
OPC Unified Architecture
Client-Server and PubSub

Information systems in industry
ELEC-E8113
Start at 12.15!

Contents

• Services and other basic features

• Application development

• PubSub

Rationale of the lecture: OPC UA is a good example of a developing

communication technology. OPC UA has changed due to

developments in requirements and other communication

technologies.

.

Situation

1.10.2022

3

Focused view

1.10.2022

4

Automation

system
IT system

UA server

application

UA

address

space

UA client

application

UA server UA client

PubSub

UA client-

server protocol

Service sets

1.10.2022

5

Service set Functionality

Discovery Finding servers

Secure channel Opening and closing a secure communication channel

Session Creating and closing a communication session

Node management Adding and deleting Nodes and References

View Browsing the address space

Query Querying the address space

Attribute Reading and writing Attributes of Nodes

Method Calling Methods

Monitored item Creating, modifying and deleting Monitored Items

Subscription Creating, modifying and deleting Subscriptions

Security

• Application authentication when

a client start communication with

a server

• User authentication and

authorization when a client start

a session with a server

• Message confidentiality and

integrity when communicating

between a client and a server

• There can be a firewall between

them

1.10.2022

6

OPC UA security architecture

Application architecture: Stack and
SDK

1.10.2022

7

Development with Information Models

1.10.2022

8

UA server

application

UA client

application

UA server UA client

UA SDK

Address

Space

*.jar

UA SDK

*.jar

NodeSet2

*.xml

*.java

Development

Code

generation
API call API call

Service

call

Namespaces

• Namespaces organize nodes

at an UA server

• NodeId specify (1) namespace

and (2) node

• You have separate

namespaces for

• Build-in information models

• Other information models

• Your application

1.10.2022

9

UaModeler and code generation
• Edit graphically your own

information models

• Utilize standard and

companion information

models as a basis

• Export to NodeSet2.xml

format

• Generate source code for

ANSI C, C++, C#

• Code is generated for

types

• Example: For C++ 7 *.h

and 5 *.cpp files are

generated for one very

simple ObjectType

1.10.2022

10

Development tools

1.10.2022

11

• Stacks enable OPC UA communication between clients and

servers

• SDKs extends stacks with functionality for developing client and

server applications

• Both stacks and SDKs are available for several programming

languages and operating systems (e.g. C/C++, C#, Java)

• Test clients are general purpose clients to access any OPC UA

server. Test servers are intended for testing OPC UA client

applications

• Gateways are wrappers for OPC Classic servers

• Modelers enable editing information models and generating

code from them.

Profiles

• Server profiles define which OPC UA features the server has. All servers

do not need to has all features

• Profiles are defined with a concept of Facets, which are tested features

10/1/2022

12

Discovery

• OPC UA clients need Endpoints

(address and security) to create a

secure channel to a server

• Clients can find servers through

either local or global Discovery

Servers

• OPC UA servers can register to

discovery servers

10/1/2022

13

Mappings

• Mappings define message

encodings, security and

transport protocols to be used in

service requests and responses

• Initially two alternatives were

provided

• UA * mappings are specific to

OPC UA

• WS Secure Conversation and

SOAP have been removed

1.10.2022

14

New model of OPC UA

• Publish / subscribe

model of communication

• JSON as a new message

encoding

• New transport protocols

• OPC UA for Devices (DI)

as a part of the core

specification

• Larger set of companion

specifications

1.10.2022

15

PubSub (Publish / Subscribe)

• Two models: with or

without a broker, both

following the same

model

• Actors: Publisher,

Subscriber, MOM

(Message-Oriented

Middleware)

• Data: DataSet,

Messages

• Functions:

DataSetReader,

DataSetWriter

10/1/2022

16

Configuration model

• Connection defined a

communication channel for

sending and receiving

messages

• Writer/ReaderGroup for each

NetworkMessage to

write/read

• DataSetWriter/Reader for

each DataSet to write/read

1.10.2022

17

Broker-based PubSub

• In Broker-based PubSub the MOM is

a broker, i.e. a message queue server

• Both the Publishers and Subscribers

are clients of the Broker

• All actors do not need have anything

to do with OPC UA

• JSON is the typically intended

message encoding

• Bindings to AMQP and MQTT as

Brokers

• Data collection to cloud storages is a

the typical intended use case

1.10.2022

18

Broker-less PubSub

• In Broker-less PubSub the MOM is a

network

• Connections are UDP uni/multicast

• All actors do not need to have

anything to do with OPC UA

• UADP is the message encoding

• UDP defined as transport protocol,

TSN being worked on

• (Fast) communication between OPC

UA servers is the typical intended

use case

• Deterministic communication delays

with TSN

1.10.2022

19

Broker-less PubSub and TSN

• TSN is an IEEE standard being

developed for real-time

communication over Ethernet

• TSN binding would enable real-time

broker-less PubSub

• TSN Profile for Industrial Automation

would be needed

• TSN would require more complex

configuration of communication than

UDP

• Extending PubSub definition is

needed

• Currently there are several different

Industrial Ethernet technologies with

similar capabilities

1.10.2022

20

OPC Day Europe 2018

TSN Endstation

Stack A

TSN Talker
Bridges

OPC UA Publisher

TSN Endstation

Stack B

TSN Listener

OPC UA Subscriber

Network

IF

„eth2“

Network

IF

„eth0“

WriterGroup ReaderGroup

TSN Stream1 N

1 N

Network

Message

Stream

Objects

Network

Interface

Objects

Stream

Objects

Network

Interface

Objects

