
Special Course in Theoretical Physics
PHYS-E0546: DFT for Practitioners

Aalto University, September 2019

Tutorial 6: Calculations of barriers and reaction

coordinates

Manuscript for Exercise Problems

Prepared by Ondřej Krejč́ı, Orlando Silveira and Adolfo Fumega
Developed by Patrick Rinke and Xi Chen

Department of Applied Physics
Aalto University, 2022

Introduction

Calculations of the minimum energy path and therefore reaction barrier, are important parts of
computational chemistry, material science as well as surface science. According to the Transition
state theory and Arrhenius equation, the reaction rate k is exponentially depending on the energy
barrier EB :

k = A Exp

(
− EB

kbT

)
, (1)

where A is an exponential pre-factor, kb is the Boltzmann constant and T is a temperature. The
calculations of the barriers are important not only for estimation the speed of a reaction, but also
for calculation stability of various structures as well as determination between different reaction
paths.

In this Tutorial we will use DFT to calculate the minimum energy path and reaction barrier for
an atomic diffusion over crystalline surface. The diffusion on surfaces can be essential in various
material and surface science field, from material/molecules clustering, self-assembly to material
growth and also catalysis. For example a high diffusion barrier can prevents reactants to meet each
other, or meet the active sides of a catalyst and thus lower down the reaction rate considerably.

In part I of this tutorial, we will prepare and optimize the geometries necessary for the barriers
calculations. To build the geometries used in this part you will use Atomic Simulation Environ-
ment (ASE) [1], which is a python library already installed in your environment. In case you
find the error No module named ase when trying to use the library, try to install it by running
pip3 install ase.

In part II, we will calculate barrier for the diffusion of a hydrogen atom on an Al(110) surface.
Three different methods for the barrier estimation will be introduced and their results will be
compared and discussed.

Part I: H-atom diffusion on Al(110) surface

Problem I: Finding ideal parameters for Al bulk

Problem II: Creating an Al(110) surface slab with hydrogen adsorbate.

Part II: Barrier calculations

Problem III: Fixed Line-scan

Problem IV: Relaxed Line-scan

Problem V: Nudged Elastic Band Calculations

Appendix I: How to use ASE GUI

For every exercise we also provide solutions and sample input files. As always, they can be found
in the $TUTORIALS/ directory. Please try to generate the input files on your own unless instructed
otherwise. In case you get stuck with a particular problem, do not hesitate to ask one of the
tutors. An executable of FHI-aims, as well as species files and utility scripts, are provided in the
$COURSE/CODE/ directory.

Additional tools and programs

Utility scripts:
DFT output files are complex, so we use utility scripts to extract important data. In the

2

$COURSE/CODE/utilities directory you will find tools like aims-SCF_convergence.awk and
get_relaxation_info.pl to monitor the simulation, as well as create_xyz_movie.pl to track
the geometry optimisation. In this tutorial, additional scripts can be found in Templates directory
for each problems.
$TUTORIALS/Tutorial_6/utilities.

Visualization tools:
To visualize structures, vibrational modes, charge density plots, etc., several programs including
molden, vmd, and jmol are installed on your workstations. Please use the powerful ASE GUI to
visualise the geometry as well as to modify it. You will find the tutorial in Appendix I.

3

Part I: H-atom diffusion on Al(110) surface

In the first part of this Tutorial you will mostly repeat things you already learned in Tutorial 3. The
tests and workflow used in this Tutorial are necessary for any calculation with Periodic Boundary
Conditions. You will learn how to easily build these system and how to add an adsorbate on top
of a surface.

Educational Objectives

• Familiarized yourself with python ASE environment for creation and manipula-
tion of atomic geometries.

• Learn how to use ASE to build bulk materials and surfaces.

Problem I: Finding ideal parameters for Al bulk

In this exercise, you will determine optimal lattice constant and number of k-points (or rather
k-points density) for the aluminium fcc crystal lattice.

Tasks

1. Copy run.py from the Templates directory. Prepare control.template file, which will con-
tain basic settings for the calculations: LDA exchange-correlation functional, spin-unpolarized
calculations and no relativity, since Al is a light atom:

Physical settings

xc pw-lda

spin none

relativistic none

SCF settings

sc_accuracy_rho 1E-4

sc_accuracy_eev 1E-2

sc_accuracy_etot 1E-5

sc_iter_limit 100

k-points grid

k_grid XXX XXX XXX

Adding the k-points, basis functions for aluminium and transforming this file into control.in
will be done automatically later.

