
Diogo R. Ferreira

Enterprise
Systems
Integration
A Process-Oriented Approach

Enterprise Systems Integration

Diogo R. Ferreira

Enterprise Systems
Integration

A Process-Oriented Approach

123

Diogo R. Ferreira
Instituto Superior Técnico
Technical University of Lisbon
Oeiras, Portugal

ISBN 978-3-642-40795-6 ISBN 978-3-642-40796-3 (eBook)
DOI 10.1007/978-3-642-40796-3
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013956015

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

Despite having been teaching enterprise systems integration for a number of years,
I was unable to find a book that would cover the breadth of topics that I wanted
to present to my students. Some books are too high level to convey a practical
knowledge of the subject, while others do not raise above the low-level details of
certain technological platforms. I wanted to have a book that would go across the
landscape of integration concepts and technologies and yet provide an idea of how
things work from the low-level systems to the high-level business processes in an
organization.

Often, students and IT professionals alike are not fully aware of how techno-
logical solutions at the systems level have far-reaching consequences up to the
higher levels of business processes in an organization, shaping the way activities
and resources must be organized in order to reach a certain business goal or in order
to deliver a certain service to the customer. Technology shapes business processes
and sets the prospects as well as the limits of what organizations can do. This is
not so apparent in computer science curricula where students are routinely asked
to develop solutions from scratch, but it will come as a revelation when the student
and IT professional realize that while everyone is developing solutions from scratch,
someone will have to integrate everything together in order to create an application
infrastructure that can support the desired business processes.

Integration has never been an easy topic to address, for several reasons. On one
hand, integration has been mostly regarded as “patchwork,” being highly dependent
on the specific applications to be integrated. On the other hand, integration
technologies keep constantly evolving, making any solution obsolete, or at least
“old-fashioned,” in a couple of years. However, when one looks at the technologies
that have come one after the other, one starts noticing certain patterns, certain
concepts that have been passed along from one technology generation to the next,
and even though some concepts were abandoned along the way, others survived and
were even improved as each new technology was introduced.

Today, the concepts and technologies associated with enterprise systems inte-
gration have matured to the point that now it is possible to see the connection
between low-level systems and high-level business processes through a series of

v

vi Preface

layers that include messaging, adapters, services, and orchestrations. It is always
with a view towards supporting business processes that we address integration in
this book. From messaging systems to data and application adapters, and then to
services, orchestrations, processes, choreographies, and electronic data interchange,
I will try to show how everything falls into place in the world of integration.

This book is intended for graduate students and IT professionals with some
background in programming, database systems, and XML. These prerequisites are
not absolutely essential, but they will help the reader in understanding certain topics
and in appreciating the examples that are given throughout the book. Throughout
the text, I have tried to abstain from my own views, and instead I decided that my
mission would be to describe each topic as impartially and accurately as possible, so
that the reader can assess the merits and advantages of the concepts and technologies
being presented. Of course, the more knowledgeable the reader is in related fields,
the better she or he will be equipped to make such assessment.

Due to its technological nature, it is impossible to teach integration in empty
space, without referring to concrete tools and platforms. Unfortunately, every
integration platform has its own idiosyncrasies, and choosing a particular platform
to illustrate a given concept becomes a delicate decision. But rather than being my
own decision, a set of circumstances determined that I would come in close contact
with Microsoft BizTalk Server. Even though this platform is relatively complicated
to set up (the interested reader is advised to follow the installation guides provided
by the vendor), over the years I have found it to be a viable option to illustrate some
of the main concepts associated with enterprise systems integration.

With some adaptions, the same concepts can be applied in other platforms, such
as webMethods by Software AG, Oracle SOA Suite, or IBM WebSphere. The reader
may find open-source alternatives in OpenESB, JBoss ESB, and, more recently,
Apache ODE. There are other products which, despite not being mentioned here,
may be worth considering as well. These integration platforms will certainly keep
evolving, and as they expand in features and sophistication, I hope this book will
continue to serve as a useful source of guidance in this exciting field.

Lisbon, Portugal Diogo R. Ferreira
July 2013

Contents

Part I Introduction

1 Evolution of Enterprise Systems . 3
1.1 Essential Systems of a Business Organization .. 4
1.2 Evolution of System Architectures . 7
1.3 Integrating Several Applications Together . 9
1.4 Services: The Ultimate Solution?. 11
1.5 Conclusion .. 14

2 Introduction to BizTalk Server . 15
2.1 The Message Box . 16
2.2 Schemas and Transformation Maps . 17
2.3 Ports, Pipelines, and Adapters . 19
2.4 Orchestrations . 22
2.5 BizTalk Applications .. 25
2.6 Business Rules . 26
2.7 Conclusion .. 29

Part II Messaging

3 Messaging Systems . 33
3.1 Fundamental Concepts . 34

3.1.1 Channels . 35
3.1.2 Messages . 36
3.1.3 Pipelines . 37
3.1.4 Routers . 39
3.1.5 Translators . 41
3.1.6 Endpoints . 44

3.2 Message Transactions . 45
3.3 Message Acknowledgments . 47
3.4 Message Correlation . 48

vii

viii Contents

3.5 The Java Message Service . 50
3.5.1 The JMS API . 51
3.5.2 How to Use JMS . 54
3.5.3 JMS Messages . 56
3.5.4 Message Acknowledgments in JMS . 58
3.5.5 Transactions in JMS . 59

3.6 Microsoft Message Queuing .. 59
3.6.1 Message Acknowledgments in MSMQ.. 61
3.6.2 Public and Private Queues . 62
3.6.3 Distributed Transactions in MSMQ . 62
3.6.4 The Structure of MSMQ Messages . 63
3.6.5 How to Use MSMQ .. 67
3.6.6 Receiving Messages Asynchronously . 71
3.6.7 Using MSMQ Transactions . 72
3.6.8 Using Acknowledgments .. 73

3.7 Conclusion .. 73

4 Message Brokers . 75
4.1 Message-Level vs. Orchestration-Level Integration 76
4.2 Publish–Subscribe with Message Filters . 77
4.3 Promoted Properties . 78
4.4 Orchestration-Level Integration . 81
4.5 Distinguished Properties . 83
4.6 Correlations .. 84
4.7 Using Asynchronous Messaging . 88
4.8 Conclusion .. 91

Part III Adapters

5 Data Adapters . 95
5.1 The Three-Tier Model. 96
5.2 Capturing the User Interface .. 97
5.3 Integrating Through Files . 101

5.3.1 Delimited and Positional Flat Files . 102
5.3.2 Using XML Files . 103
5.3.3 Canonical Data Formats . 105

5.4 Database Access APIs . 107
5.4.1 Using ODBC. 110
5.4.2 Using JDBC. 113
5.4.3 Types of JDBC Drivers . 115
5.4.4 Database APIs in Windows . 116
5.4.5 Database Access in the .NET Framework 118
5.4.6 Using LINQ .. 119

