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Introduction

Periodic boundary conditions are employed in first-principles calculations to efficiently describe
macroscopic, crystalline materials. The application of periodic boundary conditions relies on the
assumption that the nuclei constitute an immobile grid with fixed periodicity. However, thermody-
namic fluctuations constantly lead to displacements from this perfectly periodic grid of equilibrium
positions – even at zero temperature due to the quantum mechanical zero point motion. Accounting
for this dynamics is essential to understand the physics of many fundamental material properties
such as the specific heat, the thermal expansion, as well as charge and heat transport.

In part I of this tutorial, we will compute the vibrational properties of a solid using the harmonic
approximation. In particular, we will discuss and investigate the convergence with respect to the
supercell size used in the calculations. Furthermore, we will learn how the harmonic approximation
can be extended in a straightforward fashion to approximatively account for a certain degree of
anharmonic effects (quasi-harmonic approximation) and how this technique can be used to compute
the thermal lattice expansion.

In part II, we go back to electronic structure theory and investigate how the fact that the nuclei
are not immobile affects the electronic band structure. Both the role of the lattice expansion and
of the atomic motion will be discussed and analyzed.

Part I: Phonons - Harmonic Vibrations in Solids

Problem I: Using Phonopy

Problem II: Supercell size convergence

Problem III: Energy of the zero-point motion

Problem IV: Lattice expansion in the quasi-harmonic approximation

Part II: Electron-Phonon Coupling: Band Gap Renormalisation

Problem V: The role of the lattice expansion

For every exercise we also provide solutions and sample input files. As always, they can be found
in the $TUTORIALS/ directory. Please try to generate the input files on your own unless instructed
otherwise. In case you get stuck with a particular problem, do not hesitate to ask one of the
tutors. An executable of FHI-aims, as well as species files and utility scripts, are provided in the
$COURSE/CODE/ directory.

Moreover, for this tutorial you will need to install phonopy. You can do it in the terminal by
runniing:

pip3 install phonopy

Note: some of you might encounter an error in this installation. This is probably because you have
conda activated from other courses in your computer. Deactivate it before installing phonopy.

conda deactivate

Additional tools and programs

Utility scripts:
In this tutorial, additional scripts can be found in
$TUTORIALS/Tutorial_5/utilities.
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Part I: Phonons - Harmonic vibrations in solids

To determine the vibrations in a solid, we approximate the potential energy surface for the nuclei
by performing a Taylor expansion of the total energy E around the equilibrium positions R0:
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The linear term vanishes, since no forces F = −∇E are acting on the system in equilibrium R0.

Assessing the Hessian ΦIJ = ∂2E
∂RI ∂RJ

involves some additional complications: In contrast to the
forces F, which only depend on the density, the Hessian ΦIJ also depends on its derivative with
respect to the nuclear coordinates, i.e., on its response to nuclear displacements. One can either use
Density Functional Perturbation Theory (DFPT) [1] to compute the response or one can circumvent
this problem by performing the second order derivative numerically by finite differences
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as we will do in this tutorial. The definition in Eq. (2) is helpful to realize that the Hessian describes
a coupling between different atoms, i.e., how the force acting on an atom RJ changes if we displace
atom RI . However, an additional complexity arises in the case of periodic boundary conditions,
since beside the atoms in the unit cell RJ we also need to account for the periodic images RJ′ .
Accordingly, the Hessian is in principle a matrix of infinite size. In non-ionic crystals, however,
the interaction between two atoms I and J quickly decays with their distance RIJ , so that we
can compute the Hessian from finite supercells, the size convergence of which must be accurately
inspected (cf. Exercise 2).

Once the real-space representation of the Hessian is computed, we can determine the dynamical
matrix by adding up the contributions from all periodic images J ′ in the mass-scaled Fourier
transform of the Hessian:

DIJ(q) =
∑
J′

ei(q·RJJ′ )
√

MIMJ

ΦIJ′ . (3)

In reciprocal space [2], this dynamical matrix determines the equation of motion for such a periodic
array of harmonic atoms for each reciprocal vector q:

D(q) [ν(q)] = ω2(q) [ν(q)] . (4)

The eigenvalues ω2(q) (and eigenvectors ν(q)) of the dynamical matrix D(q) completely describe
the dynamics of the system (in the harmonic approximation), which is nothing else than a super-
position of harmonic oscillators, one for each mode, i.e., for each eigenvalue ωs.