2. Create files for the Al bulk (fcc) geometry using ASE with different elementary lattice con-

stants – from 3.95 to 4.03 Å. You can use: python generate_geometries.py from the
Templates folder, but ideally you can try to generate them by yourself. From terminal run:

python

> from ase import atoms

> from ase.build import bulk

> from ase.io import write

> for i in [395 ,397 ,399 ,401 ,403]:

... tmp = bulk(’Al’ , ’fcc’ , a=0.01*i)

... write(’geom_’+str(i)+’.in’,tmp); del tmp;

...# do not forget about tab or 4 spaces in front of 2 commands above.

> exit()

4

This procedure will create 5 geom_XXX.in files containing geometries for the following, calcu-
lations. Check one of them using jmol. You can click on the geometry with the right mouse
button and using symmetry/reload {444 666 1} you can visualize also the neighbouring
cells. You can see how to do it in Fig. 1.

Figure 1: How to visualize neighbouring cells in jmol.

3. Run the automatic script run.py to loop over the lattice constant and the number of k-
points in the following manner: python3 run.py 8 it will take a couple of minutes. It will
automatically create a control.in file for each calculation using the light aluminium basis
set. In the mean time you can try to read what the script run.py does.

4. Check if all the calculations completed without any mistake by looking to at least one of the
nok_XX/outputgeom_XXX.txt files.

5. To obtain all energies from the output files run: python3 plot_outputs.py This script will
plot the energies vs. the length of the lattice constant into Results_energy.pdf.

What can you see from the results? What is the optimal lattice constant for the light basis
set and Tier 1? Compare this results with experimental results; for example this one [2].
What is the necessary amount of k-points for getting good results? What is the optimal
k-point density using an approximate formula:

ρk = 2π

ap ∗ Nk
,

where Nk is the number of k-points and ap is the length of one the primitive unit cell vectors?

Optional tasks:

1. Try different xc-functionals (e.g. PBE). is there any difference? If necessary adjust the lattice
constant range to clearly distinguish the minimum.

2. Try to change the run.py script so it would use tight or super tight basis sets. What is the
difference?

5

Problem II: Creating an Al(110) surface slab with a hydrogen adsorbate.

In this problem you will create an Al(110) slab geometry with an H atom on top of it and relax it.
For the creation of the geometries you will use the optimal lattice constant from Prob I.

1. Create a new directory.

2. Prepare an Al(110) surface with a H adsorbent usingASE. You can use a script create_surface.py
from a Templates directory to create your geometry.in file, but you can also try by yourself
in the terminal. Do not forget to change the XXX with your calculated optimal elementary
lattice constant:

python3

> from ase import atoms

> from ase.build import fcc110 , add_adsorbate

> from ase.io import write

> from ase.visualize import view

> from ase.constraints import FixAtoms

> # !!! change XXX with the optimized lattice constant !!! #

> surf = fcc110(’Al’ ,(1,2,3),a=XXX ,vacuum =15, periodic=True)

> view(surf)

> add_adsorbate(surf , ’H’, 0.2, position=’longbridge ’)

> c= FixAtoms(mask=[atom.position [2] < 16.0 for atom in surf])

> surf.set_constraint(c)

> view(surf)

> write(’geometry.in’,surf)

> exit()

We chose a slab with 3 layers only, in order to speed up the calculations, but the real calcu-
lations would require a larger amount of Al layers. We use a 1×2 supercell, so the periodic
images of the hydrogen atoms may not interact with each other. We added a hydrogen atom
in the so-called longbridge position, which is in-between the Al(110) rows, as you can see in
Fig. 2. Finally, we fixed only the lowest layer of the slab for the geometry relaxation, due to
the low amount of layers. Normally, 2-3 layers of the slabs are fixed, during the optimization
of the top-most layers

Figure 2: The 2×1 Al(110) slab with H adsorbate crated by ASE. To clearly see the periodic boundary
conditions 2×2 cells are visualized.

3. Copy the control.in from the one of the nok_XX directories used in Prob I. Open the
control.in in a text editor and adjust the k_grid line to k_grid 8 5 1. Then add these

6

lines just bellow it:

relaxation setting

relax_geometry bfgs 3.e-2

Also add the basis set for the hydrogen atom:

cat $SPECIES/light /01 _H_default >> control.in

4. Optimise the geometry with: mpirun -n 6 aims.x | tee out.out

5. Check the geometry.in.next_step after the run. You can simply open it with jmol. How
good was our guess for the adsorbant height?