5.5 Returning Data in XML.. 120
5.5.1 Using the RAW Mode . 121

Contents ix

5.5.2 Using the AUTO Mode. 122
5.5.3 Using the EXPLICIT Mode . 123
5.5.4 Using the PATH Mode . 127
5.5.5 How to Obtain the XML Schema . 128

5.6 Using the SQL Adapter . 131
5.6.1 Creating the Stored Procedure . 132
5.6.2 Defining the Message Schemas . 133
5.6.3 Defining the Transformation Maps . 135
5.6.4 Configuring the Ports in the Orchestration 135
5.6.5 Removing the XMLDATA Command . 137
5.6.6 Deploying and Running the Orchestration 138

5.7 Conclusion .. 139

6 Application Adapters . 141
6.1 Methods and Interfaces . 142

6.1.1 Interfaces and Adapters . 143
6.1.2 Forward and Callback Interfaces. 145

6.2 Integration of Application Code . 147
6.2.1 Calling C/C++ Code from Java . 148
6.2.2 Calling Java Code from C/C++ . 151
6.2.3 Integrating Across the Network . 153

6.3 Revisiting RPC and CORBA . 154
6.3.1 From RPC to CORBA . 156
6.3.2 The CORBA Services . 158
6.3.3 Dynamic Invocations in CORBA . 160

6.4 Web Services . 161
6.4.1 A Simple Example. 163
6.4.2 Invoking Operations with SOAP Messages 164
6.4.3 The WSDL Interface Definition . 166
6.4.4 Creating a Client for the Web Service . 170

6.5 Invoking a Web Service from an Orchestration .. 174
6.5.1 Defining the Message Schema . 176
6.5.2 Adding a Reference to the Web Service 177
6.5.3 Configuring the Message Assignments . 178
6.5.4 Configuring the Ports in the Orchestration 179
6.5.5 Deploying and Running the Orchestration 180

6.6 Conclusion .. 181

Part IV Orchestrations

7 Services and SOA . 185
7.1 Services and Applications . 186
7.2 Service Composition . 188
7.3 Service Orchestrations . 190
7.4 Orchestrations and Business Processes. 192

x Contents

7.5 SOA and Service Design Principles . 195
7.6 The Benefits of SOA . 198
7.7 Support for Human Workflows . 199
7.8 Conclusion .. 201

8 Orchestration Flow . 203
8.1 Block Structure . 204
8.2 Beginning the Flow . 207
8.3 Message Construction .. 209

8.3.1 Constructing Messages Through Transformation 210
8.3.2 Constructing Through Message Assignment 212

8.4 Controlling the Flow . 214
8.4.1 The Decide Shape . 215
8.4.2 The Parallel Shape . 217

8.5 Using the Loop Shape . 218
8.5.1 Overview of the Solution .. 219
8.5.2 The Use of Expression Shapes . 221
8.5.3 Constructing the Request Message . 223
8.5.4 Constructing the Final Message. 224

8.6 Orchestrations as Subprocesses. 226
8.6.1 The Main Orchestration . 226
8.6.2 The Sub-orchestration and Its Parameters 228
8.6.3 Calling vs. Starting an Orchestration . 230

8.7 Conclusion .. 232

9 Advanced Constructs. 233
9.1 Listening for Events . 234
9.2 Correlations .. 237

9.2.1 Defining the Schemas and the Orchestration 239
9.2.2 Defining the Property Schema . 240
9.2.3 Defining the Correlation Type . 241
9.2.4 Defining and Using a Correlation Set. 243
9.2.5 Running the Orchestration . 244

9.3 Exception Handling . 246
9.3.1 The Scope Shape . 247
9.3.2 Nested Scopes . 248
9.3.3 The Throw Exception Shape . 249
9.3.4 Exception Objects . 251
9.3.5 An Example .. 252

9.4 Transactions . 254
9.4.1 Revisiting the Scope Shape . 256
9.4.2 The Compensate Shape. 256
9.4.3 Using Both Exception and Compensation Handlers 258
9.4.4 An Example .. 260
9.4.5 A Note About the Previous Example . 264
9.4.6 Long-Running vs. Atomic Transactions 264

9.5 Conclusion .. 266

Contents xi

10 Orchestrations with BPEL . 269
10.1 An Example . 270

10.1.1 Understanding Partner Links . 274
10.1.2 Orchestration Variables. 277
10.1.3 The Orchestration Flow . 278

10.2 Asynchronous Invocations .. 281
10.2.1 Invoking a Web Service Asynchronously 282
10.2.2 Invoking an Orchestration Asynchronously 284

10.3 Controlling the Flow . 285
10.3.1 Decisions . 286
10.3.2 Parallel Activities . 286
10.3.3 Loops .. 289
10.3.4 Listening for Events . 293

10.4 Using Scopes . 294
10.4.1 Fault Handlers . 295
10.4.2 Compensation Handlers . 297
10.4.3 Termination Handlers . 299
10.4.4 Event Handlers. 301

10.5 Correlations .. 303
10.5.1 An Example .. 304
10.5.2 Defining Properties and Property Aliases 305
10.5.3 Defining the Correlation Set . 307
10.5.4 Using the Correlation Set . 308
10.5.5 Use of Correlation in Other Activities . 310

10.6 Conclusion .. 311

Part V Processes

11 Process Modeling with BPMN . 315
11.1 Elements of a BPMN Process Model. 316

11.1.1 Activities . 319
11.1.2 Loops and Multi-Instance Activities . 320
11.1.3 Subprocesses . 321
11.1.4 Gateways . 323
11.1.5 Start and End Events . 325
11.1.6 Intermediate Events . 327
11.1.7 Event-Based Gateways . 328

11.2 Exception Handling . 330
11.2.1 Attached Intermediate Events . 331
11.2.2 Error Events . 333
11.2.3 Escalation Events . 334
11.2.4 Event Subprocesses . 335

11.3 Transactions and Compensation .. 338
11.3.1 Compensation Handlers . 339
11.3.2 Transactional Subprocesses . 340

xii Contents

11.3.3 Using Compensation Events . 342
11.4 Conclusion .. 343

12 Inter-Organizational Processes . 345
12.1 Security . 348

12.1.1 Encryption, Authentication, and Digital Signatures 348
12.1.2 Certification Authorities and Digital Certificates 350
12.1.3 Security in Integration .. 352

12.2 Electronic Data Interchange . 354
12.2.1 Message Format in EDI . 355
12.2.2 Integration with EDI . 361
12.2.3 Security in EDI . 364

12.3 Choreography Modeling . 366
12.3.1 Collaboration Diagrams . 368
12.3.2 Conversation Diagrams. 370
12.3.3 Choreography Diagrams . 373

