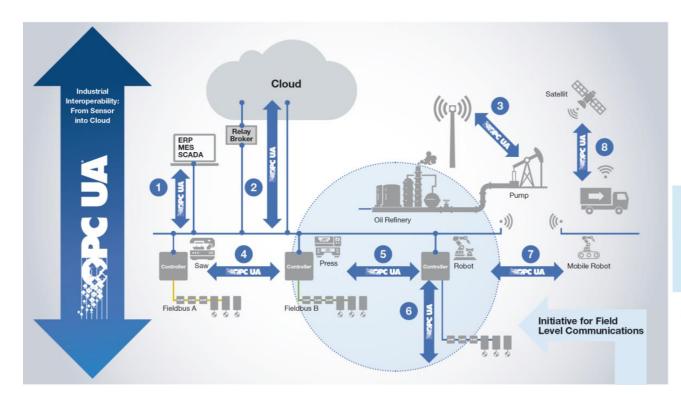


OPC Unified Architecture Client-Server

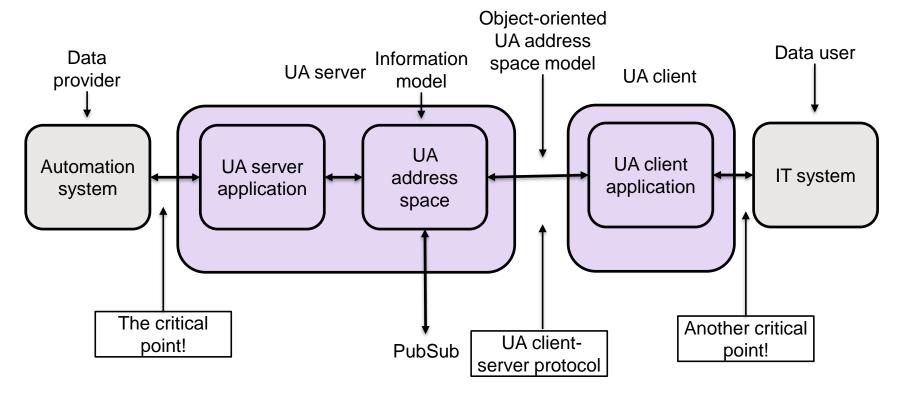
Information systems in industry ELEC-E8113

Start at 12.15!


Contents

- Architecture
- Address space model
- Built-in information models
- Companion information models

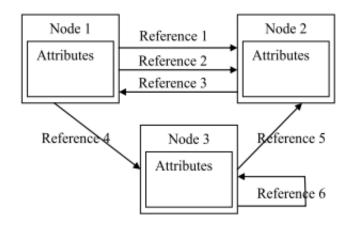
Rationale of the lecture: OPC UA is a good example of a communication technology particularly designed for data transfer between automation systems and information systems. OPC UA conforms to SOA.



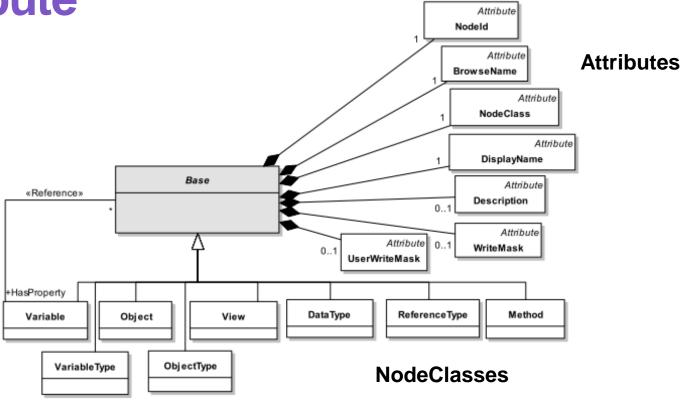
Situation

- 1 IT / OT Communication
- 2 Cloud Integration
- 3 Secure Remote Access
- 4 Local OT Communication
- 5 Controller to Controller
- 6 Controller to Field Device
- Wireless Integration (5G)
- 8 Future Ready

Focused view


Basic concepts of OPC UA

- Specification and technology of communication developed by OPC Foundation and standardized by IEC
- Originally follows client-server model of communication. PubSub communication has been added afterwards.
- Conforms to SOA, but is not dependent on SOAP or REST
- Has a particular address space model, which allows representation of different information models
- Contains necessary security features
- Provides a migration path from currently widely used OPC Classic


Address space model: Nodes and References

- The address space consists of Nodes and References for representing the object-oriented data model
- Nodes have Attributes
- Nodes have different NodeClass attributes for different types and instances of Objects and Variables (and a few other things)
- References have ReferenceType (and a few other things)
- The model is a network, not only hierarchy

