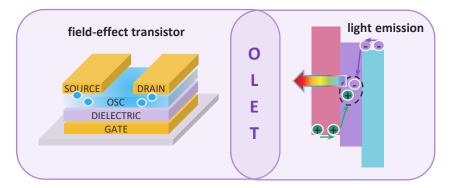

ELEC-E9210 Organic Electronics: Materials, Devices & Applications

Organic Light Emitting Transistors II

https://organicelectronics.aalto.fi

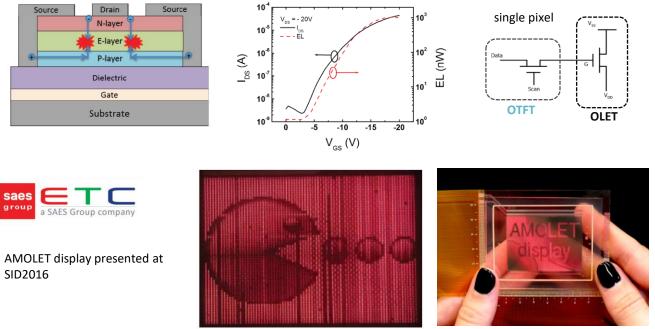


Organic Light Emitting Transistors (OLETs)

Previously...

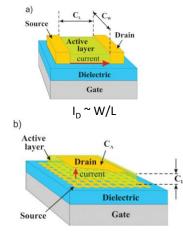
Organic Light Emitting Transistor:

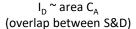
- charge transport and different regime
- Structures and properties


Today Class

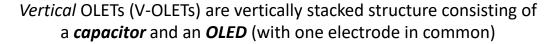
• Applications and potentials of organic light emitting transistors

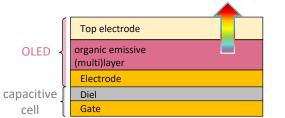
Active-Matrix OLET (AM-OLET) Display

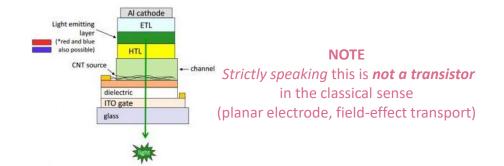

OLET-based technology platform potentially enables applications in several fields of *flexible* and *wearable electronics*.



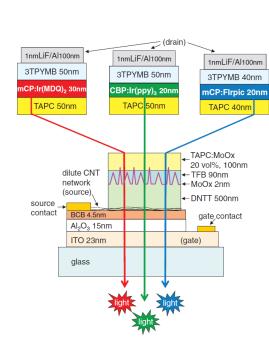
SID Symp. Dig. of Tech. Papers **47**(1), 739 (2016)


Vertical Organic Light Emitting Transistor (V-OLET)

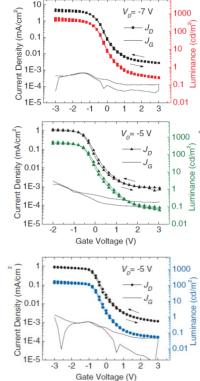


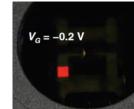

nanoscale channel length

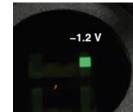
- high current density
- high speed
- low operation voltage
- low power consumption



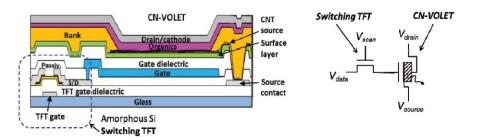
less space required for driving transistors (vertical integration)



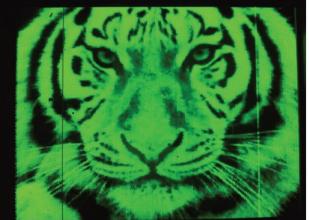



Vertical Organic Light Emitting Transistors (III)

Aalto University School of Electrical Engineering



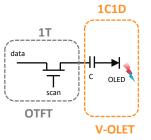
CNT-VOLET device transfer curve for R, G and B OLET with (right) corresponding optical images (emission area 14mm), with last image representing the *OFF*state


Science **332**, 570 (2011)

(Vertical) Active-Matrix OLET (AM-OLET) Display

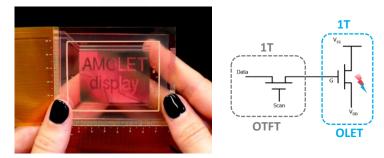
Cross section of QVGA AMOLET pixel with CNT-VOLET and single switching TFT. Single pixel includes driving TFT, storage capacitor and OLED.