12.4 Conclusion .. 380

References . 381

Index . 383

Acronyms

API Application Programming Interface
AS2 Applicability Statement 2
ASP Active Server Pages
B2B Business-to-Business
BAM Business Activity Monitoring
BPMN Business Process Model and Notation
BPEL Business Process Execution Language
CA Certification Authority
COM Component Object Model
CORBA Common Object Request Broker Architecture
CRM Customer Relationship Management
CSV Comma-Separated Values
DII Dynamic Invocation Interface
DLL Dynamic-Link Library
DSI Dynamic Skeleton Interface
DTC Distributed Transaction Coordinator
EDI Electronic Data Interchange
ERP Enterprise Resource Planning
FTP File Transfer Protocol
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IDL Interface Definition Language
IFR Interface Repository
IIS Internet Information Services
JDBC Java Database Connectivity
JMS Java Message Service
JNDI Java Naming and Directory Interface
JNI Java Native Interface
JVM Java Virtual Machine
LDAP Lightweight Directory Access Protocol
LINQ Language Integrated Query

xiii

xiv Acronyms

MDN Message Disposition Notification
MIME Multipurpose Internet Mail Extensions
MSMQ Microsoft Message Queuing
ODBC Open Database Connectivity
OLE Object Linking and Embedding
PGM Pragmatic General Multicast
POP3 Post Office Protocol, version 3
REST Representational State Transfer
RMI Remote Method Invocation
RPC Remote Procedure Call
S/MIME Secure Multipurpose Internet Mail Extensions
SMTP Simple Mail Transfer Protocol
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SQL Structured Query Language
SSL Secure Sockets Layer
TLS Transport Layer Security
TPA Trading Partner Agreement
UDDI Universal Description Discovery and Integration
UML Unified Modeling Language
URL Uniform Resource Locator
WSDL Web Services Description Language
XML Extensible Markup Language
XSD XML Schema Definition
XSLT Extensible Stylesheet Language Transformations
WSDL Web Services Description Language

Part I
Introduction

Chapter 1
Evolution of Enterprise Systems

The constant evolution of information technology means that organizations have
systems of ever increasing complexity to support their business processes. Beyond a
certain point, the coexistence of several systems used for different purposes, often in
isolation from each other, creates enormous difficulties when it becomes necessary
to integrate these systems in order to support end-to-end business processes.

This chapter presents an overview of the essential business functions in any
business organization. These functions must be connected with each other in order
to support business processes that traverse the whole organization. If each function
is supported by a particular system, then connecting these functions becomes a
problem of integrating their respective systems.

The evolution of enterprise systems has been such that at each attempt to support
a given business function, a new problem appeared in the connection of that function
to other business functions in the organization. A new generation of enterprise
systems, known as Enterprise Resource Planning (ERP) systems, was created as
an attempt to provide a single, common system to support a wide range of business
functions, but even such approach did not eliminate the need for more specialized
packages to support certain functions. As a result, ERP became one more system to
be integrated alongside with other systems in the organization.

The fact that there will always be the need to integrate different systems in a
business environment, regardless of how comprehensive each one of them is, led to
the development of enterprise systems integration as an area of its own. This area
deals with the problem of connecting all systems, providing asynchronous message
exchange between them, and coordinating the execution of business processes on
top of an infrastructure comprised of heterogeneous applications.

While in the past the main concern was the specific functionality of each system,
in the present the focus is on the integration side, on connecting different systems,
and in particular on developing each system as a set of services in order to make
them more flexible, reusable, and easier to integrate with each other. As a result,
this service-oriented approach plays a prominent role in the landscape of enterprise
systems, and it shapes the way enterprise systems are built today.

D.R. Ferreira, Enterprise Systems Integration, DOI 10.1007/978-3-642-40796-3__1,
© Springer-Verlag Berlin Heidelberg 2013

3

4 1 Evolution of Enterprise Systems

Sa
le

s o
ffi

ce
W

ar
eh

ou
se

Pu
rc

ha
se

 D
ep

t.
Fa

ct
or

y

Create sales
order

Customer interface

Check
inventory

Product
in stock?

Create
purchase

orders

No

Ship
product

Yes

Receive
parts

Assemble
product

Order
parts

Request
assembly

Pack and
dispatch

Supplier interface

Fig. 1.1 Example of a simple business process

1.1 Essential Systems of a Business Organization

Essentially, every business organization has to deal with at least three interfaces: the
interface to its customers, the interface to its suppliers, and the interface to its own
employees. Through the interface to customers, sales orders come in; products or
services go out; and payments come in. Through the interface to suppliers, purchase
orders go out; materials, components, or services come in; and payments go out.
Through the interface to employees, tasks go in and results come out; and payments,
in the form of salaries, go out. Overall, and from an economic perspective, the net
result of all revenues obtained and expenses incurred becomes the income generated
by the business organization.

For the purpose of integration, the most interesting aspect is the information
flow between these entities, i.e., between the company, its customers, and its
suppliers, including the internal flow that is required to support end-to-end business
processes. These processes may span the entire organization between the customer
interface and the supplier interface, with every possible internal function in between.
Figure 1.1 shows a simple example of a business process that crosses several
organizational units. This could be the business process of a PC manufacturer
who sells pre-configured models with certain specifications. When the customer
orders the PC, the sales office checks if the product is available in stock. If so, it
is immediately shipped from the warehouse. Otherwise, the parts must be ordered
from suppliers and assembled at the factory, and finally the product is shipped.

1.1 Essential Systems of a Business Organization 5

Even in a simplified process such as this one, it is possible to imagine that there
will be information flow across several systems:

• When the sales office creates a new sales order, it does so in an accounting system
that will be later used for invoicing the customer (for simplicity, this is not shown
in Fig. 1.1).

• When the sales office checks if the product is available in stock, it does so by
using a warehouse system where the stock levels are kept up to date.

• When the purchase department creates one or more purchase orders, it does so
in the accounting system that will be later used for payment to the supplier (for
simplicity, this is not shown in Fig. 1.1).

• When the warehouse receives the parts, it updates the available quantities in the
warehouse system.

• When the warehouse requests product assembly, it uses the factory system that
manages production orders.

• The same factory system is used in the assembly line to assemble the product
according to the requested specifications.

• Packing of the product may be supported by its own system.
• Shipping may be supported by a separate system as well.

In this scenario, there are several systems which must be used to support the
business process, and this fact illustrates the need for integration. Basically, the
output of one step becomes the input for another, and data must be provided to
each system according to its own requirements. Integrating these systems not only
facilitates the data flow, but also allows this process to be automated. Indeed, one can
imagine all these steps be coordinated in an automated way, where the completion of
one step triggers the execution of the next step in the same or in a different system.
Integration then becomes a way of not only connecting systems to one another, but
also of providing support to organizational processes.

In general, the following functions and systems can be recognized in any business
organization [6]:

• Sales order processing—this entails several customer-facing functions and sub-
systems such as order entry, shipping, and invoicing. An incoming sales order
is often the trigger for the whole process of order fulfillment, which includes all
the interactions with the end customer between the moment the order is placed
to the point when the product or service has been delivered and paid. Often, a
company is seen as providing a better service to the customer if these customer-
facing functions are properly integrated with each other. Automating the sales
order processing also provides more efficiency and allows the company to handle
much larger volumes of customer orders.

