

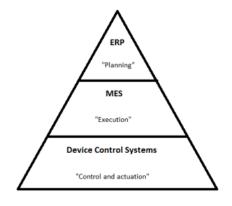
Introduction Enterprise architecture (EA)

Information systems in industry ELEC-E8113

Start at 12.15!

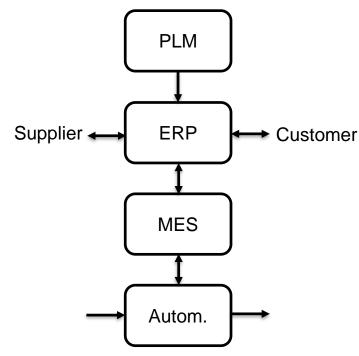
Contents

- Introduction to the topic of the course
- Information about the course

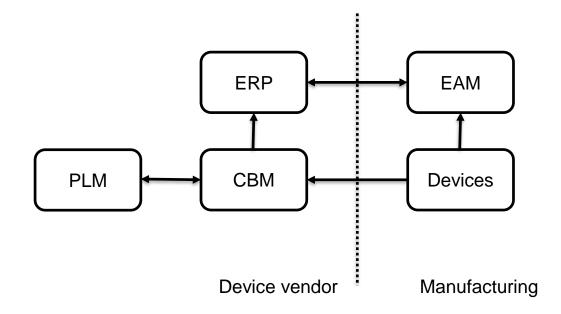

Rationale of the course: Automation systems are increasingly connected to information systems in practice for a good reason. You can get a job from it. Even if you do not it is good to know about it. It is also a research topic.

Situation

- Industry takes place in supply chains forming value networks
- In a supply chain core processes of an enterprise are plan, source, deliver (using ERP) and make (e.g. using MES and automation)
- Systems in a single enterprise are often illustrated with a model called automation pyramid
- In this model upper levels control lower levels (human in the loop!)


Information processing task of a manufacturing company

- The task of a manufacturing company is to use information from its markets (downstream in the supply-chain) and plan and control purchases from its suppliers (upstream in the supply-chain), usage of its own resources and its deliveries for fulfilling that market demand while maximizing its own business result given constraints posed on it
- In order to do this the company needs information processing activities of its workers (i.e. humans!) supported by suitable information systems
- The processed information need to passed to the production system (controlled by an automation system) and the result information needs to communicated back
- Monetary criteria evaluate the quality of the activity and the supporting systems


Manufacturing supply chain: Customer orders of products

- 1. Customer orders
- 2. Rough production planning
- 3. Purchases
- Detailed production planning
- 5. Execution and monitoring of production
- 6. Deliveries

Supply chain of a device vendor: Lifecycle of intelligent devices

- 1. Design
- 2. Manufacturing
- 3. Installation
- 4. Monitoring
- 5. Maintenance
- 6. Disposal

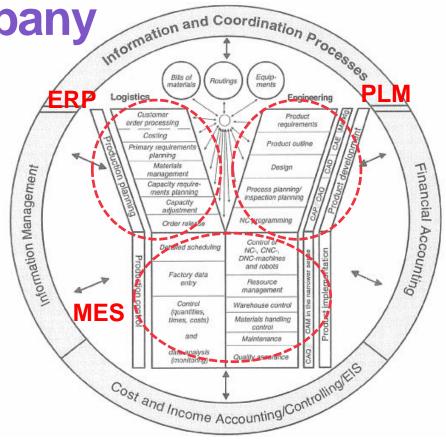
Basic concepts

- Enterprise architecture (EA) refers to a holistic approach for analyzing the information processing activities and information systems of an enterprise from several viewpoints and levels of abstraction
- Business processes are a very essential viewpoint in the EA (but only one of them)
- Manufacturing operations management (MOM) refers to the business processes particular in industrial companies performing production activities

Enterprise architecture

- The information processing activities, systems and organization can be modeled as an enterprise architecture (EA)
- EA outlines its target from several viewpoints and layers of abstraction. See the example.
- Business processes is a common starting point
- Information (EIA) and application (EAA) architecture are parts of EA

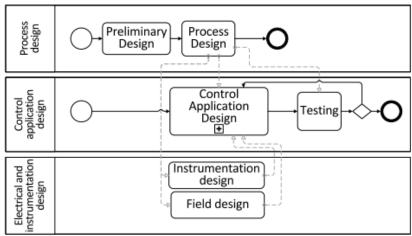
abstractio	ns DATA	FUNCTION	NETWORK	PEOPLE	TIME	MOTIVATION
perspectives	What	How	Where	Who	When	Why
SCOPE Planner contextual	List of Things - Important to the Business	List of Processes - the Business Performs	List of Locations - in which the Business Operates	Organizations - Important to the Busine	List of Events - Significant to the Business	List of Business Goals and Stra
ENTERPRISE MODEL Owner conceptual	Model	e e., Business Process Model	e.g., Logistics Network	e.g., Work Flow Model	e.g., Master Schedule	e.g., Business Plan
SYSTEM MODEL Designer logical	e.g., Logical Data Model	e.g., Application Architecture	System Architectus	e.g., Human Interface Archigoture	e.g., Processing Structure	e.g., Busines Rule Model
TECHNOLOGY CONSTRAINED MODEL Builder physical	e.g. Physical Data Model	e.g., Syctem Design	e.g. Technical Architecture	e.g., Presentation Architecture	e.g., Control Structure	e.g., Rule Des
DETAILED REPRESEN- TATIONS Subcontractor out-of-context	e.g. Data Definition	e.g. Program	e.g. Network Architecture	e.g. Security Architecture	e.g. Timing Definition	e.g. Rule Specification
FUNCTIONING ENTERPRISE	DATA Implementation	FUNCTION Implementation	NETWORK Implementation	ORGANIZATION Implementation	SCHEDULE Implementation	STRATEGY Implementatio