Address space model: NodeClass and Attribute

Address space model: graphical notation

NodeClass	Graphical Representation
Object	Object
ObjectType	ObjectType
Variable	Variable
VariableType	VariableType
DataType	DataType
ReferenceType	ReferenceType
Method	Method
View	View

ReferenceType	Graphical Representation
Any symmetric ReferenceType	← ReferenceType →
Any asymmetric ReferenceType	ReferenceType
Any hierarchical ReferenceType	ReferenceType>
HasComponent	+
HasProperty	
HasTypeDefinition	
HasSubtype	<<
HasEventSource	→

Address space model: complex ObjectType and Object

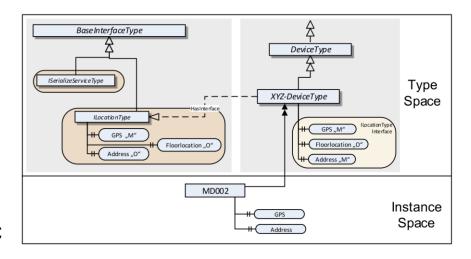
Object Address Space of OPC UA Server Motor -MyReferenceType-Object1 Attributes Event Notifications **Object** DisplayName = Motor Motor Type Nodeld = ... Motor1 EventNotifier = Subscribe Status Status Status Data Change Notifications Configuration Configuration Configuration Same Structure **Emergency Start** Emergency Start Emergency Start Write Data Reversing Reversing Reversing Lock-out Time Lock - out Time Lock - out Time Start Start Start Invoke Methods Stop Stop Stop Method ObjectType **ObjectType** HasTypeDefinition

HasComponent

Variable

Method

HasComponent


Variable

Object

Object

Modelling Rules and Interfaces

- Modelling rules can define if components or properties are mandatory or optional
- They can control inhertance in a type hierarchy
- Interfaces are subtypes of BaseInterfaceType. They can define properties and components
- ObjectTypes can refer to Interfaces with HasInterface Reference
- Interfaces and AddIns are a relatively recent addition to the OPC UA Address Space Model

Variables and VariableTypes

- Variables and VariableTypes have attributes e.g. Value, DataType, ValueRank and AccessLevel
- Value has server and source timestamps and status
- DataTypes can be predefined or application specific
- ValueRank differentiates beween scalars and arrays
- AccessLevel defines access rights
- Subtypes of BaseVariableType can define additional information

CounterType

<u>Attributes</u>

DisplayName = "CounterType"

BrowseName = (0, CounterType)

Nodeld = ...

NodeClass = VariableType

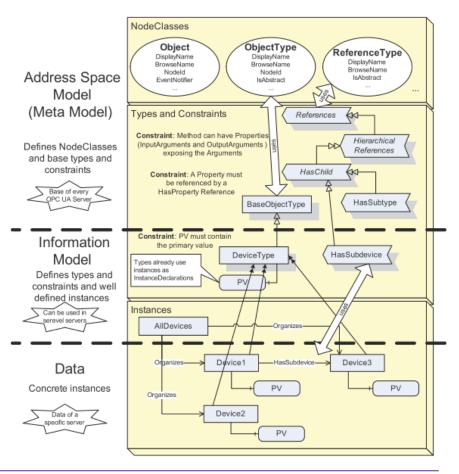
Description =

"A counter always increasing ist value by one until max. value is reached. Then it rolls

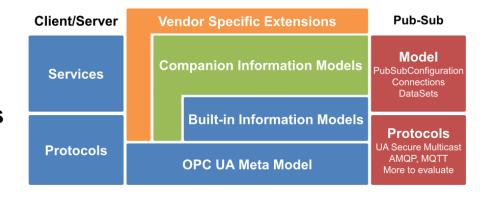
over to 0."

DataType = Integer

ValueRank = Scalar


ArrayDimensions

IsAbstract = False


Information models

- Information models contain types and some general instances intended to be useful for some applications
- The actual data will be available from the instances of the types of the information model
- Types of the information models are sub-types of the types in the built-in and other information models

Layers of information models

- The address spaces of OPC UA servers are intended to be extended with different information models for applications
- The standard contains a few built-in information models
- Companion information models are intended for particular application areas
- Vendors can specify their own extensions

Built-in information models

Name	Part	Content
Base information	5	Basic types and objects, e.g. Root object
Data access	8	Model for on-line values of variables
Alarms & conditions	9	Model for events and conditions
Programs	10	Model for programs and state machines
Historical access	11	Model for historical values of variables and events
Aggregates	13	Model for aggregated (calculated) values

More to come in parts 14-23 and maybe in 100-200?