• Purchase order processing—this has to do with the acquisition of goods or
services from suppliers. In a manufacturing scenario, for example, purchase
order processing includes ordering, receiving, and paying for components or
raw materials that are required to build the product to be delivered to the end
customer. Often, the interaction with suppliers requires the use of specialized

6 1 Evolution of Enterprise Systems

systems to exchange documents—such as quotes, invoices, or payment records—
in a standard format and in the correct sequence. Although it is almost invisible
from the customer point of view, purchase order processing is associated with
some of the hardest challenges with respect to integration, since it may require
the integration of systems across organizational borders.

• Accounting—this is the backbone of any business organization and it is very
common to see accounting-related activities intermingled with operational or
production-related activities in a business process. An accounting system is
usually divided into three subsystems: accounts receivable, accounts payable, and
general ledger. The accounts receivable concerns the amounts that customers owe
to the organization. The accounts payable concerns the amounts that the company
owes to suppliers. The general ledger handles data from accounts receivable,
accounts payable, and payroll information to determine the overall income and
expenditure of the organization. In practice, when integrating business processes,
the accounting function and its related systems appear most often as acts of
invoicing and payment, from the customer side or to the supplier side.

In addition to these, there are other common business functions that are often in
place, such as:

• Production—especially in manufacturing scenarios, this business function is
connected to the actual manufacturing of goods, from raw materials, parts, or
components, to the finished product. From an integration point of view, the most
important aspect is to ensure that the right materials and product specifications
are available at each step of the manufacturing process.

• Inventory—this business function may serve both the customer side and the
supplier side, by storing finished products that will be sold to customers as well
as raw materials, parts or components, which are required for the production
process and have been bought from suppliers. In the integration of business
processes, this function often appears in connection with queries to the stock
levels of certain products or parts, as in the example of Fig. 1.1.

• Logistics—this usually refers to customer-side logistics but it may include
supplier-side logistics as well. On the customer side, logistics is mainly con-
cerned with shipping finished products to customer locations. This may be done
by the company itself, in this case requiring the integration with an internal
shipping system, or, as it is more and more common these days, this function may
be performed by a third-party provider, in this case requiring a tight integration
between systems at both organizations. To the supplier side, a similar integration
may be required to ensure that the right materials will be available for the
production process.

As described above, each of these functions is supported by one or more sub-
systems, which must be integrated in order to support organizational processes. The
fact that these systems are usually built separately according to their own purpose
makes it difficult to implement business processes on top of such heterogeneous
infrastructure. In addition, this integration depends on how these systems have been

1.2 Evolution of System Architectures 7

built; their architecture, development platform, implementation, etc. all have an
impact on how difficult it may become to integrate systems that were not devised to
work together. Fortunately, over time system architectures have evolved to the point
that today it is possible to combine system functionality in a plug-and-play fashion,
as we will see in the next sections.

1.2 Evolution of System Architectures

In the early days of information systems (mainly 1970s and early 1980s), companies
used to have large computer rooms where the mainframe (there were no stand-
alone PCs at the time) occupied several cabinets, each approximately the size of
a wardrobe. Databases were still not widely used and systems were based on files
stored in magnetic tapes (these occupied a large portion of the computer room).
There was also the possibility of storing data externally on punched cards, and these
could be used for input/output as well. Most systems also had terminals where I/O
could be provided in text mode.

The architecture of these early systems was such that there was only a single layer
of application code on top of the operating system. The OS provided file storage,
but the reading and writing of these files had to be managed by the application
itself. With the rise of database systems, applications started relegating file storage
to the database, so this became less of a concern. Applications could therefore focus
on data operations alone, while interacting with the database through a relational
interface such as the Structured Query Language (SQL). For the first time, there
was a separation of the system architecture in two different layers, one dealing with
application code and another dealing with data persistence through a database.

In the meantime, advances in personal computers resulted in more and more
computing power being available to the client (users). Text terminals evolved
towards full-fledged graphical terminals and turned into user workstations with
advanced rendering capabilities. The possibility of having advanced user interfaces
quickly prompted for the need to develop this layer independently from the
application code. In essence, there could be several possible ways of rendering the
same data, regardless of how these data were processed by the application code. The
application layer became a core of application logic alone, supported on one end by
a data layer which stores data in a database, and on the other end by a user interface
layer to manage interaction with the end users.

By the 1990s, it was commonly accepted that every system architecture should
comprise three layers: the data layer, the application layer, and the user interface
layer. The rise of the Internet had a great impact in this conceptual arrangement,
since the World Wide Web facilitated the development of applications where
these layers were distributed across the network [9]. The need for distributed
applications led, in turn, to the development and widespread use of distributed
object technologies such as CORBA [29] and Java RMI [35]. These have been later
superseded by Web services technology [8] and service-oriented computing [23].

8 1 Evolution of Enterprise Systems

code

OS

File Storage

logic

OS

File Storage

Database

logic

OS

File Storage

Database

User interface

t1970 1980 1990

integrate
through files

integrate with

(if code is available)

integrate through
database queries
(if schema is available)

integrate with

(if code is available)

integrate
through files

integrate through
user interface
(if no other op�on)

applica�on codeapplica�on code
Applica�on

Applica�on
Applica�on

Fig. 1.2 Evolution of system architectures and integration possibilities

In a nutshell, this provides an overview of the evolution of enterprise systems in
terms of their application architecture. Depending on this architecture, there may
be different options for systems integration. For example, it is quite common to
integrate applications with mainframes, or other commercial products where the
database schema is not openly available, by means of so-called flat files, i.e., text
files with a format that is compatible with the target system. If the database schema
is available, then it may become easier to interact with the system database directly,
and in this case to both read and write data to the application in the form of SQL
queries. If the application code itself is available, then it is possible to achieve a
tighter integration by writing additional code, or combining application code from
different applications (this may require using one of the distributed or service-
oriented technologies mentioned above). If neither the data layer nor the application
layer is accessible, it may be possible to integrate via the user interface layer, by
writing programs that simulate specific user behaviors to carry out particular tasks.
This is certainly one of the least desirable ways to achieve integration, but it is
actually becoming easier to do, especially when considering the fact that most
applications provide a Web-based user interface that make use of standards such
as HTML and HTTP; in this case it becomes rather simple to send requests and
receive data from the application at the other end.

Figure 1.2 illustrates the evolution of system architectures across time. It
becomes apparent that as system architecture evolved into a set of separate layers,
also new opportunities appeared to achieve integration through each of these
separate layers. So today there is the opportunity of integrating not only through
files and application code as before, but also through at the data layer or at the
user interface layer if needed. It should be noted, however, that integrating at the
application layer is much different today than what it was in the past. If, in the past,
this required coding in the same platform and language as the original application,
today the application code can be abstracted as services than can be invoked
from other platforms and languages. Also, service modularity and composition
enables the reuse of functionality and the integration of new code in a much more

1.3 Integrating Several Applications Together 9

flexible way than it was possible in the past. This is because system development
methodologies have also evolved over the years in tandem with system architectures.

