Density-Functional Theory for Practitioners - Tutorial 3

Orlando Silveira Júnior, Adolfo Otero Fumega and Ondřej Krejčí,

(Developed by Patrick Rinke and Milica Todorović)

Aalto University School of Science Department of Applied Physics

House Keeping - Bloch Theorem

periodic potential: (translational symmetry)

$$U(\mathbf{r} + \mathbf{R}) = U(\mathbf{r})$$

R is one of our lattice vectors:

$$\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$$

Then you can find solution Schrödinger equation with that potential in this form:

Still 1 e- wavefunction

$$\psi(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}} u(\mathbf{r})$$

Phase factor

$$u(\mathbf{r} + \mathbf{R}) = u(\mathbf{r})$$

Periodically repeating part

House Keeping – Band structure confusion

The Fermi energy marks the energy of the highest occupied state.

House Keeping – 1D chain of "2He atoms"

The Fermi energy marks the energy of the highest occupied state.

House Keeping – Back to molecule "2He atoms"

House Keeping – Back to molecule "4He atoms"

House Keeping – Back to molecule "2He atoms"

House Keeping – 1D chain of "2He atoms"

Only 2 atoms in the unit cells - 4 e

House Keeping – 1D chain of "2He atoms"

Only 2 atoms in the unit cells – 4 e⁻¹

House Keeping – 1D chain of "2He atoms" *E* Insulator vs. Semiconductor

Insulator vs. semiconductor is only divided by the size of gap

House Keeping – 1D chain of "2He atoms" Insulator vs. Semiconductor Some 1s-2s The whateve band Phase of the 1s orbital Fermi Level .. k_bT **E**g ..↑. antibonding non-bondings 🔪 Just at 1 k-point bonding

 π/a

Insulator vs. semiconductor is only divided by the size of gap

 $\Gamma = \mathbf{0}$

 $-\pi/a$

Occupancy

House Keeping – 1D chain of "He-H atoms"

Occupancy

The Fermi energy marks the energy of the highest occupied state.

House Keeping – Back to molecule "He-H atoms" metal

House Keeping – 1D chain of "He-H atoms"

Occupancy

No gap – electron can anytime be excited into the conduction part of the band

House Keeping – Measurables: occ. states spectroscopy

gas molecule "He₂": 1D "He₂" solid: No momentum Momentum resolved × momentum integrating E(k)The Fermi Level $-\pi/a$ Occupancy

House Keeping – Measurables: occ. states spectroscopy

gas molecule "He2": 1D "He₂" solid: No momentum Momentum resolved × momentum integrating E(k)The Fermi Level QUESTIONS? – Before going to >1 D Occupancy

House Keeping – 2D band structure

Graphene 1st Brillouin zone Real space lattice: k_y 1D projection: δ_3 k_{x} М The Fermi 2D band structure: Level -10

House Keeping – 3D band structure

Silicon 1D path Real space lattice: 1st Brillouin zone Along 3D band structure *no real standardization E vs. top of the valence band The Fermi Level 3.4 eV © bilbao crystallographic server -8 -10X U.K. Occupancy

https://www.cryst.ehu.es/cryst/get_kvec.html - add there Fd-3m = 227

Real-space lattice: https://materialsproject.org/materials/mp-149
1D band projection: https://myengineerings.com/crystalline-silicon/

wavevector **k**

House Keeping – 2D crystal calculations

Graphene Real space lattice:

1st Brillouin zone

1st BZ:

Has to be represented on a GRID!!!

Discreet grid – e.g Monkhorst-Pack mesh

You only need to specify the density allong axis.

MP mesh: https://sites.psu.edu/dftap/2019/02/01/shifting-of-kpoints-in-hexagonal-lattices/

House Keeping – 3D crystal calculations

Silicon
Real space lattice:

1st Brillouin zone

1st BZ: Has to be represented on a GRID!!! 1 type of 3D representation:

You only need to specify the density allong axis.

http://www.cryst.ehu.es

House Keeping – 3D crystal calculations

Silicon Real space lattice:

1st Brillouin zone

1st BZ: Has to be represented on a GRID!!! 1 type of 3D representation:

You only need to specify the density allong axis.

