

For the Change Makers

Process IMPROVEMENT (3)

Agenda

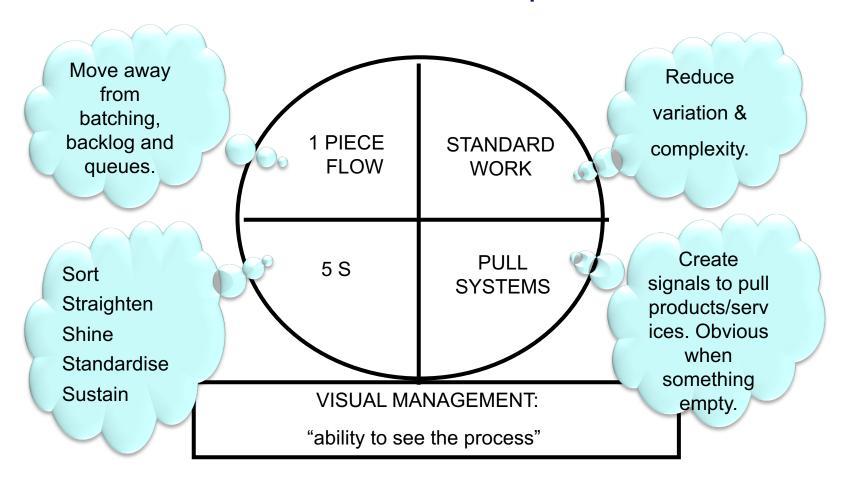
LEAN asynchronous

SIX SIGMA asynchronous

TQM asynchronous

BPR asynchronous

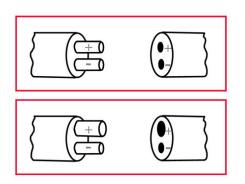
Recap of Process Improvement methods


Comparison of PI methods

Breakthrough versus continuous improvement

Lean Operations

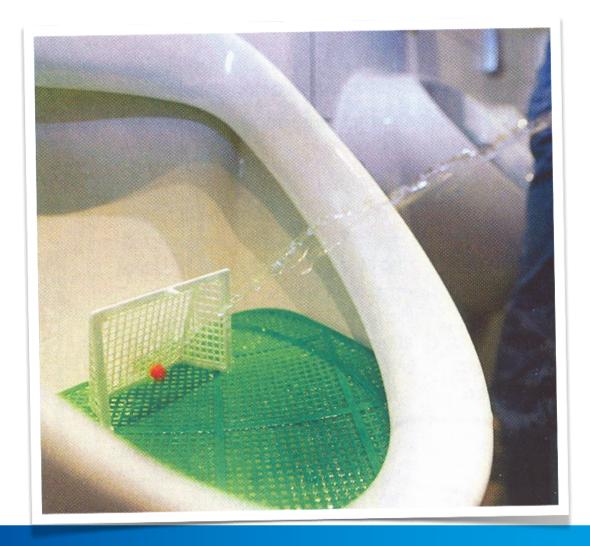
Basic Lean Principles



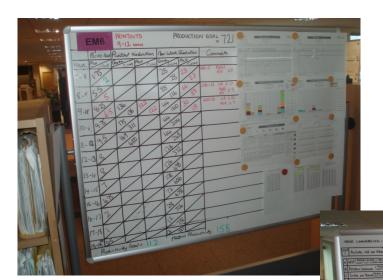
Class Exercise

Visual Prompts

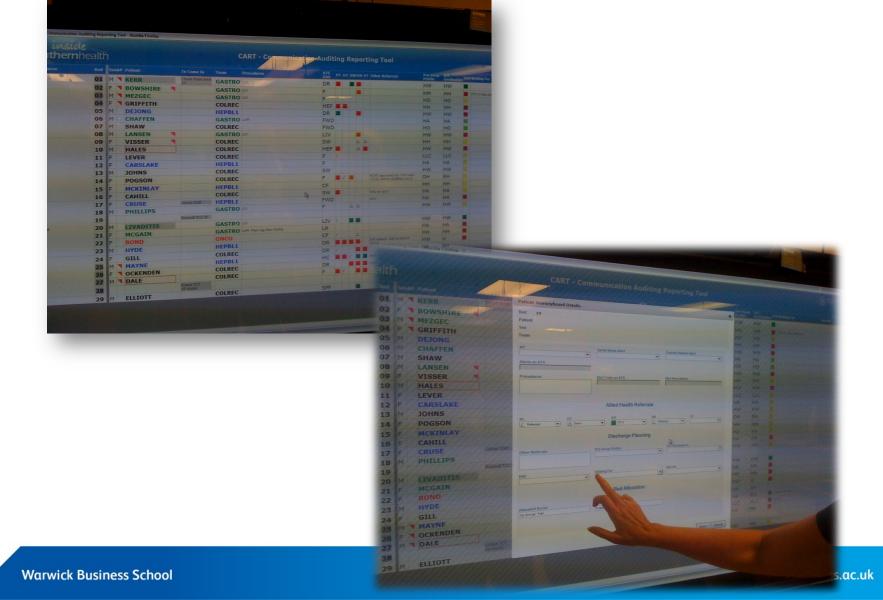
Poka Yoke: Mistake-proofing



How do you make this process failsafe?



