
Little's law

Context

Little's law (quite a useful law)

Throughput time (TH) = Work In Process (WIP) x Cycle Time (CT)

= 20 mins

Little's Law: a worked example...

We need to mark 357 exam scripts in 5 days. A working day is 8 hours and it takes 0.5 hours to mark a script. How many markers are needed?

Throughput (Th) = Work In Process (WIP) x Cycle Time (CT)

40 hours = 357 x Cycle Time (CT)

CT= <u>40 hours</u> 357

CT= 0.112 hours

Number of markers= <u>Work content</u> Cycle time

Number of markers = $\frac{0.5 \text{ hour}}{0.112 \text{ h}}$

Number of markers= 4.464 → At least 5 markers needed.

Little's law – an example

Throughput time = WIP x Cycle Time

A hotel needs to check-in 500 customers in 5 days (working 7 hours a day). It takes 0.75 hours to check-in a customer. How many receptionist are needed?

Required throughput time (TH) = 5×7 hours = 35 hours

TH = WIP x Cycle time

Cycle time = $\frac{\text{TH}}{\text{WIP}}$ = $\frac{35h}{500}$ = 0.07h

Number of markers = $\frac{\text{Work content}}{\text{Cycle time}} = \frac{0.75 \text{ h}}{0.07 \text{ h}} = 10.71 \rightarrow \frac{11 \text{ receptionist needed}}{11 \text{ receptionist needed}}$

Little's Law: calculating process efficiency for a dress maker

We need to make 150 dresses in 5 days. A working day is 9 hours and it takes 1.5 hour to make one in our shop. How many dress makers are needed?

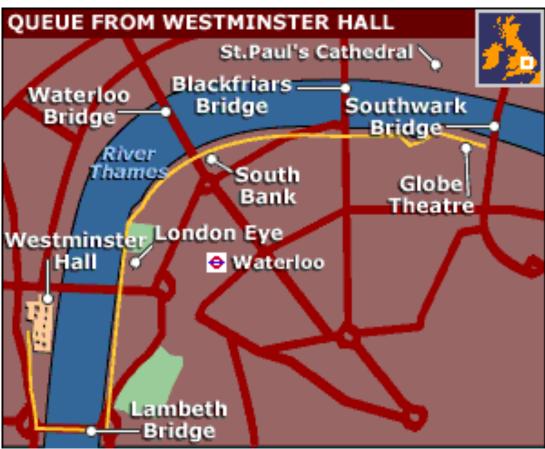
Throughput (Th)= Work In Process (WIP) x Cycle Time (CT)

In this example our TT is given to us **TT = 5 x 9 = 45 hours**

45 = 150 x CT ----- CT= 45/150 = 0.3hrs

Number of dress makers = <u>Work content</u> Cycle time

1.5/0.3 = 5 dress makers are needed


Throughput efficiency: refers to the work content needed to produce an item in a process expressed in terms of a percentage of total throughput time.

Throughput efficiency (%) = $\frac{\text{Work content}}{\text{Throughput time}} \times 100$

1.5 hrs / 45 hours = ~ 3% so our dress shop is 3% efficient which is not really that great. This means that each dress takes only 1.5 hours to be made but we delivered these dresses to the customers only after 5 days.

Let's use Little's Law

The image shows a queue starting from Westminster and ending at Globe Theatre.

If people are exiting the queue at Westminster Hall at a rate of 1 every 4 seconds, <u>where do you</u> <u>put "waiting time 5 hours" sign</u> <u>in this queue?</u>

Approx. distances from Hall to:

- Lambeth Bridge 500 metres
- London Eye 1400 metres
- South Bank 1800 metres
- Globe Theatre 3800 metres

Note: assume 3 people take 1 meter of queue

Well, let's do the maths

Cycle time = 4 sec. = 4/3600 h

 $TH = WIP \times Cycle time = 5h$

WIP = $\frac{TH}{CT} = \frac{5h * 3600}{4 h} = 4500$ (people)

4500 is the length of queue in terms of people, while we'd need meters.

How to calculate that?

Let's assume 3 people take 1 meter of queue

Distance from Hall = 4500 / 3 = 1500 (meters) (\rightarrow 100 meters behind London Eye)

Concluding points on Little's Law and Lean

 We can use Little's Law to analyze the impact of Throughput, WIP and Cycle Time on process performance