
ELEC-E9210 Organic Electronics: Materials, Devices & Applications

Optical Excitation in Organic Materials

https://organicelectronics.aalto.fi

From Last Class

Previously....

- What are Organic Materials (primarily composed of *carbon, hydrogen* and *oxygen* held together by *van der Waals forces*)
- **Small molecules** or **polymers**, and can transport either h^+ or e^- , often both
- **Different morphologies** can be found for same organic materials, depending on molecular packing, fabrication process and condition, with an overall effect on **functional properties**
- *Electronic properties* and *different transport mechanisms* in OSC (doping, trapping effect, field-effect transport)

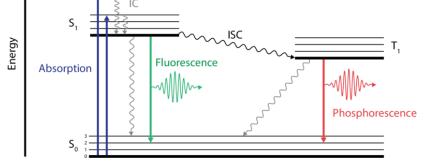

Today's Class

• Optical excitation in OSC (optical transitions, light emission mechanism, excitons, etc.)

Optical Excitation of OSC

An organic molecule (similar to inorganic counterpart) can be excited to its electronic excited state

optical excitation (energy > energy gap of the molecule):


- molecule absorbs a photon, promoting the molecule to an excited state
 - \rightarrow molecule returns to its ground state through *radiative/non-radiative* decay
- different molecules will absorb different frequencies of light, depending on electronic and vibration structure

Jablonski Diagram

Transitions between states occur in the molecule upon optical excitation

- straight lines: conversion between a photon and an electron
- curved lines: transitions of electrons without light interaction

ABSORPTION: *electron is excited from a lower energy level to a higher energy level* with energy transferred from photon to the electron.

- allowed λ = energy difference between the levels
- timescale : 10⁻¹⁵s

INTERNAL CONVERSION (IC): radiation-less transition between states with the same spin state

• timescale: 10⁻¹⁴-10⁻¹¹s

 S_2

INTERSYSTEM CROSSING (ISC): radiation-less transition between states with different spin state

• timescale: 10⁻⁸-10⁻³s

Aalto University School of Electrical Engineering **FLUORESCENCE:** *electron in excited states (singlet) decays to a lower energy states*

timescale: 10⁻⁹-10⁻⁷s

PHOSPHORESCENCE: electron in excited states (triplet) decays to a lower energy states

timescale: 10⁻⁴-10⁻¹s

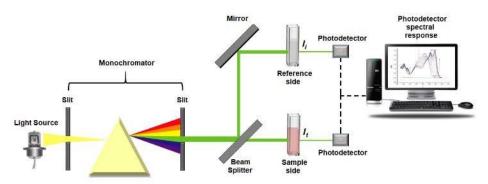
4

Absorption in Organic Materials

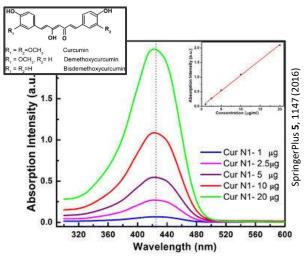
 $I = I_0 e^{-\alpha d}$ (thin film)

 I_{0} , $I(\lambda)$ incident and absorbed light

 α = absorption coefficient

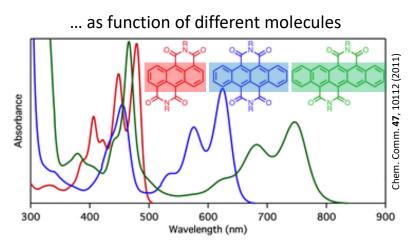

d = film thickness

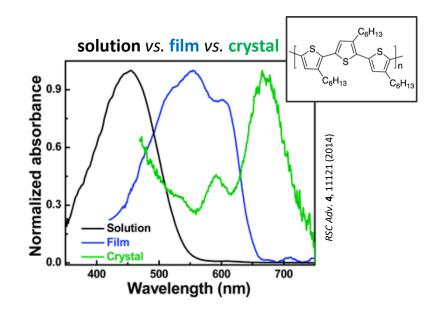
Beer's Law for Absorption


 $A = \varepsilon b C$ (solution)

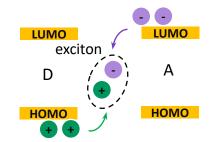
ε = molar attenuation coefficient b = path length

C = concentration

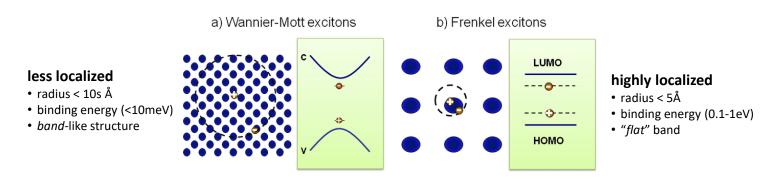

Schematics experimental set-up to measure absorption properties


Absorption spectra of curcumin-ethanol solutions for different curcumin concentration. Curcumin solution shows absorbance at λ =425nm and linear increasing absorption with increasing concentration.

