Density-Functional Theory for Practitioners - Tutorial 2

Orlando Silveira Júnior, Adolfo Otero Fumega and Ondřej Krejčí, (Developed by Patrick Rinke and Milica Todorović)

Aalto University School of Science Department of Applied Physics

Recap - two minimisations in DFT structure search

Expansion around the equilibrium

Aalto University School of Science

Harmonic approximation

Vibrational frequencies

In general we have to solve a matrix equation:

Negative frequencies

If we are not in the equilibrium structure, the 2nd derivative does not give us the vibrational frequency!

Imaginary (or negative) frequencies result!

Questions on vibrations?

harmonic oscillator:

$$E_0(\mathbf{R}) = E_0(\mathbf{R}_0) + \frac{1}{2} \underbrace{\frac{\partial^2 E_0(\mathbf{R})}{\partial \mathbf{R}^2}}_{k} |_{\mathbf{R}_0} (\mathbf{R} - \mathbf{R}_0)^2$$

Recap - two minimisations in DFT structure search

Let's go back to the full Hamiltonian H(000...)

all electrons interact with each other \rightarrow intractable

Let's assume we have a non-interacting system.

Let's assume we have a non-interacting system.

Aalto University School of Science

Let's assume we have a non-interacting system.

Aalto University School of Science

$$\mathcal{H}^e = \sum_{i=1}^{N_e} h_{\text{aux}}(\mathbf{r}_i)$$

Now we have a mini Schrödinger equation. The same for every electron.

$$h_{\mathrm{aux}}(\mathbf{r})\phi(\mathbf{r}) = \epsilon\phi(\mathbf{r})$$

This is easy to solve, once we know haux.

The non-interacting wave function

Let's look at only two electrons.

$$\mathcal{H}^e(\mathbf{r}_1,\mathbf{r}_2) = h_{\mathrm{aux}}(\mathbf{r}_1) + h_{\mathrm{aux}}(\mathbf{r}_2)$$

The wave function becomes a simple product.

$$\Psi^e(\mathbf{r}_1,\mathbf{r}_2)=\phi_1(\mathbf{r}_1)\phi_2(\mathbf{r}_2)$$

But there is a problem!

The non-interacting wave function

The wave function is not antisymmetric!

$$\phi_1(\mathbf{r}_1)\phi_2(\mathbf{r}_2)\neq -\phi_1(\mathbf{r}_2)\phi_2(\mathbf{r}_1)$$

Make the wave function antisymmetric!

$$\Psi^{e}(\mathbf{r}_{1},\mathbf{r}_{2}) = \frac{1}{\sqrt{2}} \left[\phi_{1}(\mathbf{r}_{1})\phi_{2}(\mathbf{r}_{2}) - \phi_{1}(\mathbf{r}_{2})\phi_{2}(\mathbf{r}_{1}) \right]$$

This is called a Slater determinant.

The non-interacting density $\Psi^{e}(\mathbf{r},\mathbf{r}') = \frac{1}{\sqrt{2}} \left[\phi_{1}(\mathbf{r})\phi_{2}(\mathbf{r}') - \phi_{1}(\mathbf{r}')\phi_{2}(\mathbf{r}) \right]$

The density becomes very simple!

$$n(\mathbf{r}) = 2 \iint d\mathbf{r}' \left| \Psi^e(\mathbf{r}, \mathbf{r}') \right|^2$$
$$= \left| \phi_1(\mathbf{r}) \right|^2 + \left| \phi_2(\mathbf{r}) \right|^2$$
$$= \sum_{i=1}^{N_e} \left| \phi_i(\mathbf{r}) \right|^2$$

DFT - Hohenberg-Kohn theorems

 $v_{\rm ext}(\mathbf{r}) \Leftrightarrow n_0(\mathbf{r})$

Theorem 1:

The ground state density $n_0(r)$ uniquely determines the potential up to an arbitrary constant.

Walter Kohn

Pierre Hohenberg

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)

DFT - Kohn-Sham system

$$v_{\text{ext}}(\mathbf{r}) \Leftrightarrow n_0(\mathbf{r}) = \sum_{i=1}^{N_e} |\phi_i(\mathbf{r})|^2$$

An <u>auxiliary non-interacting</u> system exists that gives the ground-state density.

$$\mathcal{H}^{e} = \sum_{i=1}^{N_{e}} \left[\underbrace{-\frac{\nabla_{\mathbf{r}_{i}}^{2}}{2} + v_{\mathrm{aux}}(\mathbf{r}_{i})}_{h_{\mathrm{aux}}(\mathbf{r}_{i})} \right] = \sum_{i=1}^{N_{e}} h_{\mathrm{aux}}(\mathbf{r}_{i})$$

Lu Sham

Walter Kohn

Aalto University School of Science W. Kohn ar

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

DFT - Kohn-Sham system

$$v_{\text{ext}}(\mathbf{r}) \Leftrightarrow n_0(\mathbf{r}) = \sum_{i=1}^{N_e} |\phi_i(\mathbf{r})|^2$$

But what is the auxiliary potential $v_{aux}(r)$?

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

One part is the external potential

Another the electrostatic potential

$$n_{0}(\mathbf{r})$$

$$n_{0}(\mathbf{r})$$

$$v_{\text{Hartree}}(\mathbf{r}) = \int d\mathbf{r}' \frac{n_{0}(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

Charge density creates electrostatic potential.

