ELEC-E9210 Organic Electronics: Materials, Devices & Applications

Characterization of Organic Materials

https://organicelectronics.aalto.fi

From Last Class

Previously....

- *Electronic properties* and *different transport mechanisms* in OSC (doping, trapping effect, field-effect transport)
- Optical excitation in OSC (optical transitions, light emission mechanism, excitons, etc.)

Today's Class

• Characterization of organic materials

Atomic Force Microscopy (AFM)

AFM experimental set-up

Pt-Ir tip

Atomic force microscopy helps study the surface properties of materials, based on the *interaction between surface itself and the AFM tip*

Aalto University School of Electrical Engineering

Atomic Force Microscopy (AFM): Scanning Modes

non-contact mode (NC-M)

cantilever is set to vibrate at its resonance frequency. When tip is brought close to sample surface, the forces between the tip and the surface affect its resonance frequency

contact mode (C-M)

probe is in *permanent physical contact* with the sample surface as it scans, with changes in topography causing the cantilever to bend up and down

AFM (Surface) Characterization of OSC

AFM is fundamental in studying OSC morphology in relation to *process parameters*, substrate surface, thickness and molecular arrangement

substrate temperature

AFM images of 100nm pentacene deposited on SiO₂ at different temperatures (deposition rate 0.2Å/s, scan size 5µm × 5µm).

https://shodhganga.inflibnet.ac.in/bitstream/10603/120058/8/08 chapter%203.pdf

rate & thickness

AFM images of pentacene deposited on SiO₂ (scan size $5\mu m \times 5\mu m$)

Scanning Tunneling Microscopy (STM)

Scanning Tunneling Microscopy helps study the surface properties of materials with high resolution and it is based on the *charge tunneling between surface itself and the AFM tip*

sharp tip approaches a *conducting surface* at a very close distance $(1nm) \rightarrow$ tunneling current starts to flow. The tip is mounted on a piezoelectric tube, which allows tiny movements by applying a bias to its electrodes.

STM electronics allows to control the tip position such that tunneling current (thus tip-surface distance) is kept constant, while scanning a small area of the sample surface

movement is recorded, resulting in surface topography image. In ideal conditions, individual atoms on the surface can be resolved

STM images shows the *geometric structure* of the surface, while depending on the electronic density of states of the sample, as well as on *tip-sample interaction*

STM Characterization

STM studies of single or small agglomerates of phthalocyaninato Tb(III) complexes

TbPc₂ film composed of 21 molecules

STM image of adsorbed H₂Pc molecules on Au surface

7

Surfaces Properties for Organic Materials

Contact angle, θ (theta), is a quantitative measure of **wetting** of a solid by a liquid. θ is defined as the angle formed by a liquid (*i.e.* water, solvents) at the 3phase boundary where a liquid, gas and solid intersect

OSC deposition on different surfaces leads to overall quite different surface properties (*i.e.* height profile, roughness, hydrophobicity, ...)

AFM images of C8-BTBT (30nm) on (a) SiO_2 , (b) PVP, (c) PMMA and (d) CYTOP. Scan size is 10μ m×10 μ m and lateral bar is in nanometers. Surface contact angle measurements are also shown in insets.

Interfaces in Organic Devices

9

for a charge moving into a device:

- OSC/metal → injection/charge extraction
- OSC/OSC interface
- other interface (*i.e.* dielectric/OSC)

the more interfaces in the device the more *complicated it become for a charge to move/exit* from the device itself (and all other processes in the devices *light emission*)

OSC/metal interface

alignment of the OSC charge transporting states with metal E_F is crucial for device functionality

- surface energy & morphology
- trapping

OSC/OSC interface

weak (van der Waals) interactions at OSS heterojunctions, where energy barrier can *enable/inhibit* charge transfer:

- surface energy & morphology
- trapping

dielectric/OSC interface

charge accumulation and transport (in OFET) occur at this interface:

- surface energy & morphology
- trapping
- surface dipole potential

Materials & Devices: Energy Consideration

reproduced from https://www.mdpi.com/2079-9292/3/2/351/html

Organic Electronics Domains

Light Emitting Devices Photodiode & (Bio)Sensors **Solar Cells** Wearable/Flexible Electronics

Key (Organic) Electronics Devices

• fundamental mechanism are similar to inorganic counterparts

interfaces are crucial for device functioning

Summary

Today

Surface characterization of organic materials Organic materials & devices: general considerations

Next

- Organic Field-Effect Transistors: structure, working principle
- Transistor **building block**
- Applications of Organic Field-Effect Transistors