The respective density of states
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is a very useful quantity, since it allows to determine any integrals (the integrand of which only
depends on ω) by a simple integration over a one-dimensional variable ω rather than a three-
dimensional variable q. This is much easier to handle both in numerical and in analytical mod-
els. For instance, we can compute the associated thermodynamic potential1, i.e., the (harmonic)
Helmholtz free energy

F ha(T, V ) =
∫

dω g(ω)
(

h̄ω

2 + kB T ln
(

1 − e

(
− h̄ω

kB T

)))
. (6)

1 Given that the Bose-Einstein distribution is used for the derivation of the harmonic free energy in this case,
we get the correct quantum-mechanical result including zero-point effects by this means.
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In turn, this allows [2] to calculate the heat capacity at constant volume

CV = −T

(
∂2F ha(T, V )

∂T 2

)
V

. (7)

To compute these quantities, we will employ the program package phonopy [3]. Please note that
phonopy makes extensive use of symmetry analysis [4], which allows to reduce numerical noise and
to speed up the calculations considerably.

Problem I: Using phonopy

In this exercise, you will compute phonons for the silicon fcc crystal lattice at the Γ point. You will
find the relaxed geometry for the primitive silicon fcc unit cell geometry.in and the appropriate
control.in in the $TUTORIALS/Tutorial_5/Part_1/Problem_1/inputs directory. Take a careful
look at the control.in convergence and basis settings. Note that it is essential in harmonic phonon
calculations to start from a relaxed geometry. We are doing here the same kind of vibrational
calculations that we did in Tutorial 2, but now we are computing harmonic vibrations in a solid.

Now, let’s perform the harmonic phonon calculation. Phonopy is an external python tool for phonon
calculations that relies on an external evaluation of the dynamical matrix. In addition to the aims
input files, phonopy requires its own input files. You can copy them from the same directory, we
will go through them before running the calculation to understand what we are doing.

Tasks

1. Prepare the working directory and the input files from the templates provided. In this
directory, the first thing that we have to do is generate all ε-displaced geometries required to
determine the Hessian ΦIJ via Eq. (2). For this purpose we will use phonopy and the input
phonopy_disp.conf. Let’s open this input file:

DIM = 1 1 1

DISPLACEMENT_DISTANCE = 0.01

We can identify two keywords there:

• DIM: This tag allows to specify the supercell size that will be used for the calculation.
In this first exercise, we use the settings 1 1 1 and thus perform all calculation in the
unit cell specified in geometry.in.

• DISPLACEMENT DISTANCE: This tag allows to specify the displacement ε used for
the finite difference in Eq. (2). On the one hand, too large values of ε make the numerical
derivative inaccurate; on the other hand, too small values of ε can amplify any residual
numerical noise2. The default value of 0.01 Å typically works well for solids.

Now run phonopy:

phonopy -d phonopy_disp.conf --aims

The keywords -d tells phonopy to generate the displaced geometries using the input file and
−−aims tells phonopy that we are performing DFT calculations with aims, and therefore we
want our files writen in aims format. This is important since phonopy can be used with other
DFT codes.3

2 The numerical noise can be reduced and virtually eliminated at a given ε by choosing tighter convergence
criteria for the forces: the smaller the value of ε, however, the tighter (and the more expensive) the required
convergence criteria.

3 You can check all the phonopy options by running phonopy -h.
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After having run phonopy you will encounter in your directory the displaced geometries.
In this case there is only one displaced geometry, geometry.in-001. Please compare the
original geometry.in with the one in geometry.in-001: Can you spot the displacement?

