
Special Course in Theoretical Physics
PHYS-E0546: DFT for Experts

Aalto University, September 2019

Tutorial 4: DFT with Molecules
Molecular Dynamics and Dispersion Corrections

Manuscript for Exercise Problems

Prepared by Ondřej Krejčí, Orlando Silveira and Adolfo Fumega
Developed by Patrick Rinke, Milica Todorović and Xi Chen

Department of Applied Physics
Aalto University, 2022



A quick summary of the exercises
In this tutorial we address DFT methodology typically employed with molecular systems. Part I
introduces the basic concepts of molecular dynamics and allows you to run and analyse a fully
quantum mechanical MD calculation. Parts II and III tackles dispersion corrections. In previous
tutorials we employed gradient-corrected or hybrid exchange–correlation functionals. These might
work very well for covalent, ionic and metallic bonds and to some degree even for intermolecular
interactions, but they certainly miss dispersion (van der Waals) interactions. These are often
relatively weak but always attractive, purely quantum forces which exist between every two (or
more) fragments of matter and thus become important for large and realistic systems.

Part I: Molecular dynamics calculations

Problem I: The microcanonical ensemble: setting the time step

Part II: Dispersion Corrections

Problem II: Pairwise Dispersion Correction
Problem III: Many-Body Dispersion Correction

Part III: Intermolecular Dispersion Interactions

Problem IV: Stacked benzene interaction
Problem V: Investigation of the benzene dimer PES

Appendix I: Theoretical Background

For every exercise, we also provide solutions and sample input files. They can be found in
/work/courses/unix/PHYS/E0546/TUTORIALS/Tutorial_4 directory. In order to study realistic
systems, the example calculations today are computationally intensive. We strongly recommend to
use the python scripts provided to minimise input preparation and data analysis time. Do study
the script structure, input and output files. At the end of each exercise, please attempt to interpret
the results from the point of view of the level of theory employed in the calculations.

Additional tools and programs
• Visualization tools:

To visualize structures, vibrational modes, charge density plots, etc., several programs
including molden, vmd, and jmol are installed on your workstations. For molecular dynamics
trajectories, you are encouraged to use VMD or jmol.

• Utility scripts:
DFT output files are complex, so we use utility scripts to extract important data. In
the /work/courses/unix/PHYS/E0546/CODE/utilities directory you will find tools like
aims-SCF_convergence.awk and get_relaxation_info.pl to monitor the simulation, as
well as create_xyz_movie.pl to track the geometry optimisation. In this tutorial, additional
scripts can be found in:
/work/courses/unix/PHYS/E0546/TUTORIALS/Tutorial_4/utilities.
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Part I: Molecular dynamics calculations
With this tutorial, we provide a brief introduction to state-of-the-art techniques for sampling the
potential energy surface of a system at constant energy (microcanonical ensemble). The technique
we adopt is molecular dynamics (MD), which can be considered as old as modern physics itself,
since we propagate in time a system of particles, given initial positions and momenta, by numerically
integrating Newton’s equations of motion for the system.

The original formulation of Newton’s second law is [1]: “Lex II: Mutationem motus proportionalem
esse vi motrici impressae, et fieri secundum lineam rectam qua vis illa imprimitur.”, in modern
English, “Law II: The change of momentum of a body is proportional to the impulse impressed on
the body, and happens along the straight line on which that impulse is impressed.” In symbols:∫

∆t

Fdt = ∆p (1)

Where the vector F is the force acting on a body, p is its momentum, ∆t is the time along which the
force is applied. The kind of MD we are interested in is Born-Oppenheimer MD, where nuclei are
treated as classical particles and the forces between them are evaluated by solving the (ground-state)
electronic structure problem for a given number of electrons and the nuclei at given positions.

Educational Objectives

• Perform a simple DFT molecular dynamics calculation.

• Analyse the microcanonical ensemble stability and trajectory.

