a5fa35e7066dc660644eef0b51/issues/licensing/2534509?filter=policy_flag&revScanId=34721709
https://app.fossa.com/projects/git%2Bgithub.com%2FAalto-LeTech%2Fintellij-plugin/refs/branch/master/141352a6ce81d4a5fa35e7066dc660644eef0b51/issues/licensing/2534509?filter=policy_flag&revScanId=34721709


Drinks for stickers game

At any point during any discussion you can give away your “D” sticker to the 
person who speaks most actively or suggests best ideas.

For any 2 (two) “D” stickers you can get a warm soft drink 
as a reward for active participation, as talking makes you thirsty.

28