Last week at the same time

$$v_{\mathrm{ext}}(\mathbf{r}) \Leftrightarrow n_0(\mathbf{r}) = \sum_{i=1}^{N_e} |\phi_i(\mathbf{r})|^2$$

Kohn-Sham DFT:

- interacting system can be mapped onto fictitious non-interacting system.
- this makes DFT tractable.

Kohn-Sham (KS) equations

Now we can solve coupled equations:

$$v_{
m aux}[n]({f r}) = v_{
m ext}({f r}) + v_{
m Hartree}[n]({f r}) + v_{
m xc}[n]({f r})$$
 KS potential KS orbitals/wave functions

$$\left[-\frac{\nabla_{\mathbf{r}}^2}{2} + v_{\text{aux}}[n](\mathbf{r}) \right] \phi_i(\mathbf{r}) = \epsilon_i \phi_i(\mathbf{r})$$

$$n(\mathbf{r}) = \sum_i^{N_e} |\phi_i(\mathbf{r})|^2$$
 KS eigenvalues

Basis functions

Let's expand Kohn-Sham states in a basis.

$$\phi_j(\mathbf{r}) = \sum_i c_{ij} \varphi_i(\mathbf{r})$$

Many basis choices:

- plane waves or real space
 - linear augmented plane waves (LAPW)
 - projector augmented plane waves (PAW)
- local orbitals (LCAO)
 - Gaussian orbitals
 - numeric atom centered orbitals (NAOs)

In FHI-aims: flexible basis function choice

$$\varphi_{i[lm]}(\mathbf{r}) = \underbrace{\frac{u_i(r)}{r} Y_{lm}(\Omega)}_{r}$$
 spherical harmonic

solution of a radial Schrödinger equation:

$$\left[-\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + v_i(r) + v_{\text{cut}}(r) \right] u_i(r) = \epsilon_i u_i(r)$$

- free atom like: $v_i(r) = v_{\mathrm{free\ atom}}^{\mathrm{DFT}}(r)$
- Hydrogen like: $v_i(r) = Z/r$
- free ions, harm. osc. (Gaussians), ...

$$\left[-\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + v_i(r) + v_{\text{cut}}(r) \right] u_i(r) = \epsilon_i u_i(r)$$

FHI-aims technical detail:

specification of the cut-off potential

cut_pot onset width scale

e.g. cut_pot 3.5 1.5 1.0

Necessary to localise basis functions in space ⇒ improves computational scaling!

Necessary to localise basis functions in space ⇒ improves computational scaling!

Wishlist:

- element specific
- transferable
- from fast qualitative to meV-converged total energy accuracy

Good news! – FHI-aims developers prepared set of "Tiers" to systematically improve the accuracy!*

- free atom like: $v_i(r) = v_{
 m free\ atom}^{
 m DFT}(r)$ Hydrogen like: $v_i(r) = Z/r$
- free ions, harm. osc. (Gaussians), ...

Basis function selection in FHI-aims

Result: Hierarchical Basis Set Library for All Elements

	H	C	O	Au
minimal	1s	[He]+2s2p	$[\mathrm{He}] + 2s2p$	[Xe] + 6s5d4f
Tier 1	H(2s,2.1)	$\mathrm{H}(2p,1.7)$	H(2p,1.8)	Au ²⁺ (6p)
	$\mathrm{H}(2p, 3.5)$	H(3d,6.0)	H(3d, 7.6)	H(4f, 7.4)
		$\mathrm{H}(2s,4.9)$	H(3s,6.4)	$\mathrm{Au^{2+}(6s)}$
				H(5g,10)
				H(6h,12.8)
				$\mathrm{H}(3d,2.5)$
Tier 2	H(1s, 0.85)	H(4f, 9.8)	H(4f,11.6)	H(5f,14.8)
	H(2p,3.7)	$\mathrm{H}(3p,5.2)$	H(3p,6.2)	H(4d, 3.9)
	H(2s,1.2)	H(3s, 4.3)	H(3d,5.6)	$\mathrm{H}(3p,3.3)$
	H(3d,7.0)	H(5g,14.4)	H(5g,17.6)	H(1s,0.45)
		H(3d,6.2)	H(1s,0.75)	H(5g,16.4)
				H(6h, 13.6)
Tier 3	H(4f,11.2)	H(2p,5.6)	$O^{2+}(2p)$	$H(4f,5.2)^*$
	H(3p,4.8)	$\mathrm{H}(2s,1.4)$	H(4f,10.8)	H(4d,5.0)
	•••	•••	•••	•••