Absorption in Organic Materials (II)


UV-vis absorption of different acene-based molecules (anthracene, tetracene, pentacene)

UV-Vis spectra of P3HT in three different forms: crystal, solution (in 3-hexyl-thiophene), thin film (spin-cast) on glass. Differences arise from *aggregation* (solution), *molecular packing* (thin film) and *crystal structure*



Excitons: Concept & Properties

Collective response upon excitation in a molecular crystal can be described in terms of *exciton*, a *quasi-particle formed by an electron* and *hole bound together by Coulomb forces*. Upon formation, exciton *can move through the material*.

exciton radius: average distance between electron and hole

Exciton Dynamics

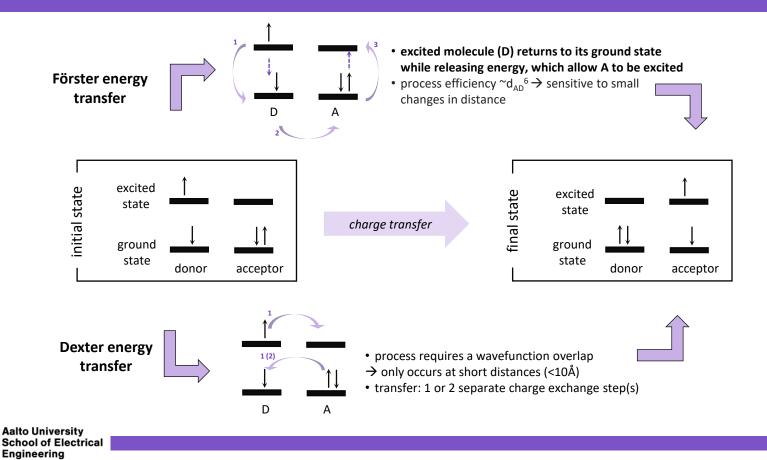
excitons can move in the material in a coherent way (*wavelike* manner) and it *can decay radiatively* and *non-radiatively*

Diffusion

exciton migrates through the film and can reach film boundary. Diffusion is a stochastic process based on *random walk concept*: "*a particle starting from a defined position moves in random direction*"

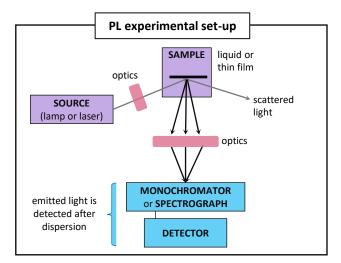
Energy Transfer

energy is exchanged between molecules. A molecule possessing excess energy (i.e. excited states)

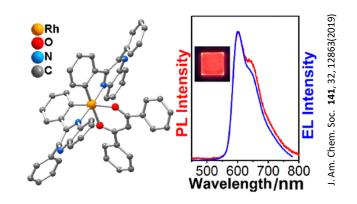

excess energy (*i.e.* excited states) may act as donor, transferring energy to another molecule. Exciton thus *migrates through the film*

Decay

excitons are subjected to **recombination** (decay from excited state to ground state). τ (lifetime): <u>how long</u> an exciton can survive before decaying \rightarrow <u>how far</u> an exciton can travel in a material

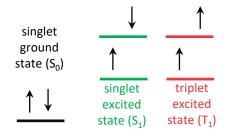


Excitons: Energy Transfer



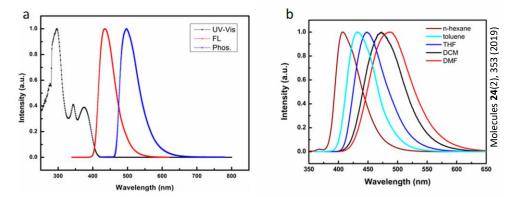
Luminescence

Excess energy can be dissipated through emission of light (*luminescence*): *photoluminescence* (PL, optical excitation) and *electroluminescence* (EL, electrical excitation).


PL spectroscopy is a *contactless, non-destructive* method to probe material electronic structure

PL and EL spectra of cyclometalated rhodium(III) complexes. *Aggregation* and *electron-exciton quenching* can induce differences between spectra.

PL: Fluorescence vs. Phosphorescence


number of photons emitted

number of photons absorbed

Quantum Yield (QY), Φ or Quantum Efficiency

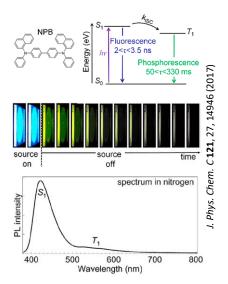
measures the probability that a molecule will

Fluorescence and phosphorescence are both molecular photo-luminescence phenomena in which a molecule absorbs a photon and excites a species.
Fluorescence (differently from phosphorescence) does not change its electron spin state, leading to short-live electrons (<10⁻⁵s)

(a) UV-VIS and fluorescence spectra of BCz–BFPz in toluene (10^{-5} mol/L) and phosphorescence spectrum of BCz–BFPz in 2-methylfuran solvent at 77K. (b) Fluorescence spectra of BCz–BFPz in different solvents (10^{-5} mol/L).

fluoresce or phosphoresce

OY =


(Bi)luminescent Materials

Transition from triplet (T_1) to ground state (S_0) is quantum *mechanically* forbidden \rightarrow triplets cannot spontaneously emit light phosphorescence can be observed at very high efficiency if non-radiative channels are suppressed effectively

bi-luminescent molecules

purely organic molecules can be designed in a way that allows thermal up-conversion from triplet to radiative fluorescent states (intersystem crossing, ISC)

molecules with heavy transition metal atoms (i.e. Ir), characterized by strong *spin-orbit coupling*, which unlocks radiative transition from T_1 and additionally funnels singlets to these emissive triplet states, leading to phosphorescence

Summary

Optical properties in organic semiconductors

- optical excitation of organic molecules (depending on disorder)
- exciton and luminescence

Next

Characterization of organic materials (in class, recording will be available)