7

Part II: Barrier calculations

In the previous Part you created a geometry for the barrier calculations that you will use in the
following problems.

Educational objectives

• Get an overview of possible barrier calculation methods such as: fixed linear scan,
linear scan with atomic constraints and (climbing) NEB.

Problem III: Fixed line-scan

Here we will perform a fixed scan calculation along an atomic row.

Tasks

1. Create a new directory. First, copy control.in, geometry.in.next_step and hessian.aims
from your Prob II directory. Rename geometry.in.next_step to geometry.in and also
copy over the run.py script from the Templates directory. Finally remove or comment this
line: relax_geometry bfgs 3.e-2 from your control.in file.

2. Execute the run.py script on 6 cores in the following fashion:

python3 run.py 10

This will take a couple of minutes. The script will create ten images and calculate their
energy as the hydrogen is moved along the y direction on the surface. The hydrogen is
always moved by 1/10 of the distance between two ’longbridge’ positions (y lattice vector
of 1×1 unit cell). You are encouraged to look at the run.py script, while it is running. Try
to understand what each line of the script does.

3. The results of the calculations are written in energies_fixed_line_scan.txt file. Visualize
the results with your favourite plotting utility (e.g. gnuplot,xmgrace). Here is an example
for gnuplot:

gnuplot

> set xlabel ’step’; set ylabel ’Energy␣[eV]’

> plot ’energies_fixed_line_scan.txt’ u 1:($2 +39435) w lp

What is the estimated barrier? Did we start from a proper minimum? You can also visualize
the geometries writen in fixed_path.xyz e.g. with jmol. To visualize all the geometries in
one image you can use the button shown in Fig. 3

Problem IV: Relaxed line-scan

In this exercise we will make our barrier calculations more precise – we will fix the y position of
the hydrogen atom, but the atom can move in the x and z directions. All the other atoms can
relax freely, except for the fixed bottom-most layer.

8

Figure 3: Clicking on this button in jmol, you can visualize all the gometries in any xyz file in one image.

Tasks

1. Create a new directory for this exercise. Once more copy control.in, geometry.in.next_step
and hessian.aims from your Prob II calculations and rename geometry.in.next_step to
geometry.in. Copy the run script run.py from the Templates directory. To constrain the
relaxation of the H atom to the y direction add this line into the geometry.in, right after the
hydrogen atom:

constrain_relaxation y

2. Now run the relaxed scan calculations with: python3 run.py 6. This will take longer time.
During this time, please take a look at the run.py script. What are the differences in
comparison with the previous problem? Later start to read and prepare files for the last
problem Problem V: Nudged Elastic Band Calculations

3. After the calculations, you can clearly see the difference between the fixed and the the relaxed
scan. First you can visualise the geometries in relaxed_path.xyz . Compare what you saw
in fixed_path.xyz in the previous excercise. The difference becomes even more apparent
when plotting both energy profiles together. You can use your favourite plotting option, here
is a gnuplot example:

gnuplot

> set xlabel ’step’; set ylabel ’Energy␣[eV]’

> plot ’PATH_TO_FIXED/energies_fixed_line_scan.txt’ u 1:($2 +39435)

w lp t ’fixed␣scan’, ’PATH_TO_RELAXED/energies_relaxed_line_scan.txt’

u 1:($2 +39435) w lp t ’relaxed␣scan’

The last three lines should be written together.

How big is the difference between the calculated barriers?

9

Problem V: Nudged Elastic Band Calculations

In the last problem, we will use the most complex method for finding the reaction coordinate and
transition state: (Climbing Image -) Nudged Elastic Band. [3]

Tasks

1. For these calculations some initial settings are necessary: Therefore use:

export PATH=$PATH:$COURSE/CODE/src/aimsChain/tools

export PYTHONPATH=$PYTHONPATH:$COURSE/CODE/src/aimsChain

To test, if all the settings are correct run

python:

> import aimsChain

> import scipy

> import numpy

> exit()

If there are no errors, then your system should be set properly.

2. Create a new directory. For the last time copy the control.in the from your Prob II
directory. Also copy geometry.in.next_step as ini.in . Remove last two lines from
ini.in . In your new directory copy ini.in to fin.in and in this file change the hydrogen
y -coordinate from 0.0000 to 2.821356056934325. To check, that all the files are properly
prepared, visualize them in jmol.

