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Recap - two minimisations in DFT structure search
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Expansion around the equilibrium

Ro R

Es(R) = Ey(Ry) H % (R—Ro)—l-% 0 gl?{;R) - (R—R0)2—|—...

equilibrium energy forces are 0 In minimum
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Harmonic approximation

harmonic oscillator: R
1 0°Ey(R
Eyo(R) = Eo(Ryo) + 5 3;0{(2 ) (R — Ry)?
_ vibrational
A /frequency
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Vibrational frequencies

In general we have to solve a matrix equation:
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det 21 — 0
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/ vibrational
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Negative frequencies

Eo
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Questions on vibrations?

harmonic oscillator:

1 0?Ey(R)
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Recap - two minimisations in DFT structure search
Eo Eo

otal energy minimisation geometry optimisation

n(r) R}

How do we actually minimise the total energy?
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Let’s go back to the full Hamiltonian

H(coo...)
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Non-interacting Hamiltonian

Let’s assume we have a non-interacting system.

N o
AN B )
H™ = E 2z | Uaux(rz) O
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Non-interacting Hamiltonian

Let’s assume we have a non-interacting system.

Ne vz
r;

Electrons move in an O O O
auxiliary potential that is &,
the same for all electrons.
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Let’s assume we have a non-interacting system.

Electrons move in an O O O
auxiliary potential that is &,
the same for all electrons.
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Non-interacting Hamiltonian

Ne
H = Z haux(rz’)
1=1

Now we have a mini Schrodinger equation.
The same for every electron.

This Is easy to solve, once we know haux.

Aalto University
School of Science
[ |




The non-interacting wave function

Let’s look at only two electrons.

HE(r1,r2) = haux(r1) + haux(re)

The wave function becomes a simple product.

Ue(ry,re) = ¢1(r1)p2(r2)

But there is a problem!
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The non-interacting wave function

The wave function Is not antisymmetric!

¢1(r1)p2(r2) # —@1(r2)P2(r1)

Make the wave function antisymmetric!

1

\Ije(rla r2) — \/5

P1(r1)P2(r2) — @1(r2)P2(r1)]

This I1s called a Slater determinant.
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The non-interacting density

Ue(r,1') = % 61(0)ba(t) — 61 (1) 2 ()]

The density becomes very simple!

= //dr|\Iferr

|¢1 )2+ |pa(r)|’

= Z|¢z‘(r) ;




DFT - Hohenberg-Kohn theorems

Vext (T) & ng(r)

Theorem 1:

The ground state density no(r)
uniquely determines the

potential up to an arbitrary
constant.

Walter Kohn Pierre Hohenberg

? Aalto University
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DFT - Kohn-Sham system

Uext( ) <:>n0 Z‘¢z

An auxiliary non-interacting
system exists that gives the
ground-state density.

V2 |
He — Z 9 (rzz Z aux rz

) — -
1=1 '

haux(rs) _
Walter Kohn Lu Sham
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DFT - Kohn-Sham system

Uext(r) <~ nO(r) — Ze ‘gbz(r)‘z
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One part is the external potential

Np,
Vext (T) = Z ‘ RJ\ & no(r)
J=1 12 o

M e.g. H2 molecule
Uext(\ f

W



Another the electrostatic potential

no(r)

gj UHartree () = / Ay’ no(r)

v — 1’|

Charge density creates electrostatic potential.
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Kohn-Sham potential

Vaux [’I’L](I') — Uext (I‘) + UHartree [’I’L] (I‘) + VUxc [’I’L](I')

N— — )
known unknown
N Ne
. \V&4
He — 2rz | Uaux(ri) Z aux rz
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Kohn-Sham potential

Vaux [n](r) — Uext (I‘) + UHartree [’I’L] (I‘) + VUxc [n](r)
N e’

known unknown

Now we can solve the Kohn-Sham equations:

VZ
2

F Vaux 1) (T) | @i(r) = €;04(r)

Ne

n(r) =Y |¢i(r)[*

(/
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Kohn-Sham potential vaux(r)

”Uaux [n] (I') p— erxt (r\ 4 Mxy |-fn-|(r\ —+ 29 |-fn-|(r\

~—1 In practice:
1. start with trial density
2.Iterate to self-consistency

m potential depends on the density.