Problem I: The microcanonical ensemble: setting the time step
To start our first Molecular Dynamics (MD) simulation, we will use a simple system, H5O+

2 which
some of you may recognize as the Zundel (cat)ion. This system is one of the (protonated) water
clusters that are thought to be the “building blocks” of liquid water. [2] The exercise below poses
the problem of choosing the right settings for obtaining a stable and reliable molecular dynamics
trajectory.

Figure 1: The Zundel cation

We will investigate the effects of the time step size for the integration of the equations of motion in
a microcanonical molecular dynamics simulation. For a better illustration, we will not only consider
the H5O+

2 cluster, but also its heavier, deuterated counterpart D5O+
2

∗. Geometry files, containing
structures and velocities for both H5O+

2 and D5O+
2 are already provided in the folder

/work/courses/unix/PHYS/E0546/TUTORIALS/Tutorial_4/.
In order to substitute hydrogen with deuterium, you should substitute hydrogen’s by deuterium’s
species and mass in the control.in like this:
species D
mass 2.014102
In general the species label should be changed such that the same label appears in the geometry.in

∗ The deuterium atom has one proton and one neutron in its nucleus, thus about twice as heavy as hydrogen.
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file. Note that this file also contains velocities assigned to each atom, so that the molecular dynamics
run will not use a random initialization. These velocities come from a previous equilibration of the
molecule at ∼300K.

Tasks

1. Copy the geometry file corresponding to the molecule you will calculate to geometry.in. You
may with to start with H5O+

2 and continue with D5O+
2 .

2. Now we generate the basic control.in file for MD. Use the LDA (pw-lda) functional, no
spin polarization (spin none) or relativity and Gaussian smearing of 0.01. Remember that
the Zundel cation carries an additional proton charge. For the H and O elements, choose light
settings with a tier 1 basis set.

3. Next, set the following “accurate” self-consistency convergence criteria:
mixer pulay
sc_iter_limit 100
sc_accuracy_rho 1E-5
sc_accuracy_eev 1E-4
sc_accuracy_etot 1E-6
sc_accuracy_forces 5E-4

4. Lastly, specify the MD control flags like this:
MD_run TOTAL_TIME NVE
MD_time_step TIME_STEP
wf_extrapolation none
MD_clean_rotations .false.
MD_restart .false.

5. Choose a 0.15 ps MD run in the microcanonical ensemble, using a 0.0005 ps (∆t = 0.5 fs) time
step (flags MD_run and MD_time_step respectively). All time variables are expected in units
of ps.

6. Start a parallel calculation on 6-8 CPUs. It should take less than 5min. You can check the
progress by typing: grep “Simulation time” “Output-File” | wc -l

TIP:
You can find the amount of CPU cores by running a command: lscpu .
Check the 4th line of the output.

7. When it is done, use the “process_MD.py” script to analyze your run by typing:
python3 process_MD.py “Output-File”
The script will ask which ensemble you used in the simulations. Type “NVE” (microcanonical
ensemble) and then the script will generate an output file (*.MD.out) in the current directory.

8. Plot the total energy (fifth column of the script output file) vs. the simulation time (first
column of the script output file) with xmgrace, gnuplot or prepared python script for plotting
with matploltlib. If you decide for the the last (by far, easiest solution), please type:
python3 plot_MD.py "column#" file1 file2 file3
It will generate MD_run.png file in the current directory. With this script you can plot
multiple files simultaneously or plot other quantities from the .dat file. Please note that
column numbering starts from 1. Please feel free to modify the script to your taste. How
would you describe what you see? Was this somewhat predictable?

9. Increase the time step (∆t) of the MD simulation to 0.001 ps. Run FHI-aims (total of 0.15 ps)
and keep the output.

10. Increase the time step to 0.002 ps and run the simulation again, redirecting the output to
another file.
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11. Together with the plot for ∆t = 0.0005 ps, plot the total energy vs. simulation time using
plot_MD.py script for ∆t = 0.001 ps and ∆t = 0.002 ps.
How do the energy fluctuations develop? Do you notice something strange happening for the
∆t = 0.002 ps run?