1.3 Integrating Several Applications Together

Now that we have briefly discussed the several ways in which it is possible to
integrate with an existing application, we turn to the problems that arise in a
scenario where several applications must be integrated together, in order to support
a given business process. Figure 1.3 illustrates some of the links that are required
to implement the business process shown earlier in Fig. 1.1. After a new sales order
is created in the accounting system, part of the information in that sales order (e.g.,
the requested items, but not the customer address) is used to check for available
quantities in the warehouse. If the product is not available, the warehouse can
forward a request for assembly to the factory system. After production, the product
enters the packing system and then goes to the warehouse, before eventually being
shipped to the customer.

The process can be automated by integrating these systems and letting infor-
mation flow automatically between them, from one stage of process to the next.
Should the process be reconfigured according to business requirements, these links
may have to be changed and also new links may have to be established; these are
illustrated with dashed lines in Fig. 1.3. In this figure, a total of 10 links are shown.
However, we should consider that integrating application A with application B is
different from integrating B with A, since making A able to receive requests from
B may require a different integration mechanism from making B receive requests
from A. Therefore, each link in Fig. 1.3 may actually stand for two connections
in opposite directions. In this scenario, since each system must be connected with
every other, for N systems there will be a total of N �.N �1/ possible connections.

This illustrates a fundamental problem in the domain of enterprise systems
integration. If one is to proceed by integrating applications in an ad-hoc fashion,
the number of connections (i.e., integration mechanisms) that one must implement
is of the order of O.N 2/. Clearly, a different approach is required, otherwise it
would become impossible to implement business processes on top of heterogeneous
infrastructures comprised of a large number of systems.

The solution to this problem is to centralize the logic of the process in an
orchestrating node which can be configured and reconfigured according to the
desired sequence of actions. Incidentally, this approach also reduces the number
of required connections between applications. Rather than linking applications to
each other, all applications are connected to the central orchestrator, which submits
requests to each application according to the logic of the process. In this setup, the
number of required connections is of the order of O.N /, and the process can be
changed and configured much more easily (Fig. 1.4).

A second fundamental problem in the area of integration has to do with system
availability at the precise moment when the interaction is needed. For a number

10 1 Evolution of Enterprise Systems

Warehouse
system

Factory
system

Packing
system

Shipping
system

Check
inventory

Request
assembly

Pack

Dispatch
Ship

Accoun�ng
system

Fig. 1.3 Integrating
applications in an ad-hoc way

Warehouse
system

Factory
system

Packing
system

Shipping
system

Orchestrator

Request

Request

Request

Request

Request

Accoun�ng
system

Fig. 1.4 Integrating
applications by means of an
orchestrator

of reasons, enterprise systems may not be available immediately upon request, and
the most common reason is that they are servicing or even overloaded by other
requests. Some systems may be used for tasks that are performed only once in a
while, whereas others may be absolutely central to the core business processes and
therefore are receiving requests all the time. Also, some systems are designated to
be online during part of the day and offline at other times for maintenance or batch
processing. Mobile applications running on wireless platforms may also be offline
or unavailable when located at remote sites.

An application that makes a request to another application cannot be waiting
for response for an unlimited amount of time. Such behavior would certainly block
other applications and create a chain of dependencies that would make the whole
organization work at the speed of its slowest system, or even slower.

For all of these reasons, applications need to communicate in an asynchronous
fashion. Rather than sending a request and blocking while waiting for the response,
each application should leave the request to be processed by the target application
and carry on with its own work. To implement such behavior, each application must
be provided with a message queue, much like a mailbox, from where it can fetch
and serve requests at its own pace, either in order of arrival or according to some

1.4 Services: The Ultimate Solution? 11

Warehouse
system

Factory
system

Packing
system

Shipping
system

Orchestrator ...

...

Request
Response

Message
Queue

Accoun�ng
system

Messaging
pla�orm

Fig. 1.5 Integrating
applications through
messaging

defined priority. When ready, the application deposits the response in the message
queue of the original requester and proceeds to handle the next request.

Figure 1.5 illustrates the use of message queues for asynchronous messaging
between applications. The orchestrator sends requests to each application queue in
turn and waits for reply. The response comes back to the orchestrator in the same
way as to any other application, through the use of its own message queue.

In fact, Fig. 1.5 illustrates some important facts about contemporary solutions to
the problem of integration. In general, integration requires the use of a messaging
platform in order to enable interaction and data exchange between applications; this
is referred to as application-level integration. The use of a messaging platform opens
up the possibility to connect each application to every other, but it does not say how
processes are actually implemented. This is the job of an orchestrator, which relies
on the messaging platform to coordinate message exchange between applications
according to the intended process behavior; this is referred to as process-level
integration. The combination of application-level integration and process-level
integration is one of the key capabilities of current integration platforms.

1.4 Services: The Ultimate Solution?

For several years, if not decades already, system architects have been looking for
ways to develop applications made of distributed components that interact across
the network. Several technologies have been developed for this purpose, such as
Remote Procedure Calls (RPC), the Common Object Request Broker Architecture
(CORBA), and Java Remote Method Invocation (Java RMI). These technologies had
much success and were used to build large-scale enterprise systems. Because of their
ability to perform method invocations on remote applications, these technologies
also became very useful for the purpose of integration at the application level.

Meanwhile, technology kept evolving, and while CORBA, RMI, and other
similar technologies made use of their own transport protocols, there was a growing
interest in making use of the World Wide Web and its associated technologies,

12 1 Evolution of Enterprise Systems

especially HTTP and XML. For that reason, the concepts underlying CORBA, RMI,
and others were eventually distilled, extended, and ported into a new generation of
technology known as Web services [5]. However, some of the concepts associated
with Web services are actually independent of the implementation technology, so
the principles and benefits associated with using Web services were later collected
and systematized into an abstract concept of service [11],

Essentially, a service is a self-contained block of functionality with a well-
defined interface expressed in a standard format. The use of a service involves three
roles: that of the service provider which offers a service implementation; that of the
service requester which invokes and uses the service; and that of a service registry
where the service provider publishes information about the service capabilities and
the service interface, so that service requesters can find and invoke the service.
This simple triangle and the fact that it can be implemented with readily available
technologies have been the main success factors that explain the wide dissemination
and use of service-oriented approaches.

The relevance of service-oriented approaches in the context of integration comes
from the fact that the concept of service may be used to encapsulate the functionality
of existing applications. In fact, a service may encapsulate a single application, only
part of an application, or even a composition of several applications. Also, once a
service is defined and ready to be invoked, other services may invoke that service;
this opens up the possibility to create new services of higher level of complexity
and abstraction on top of previously existing ones. The ability to create services
that aggregate the functionality of other services to provide support for higher-level
tasks is referred to as service composition.