2. Now we employ DFT to calculate the ab initio forces FJ acting on the atoms in the ε-displaced
geometry that are required for the numerical derivative in Eq. (2). Create a new directory here
(you can do mkdir D-001 in the terminal), copy the control file and the displaced geometry
inside this new directory. Remember to rename geometry.in-001 as geometry.in. Change
into the directory D-001 and run FHI-aims on 4 CPUs. Call the output file ”D-001.out”.

Please note that a unit cell containing NA atoms (2 in your case) would in principle re-
quire 3NA different displacements and derivatives for the computation of the Hessian with
the dimension 9N2

A. Due to the high symmetry of silicon, phonopy is able to reduce the
number of required displacements to one. In systems with lower symmetries, this is no longer
the case and more than one displacement will be generated. Therefore, you would need to
create subdirectories and perform DFT calculations for all of them.

3. Change into the previous directory and run:

phonopy -f D-001/D-001. out --aims

This employs the DFT force information to generate the force sets FORCE_SETS . With it we
have what we need to compute the phonon spectrum. In this case we will compute it at the
Γ point using the input file qpoints.conf. There, we specify the Γ point QPOINTS = 0 0 0

and again the size of the supercell that we have used in the calculations. Run

phonopy qpoints.conf --aims

Congratulations, you have just performed your first phonon calculation! Among other useful
information, the final output qpoints.yaml contains the phonon frequencies at the Γ point:

# phonon frequencies at Gamma:

# | 1: 0.00000 THz

# | 2: 0.00000 THz

# | 3: 0.00001 THz

# | 4: 15.71145 THz

# | 5: 15.71145 THz

# | 6: 15.71145 THz

Why do the first three frequencies vanish?

Problem II: Supercell Size Convergence

Educational Objectives

• Perform phonon calculations in different supercells and inspect their convergence
with respect to the supercell size.

• Learn how to compute phonon band structures and phonon densities of states.

As mentioned in the introduction, a bulk system does not only consist of the NA atoms in the
primitive unit cell, but of an in principle infinite number of periodic replicas. In non-ionic crystals,
however, the interaction between two atoms I and J quickly decays with their distance RIJ , so
that we can compute the Hessian from finite supercells, the size convergence of which must be
accurately inspected. Such a periodic problem is best represented in reciprocal space by using the
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dynamical matrix DIJ(q) defined in Eq. (3): As a consequence, we do not only get 3NA phonon
frequencies, but 3NA phonon bands ω(q). For increasing supercell sizes, more and more reciprocal
space points q are assessed exactly, so that an accurate interpolation of ω(q) becomes possible.

We will compute in this problem different supercell sizes. For each of them we will compute
the phonon band structure and the phonon density of states. Ideally, one needs to check the
convergence of these computed as a function of supercell size. As mentioned, bigger supercells
(i.e. more atoms) will provide a more accurate description of the phonon spectrum. However,
calculations become more and more computationally expensive as we increase the supercell size
(scaling problem). Therefore, the aim will be to find the smallest supercell that provides a good
convergence for the property that we want to compute.

Tasks

1. Use the geometry.in, control.in and phonopy_disp.conf files from the previous problem.
We will have to adapt them to the new supercell sizes. Let’s start with the 2×2×2 supercell.
In this case the DIM keyword has to be adapted to

DIM 2 2 2

in all the input files that you are going to use.

2. Generate the distorted supercells as in the previous problem. Create a new subdirectory to
compute the in it the DFT calculation for the supercell. The supercell length is doubled
(increasing the volume 8 times) compared to the one in the previous problem. Only half the
k-points are needed in each direction to achieve the exact same reciprocal space sampling
as before, for which we used 4 × 4 × 4 k-points in Problem I. Therefore make sure that the
control.in file features the line:

k_grid 2 2 2

Remember that it is your responsibility to adapt the number of k-points in reciprocal space to
match the enlarged supercell for phonon calculations. This step is essential to get consistent
results!

3. Get the FORCE_SETS following the procedure explained in the previous problem. This step
completes the first part of any calculation using phonopy. The next steps, also known as post-
processing, will be devoted to compute the specific physical quantities that we are looking
for, using the FORCE_SETS.