12. For the last MD run, inspect the dynamics of the system by running
create_xyz_movie.pl “FHI-aims-output-file” > “script-output-file”.xyz
and visualise the movie with VMD of Jmol. What can you observe about the system?

13. Now repeat the calculation with the alternative system (D5O+
2 ) following the same method-

ology. Plot the energies for the different timesteps and visualise the trajectories. Are there
differences in the behaviour of the two systems?

From the practical point of view, a larger time step is desirable, since it allows to assess longer
trajectories in shorter computational times. Notice, however, that the ∆t = 0.002 ps simulation
diverges for H5O+

2 . In fact, the molecule dissociates. The reason for the dissociation is that the
integrator is unable to deal with these “big” time steps. This integrator uses a simple Verlet
algorithm [3], where the error in the trajectory goes with ∆t4.

If you are simulating D5O+
2 , the ∆t = 0.002 ps simulation might stay intact, although the oscilla-

tions are unacceptable for proper production run. The fact that it does not explode illustrates an
important point: the largest ∆t that can be used in a particular integration algorithm depends on
the highest vibrational frequency of the system. Since the D atoms, being heavier, have a larger
vibrational period (do you understand why this is obvious?), the used ∆t can also be larger.

Important MD advice:
Just like we converge settings in T=0K ground state DFT calculations to obtain accurate results
(see bulk Si example), we take care to achieve ’convergence’ in the macroscopic quantities that
characterise thermalised MD calculations. These can be the energy (E), volume (V), temperature
(T) and pressure (P), depending on the type of MD calculation (ensemble). In the example of
microcanonical ensemble (NVE) above, number of atoms N, V and E stay constant during the
calculation. The cannonical ensemble is (NVT), and in the grand cannonical (NPT) ensemble
temperature and pressure should be constant. It is important to monitor these variables throughout
the MD calculation: small oscillations about the average are normal, we are looking out for large
deviations of the average. Any such deviations indicate a pathology in the calculation and probably
inaccurate results. In that case, you should analyse the output or trajectories to find out what is
causing the problem and change calculation settings accordingly (different time step, thermostat,
longer equilibration times, etc).
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Part II: Dispersion Corrections
There are many methods which treat dispersion interactions within DFT. The simplest approach is
to divide the molecular system into atomic fragments and employ a pairwise approximation. This
leads to expressions of the form ∑

i<j

f(Rij)C6,ij

R6
ij

(2)

where the sum runs over pairs of atoms i, j, R is the distance between said atoms and C6 is a
coefficient describing the strength of the interaction. f is a so-called damping function which is an
empirical entity preventing R−6 from diverging and ensuring a smooth coupling of the dispersion
energy to the DFT energy.

In the simplest variant, tabulated empirical C6 coefficients for individual atoms are used and f has
a simple analytical form (DFT-Dn series [4, 5]). In a more elaborated scheme, the C6[n] coefficients
are functionals of the electron density n and thus take into account the local chemical environment
(Tkatchenko–Scheffler [6]). In a yet more complex scheme, the C6 coefficients may be derived from
the Kohn–Sham orbitals (Becke–Johnson [7]).

An alternative approach to dispersion is the use of non-local density functionals of the form∫∫
n(r1)Φ[n](r1, r2)n(r2)dr1dr2 (3)

where Φ is the so-called non-local kernel. That is also the quantity which distinguishes different non-
local functionals. The two most widely adopted families are vdW-DF [8] and Vydrov–van Voorhis [9].