Visual Management


Team Board

Resource Planning

Team Communications Hub

Types of waste

7 Types of waste:

- 1. Overproduction
- 2. Waiting time (time on hand)
- 3. Unnecessary transport
- 4. Process overprocessing or incorrect processing
- 5. Inventory
- 6. Motion Unnecessary movement
- 7. Defects

Source: Liker, 2003

Waste Categorization in IT (Wipro)

Waste Category	Examples (Software)
Transport	 Searching for required information (document, email etc.) Changing requirements, evolving requirements FTP /Copy
Inventory	■Frequent task switching results in half-baked inventory & loss of context ■Backlog, Over skill
Motion	■Customer deliverable going through multiple hands — customer, onsite co-ordinator, offshore team, ■Frequent travel between locations for reviews ■Test setup
Waiting	 Waiting for customer feedback, information, resources Waiting for completion of predecessor tasks, clarification on requirements
k Business Schoo	Delayed Reviews

Waste Category	Examples (Software)
Over- production	Duplicate test casesExtra featuresUnused features
Over- processing	 Redundant reviews, Irrelevant training, Duplicate builds Obsolete test cases Duplicate test cases Unnecessary meetings For every code drop, every engineer initiates ftp & does a build
Defects & Rework	 Defects Rework Poor documentation Incomplete documentation Efforts spent in tracing the test setup (Other members disturb the setups to fill the equipment shortage in their setups)

Benefits of standardization?

Benefits of standardization

- Stabilizes the work conditions ('Basic Stability' see Balle & Regnier, 2007)
 - Allow for easier judgment regarding "normal" versus "abnormal" situations
 - Increases the level of safety
 - Enables cost reduction faster with less variation and less defects
 - Stabilises operating time (cycle time)
 - Helps maintain and improve quality

Criticism of Lean Process Improvement?

Criticism of Lean Process Improvement?

- One size fits all solutions
- Top down rather than bottom up problem solving
- Application of lean tools/techniques without understanding the philosophy and culture
- Too much standardization and people management might result in inhumane working conditions
- Thus might be a paradox rather than panacea if not managed well

Improvement approaches

Compare and contrast

Comparison of process improvement programs

Program	Six Sigma	Lean Production	Theory of Constrains (TOC) Drum Buffer Rope
Key aspects	Reduce variation; remove causes of defects	Reduce waste and increase customer value	Identify and exploit constraints
Application guidelines	 Define Measure Analyze Improve Control 	 Identify value Identify value stream Flow Pull Perfection 	 Identify constraint Exploit constraint Subordinate process Elevate constraint Repeat cycle

Four broad approaches to managing improvement

Total quality management (TQM) – *CI* approach that puts quality at the heart of everything that is done by an operation. Emphasis upon 'total'. Involves everyone.

Business Process Reengineering (BPR) - *Radical* approach to improvement that attempts to *redesign* operations along customer-focused processes rather than on the traditional functional basis. *Top down*.

Lean – *Cl* approach that emphasises the smooth flow of items synchronised to demand achieved through a complete elimination of waste. Involves everyone.

Six Sigma - disciplined methodology of improving every product, process, and transaction. Involves specially trained individuals.

All these improvement approaches share overlapping sets of elements

Shared elements of process improvement approaches

- A process perspective (all)
- Customer centricity (all)
- Use data to understand processes (all)
- Reduce variation (all)
- Identify and eliminate waste (all)
- Involves everyone (Lean, TQM)
- Emphasis on Flow (Lean)
- Perfection is goal (Lean, Six Sigma, TQM)
- Scientific method and cyclical process (Lean, SS, TQM: PDCA / DMAIC)

Lean

Six Sigma

Specify Value

What is important in the eyes of the customer?

Define

What is important?

Understand Demand

What is the type and frequency of the demand?

Measure

How are we doing?

Flow

How will the material and information flow through our process?

Analyse

What is wrong?

Pull

How can we let the customer pull products, rather than pushing products?

Improve

What needs to be done?

Perfection

How can we optimise our processes?

Control

How do we sustain the improvements?