3. Now create the chain.in file, which controls the NEB calculations:

#A sample chain.in # next line: how aims will be runned

run_aims mpirun -n 6 $COURSE/CODE/bin/aims.x

initial_file ini.in # what is the initial geometry file

final_file fin.in # what is the final geometry file

n_images 3 # the amount of NEB images

force_thres 0.2 # threshold for stopping optimisation

use_climb true # usage of climbing NEB method ?

climb_thres 0.05 # threshold for climbing image optimisation

4. Before lauching the NEB calculations, copy runchain.py from the Templates directory.
Then execute:

python3 runchain.py 10

It will take about five minutes.

5. To get the energies from the optimised path you can use the following python script:

python3 plot_NEB_output.py

Take a look at Results_energy.pdf or look at the text file: NEB_energies.txt.

Compare the NEB calculated barrier with previous computations. You can also visualise the
pathway. There is an xyz file: Optimised/path.xyz .

Optional tasks:

1. You can try to use NEB calculation to estimate the barriers for diffusion in between the
atomic row or diagonally. Do not forget, that you will need to create new super-cells for

10

these calculations (2×1 or 2×2) and thus also change the amount of k-points in control.in.
What is the difference between the diffusion barriers in different directions?

2. You can try to change the amount of the images in the (climbing) NEB calculations. How
the estimated barrier is depending on the number of NEB images? How is the optimisation
behaves?

11

Appendix I: How to use ASE GUI

ASE-GUI (Grafic User Interface) is an atomic geometry visualization software build in the python-
ASE package. For more information about the GUI
https://wiki.fysik.dtu.dk/ase/ase/gui/gui.html?highlight=gui#module-ase.gui.

Open ASE-GUI by typing:

ase gui

which will open a clean GUI in which you can open almost any geometry file through file/open,
or immediately read almost any geometry file, via:

ase gui YOUR_GEOMETRY_FILE

If any of the previous ways is not working, you can always go through python:

python

> from ase.io import read

> from ase.visualize import view

> temp = read(’YOUR_GEOMETRY_FILE ’)

> view(temp)

Once the GUI reads a geometry, it visualize the geometrys as balls only. You can change the mode
to the balls-and-sticks through View/Show bonds or by CTRL+B. Example of both modes can be
seen in Fig. 4.

Figure 4: ASE-GUI Standard mode of geometry visualization (left) and balls-and-sticks mode (right).

You can rotate the visualized structure through holding the right mouse button and dragging, or
you can used some of the preset view-points: top-view can be obtained by pressing z, front-view
by x and rotate side-view by y. You can see the example in Fig 5.

12

Figure 5: ASE-GUI top, front and side view of the same structure

By holding the left-mouse button and dragging you can select several atoms of the visualized
geometry. You can move (CTRL+M and use arrows), rotate (CTRL+R and use arrows) or you
can apply constraints (Tools/Constraints/Constrain Selected Atom) to the selected atoms.
You can also remove selected atoms, with Backspace.

You can also add new atoms or molecules into the geometry through Edit/Add atoms or CTRL+A.
The example for adding an ethylene molecule is shown in Fig. 6

Figure 6: ASE-GUI adding an ethylene molecule 5Å above selected atom.

One of the most important features – cell multiplier – for checking a structure with Periodic
Boundary Conditions can be obtained by pressing r. You can choose how many unit cells are
repeated in which direction (Fig. 7). If you want to make a new supercell from the visualized
structure, just push Set unit cell .

Figure 7: ASE-GUI repeating the unit cell in any-direction.

You can save the prepared structure to an xyz, geometry.in, other formats or even to an png

image just by pushing CTRL+S

13

References

[1] https://wiki.fysik.dtu.dk/ase/ .

[2] https://www.webelements.com/aluminium/crystal structure.html .

[3] Graeme Henkelman, Blas P. Uberuaga, and Hannes Jónsson. “A climbing image nudged elas-
tic band method for finding saddle points and minimum energy paths”. In: The Journal of
Chemical Physics 113.22 (2000), pp. 9901–9904. doi: 10.1063/1.1329672. eprint: http:
//dx.doi.org/10.1063/1.1329672. url: http://dx.doi.org/10.1063/1.1329672.

14

https://doi.org/10.1063/1.1329672
http://dx.doi.org/10.1063/1.1329672
http://dx.doi.org/10.1063/1.1329672
http://dx.doi.org/10.1063/1.1329672