The non-local functionals share with the pairwise method that they are essentially two-body, or
additive for long distances. But this oversimplifes the dispersion interaction picture. There are
several ways to go beyond the pairwise approximations. The simplest approach is to extend the
pairwise methods by adding three-body and higher-body terms. This is a strategy of the Many-Body
Dispersion (MBD) method [10, 11], which relies on approximate response functions. The idea of
MBD is to approximate response of atoms to electromagnetic field by harmonic dipole oscillators
which can then be solved exactly. The key quantity in this model is the dynamic polarizability
α(ω) which is related to C6 coefficients by the formula,

C6,ij = 3
π

∫ ∞

0
αi(iω)αj(iω)dω (4)

None of the methods mentioned above are exact and in this tutorial, we will limit ourselves to the
Tkatchenko–Scheffler (TS) method [6] and the Many-Body Dispersion (MBD) [10, 11] method as
representatives of the pairwise and many-body classes. They are both implemented in FHI-aims
and well established.

Keep in mind that both TS and MBD methods have some shortcomings. Apart from the self-evident
absence of many-body effects in the pairwise TS method, both methods suffer from the fact that
they are formulated in terms of atoms. Hence in systems where the partitioning into atoms is
problematic, such as in metals (delocalized electrons) or ionic systems (charge transfer), these
methods may give inaccurate or even qualitatively wrong results. The obvious remedy might be to
turn at least partly from atoms to electron density (cf. non-local functionals), and this framework
is under development.

Different dispersion corrections in FHI-aims will be introduced in the example of a benzene molecule.
Its aromatic ring features out-of-plane charge density that is readily polarised by dipole oscillations
nearby. Consequently, binding of benzene to other materials is dominated by dispersion interactions.
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Problem II: Pairwise Dispersion Correction

Educational Objectives:

• Find Hirshfeld volume and charge of carbon and hydrogen in a benzene molecule.

• Obtain C6 coefficients calculated from short-range screened polarizability.

Figure 2: Single benzene molecule

To compute pairwise dispersion corrections to DFT energy,
the TS method employs C6 coefficients that are calculated
from the electron density. For this to be possible, the density
has to be first divided between individual atoms. This can
be done in many ways and FHI-aims utilizes the so-called
Hirshfeld partitioning (the charge density partitions are also
employed to compute partial charges). Once “atomic densities”
are computed through partitioning, many quantities can be
calculated. The system C6 coefficients in Eq. (2) are obtained
as:

Ceff
6 = Cfree

6

(
VHirshfeld

Vfree

)2
(5)

where Ceff
6 is the effective atomic C6 in a molecule and Cfree

6
is C6 of a free atom. The volumes can be computed as stated
in the Appendix.

We will now explore this in a calculation with the PBE functional and a reasonable SCF convergence
criterion:

xc pbe
sc_accuracy_rho 1e-5
sc_accuracy_etot 1e-6

The following keyword selects the Tkatchenko-Scheffler (TS) method:

vdw_correction_hirshfeld

1. Create the control.in file for the calculation by listing only the keywords above. Append
the basis set information to the control file, e.g. using:

$ cat $SPECIES/light/*_{C,H}_* >> control.in

2. Create the geometry file for a benzene molecule. There are many alternative ways to do this,
e.g. using tools like Avogadro or VESTA (in a cif format, and convert into geometry.in
format using obabel). Here, we adopt a primitive but a powerful technique to create the
benzene molecule using Octave, an open-source clone of MATLAB. We will do it by first
creating a −CH element and then rotating it five times by 60◦. We start with:

$ octave --no-gui

and enter the following commands:

> rCC = 1.397
> rCH = 1.084
> CH = [rCC 0 0; rCC+rCH 0 0] # sets a 2-by-3 matrix
> rot = [cosd(60) sind(60) 0; -sind(60) cosd(60) 0; 0 0 1]
> benzene = CH;
> for i = 1:5
> CH = CH*rot; # matrix multiplication of CH and rot
> benzene = [benzene; CH]; # appends rows of CH to rows of benzene
> end
> disp(benzene) # short for display
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This will display the xyz coordinates for a benzene molecule where the C and H atoms are
alternating. Save the coordinates to a file and exit from Octave (Ctrl+D). To convert the file
into the correct format for geometry.in file, use the following awk script and visualise the
structure to validate it.