Through the use of services, which expose the functionality of existing applica-
tions and combine the functionality of other services, it becomes possible to define
each step in a business process as a service invocation. The ability to compose
simpler services into more complex ones ensures that it will be possible to define
a service at the right level of abstraction for any given task. Indeed, a wide range
of services may be devised, from the lower-level services that simply expose the
functionality of existing systems to higher-level services that implement the logic of
business tasks. A business process can then be implemented as a series of services
invocations. These invocations are carried out in a certain order, so that the output
of previously invoked services becomes the input for newly invoked ones. The order
and sequence in which services are invoked to implement a given business process
is referred to as a service orchestration.

An important feature of service-oriented approaches is that not only services
but also service compositions and service orchestrations can be exposed through a
service interface. While service composition refers to the concept of nesting services
into services, service orchestrations provide the possibility of nesting processes into
processes, where each process is encapsulated and invoked as a service. This way it
is possible to have lower-level processes or workflows connected with data exchange
between applications, as well as processes that represent a sequence of high-level
business tasks. A workflow of data exchange between applications may be invoked
as a service as part of a business task in a higher-level process. In any case, the

1.4 Services: The Ultimate Solution? 13

Warehouse
system

Factory
system

Packing
system

Shipping
system

Service exposed to
the end customer

Service
interface

Service
interface

Accoun�ng
system

Fig. 1.6 Implementing business processes based on service orchestrations

implementation of these different processes is based on the same mechanism of
implementing processes as service orchestrations.

Figure 1.6 illustrates a possible implementation of the example process shown
earlier in Fig. 1.1, now based on service orchestrations. At the lowest level, we have
the supporting systems that participate in this process. The functionality of these
systems has been exposed as a set of services, which can be invoked in different
steps of a business process. The high-level business process in this scenario begins
by creating a sales order in the accounting system and checking if the product is
available in stock. These two steps have been combined into a service orchestration,
as can be seen in the lower-left corner of Fig. 1.6. Subsequently, this orchestration
is exposed as a service to be invoked in the topmost process. If the product is
available in stock, then it is shipped to the customer (top branch in Fig. 1.6), and
for this purpose a specific service of the shipping system is invoked. Otherwise,
if the product must be manufactured, a sequence of steps involving the warehouse
and the factory is invoked. Part of this sequence has been abstracted as a service
orchestration as well. The topmost process invokes these lower-level orchestrations
as services and in turn exposes itself as a service; the whole business process is
exposed as a service to the end customer.

This simple example illustrates several important features of service-oriented
approaches. First, the idea is to have a single mechanism to invoke any system;
that mechanism is the invocation of a service interface. Second, services can be
orchestrated to implement business processes, and these service orchestrations can
be exposed as services themselves. Third, orchestrating services and exposing the
orchestration as a new service are effective ways to achieve service composition.

14 1 Evolution of Enterprise Systems

Fourth, as there are services of varying degree of composition, there are also
processes of varying levels of abstraction; it is just a matter of exposing an
orchestration as a service and invoking it in another orchestration. Fifth, at the
lowest level we have services and orchestrations related to data exchange between
systems, while at the topmost level these services and orchestrations represent the
actual implementation of the business processes and services of the organization.
The key advantage of using a service-oriented approach is the possibility to create a
continuum of services between these two extremes. The way in which these services
are devised and composed is referred to as a service-oriented architecture [10].

1.5 Conclusion

In this chapter, we have seen how enterprise systems have evolved from monolithic
applications to service-based infrastructures where functionality can be composed
and orchestrated in a flexible way according to the needs of business processes. This
service-oriented view not only influences the way enterprise systems are developed,
but also facilitates their integration with each other. Through the use of service
interfaces, integration can be achieved at the application logic layer rather than at
the data layer or at the user interface layer. Services can be orchestrated, and also
interaction with these services should be performed in an asynchronous fashion. In
the forthcoming chapters, we will delve into asynchronous messaging and service
orchestrations, but before we will introduce the integration platform that will be
used in practical examples throughout the book.

Chapter 2
Introduction to BizTalk Server

In the previous chapter we have seen that enterprise systems can be integrated at
different application layers, from files to database, application logic, and even at
the user interface layer if there is no other option (Fig. 1.2 on page 8). The simplest,
most rudimentary way to integrate two systems would be through files. If one system
is able to export data in a known format, and another system is able to import data
in some format, be it the same or different than the first, then this would suffice to
integrate the two systems at the most basic level. In fact, in all current platforms for
systems integration, no matter how sophisticated they are, the first step is to define
the data formats. These are often called schemas.

If the data format used by the source application is different from the one used
by the target application, then there are two different schemas, and there needs to
be a way to translate the data from one to the other. Current integration platforms
support this concept through the use of transformation maps.

The critical and common feature of today’s integration platforms is the ability to
develop integration solutions as sequence of data exchanges between systems. Even
if these systems use different data formats, it is possible to describe their integration
as a series of steps in which data is read from one system, transformed into another
format, and sent to a second system, and so on, until there is a data flow between
all systems that have to be integrated to support a given business process. This data
flow and transformation between systems can be specified as an orchestration.

Finally, data can not only be exported and imported through system files, but it
may also be possible to fetch those data from an application, or to deliver the data
to another application, through other means, for example some network protocol.
Each system may support its own data exchange protocols, and it may as well
support standard communication protocols, such as e-mail, FTP, and HTTP. While
coordinating the data flow between systems, it becomes necessary to use some
protocol to connect with each system. The way in which an integration platform
connects to an existing system in order to fetch or deliver data is referred to as a
port.

Schemas, maps, orchestrations, and ports are the type of artifacts from which
contemporary integration solutions can be built. In this chapter, we present an

D.R. Ferreira, Enterprise Systems Integration, DOI 10.1007/978-3-642-40796-3__2,
© Springer-Verlag Berlin Heidelberg 2013

15

16 2 Introduction to BizTalk Server

integration platform that, in a similar way to other state-of-the-art platforms, has
all of these features: it provides the ability to define schemas; it provides the ability
to define transformation maps between schemas; it provides the ability to implement
orchestrations by specifying the data flow between systems; and it provides the
ability to configure the way in which the orchestration connects to each system
through the use of ports.

This platform, known as Microsoft BizTalk Server or simply BizTalk, is one
of several commercial products that make use of similar concepts to provide the
capability of developing integration solutions based on orchestrations. Throughout
the book, we will make use of this platform to illustrate key concepts associated with
each integration technology. A particular feature of BizTalk Server is the use of an
internal message box through which all messages and data go through. So, instead of
communicating directly with applications, an orchestration dispatches and receives
data through the message box. As we will see, this also provides the possibility of
bypassing orchestrations altogether, and of integrating applications directly at the
messaging level. This fits well with the approach in the following chapters, where
we will study integration solutions both at the messaging and at the orchestration
level. For now, we will delve into the inner workings of BizTalk Server.