AMOLET display presented at SID2016



6

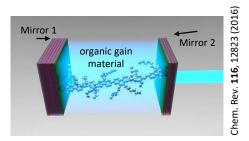
Comparison AM-OLET Display


nVerpix

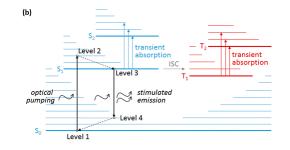
- higher resolution
- pin-hole issues (between S&D)
- *I*-driven (power consumption, heat management due to high current)

- spatial tuning of light
- V-driven
- simplified circuit

OLET: Potentials for Lasing


- ambipolarity (to mitigate losses)
- well-defined recombination zone
- high mobility* (\rightarrow high current densities)
- high EQE* (\rightarrow achieve net gain)

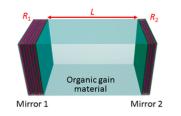
*(usually mutually exclusive in OM)

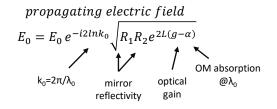


Lasing induced by electric field

Lasing concept

gain medium: organic luminophore, typically a π -conjugated aromatic hydrocarbon compound



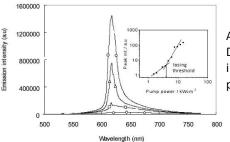

feedback structure: often implemented through designing and structuring the organic materials **pump source:** either *optical* (*i.e.* pulsed light source directed toward the organic gain material) or *electrical* (device)

Aalto University School of Electrical Engineering

OLET: Potentials for Lasing (II)

condition for lasing (capacity to retain light within the cavity)

$$g \ge \alpha - \frac{\ln R_1 R_2}{2L}$$

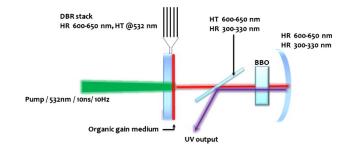

Amplified Spontaneous Emission (ASE)

Photons emitted by a luminophore through spontaneous fluorescence can be amplified (by stimulated emission) through interaction with other excited luminophores in the gain material.

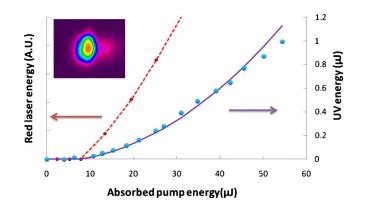
 \rightarrow trigger an avalanche of photons (ASE)

ASE is similar to laser emission

- *spectral line width* of the emission is generally *narrower* compared to the spontaneous fluorescence spectrum
- **threshold behavior** (*i.e.* the intensity of emission increases more rapidly beyond a certain threshold pump)

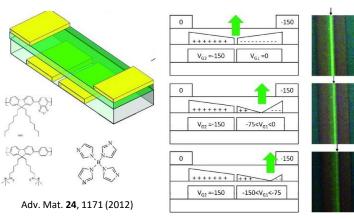


ASE spectrum of optically-pumped DCM2 laser. (Inset) Emission peak intensity as function of the pumped power density


Optics Express 14(20), 9436 (2006)

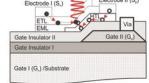
Potentials for Optically-*induced* Lasing

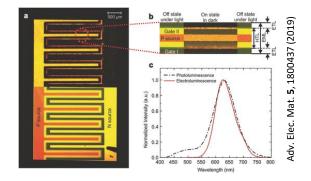
Schematic and photograph of a configuration with frequency doubling intra-cavity optics for generation of UV light.


Input-output characteristics for fundamental red and frequency doubled UV emission from laser, with beam profile of UV beam shown as inset.

10

Potentials for Electrically-induced Lasing


Controlling holes and electrons charge currents independently


split-gate

Split-gate architecture allows for separate control of the two charge carrier distribution in the device, thus **high EQE** and greater **control over the recombination zone**

overlapping split-gate

Overlapping split-gate architecture allows for generation of matching hole and electrons currents in the emissive layer, which leads to **high EQE**

Summary

Today's Class

- Organic light emitting transistors: organic transistor capable of emitting light
- Applications and potentials of OLET

Next Class

- Organic photovoltaics (OPV): basic mechanisms, materials and device structure
- OPV applications