$ awk '{print "atom",$0,(i++%2==0)?"C":"H"}' [file]

3. Run FHI-aims on 6-8 CPUs and output results to TS-aims.out file. Example with 6 CPUs:

$ mpirun -n 6 aims.x > TS-aims.out

4. The TS calculation is run after the SCF cycle on the converged charge density, which is
typical for dispersion corrections. Search for “Hirshfeld analysis” to find the following lines:

Evaluating non-empirical van der Waals correction (Tkatchenko/Scheffler 2009).
Performing Hirshfeld analysis of fragment charges and moments.
----------------------------------------------------------------------
| Atom 1: C

5. Note the partial charges obtained by Hirschfeld partitioning. Which element tends to donate
charge? Which part of the molecule is consequently charged?

6. Note the effective Hirshfeld volumes obtained by partitioning. How do they compare to the
their free-atom counterparts?

7. Locate the TS energy correction in the line vdW energy correction, as seen below. The
total DFT energy (without corrections) can now be computed by removing the dispersion
correction from the total system energy.
Total energy components:
[...]

| vdW energy correction : -0.00252031 Ha -0.06858101 eV
[...]

| Total energy : -232.0288263 Ha -6313.82714026 eV

Problem III: Many-Body Dispersion Correction

Educational Objectives:

• Plot dynamic polarizabilities along the principal axes of the polarizability tensor.

• Compute the molecular C6 coefficient from the dynamic polarizability.

In MBD, C6 are computed via Eq. 4, and require as input the dynamic polarizability. Dynamic
polarizability α(ω) describes the response of a molecule in a similar way as static polarizability
α(0) does, but for an oscillating electric field.

p(ω) = α(ω)E(ω)

Here ω is the frequency, E(ω) is the generating field, p(ω) is the induced oscillating dipole moment
and α(ω) is the dynamic polarizability which is in general a tensor. As light is just an oscillating
electric field from the point of view of many processes, the knowledge of dynamic polarizability
is enough to calculate many interesting matter–light interaction properties. On the other hand,
dispersion energy can be viewed as coming from fluctuations of these dipoles, which can be described
by the same molecular polarizability (these two phenomena, inducing and fluctuating of the electric
dipole in matter can be related by the fluctuation-dissipation theorem).

To activate the MBD method, replace vdw_correction_hirshfeld in the control file with

many_body_dispersion

Note that only one of these keywords should be used at the same time.
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1. Run FHI-aims again and check the resulting MBD-aims.out file.

$ mpirun -n 6 aims.x > MBD-aims.out

2. The MBD dispersion correction energy can be identified by the Libmbd routine, and can
be found by searching for Libmbd: Evaluated energy: in the MBD-aims.out output. The
total DFT energy without correction can be computed by removing the dispersion correction
from the total system energy. Remember that the MBD energy is displayed in Ha! Check if
the total DFT energy in this calculation is the same as the one in TS-aims.out

Libmbd: Calculating MBD energy...
Libmbd: Evaluated energy: -0.78925212322857874E-002

ATTENTION!! Dynamic polarizabilities are not printed into the output by
default anymore in version 210716.3 of FHI-aims. Further items of Problem III
are not required unless you use an older version of FHI-aims. There is a option
of printing these information in an extra output xml file but we haven’t tested
this option yet. Feel free to try it yourself if you know what you’re doing ;)

3. Hirshfeld partitioning is performed again to compute partial charges, but it is not used to
evaluate C6 coefficients. The key input now is the dynamic polarizability, found in the lines:

| Many-Body Dispersion (MBD@rsSCS) energy
| Total dynamic anisotropic polarizability, \alpha_{ij}(iu), (a.u.)
| -------------------------------------------------------------------
| u xx yy zz yz xz xy
| 0.000000 82.950 82.955 36.363 0.000 0.000 -0.000
| 0.003624 82.946 82.951 36.361 0.000 0.000 -0.000
[...]