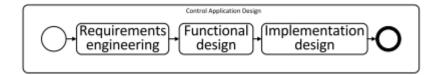


Y-CIM model of activities in a

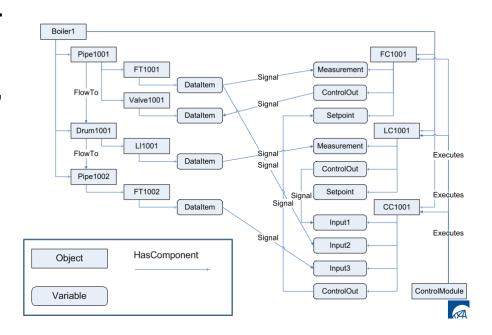
manufacturing company

 In this model core processes are called logistics and engineering


- Logistics consists of production planning (using ERP) and control
- Engineering consists of product development (using PLM) and implementation
- MOM (using MES) consists roughly of production control and product implementation
- After-sales services (using PLM) are not included in the model



Methods for modeling business processes


- Business processes are typically modeled with a few basic types of diagrams: data flow, workflow or sequence diagrams
- Currently the maybe most well known notation is BPMN (Business Process Model and Notation)
- Other notations include UML (Unified Modeling Language), ARIS (Architecture of Integrated Information Systems)

Modelling data of industrial information systems

- Data is another important view in EA.
 Data is a valuable asset.
- Data is modelled with different data models: basic data types, structures, hierarchies, networks, mathematics
- Data models enable different operations on data. Transformations between models are needed.
- Often information systems need more complicated data models than automation. Also information systems are different in this respect

Teaching

- 13 lectures on Mondays at 12.15 14.00 in AS6 and Zoom.
- 10 homeworks according to a defined schedule. Roughly one homework per week.
- Teamwork in groups of two students starting on 12.9.
- Exam on 7.12.2022.

Lectures

No	Date	Topic
1	5.9.	Introduction, Enterprise architecture (EA)
2	12.9.	Teamwork kickoff
3	19.9.	Service-oriented architecture (SOA)
4	26.9.	OPC Unified Architecture (OPC UA), Client-Server
5	3.10.	OPC Unified Architecture (OPC UA), PubSub
6	10.10.	OPC Unified Architecture (OPC UA), Industrial Internet of Things (IIoT)
7	24.10.	Enterprise resource planning (ERP), Product life-cycle management (PLM)
8	31.10.	Manufacturing operations management (MOM), Manuf. execution systems (MES)
9	7.11.	Development process of information systems in industry
10	14.11.	Visiting lecture abut MOM
11	21.11.	Integration of information systems in industry
12	28.11.	Teamwork results
13	5.12.	Summary

Homeworks

No.	Deadline	Topic	Туре
1	12.9.	Teamwork pre-assignment	Reading
2	19.9.	SOA	Reading
3	26.9.	OPC UA	Reading
4	5.12.	OPC UA Client	Programming
5	5.12.	OPC UA PubSub	Programming
6	24.10.	ERP, PLM	Reading
7	31.10.	MOM, MES	Reading
8	7.11.	Development of information systems	Reading
9	21.11.	Integration of information systems	Reading
10	5.12.	Case study	Case study

Teamwork

- The only mandatory task in this course!
- Alternative 1: The task is to design a standard-based address space for an example automation system and then implement it with OPC UA Java SDK.
- Alternative 2: The task is to analyze data of electric power consumption stored and updated in an SQL database with mathematical models implemented with R library.
- Teams of 2 students. 1 allowed if absolutely necessary
- Kick-off 12.9, deadline 28.11.

Exam

- Not mandatory but very much recommended
- Material contains lecture slides and texts for homeworks
- Just two relatively broad questions
- Emphasis is on understanding the topics, not remembering details that would be easy to check in practice
- However, you have to understand the important concepts and also remember their acronyms
- First exam on 7.12. Later exams in year 2023.

Grading

Teamwork: 30 (avg 24)

Homeworks: 30 (avg 22)

Exam: 30 (avg 14)

Total: 90 (avg 60)

Low	High	Grade
0	39	0
40	49	1
50	59	2
60	69	3
70	79	4
80	90	5

Typical limits. May change!

Information

- https://mycourses.aalto.fi
- Materials page will contain lecture slides, and texts for homeworks and exam
- Assignments page will contain homework questions and instructions for the teamwork
- Contact the teacher through email

Personnel

Teacher
 Dr Ilkka Seilonen
 TUAS Building, room 3562
 ilkka.seilonen@aalto.fi

Some MSc theses 2015-2017

Year	Topic	Organization
2017	Fulfillment Automation in E-Grocery	Digital Foodie
2016	Scalable application programming interface for clinical laboratory request registration	Software Point
2016	A modern user interface for manufacturing execution systems	Roima Intelligence
2016	Production of large travel time matrices on the Finnish road network	Mtech
2016	Integration of voice picking software with enterprise resource planning and a warehouse control system	Oriola
2016	Automated analysis of environmental measurements as part of quality management	HSY
2016	Converting an OPC UA software development kit from Java to Delphi	Prosys
2016	OPC UA performance evaluation	Prosys
2015	OPC UA app development for Android	Prosys
2015	Intelligent wear plate condition monitoring system	Metso Automation