4. Let’s compute the phonon band structure. For this we will need to create an input file that
will be interpreted by phonopy to compute the phonon bands. We can call the file band.conf
and it will contain

DIM = 2 2 2

BAND = 0.0 0.0 0.0 0.0 0.5 0.5 0.375 0.375 0.75 0.0 0.0 0.0 0.5 0.5 0.5

BAND_LABELS = $\Gamma$ X K $\Gamma$ L

BAND_POINTS = 201

where DIM correspond to the supercell that we have used to compute the FORCE_SETS (remem-
ber to adapt it to different supercells), BAND tells phonopy the path between high symmetry
points in the first Brillouin zone (reciprocal space) to use. BAND_LABELS specifies the high
symmetry points of that path. The naming conventions for reciprocal space that you have
encountered in an earlier tutorial are also used in this case, in spite of the fact that we
are now investigating the band structure of phonons (and not of electrons!). BAND_POINTS

corresponds to the number of points that will be computed in the path. You can now run

phonopy band.conf --aims
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This will create the file band.yaml. We will need to change its format to one that can be
plotted by xmgrace or gnuplot. We can use the following utility:

phonopy -bandplot --gnuplot band.yaml > band.dat

The file band.dat can used directly by xmgrace to plot the bands.

5. We can also compute the phonon density of states. This time we will need to create an input
file that will be interpreted by phonopy to compute the phonon density of states. We can
call the file dos.conf and it will contain

DIM= 2 2 2

DOS = .TRUE.

MESH = 45 45 45

GAMMA_CENTER = .TRUE.

The keyword DOS activates the calculation of the density of states, requesting the calculation
of the phonon density of states g(ω) defined in Eq. (5). MESH determines an evenly spaced
grid of 45 × 45 × 45 q-points that will be used to sample the reciprocal space. GAMMA_CENTER
centers the mesh in the Γ point. You can now run:

phonopy dos.conf --aims

This will create the file total_dos.dat with the phonon density of states as a function of
the frequency. You can directly use it to create a plot with xmgrace.

6. We now look into supercell convergence. Use the input files from the previous supercell and
adapt them. This time, the supercell specification has a different format:

DIM -1 1 1 1 -1 1 1 1 -1

Can you guess what is going on here? Tip: The solution becomes easier if you write the
supercell definition as −1 1 1

1 −1 1
1 1 −1


and if you remember that the unit cell vectors of the fcc structure are: 0 a/2 a/2

a/2 0 a/2
a/2 a/2 0


Enlarging the supercell in the n × n × n fashion maintains the oblique lattice type of the
primitive unit cell. phonopy also allows to generate the supercell into cubic cell shapes by
specifying the desired rotation matrix. The setting above generates a cubic supercell that is
four times the volume of the oblique primitive unit cell. Such a supercell can systematically
be increased by multiplying the rotation matrix by a scaling factor. As the cell is changing,
do not forget to check the k-point sampling. Run the phonon calculations following the
step-procedure that you have already mastered in the previous calculation. Do you observe
a difference in the phonon DOS computed with different supercells?

7. Finally, double the size of the cubic supercell from the previous calculation. Run again the
full phono calculation. Note that the size of the supercell will slow down the calculations.

8. Compare the band structure and the density of states for all the supercells. When do we
reach convergence?
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Problem III: Energy of the zero-point motion

Educational Objectives

• Learn how to calculate vibrational free energy.

The free energy of a solid is given by the DFT total energy (per unit cell) and the vibrational free
energy, which is also calculated per unit cell:

F (T ) = EDFT + F ha(T ) (8)

The vibrational free energy F ha(T ) does not vanish at T=0 K due to the quantum mechanical zero
point motion of the atoms. Therefore, the free energy F (T ) of a solid will differ from the total
energy directly computed in DFT EDFT. Therefore, the free energy should be the thermodynamical
quantity that one should used to determine the optimal unit cell volume. We will see in the next
problem that the zero point energy (ZPE) can cause an expansion of the lattice.

Te vibrational free energy can be computed in the harmonic approximation along other thermo-
dynamical quantities using phonopy. In this problem we will learn how to compute it.