In the output, the isotropic and principal components of α(ω) (ω is labeled as u) are listed.
The benzene molecule orientation was chosen so that the principal axes coincide with the
Cartesian axes. The dynamic polarizabilities have been screened, i.e. adjusted for the influence
of neighboring atoms. The polarizabilities need to be screened only for the short-range part of
the Coulomb potential, which is called “range-separated self-consistent screening”, or “rsSCS”.

4. Find the atom-projected static polarizability α(0) and the resulting MBD C6 coefficients in
the lines:

| Partitioned atomic C6 coefficients and polarizabilities (a.u.)
| --------------------------------------------------------------
| ATOM 1 C 30.930690 9.015852
| ATOM 2 H 1.870707 2.220960
| ATOM 3 C 30.928155 9.015340
| ATOM 4 H 1.872223 2.221900
[...]

“Partitioned” here does not mean actual partitioning of the molecular C6 coefficient, but
rather rescaling of free atom values using information from the Hirshfeld partitioning (see
Appendix for details).

5. To analyse the dynamic polarizability αi(ω), isolate the listing (under | u xx ...)
and save it in omega.txt. Remove the leading pipe symbols in the polarizability output by
using:

$ sed -i 's/|//g' omega.txt

Then start Octave again and type in the following commands to display the graph of dynamic
polarizabilities. (octave --no-gui)

> load omega.txt
> alpha = omega(:, 2:4);
> omega = omega(:, 1);
> plot(omega, alpha);
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> title("dynamic polarizablity")
> xlabel("frequency (a.u.)")
> ylabel("polarizability (a.u.)")
> legend("alpha_{xx}", "alpha_{yy}", "alpha_{zz}")
> xlim([0,6])

Note that the labels xx, yy and zz now refer to the principle axes of the polarizability tensor,
and do not longer necessarily align with the cartesian axes x, y and z. The polarizability
decreases with frequency as the electrons are not able to respond fast enough to rapid electro-
magnetic oscillations. Note the difference between the in-plane(alpha_xx and alpha_yy) and
out-of-plane (alpha_zz) polarization - does this agree with what you know about the charge
density distribution in benzene? At higher frequencies, this anisotropy disappears because
the screening ceases to be effective.

6. Next, calculate the molecular C6 coefficient from the dynamic polarizability using Eq. (4),
where

∫
dω →

∑
i wi. The integration weights are hard-coded in FHI-aims but a list is

provided here for you. You can use the molecular C6 coefficient in Octave with (the same
session as for the plotting):

> load int_weight.txt # load integration weight
> C6 = 3/pi*sum(alpha(:, 1).^2.*int_weight)
> # .^ and .* stand for elementwise operations

How large is the molecular C6 coefficient? Validate your results with the provided solution.
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Part III: Intermolecular Dispersion Interactions
The importance of DFT dispersion corrections can be seen in intermolecular interactions. We
continue with the benzene molecule and consider the molecule-molecule interaction as a function of
molecular separation and orientation. In the subsequent problems we would like to compare TS and
MBD energy contributions, but avoid running two separate calculations. MBD will be the main
calculation performed, and we will use the mbd script supplied with this tutorial to additionally
compute the TS energy contribution. By total energy here is the bare DFT energy (PBE in our
case) before the final MBD@rsSCS correction.

Educational Objectives

• Compute the total energy minimum and the intermolecular distance for a stacked
benzene dimer.

• Compare the predictions of PBE, PBE+TS and PBE+MBD with a reference
method.

Problem IV: Stacked benzene interaction

Figure 3: Stacked benzene dimer

The interaction curve of two molecules A and B is:

Eint(r) = E(AB, |AB| = r) − E(A) − E(B)

where Eint(r) is the interaction energy of molecules at a
distance r and E are total energies of the independent
systems. In the case of a benzene dimer, A = B so we
need to run FHI-aims for a single benzene molecule once.
Then we compute a series of geometries with parallel
benzene dimers at different separations. The provided
Python script run.py creates all geometries and per-
forms all these calculations sequentially. The resulting
calculations can be analysed using the provided Python
script extract.py.