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

Kohn-Sham potential

Aalto University School of Science W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

Kohn-Sham potential

Aalto University

School of Science

$$\begin{aligned} v_{\text{aux}}[n](\mathbf{r}) &= \underbrace{v_{\text{ext}}(\mathbf{r}) + v_{\text{Hartree}}[n](\mathbf{r}) + \underbrace{v_{\text{xc}}[n](\mathbf{r})}_{\text{unknown}} \\ & \text{known} \end{aligned}$$

$$\begin{aligned} & \text{Now we can solve the Kohn-Sham equations:} \\ & \left[-\frac{\nabla_{\mathbf{r}}^2}{2} + v_{\text{aux}}[n](\mathbf{r}) \right] \phi_i(\mathbf{r}) = \epsilon_i \phi_i(\mathbf{r}) \\ & n(\mathbf{r}) = \sum_{i}^{N_e} |\phi_i(\mathbf{r})|^2 \end{aligned}$$

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

Kohn-Sham potential vaux(r)

Aalto UniversitySchool of ScienceW. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

Kohn-Sham potential vaux(r)

```
FHI-aims technical detail:
FHI-aims offers 3 convergence criteria for the self-consistency cycle:
 sc_accuracy_rh : tolerance for the density
 \bigcirc
 sc_accuracy_et : tolerance for the total energy
 ot
 sc_accuracy_ee: tolerance for the sum of eigenvalues
 V
                       maximum number of self-consistences steps
 sc iter limit
```


Kohn-Sham energy

$$\begin{split} E[n] &= \underbrace{T[n] + E_{\text{ext}}[n] + E_{\text{Hartree}}[n]}_{\text{known}} + \underbrace{E_{\text{xc}}[n]}_{\text{unknown}} \\ E[n] &= -\sum_{i}^{N_{e}} \int d\mathbf{r} \, \phi_{i}^{*}(\mathbf{r}) \frac{\nabla_{\mathbf{r}}^{2}}{2} \phi_{i}(\mathbf{r}) + \int d\mathbf{r} \, v_{\text{ext}}(\mathbf{r}) n(\mathbf{r}) \\ &+ \frac{1}{2} \int d\mathbf{r} \, v_{\text{Hartree}}(\mathbf{r}) n(\mathbf{r}) + E_{\text{xc}}[n] \end{split}$$

Aalto University School of Science W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

Kohn-Sham energy

$$E[n] = \underbrace{T[n] + E_{\text{ext}}[n] + E_{\text{Hartree}}[n]}_{\text{known}} + \underbrace{E_{\text{xc}}[n]}_{\text{unknown}}$$

- All energies are a functional of the density.
- The exchange-correlation (xc) functional:
 - encompasses all electron-electron interactions beyond Hartree
 - includes the difference between the noninteracting and the interacting kinetic energy

Questions on Kohn-Sham energy and
scheme?
$$E[n] = \underline{T[n] + E_{ext}[n] + E_{Hartree}[n]} + \underbrace{E_{xc}[n]}_{unknown}$$

- All energies are a functional of the density.
- The exchange-correlation (xc) functional:
 - encompasses all electron-electron interactions beyond Hartree
 - includes the difference between the noninteracting and the interacting kinetic energy

Kohn-Sham energy

$$E[n] = \underbrace{T[n] + E_{\text{ext}}[n] + E_{\text{Hartree}}[n]}_{\text{Hartree}} + \underbrace{E_{\text{xc}}[n]}_{\text{Tartree}}$$

What is this "threatening" *Exc*?

- The exchange-correlation (xc) functional encompasses:
 - all electron-electron interactions beyond Hartree
 - the difference between the non-interacting and the interacting kinetic energy

If we zoom in enough, charge density ≈ constant.

Aalto University School of Science W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

Constant n(r) = homogenous electron gas (HEG)

Let's make a local approximation:

Aalto University

School of Science

$$E_{xc}[n] = \int n(\mathbf{r}) \epsilon_{xc} (n(\mathbf{r})) \, \mathrm{d}\mathbf{r}$$

$$\mathbf{k}$$
exchange-correlation
energy density of HEG

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

HEG exchange energy density known analytically

$$E_{x}[n]^{\text{LDA}} = \frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3} \int d\mathbf{r} \, n\left(\mathbf{r}\right)^{4/3}$$

HEG <u>correlation</u> energy density known very accurately from Quantum Monte Carlo simulations

$$E_c[n]^{LDA} =$$
 parameterised efficiently

LDA exchange-correlation potential

$$v_x(\mathbf{r}) = \left(rac{3}{\pi}
ight)^{rac{1}{3}} n(\mathbf{r})^{rac{1}{3}}$$

$$v_c(\mathbf{r}) = \mathbf{parameterised efficiently}$$

Beyond the local density approximation

Aalto University School of Science

J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

Questions on LDA?

We can incorporate also density-gradients in *Exc*.

LDA and PBE are very efficient xc-functionals. Applicable to ~100-1000 atoms.

The PBE xc-functional is such a generalised gradient approximation (GGA).

J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

Basis functions

Let's expand Kohn-Sham states in a basis.

$$\phi_j(\mathbf{r}) = \sum_i c_{ij} \varphi_i(\mathbf{r})$$

Many basis choices:

- plane waves or real space
- linear augmented plane waves (LAPW)
- projector augmented plane waves (PAW)
- Iocal orbitals (Linear Combination of Atomic Orbitals)
 - Gaussian orbitals
 - numeric atom centered orbitals (NAOs)

Basis functions

In FHI-aims: flexible basis function choice

Real-space grid for basis functions in FHI-aims

1: grid parameters (light, tight, really tight) 2: number basis functions (Tiers)

Questions?

Or start to work on the tutorials ...

Download the tutorial instructions and data from:

- MyCourses -> Hands-on tutorials
- /work/courses/unix/PHYS/E0546/TUTORIALS
- ask for printout version

Those who were not here the last week – let us know so we can help you with the setup.