Tasks

1. We will perform the calculations in the doubled cubic supercell, i.e., last supercell you com-
pute in problem 2, DIM -2 2 2 2 -2 2 2 2 -2). Therefore, if you have computed the FORCE_SETS
for this supercell, you can simply copy them to this new problem and avoid doing again the
DFT calculation of the forces. Computing the vibrational free energy is a post-processing
step.

2. We will need to create an input file for phonopy. We will call it thermal_properties.conf
and inside we will have the keywords

DIM = -2 2 2 2 -2 2 2 2 -2

TPROP = .TRUE.

TMAX = 1010

MESH = 45 45 45

GAMMA_CENTER = .TRUE.

The new keywords TPROP and TMAX, activate the calculation of the thermal properties and
fix the maximum temperature to be computed, respectively. Now you can run

phonopy thermal_properties.conf --aims

this will generate the file thermal_properties.yaml. You can open it and see the vibrational
free energy.

3. You can also run a DFT calculation with aims to compute the total energy EDFT with the
initial geometry.in and control.in files. Remember to increase the number of k point in the
control.in file for the calculation of this energy. Now, you can compute the free energy F (T )of
the system.
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Problem IV: Lattice Expansion in the Quasi-Harmonic Approximation

Educational Objectives

• Learn how to calculate vibrational free energies and heat capacities.

• Perform phonon calculations in supercells with different volumes

• Learn how to use the harmonic vibrational free energy to determine the lattice
expansion

In this exercise, we will inspect how the thermal motion of the atoms at finite temperatures can
lead to an expansion (or even a contraction) of the lattice. For an ideal harmonic system, which
is fully determined by the dynamical matrix DIJ(q) defined in Eq. (3), the Hamiltonian [cf. Eq. 1]
does not depend on the volume. This also implies that the harmonic Hamiltonian is independent
of the lattice parameters, and as a consequence of this, the lattice expansion coefficient

α(T ) = 1
a

(
∂a

∂T

)
p

(9)

vanishes [2]. To correctly assess the lattice expansion, it is thus essential to account for anharmonic
effects. In this exercise, we will use the quasi-harmonic approximation [5] for this purpose: this
requires us to inspect how the phonons, i.e., the vibrational band structures and the associated
free energies, change with the volume of the crystal. We will perform the calculations that we
performed in the previous problem – but now for different lattice constants.

In the third tutorial, you already learned how to determine the lattice constant of a crystal by
finding the minimum of the total energy EDFT(V ) by using the Birch-Murnaghan Equation-of-
State. There is a caveat, though: in the canonical ensemble, the relevant thermodynamic potential
that needs to be minimized is the free energy F (T, V ) and not the total energy EDFT(V ). As
we have seen, the free energy of a solid is given by the DFT total energy (per unit cell) and the
vibrational free energy, which is also calculated per unit cell:

F (T, V ) = EDFT(V ) + F ha(T, V ) (10)

At this point, we have already calculated the energetics of phonons at a given lattice constant.
However, Eq. (6) that defines F ha(T, V ) has no explicit dependence on the volume V . To account
for the volume dependence, we now calculate the free energy for a series of lattice constants, so
that we can pointwise evaluate and then minimize Eq. (10) using the Birch-Murnaghan equation
of state. This is exactly what the script calculate_cellvolumes.py will do for you. For each
lattice constant a, e.g., a = 5.54, it creates a directory 5.54 and will perform the calculations for:

• The total energy EDFT

• The vibrational free energy F ha(T )

Tasks

1. To compute the rest of the necessary data, you should copy over all the input files and avail-
able subdirectories (without changing their names) and execute the provided python script:
python3 calculate_cellvolumes.py. If all runs well, the script will skip the calculations
that have already been performed to save you time and proceeds to compute the last two
lattice parameters a = 5.54 Ã. . . and a = 5.58. It will take a few minutes, you can take a
mini-break.