2.1 The Message Box

The message box of BizTalk Server is a publish–subscribe system that receives
messages from publishers and dispatches them to subscribers. In this context,
a publisher is usually defined as a receive port through which BizTalk receives
messages. It can also be an orchestration intending to dispatch messages to external
systems; in this case, the orchestration publishes the message on the message
box, and the message box dispatches it to the intended subscribers. A subscriber
is usually a send port through which BizTalk dispatches messages to external
applications. The send port can be configured in such a way that if a certain message
appears in the message box, it is sent out through that send port.

Multiple send ports may subscribe to the same kind of message; in this case, a
copy of the message is sent through each of those send ports. An orchestration may
also play the role of subscriber: if a message of interest appears in the message box,
the message is routed to the orchestration. Figure 2.1 illustrates how the message
box mediates the interaction between publishers and subscribers. Whereas receive
ports and send ports are distinct entities, a single orchestration may play the role
of both publisher and subscriber, when it needs to send and receive messages at
different points in time. In particular, the following steps represent an example of
the typical behavior of messages across the message box:

1. A receive port collects data from an external (source) application and publishes
a message in the message box.

2.2 Schemas and Transformation Maps 17

Message BoxMessage Box

Send Port

Send Port

Receive Port

Publishers

Receive Port

External

External

External

External

Data

Message

Subscribers

applica�on applica�on

applica�onapplica�on

Orchestra�onOrchestra�on

Fig. 2.1 The message box as a publish–subscribe mechanism

2. The message box determines the subscribers for the incoming message—in this
case, an orchestration—and forwards the message to that orchestration.

3. The orchestration receives the message and transforms it to another format.
4. The same orchestration then acts as a publisher by placing the new, transformed

message in the message box.
5. The message box determines the subscribers for the new message—now it will

be a send port—and dispatches the message through that send port to a second
(target) application.

In practice, the behavior of the message box is implemented by means of a
BizTalk service that is always running in the background, and all messages are
stored in a database. The database system used by BizTalk Server is Microsoft
SQL Server, so naturally there is a strong dependency between both products. The
fact that all messages are stored in a database allows for advanced monitoring
capabilities, either by tracking the load and rate of data exchanges between systems
(e.g., number of orders processed), or by aggregating the actual content of messages
in order to obtain meaningful business indicators (e.g., total sales). The latter is often
referred to as Business Activity Monitoring (BAM).

2.2 Schemas and Transformation Maps

In general, all messages that enter or exit the message box need to have a known
format. This format does not necessarily have to be based on XML, but in any case
it is specified by means of an XML schema. For example, an external system may be
able to produce data in text format; a typical example is Comma-Separated Values
(CSV), where different fields or values are separated by a delimiter, in this case a
comma. The CSV format is popular since it can be easily imported or exported from
spreadsheet applications. Even if the message is in CSV format, as far as BizTalk

18 2 Introduction to BizTalk Server

Element2
Element1

Root node

Element3
Element2
Element1

Root node

Element3

Source
message

Source

Source
schema

Target
schemamap

Target
message

Target

Transforma�on

applica�on applica�on

Fig. 2.2 Message transformation

is concerned this must be specified as an XML schema that defines the field values
and delimiter. A similar rationale applies to other text and binary formats as well.

In essence, BizTalk needs to know the message format in order to be able to route
it to the appropriate subscribers; this routing may be based either on the message
type or on the actual message content. Another reason to provide BizTalk with all
the details regarding message structure is the need to transform messages from one
format into another. When the applications that need to be integrated use different
formats, a message transformation must be done by accommodating the elements
of the source message into the structure of the target message. This is achieved by a
transformation map. Since message schemas are based on XML, it becomes natural
to define transformation maps based on XSLT.

Figure 2.2 illustrates the concept of a transformation map between a source and a
target schema. The transformation map is defined at the level of schemas so that the
same transformation can be applied to all messages with the same source schema.
Upon arrival of the source message, a new target message can be created with
the same structure as the target schema. In other words, the source message is an
instance of the source schema and the target message is a newly created instance
of the target schema. The elements of the target message will be filled with values
from the source message, in the way specified by the transformation map.

Besides copying values from the source message to the target message, an
interesting feature of BizTalk and other similar platforms is the possibility of
applying mathematical, string, and other kinds of operators to the source values
and then use the results to fill out elements in the target message. In the context
of BizTalk, such operators are called functoids. There are string functoids to
concatenate strings, to extract part of a string, etc.; mathematical functoids provide
arithmetical operations such as summing, subtracting, and multiplying values;
logical functoids provide the capability of expressing logical conditions such as
testing for equality and comparing values; advanced functoids provide the ability to
count elements, loop through elements, and so on; and many other types of functoids
are available as well. These functoids extend the original capabilities of XSLT.

Functoids can also be linked together such that the output of one functoid
becomes an input for another. For example, if the message is an order with several
items, where each item has a quantity and a unit price, then multiplying quantities
by unit prices and then summing everything provide the total price for the order.
Using functoids, this can be implemented with a loop functoid that iterates over
items, a multiplication functoid that receives as input a quantity and a unit price,
and finally a cumulative sum functoid to sum all terms and provide the result.

2.3 Ports, Pipelines, and Adapters 19

Although some very sophisticated functionalities can be implemented by means of
functoids—such as accessing a database, executing custom code, and launching an
external program—it is good practice to leave these tasks to an orchestration, where
such operations can be specified and changed in a more flexible way. In practice, it
is not expected to find application logic implemented within a transformation map,
although the range of functionality provided by functoids would make it possible to
do so.

2.3 Ports, Pipelines, and Adapters

Messages that are produced by external applications and that are intended to BizTalk
arrive to the message box through receive ports. On the other hand, messages
produced by BizTalk and that are intended to external applications are sent from the
message through send ports. The send port is therefore the counterpart of the receive
port. As explained above in Sect. 2.1, receive ports are publishers of content in the
message box, while send ports are subscribers. There does not have to be a one-
to-one mapping between receive ports and send ports; on the contrary, an arbitrary
number of receive ports and send ports may exist. In the simplest of applications,
however, there will be at least one receive port and one send port.

Let us imagine that application A needs to be integrated with application B , in
the sense that B must receive data from A. A solution based on BizTalk would
have a receive port to get the data from A and a send port to deliver the data to
B . In addition, the send port to B would be configured to subscribe to the kind of
messages produced from A. Note that, in general, there may be other receive ports
and send ports already configured, so it is important to specify exactly what each
send port is subscribing to. If it becomes desirable that a third application C also
receives the data from A, then it is just a matter of creating a new send port to C .
This kind of flexibility could not be achieved if applications A and B had been
integrated directly through some means.