Systematic hierarchy of basis (sub)sets, iterative automated construction based on dimers

"First tier (level)"

"Second tier"

"Third tier"

Accuracy: (H₂O)₂ Hydrogen Bond Energy

Basis set limit (independent): $E_{Hb} = -219.8 \text{ meV}$

Basis sets: Radial fn. character

	Н	C,N,O
minimal	ls	[He]+2s2p
tier	s,þ	s,p,d
tier 2	s,p,s,d	s,p,d,f,g
tier 3	s,p,d,f	s,p,d,f

Kohn-Sham equations in a basis

Pick basis set {φ_i} and expand:

$$\phi_n(\mathbf{r}) = \sum_i c_{ni} \varphi_i(\mathbf{r})$$

Solve generalised eigenvalue problem:

$$egin{aligned} \mathbf{h} \mathbf{c}_n &= \epsilon_n \mathbf{s} \mathbf{c}_n \ h_{ij} &= \langle arphi_i | \hat{h} | arphi_j
angle \ s_{ij} &= \langle arphi_i | arphi_j
angle \end{aligned}$$

Kohn-Sham equations in a basis

Two advantages:

- 1. number of $\{\phi_i\}$ << number of r points
 - ⇒ smaller matrices
- 2. matrix algebra very efficient on computers

$$\phi_n(\mathbf{r}) = \sum_i c_{ni} \varphi_i(\mathbf{r})$$
 $\mathbf{hc}_n = \epsilon_n \mathbf{sc}_n$
 $h_{ij} = \langle \varphi_i | \hat{h} | \varphi_j \rangle$
 $s_{ij} = \langle \varphi_i | \varphi_j \rangle$

Kohn-Sham self-consistency cycle

Grid-based operations

$$h_{ij}^{(m)} = \int d\mathbf{r} \varphi_i(\mathbf{r}) \hat{h}_{KS}^{(m)}(\mathbf{r}) \varphi_j(\mathbf{r})$$

Discretise to integration grid:

$$\int \!\! d\mathbf{r} f(\mathbf{r}) \to \sum_{\mathbf{r}} w(\mathbf{r}) f(\mathbf{r})$$

FHI-aims uses overlapping atom-centered grids:

FHI-aims technical detail:

FHI-aims uses logarithmic grids with the following settings:

points

radial_base : 36 5.0 ← max.

radial_multip: 1 rad

lier

radius multiplies # points

FHI-aims uses overlapping atom-centered grids:

FHI-aims technical detail: Lebedev grids can be made denser in outer regions: # points angular_grids specified division 0.2659 50 division 0.4451 110 division 0.6052 194 division 0.7543 302 outer_grid 194

Specific angular point distribution ("Lebedev")

radius

FHI-aims grid accuracy settings

FHI-aims technical detail:

grid settings can be pre-defined:

light

: computationally cheap, out-of-the-box settings for fast prerelaxations, structure searches, etc.

intermediate: For *hybrid-XC*: improved accuracy (derived from tight), but with lower computation costs.

tight

: safe, guaranteeing meV-level accurate energy differences also for large structures.

really tight

: for most purposes, strongly overconverged settings for convergence verification beyond tight.

FHI-aims basis set overview

	light	intermediate	tight	really tight
Tier 1				
Tier 2		Increasedad	Cur	
Tier 3			Alach	
Tier 4				

FHI-aims basis set overview

	light	intermediate	tight	really tight
Tier 1	these combinations don't make much sense	New – for hybrid XC with improved accuracy, but keeping the computational cost down		
Tier 2			Usually sufficient	
Tier 3				
Tier 4		This combination don't make much sense		

Questions?