7 Aalto University
A School of Science W, Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)



Kohn-Sham potential vaux(r)

. [ 1/ — /A T L1/ .\ 4 [ 1/

FHI-aims technical detail:

FHI-aims offers 3 convergence criteria for the self-consistency cycle:

sc_accuracy_rh - tolerance for the density
O

sC_accuracy_et : tolerance for the total energy
of

sC_accuracy_ee : tolerance for the sum of eigenvalues
Y

2\ — i\
sc_iter_limit : maximum) number of self-consistences steps
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Kohn-Sham energy

Eln| = Tn| + Eext|n| + EHartree || + Exc(n]
~——

known unknown

Bln) == [dr i) 22 6:06) + [ drvesa ()

1

- f 0t Vitarepee(1)2(r) + Exo[n]
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Eln| = Tn| + Eext|n| + EHartree || + Exc(n]
L

known unknown

* All energies are a functional of the density.
* The exchange-correlation (xc) functional:

encompasses all electron-electron interactions
beyond Hartree

Includes the difference between the non-
Interacting and the interacting kinetic energy
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E [7’2,] — T[n] + Bext [7’2,] + EHartree [7’2,] + Bxc [7’2,]
e e N
known unknown

* All energies are a functional of the density.
* The exchange-correlation (xc) functional:

encompasses all electron-electron interactions
beyond Hartree

Includes the difference between the non-
Interacting and the interacting kinetic energy
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Kohn-Sham energy

Eln| = T|n| + Eext|n| + EHartree || + Exc(n)]
—_  — —

* [he exchange-correlation (xc) functiona
encompasses:
* all electron-electron interactions beyond
Hartree
*the difference between the non-interacting and
the interacting kinetic energy
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The local density approximation (LDA)

If we zoom in enough, charge density = constant.

<Y

r
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The local density approximation (LDA)

Constant n(r) = homogenous electron gas (HEG)

Let’s make a local approximation:

E.cn] = /n(r)ewc(n(r)) dr

\

exchange-correlation
energy density of HEG
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The local density approximation (LDA)

HEG exchange energy density known analytically

By [n]"P" = % (§)1/3/ dr n (r)*/*

T

HEG correlation energy density known very
accurately from Quantum Monte Carlo simulations

Ec[n]LDA = parameterised efficiently

Aalto University
A & School of Science J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)



The local density approximation (LDA)

LDA exchange-correlation potential

ve(r) = parameterised efficiently

Aalto University
A & School of Science J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)



We can incorporate also density-gradients in Exc.

LDA and PBE are very efficient xc-functionals.

Applicable to ~100-1000 atoms.

L/ ™ N\ ’

The PBE xc-functional is such a generalised
gradient approximation (GGA).

l _—

Aalto University
School of Science
[ |

J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)



We can incorporate also density-gradients in Exc.

LDA and PBE are very efficient xc-functionals.
Applicable to ~100-1000 atoms.

The PBE xc-functional is such a generalised
gradient approximation (GGA).
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Let’s expand Kohn-Sham states in a basis.

i (r) =) cijpilr)

)

Many basis choices:
* plane waves or real space
* [iInear augmented plane waves (LAPW)
* projector augmented plane waves (PAW)
*local orbitals (Linear Combination of Atomic Orbitals)
« Gaussian orbitals
numeric atom centered orbitals (NAOSs)




Basis functions

In FHI-aims: flexible basis function choice

u; (1)

Li[lm)] (r) :/ .

radial function

N

solution of a radial Schrodinger equation:
d® l(1+1) ‘

73 3 F Ui (1) 4 Veut | wi (1) = €ui(r)

Yim (€2)

N\

spherical harmonic
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Real-space grid for basis functions in FHI-aims

1: grid parameters 2. number basis functions
(light, tight, really tight) (Tiers)
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Questions?

Or start to work on the tutorials ...

Download the tutorial instructions and data from:
- MyCourses -> Hands-on tutorials

- /[work/courses/unix/PHYS/E0546/TUTORIALS
- ask for printout version

Those who were not here the last week — let us know so we can
help you with the setup.
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