1. Copy over all template files. Check the template control.in file. The basis set will be added
by the script run.py automatically.

2. In run.py, consider the # build benzene molecule and # loop over distances sec-
tions. Can you relate them to the previous exercise and the task above?

3. Run the script on 6 CPUs by typing python run.py 6. Enter the resulting directories and
visualise the geometry.in to verify it.

4. Now we employ a script to compute the TS and MBD dispersion contributions. For this we
have to suspend the usual computational modules. Use the module purge command, then
run the script by typing python3m get_mbd.py 6. Check that the TS dispersion correction
(that was computed separately) was correctly written into the ts.out file. Now load the
modules again by typing module load intel/psxe-2020 (you can check if the change took
place by typing module list).

5. Run the command sed -i ’1d’ RUN.1/*/ts.out . The script extract.py will initially
gather the data and calculate the interaction energies for different methods: DFT energy,
Total energy + TS energy, and Total energy + MBD@rsSCS energy. Run the script by
typing python3m extract.py.

6. The results are plotted alongside a reference coupled cluster (CCSD(T)) value. How does
pure PBE perform for this system? Which dispersion correction performs better here?
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Problem V: Investigation of the benzene dimer PES
The benzene dimer has served as a test case for dispersion methods since the 1980s and it took
over two decades to finally resolve its potential energy surface (PES). Particularly challenging is
the description of almost degenerate T-shaped (T) and parallel-displaced (PD) structures.

We will reproduce the main features of the PES by computing a series of stable dimer configurations
that feature different molecule-molecule distances and orientations. These geometries represent
stationary points on the 3D potential energy surface (PES) of the benzene dimer. As before, all
calculations will be run sequentially by the run.py script, and analysed by the extract.py
script.

1. Copy over all template files. Inspect the bz-dimer.geoms.txt file that will serve as input for
run.py, and visualise the related xyz file. How many geometries will be computed?

M1
24

C 1.205074 -0.695750 0.000000
# ...
H -2.140382 -0.474604 3.488382
-----------------------------------------------------------
M2
24
# ...

You can visualize all geometries with jmol bz-dimer.geoms.xyz . Use the arrows in the
gui to list through the configurations.

2. Execute run.py as before on 6 CPUs by typing python3m run.py 6. Enter the relevant
directories to make sure that all calculations complete successfully.

3. Again, we employ a script to compute the TS and MBD dispersion contributions. Use the
module purge command, then run the script by typing python get_mbd.py 6. Load the
modules again by typing module load intel/psxe-2020.

4. Run the command sed -i ’1d’ RUN.1/*/ts.out . Inspect the file bz-dimer.energies.csv
that will serve as comparison for our calculations, then run python3m extract.py script as
before. How do the different methods perform overall? Which method overbinds, which one
underbinds and why?

5. Compare the reference energies against the xyz structures: which dimer configuration is lowest
in energy? Does the most accurate DFT method also predict this configuration to be lowest
in energy?

6. The most difficult problem in describing the benzene dimer PES is the comparison of T-shaped
(T) and parallel-displaced (PD) structures: they should be almost degenerate (< 0.1 kcal/mol).
Do our calculations correctly reproduce this result?
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Appendix I: Theoretical background
Here, we would like to present a brief description of the Many-Body Dispersion (MBD) method. The
procedure starts with projecting the response of valence electrons onto a set of quantum harmonic
oscillators by calculating the “volumes” for free atoms and atoms in a molecule,

Vi =
∫

ni(r)|r − Ri|3dr

where Ri is the position of atom i and ni is either its free-atom electron density nfree
i or Hirshfeld

density nH
i ,

nH
i (r) = n(r) nfree

i (r)∑
j nfree

j (r)