2. Once the calculation have finished, we can extract the total energy and the free energy at zero
temperature as a function of the unit cell volume. You can simply run the scripts python3
get_energies.py and python3 get_freeenergies.py. The files energies.dat
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# V (AA^3) energy (eV)

36.382894 -15748.120763

37.219250 -15748.165309

38.068326 -15748.195238

38.930218 -15748.211714

39.805022 -15748.215807

40.692834 -15748.208479

41.593750 -15748.190615

42.507866 -15748.163128

43.435278 -15748.126956

and free_energies.dat

# V (AA^3) free energy (eV)

36.382894 -15747.986726

37.219250 -15748.034043

38.068326 -15748.066760

38.930218 -15748.086010

39.805022 -15748.092799

40.692834 -15748.088020

41.593750 -15748.072837

42.507866 -15748.048110

43.435278 -15748.014452

have been created by collecting the date computed for the different unit cell volumes.

3. We can use the Birch-Murnaghan Equation-of-State that you use in Tutorial 3 to obtain from
these files the corresponding optimized volume. The script murn.py will perform the fittings
of the energy EDFT(V ) and the free energy FV, T = 0K) = EDFT(V ) + F ha(V, T = 0K) as
a function of volume from the files energies.data nd free_energies.dat.

python3 murn.py energy.py

python3 murn.py free_energy.py

You can obtain the optimized unit cell volume V0.

4. From the optimized unit cell volume you can get the cubic lattice parameter a that defines
the fcc lattice parameters as (0, a/2, a/2) using the equation a = (4V0)1/3. Compute this for
the V0 obtained for the total energy and for the free energy. What can you observe?

As we have observed for a particular lattice parameter in the previous problem and for
several in this one, the vibrational free energy F ha(V, T = 0K), computed as F (V, T =
0K) − EDFT(V ), does not vanish at 0K due to the quantum mechanical zero point motion of
the atoms. Because of the zero point free energy (ZPE), even at 0K the real lattice constant
does not correspond to a minimum of EDFT.

5. The effect of the phonons in the lattice constant does not only occur at zero temperature.
We can obtain from the calculations that we have performed, the evolution of the free energy,
the unit cell volume and the lattice expansion coefficient (eq. 9) as a function of temperature.
We can compute these quantities using the phonopy script phonopy-qha as

phonopy-qha energies.dat {5.26,5.3,5.34,5.38,5.42,5.46,5.5,5.54,5.58}/thermal_properties.yaml

You will obtain several files with the results. You can inspect and plot the files volume-

temperature.dat and thermal_expansion.dat. What effects do you observe? Can you
explain the trend?
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Part II: Electron-Phonon Coupling: Band Gap Renormalisation

In the previous exercises, we started from electronic structure theory and then used it as a tool to
investigate the motion of the atoms in the harmonic approximation. In turn, this allowed us to
study the lattice expansion as a function of temperature. Now, we go back to electronic structure
theory and investigate how phonons affect the electronic properties of materials.

Problem V: The Role of the Lattice Expansion

Educational Objectives

• Investigate how the band structure and the band gap change due to thermal lat-
tice expansion.

Here we investigate how the thermally-induced lattice expansion affects the electronic structure.
For this purpose, we will perform electronic band structure calculations for geometries constructed
using the lattice constants determined in the previous exercise.

Tasks

1. Please first copy the input files provided for this problem. The file T_a0_alpha.dat contains
the values of the lattice parameter (indeed a/2) as a function of the temperature from the
previous exercise.

2. Next, copy over the utility script Compute_bandgap_at_different_volumes.py that gen-
erates the required geometries from the lattice constants listed in T_a0_alpha.dat. It also
runs the calculations and determines the band gap for this lattice constant and temperature.

3. Execute the script in the following fashion:

python3 Compute_bandgap_at_different_volumes.py

In the file band_gap.dat, you will find both the lattice constant and the band gap as a
function of temperature:

# Computing band gap shift due to lattice expansion ...

# T(K) a(AA) Band gap (eV)

0.000 2.717656 0.513977

50.000 2.717640 ....

4. Plot the band gap as a function of temperature and of lattice constant. Can you explain the
observed trends?

5. Have a look at the band structures stored in the various subdirectories, e.g., in T_500.000

and T_1000.000 with aimsplot.py. Are there any qualitative changes in the bandstructure
as the lattice expands?
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