Lean Sigma – complementary *not* competing

Lean

Comprehensive process surgery Lean: improves flow in the value stream and eliminates waste

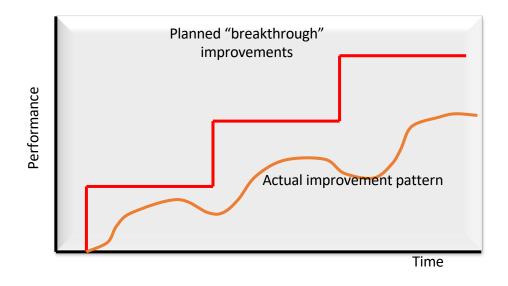
Microsurgery

Six Sigma: fine-tuning adjustment to reduce variation

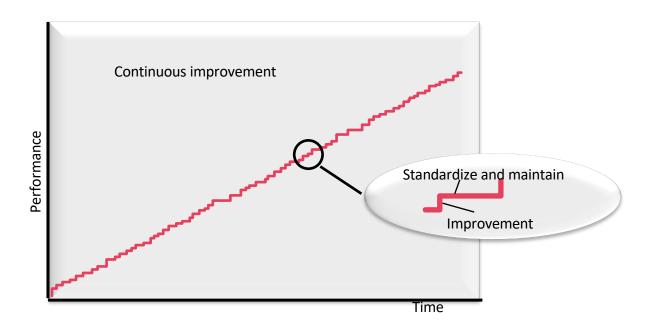
Two profiles of improvement: 'Breakthrough' (or radical) improvement versus continuous (incremental) improvement

Breakthrough

Short-term, dramatic Large steps Intermittent Abrupt, volatile Few champions Individual ideas & effort Scrap and rebuild New inventions/theories Large investment Low effort Technology Profit

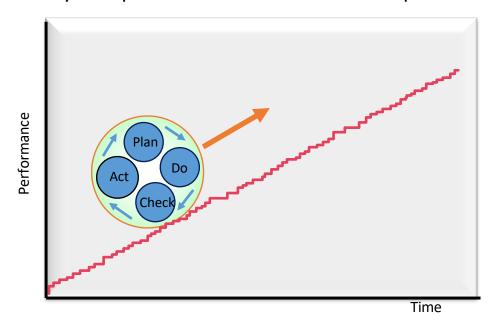

Effect Pace Timeframe Change Involvement Approach Mode Spark Capex Maintenance **Focus Evaluation**

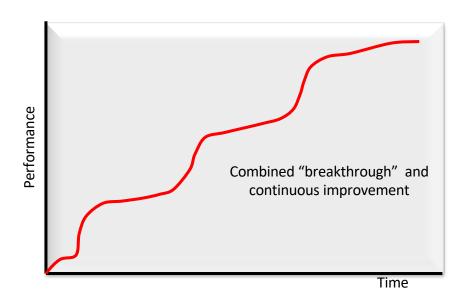
Continuous


Long-term, undramatic Small steps Continuous, incremental Gradual and consistent Everyone Group efforts, systematic Protect and improve Established know-how Low investment Large maintenance effort People **Process**

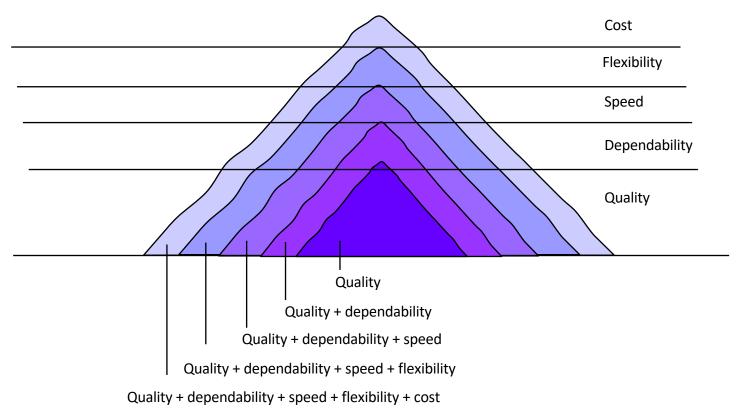
"Breakthrough" improvement

"Breakthrough" improvement, does not always deliver hoped for improvements


Continuous improvement


Where there is no standard, there can be no kaizen – Taichi Ohno

Continuous improvement


PDCA Cycle repeated to create continuous improvement

Combined improvement: the challenge of ambidexterity Can it be both radical and incremental?

Remember when in doubt always improve in quality: The Sandcone model of improvement

Ferdows, K. & De Meyer, A., Lasting Improvements in Manufacturing Performance: In Search of a New Theory. Journal of Operations Management, 1990, Vol. 9, No. 2, pp 168-184.

Thank you!

Questions?