Base, data access, historical access, aggregates

Base

- Base types of objects and variables: BaseObjectType, BaseEventType, BaseVariableType, BaseInterfaceType, etc.
- Standard hierarchy of objects: Root, Objects, Types, Views, Server, etc.

Data access (DA)

• Basic types of variables with more information: AnalogItemType, DiscreteItemType, ArrayItemType, etc.

Historical access (HA)

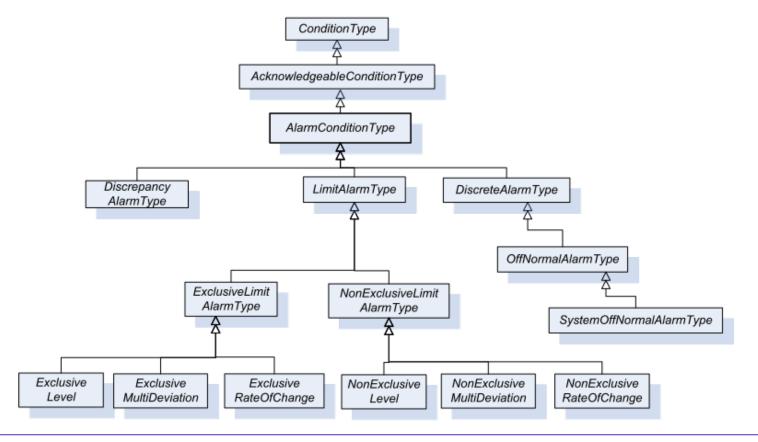
Define how historical data is organized: HistoricalDataConfigurationType, etc.

Aggregates

• Functions for calculating aggregated data: AggregateFunctionType, etc.

Alarms & conditions, programs

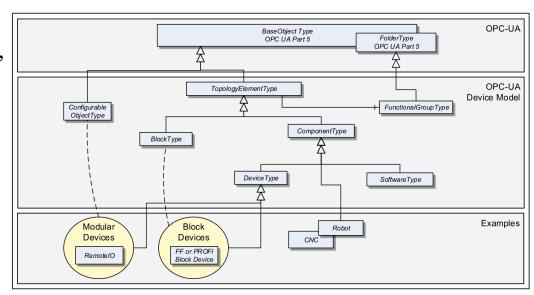
Alarms & conditions


- Model of conditions which can be enabled/disabled and reacted to by a user: ConditionType (a subtype of BaseEventType), AcknowledgeableConditionType
- Model of alarms: AlarmConditionType (a subtype of AcknowledgeableConditionType) and several subtypes

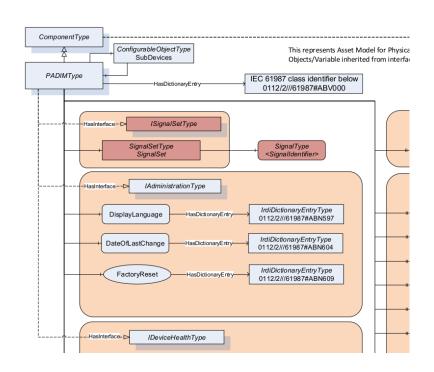
Programs

• State machine of long-running programs controlled through methods, state changes causing events: ProgramStateMachineType

Alarms & Conditions: type hierarchy


Companion specifications

- Currently work-in-process!
- About 30 companion specifications accepted by OPC Foundation
- Even more being developed while coordinated by VDMA
- OPC Unified Architecture, Part 100: Devices
 - Many sub-models, e.g. IEC61131-3
- Process automation
 - PA-DIM, FDI, FDT
- Batch process automation
 - PackML
- Discrete automation
 - Machinery, different kinds of machines, Robotics, Machine Vision, AAS, etc.
- Electric power systems
 - IEC61850
- And many more, and even more to come... how about harmonization?


Devices

- Abstract model of automation devices and networks
- Device model
 - TopologyElementType,
 ComponentType, DeviceType,
 FunctionalGroupType,
 DeviceSet, etc.
- Device communication model
 - NetworkType, ConnectionPointType, NetworkSet, etc.
- Device integration host model
 - IsOnline, TransferServicesType, LockingServicesType, etc.

PA-DIM

- PA-DIM can be used to describe data about devices in process industry
- PADIMType is the most important ObjectType in PA-DIM which describes a device and possible subdevices
 - Several Interfaces for various viewpoints
 - Subtype of ComponentType (from OPC UA DI) and indirectly its supertypes
- Several VariableTypes and some Methods