Enjoy our "solid-state & surface modelling intro" tutorial:

- Download from Mycourses
- /work/courses/unix/PHYS/E0546/TUTORIALS
- Ask for printouts

Interesting links related to the tutorial:

Bilbao crystallographic server – https://www.cryst.ehu.es/

Materials project - https://materialsproject.org

Web of Elements - https://www.webelements.com/

Don't forget to put your name in the list of attendance!

Basis functions in FHI-aims

Wishlist:

- element specific
- transferable
- from fast qualitative to meV-converged total energy accuracy

Maybe the computer can help us pick a good basis set.

- free atom like: $v_i(r) = v_{
 m free\ atom}^{
 m DFT}(r)$ Hydrogen like: $v_i(r) = Z/r$
- free ions, harm. osc. (Gaussians), ...

Basis function selection in FHI-aims

Robust iterative selection strategy (e.g., Delley 1990)

Initial set

Occupied free atom orbitals $\{u\}^{(0)} = \{u_{free}\}$

Pool of candidates

- search pool *u*_{trial}
- find $u_{opt}^{(n)}$ that minimises $E^{(n)} = E[\{u\}^{(n-1)} \bigoplus u_{trial}]$

repeat until

 $E^{(n-1)}-E^{(n)} < threshold$

Increase basis set

$$\{u\}^{(n)} = \{u\}^{(n-1)} \bigoplus u_{opt}^{(n)}$$

Basis function selection in FHI-aims

Pool of trial functions u(r):

- 2+ ionic
- Hydrogen-like for z=0.1-20

Optimisation target:

Non-self-consistent symmetric dimers, averaged for different bonding distances

Basis function selection in FHI-aims

Result: Hierarchical Basis Set Library for All Elements

	H	C	O	Au
minimal	1s	[He]+2s2p	$[\mathrm{He}] + 2s2p$	[Xe] + 6s5d4f
Tier 1	H(2s,2.1)	$\mathrm{H}(2p,1.7)$	H(2p,1.8)	Au ²⁺ (6p)
	$\mathrm{H}(2p, 3.5)$	H(3d,6.0)	H(3d, 7.6)	H(4f, 7.4)
		$\mathrm{H}(2s,4.9)$	H(3s,6.4)	$\mathrm{Au^{2+}(6s)}$
				H(5g,10)
				H(6h,12.8)
				$\mathrm{H}(3d,2.5)$
Tier 2	H(1s, 0.85)	H(4f, 9.8)	H(4f,11.6)	H(5f,14.8)
	H(2p,3.7)	$\mathrm{H}(3p,5.2)$	H(3p,6.2)	H(4d, 3.9)
	H(2s,1.2)	H(3s, 4.3)	H(3d,5.6)	$\mathrm{H}(3p,3.3)$
	H(3d,7.0)	H(5g,14.4)	H(5g,17.6)	H(1s,0.45)
		H(3d,6.2)	H(1s,0.75)	H(5g,16.4)
				H(6h, 13.6)
Tier 3	H(4f,11.2)	H(2p,5.6)	$O^{2+}(2p)$	$H(4f,5.2)^*$
	H(3p,4.8)	$\mathrm{H}(2s,1.4)$	H(4f,10.8)	H(4d,5.0)
	•••	•••	•••	•••

Systematic hierarchy of basis (sub)sets, iterative automated construction based on dimers

"First tier (level)"

"Second tier"

"Third tier"

FHI-aims technical detail:

FHI-aims uses logarithmic grids with the following settings: # points

radial_multip: 1 radius

lier

multiplies # points

FHI-aims uses overlapping atom-centered grids:

FHI-aims technical detail: Lebedev grids can be made denser in outer regions: # points angular_grids specified division 0.2659 50 division 0.4451 110 division 0.6052 194 division 0.7543 302 outer_grid 194

Specific angular point distribution ("Lebedev")

radius