The ratio of the free and Hirshfeld volumes captures the influence of chemical environment on the
individual atoms. To incorporate this effect in the dispersion interaction, the free atom reference
static polarizabilities α0, C6 coefficients and dispersion radii RvdW are renormalized using the
volume ratios,

α0,i = αfree
0,i × V H

i /V free
i

C6,i = Cfree
6,i × (V H

i /V free
i )2

RvdW
i = RvdW,free

i × (V H
i /V free

i )1/3

Then, the dynamic polarizabilities are calculated as

αi(ω) = α0,i

(
1 − ω2

(ωeff
i )2

)−1

where the effective resonance frequency ωeff
i is defined as

ωeff
i = 4C6,i

3α2
0,i

This corresponds to approximating the response of an atom with a single harmonic oscillator.

Screening In the next step, we evaluate the screening of polarizabilities, i. e. how response
properties of the atoms are influenced by other atoms. The scalar polarizabilities are first recast as
tensors, αi = δαi (δ for Kronecker delta) and gathered into one 3N -by-3N matrix, where N is the
number of atoms, α =

⊕
i αi. This is the bare polarizability tensor α. Next, we want to let the

atoms interact through dipole interaction,

Tdipole = ∇ ⊗ ∇1
r

To explicitly account for the fact that we do not have point dipoles, but rather atoms where the
dipole density is spread over a finite volume, we consider the Coulomb interaction between two
Gaussian charge densities, vGG(r) = erf(r/σ)/r. Furthermore, we want to perform the screening
only with the short-range part of the Coulomb potential. This leads to the final interaction tensor
between atoms i and j of the form

TGG,sr
ij = (1 − f(Rij)) ∇ ⊗ ∇erf(r/σij)

r

where σij =
√

σ2
i + σ2

j , σi =
(√

2/π × αi/3
)1/3

defines the natural width of the interacting charge
densities, f is a damping function and Rij is the distance between the atoms.
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The short-range screened polarizability tensor αsr is then obtained using the self-consistent Dyson-
like equation,

αsr = α + αTGG,srαsr

where

T =

 T11 . . . T1N

...
. . .

...
TN1 . . . TNN


The isotropic atomic screened polarizabilities are recovered as

αsr
i (ω) = 1

3 Tr

∑
j

αsr
ij(ω)


RPA Finally in the last step, the MBD correlation energy is calculated from the short-range
screened polarizabilities (response functions) using the random-phase approximation (RPA) formula,

Ec = 1
2π

∫ ∞

0
Tr[ln(1 − χ0v) + χ0v]dω

where in case of MBD, the bare response function χ0 is
⊕

i δαsr
i and the interaction potential v is

(“lr” for long-range)
Tlr ∼ Tlr

ij = f(Rij)∇ ⊗ ∇1
r

A significant convenience of MBD is that because of the use of dipole approximation and other
considerations, the RPA integral can be evaluated analytically by recasting the problem as matrix
diagonalization.

Periodic MBD
The MBD method could be of course made periodic using Bloch functions and k-point sampling,
but we employ a less technically demanding solution. In the screening part, the effect of atoms
from other unit cells is incorporated in the interaction tensor T by

Tij =
∑

k

Tik, k ∈ {replicas of j, |jk| < Rcutoff}

In FHI-aims, Rcutoff can be controlled with the keyword mbd_scs_dip_cutoff.

In the RPA part, the modification is two-fold. First, the interaction tensor is modified in the same
way as for screening, just using a different keyword mbd_cfdm_dip_cutoff. Second, the original
unit cell is replicated into a supercell, the RPA integral is evaluated for the whole supercell as
if it was a molecular cluster, and the MBD energy is averaged over all unit cells that constitute
the supercell. The size of the supercell is controlled with mbd_supercell_cutoff. Mind that you
should always check the convergence of MBD energy with all these three parameters in production
periodic calculations.
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