Going a bit further in this example, one may have that applications A, B , and
C all use different schemas. In addition, the message box may need to have the
message in a fourth schema in order to correctly parse and route the message from
A to the appropriate subscribers. To achieve this, each send port and receive port
may contain a transformation map. In the case of a receive port, the map transforms
an incoming message so that it arrives to the message box in a different schema. In
the case of a send port, the map transforms an internal message into another schema
before sending it to the external application. The transformation map is an optional
component in both receive ports and send ports: it could be that the receive port
transforms the incoming message into a schema that is readily understandable by
both the message box and applications B and C ; or it could be that there is no need
to transform the incoming message and that it has to be transformed only when
being delivered to either application B or C . Again, this provides more flexibility
than would be possible if these applications had been integrated directly.

20 2 Introduction to BizTalk Server

Besides transformation maps, another component that both send ports and
receive ports may contain is the pipeline. Pipelines can be used for several purposes,
namely: to validate messages; to encode and to decode messages; to divide a
message into several parts; to convert between XML and plain text; to encrypt or
to decrypt messages; and to digitally sign or to verify the signature in a message.
Here too, the concept of send pipeline and receive pipeline must be distinguished.

A receive pipeline can be used to:

• decode the message (e.g., if the message arrives by an e-mail protocol such as
POP3, it may be necessary to use a MIME or S/MIME decoder to decode the
message parts),

• disassemble the message (i.e., to split an incoming message into several parts;
this is usually based on the message schema, where a certain XML element is
associated with the beginning of a new message part; in this case, every time
such element appears, a new message is created, so the disassembler component
of a receive pipeline is an effective way to split an incoming message into N

parts, where each part becomes a new message that enters the message box),
• validate the message (by comparing and ensuring that its structure is consistent

with that of an existing, previously defined schema),
• resolve the external party (through the use of digital certificates, if the message

has been digitally signed this component can verify that signature).

On the other hand, a send pipeline can be used to:

• assemble the message (here, assembling means just converting the message to
another format, typically converting an XML message to a plain text format),

• encode the message (if, for example, the message is to be sent by an e-mail
protocol such as SMTP, it may be necessary to use a MIME or S/MIME encoder
to encode the message content; if a digital signature is required, this can also be
done at this stage).

Figure 2.3 depicts the several stages of receive and send pipelines. For receive
pipelines, the message gets decoded, disassembled, validated, and resolved. For
send pipelines, the message gets assembled and encoded. These stages are optional,
i.e., it is not mandatory to encode or decode messages, assemble or disassemble,
etc. These should be used according to the requirements of the integration solution.
However, the order of these stages is fixed (hence the name of pipeline), which
means that if some stages are used, they must be used in the order depicted in
Fig. 2.3. By default, if no pipeline components are used, the message passes through
the pipeline without change. Pipelines can therefore be seen as providing a limited
and specialized processing at the moment when the message is being received or
sent.

An interesting and useful feature of BizTalk pipelines, from the business per-
spective, is the possibility of disassembling messages. Consider an order message
comprising several items (such as a book order comprising several books). Then
the disassemble stage of a receive pipeline allows the incoming order (message) to
be split into several items (messages) for separate processing; this can be useful,

2.3 Ports, Pipelines, and Adapters 21

Decode
stage

...

Disassemble
stage

...

Validate
stage

...

Resolve party
stage

...

Message from Message(s) to
message box

Pre-assemble
stage

...

Assemble
stage

...

Encode
stage

...

Message from
message box

Message to

Receive pipeline

Send pipeline

source applica�on

target applica�on

Fig. 2.3 Anatomy of receive and send pipelines

for example, to launch multiple instances of a process that checks the available
stock of a given item. Also, note that the validate stage, if used, appears after
the disassemble stage, which means that each item message will be validated
separately. Unfortunately, the assemble stage of a send pipeline does not support the
reverse operation, which would be to aggregate several parts into a single message;
however, the send pipeline provides the possibility of additional processing in
its pre-assemble stage, where it is possible to make use of custom processing,
for example to add or remove data according to the requirements of the target
application.

In summary, each port—be it a send port or receive port—has two components:
an optional transformation map and a pipeline. In receive ports, messages go
through the receive pipeline and then get transformed, if needed, before reaching
the message box; in send ports, messages coming from the message box undergo
transformation and then go through the send pipeline. In addition, the port needs to
know how to connect to the external application, either to fetch the data (in a receive
port) or to transmit the data (in a send port). A third component that is always present
in each port (and this one is mandatory) is an adapter.

Above, we have mentioned the possibility of exchanging messages through
e-mail, for example. In this case, the receive port can use POP3 while the send port
uses SMTP. BizTalk includes several possible adapters, including adapters for data
exchange through SMTP and POP3. Many other protocols, such as HTTP and FTP,
are also supported by special-purpose adapters. Also, it is possible to simply read or
write the data to disk files; this is provided by the file adapter. In any case, the port
must know how to fetch or dispatch data to the external application, so it becomes
necessary to choose one of the available adapters for use with each port.

It is now possible to have a complete look at the inner workings of receive
ports and send ports, which is provided in Fig. 2.4. Essentially, a port has at least
one adapter, one pipeline, and optionally a transformation map. Receive ports are
slightly more complex than send ports in the sense that they may contain several
receive locations. The interest of having several receive locations is to have the
possibility of receiving messages through different adapters; a receive location

22 2 Introduction to BizTalk Server

Receive Port

Transform map

Receive
pipeline

File
adapter

Receive
pipeline

HTTP
adapter

Receive
pipeline

POP3
adapter

Message Box

Send Port

Send
pipeline

SMTP
adapter

Transform
map

To target applica�onFrom source applica�on

Receive Loca�onReceive Loca�onReceive Loca�on

Fig. 2.4 Anatomy of receive ports and send ports

includes an adapter and a receive pipeline. The transformation map, if included in a
receive port, applies to the message that comes from any of the receive locations.

In a send port, there is one adapter, one send pipeline, and possibly one
transformation map as well. The choice of adapter is limited to the available adapters
for send ports; these are in general the same as in receive ports, except when there
are different protocols for receiving and for sending messages (as in the case of
e-mail). Finally, note that the transformation map is the last component to be applied
when a message enters the message box, but it is the first component to be invoked
when a message exits through a send port. In a similar fashion, and on the other
side, the adapter is the component that is closest to the external applications.

2.4 Orchestrations

Even though applications can be integrated through send ports, receive ports, and the
publish–subscribe mechanism available in the message box, this does not provide
the most convenient way to devise large integration solutions involving many
applications and message exchanges between them. Since each subscriber must be
configured separately, in a large scenario it becomes difficult to manage all the
exchanges and data flow that takes place between applications. As explained in
Sect. 1.3, it becomes useful to have a single point of control—an orchestrator—
where all exchanges can be easily configured and changed if necessary.

This is precisely the purpose of using orchestrations: to define the integration
between applications as a process, where at each step a different application is

2.4 Orchestrations 23

Receive
Request

Construct Message

Transform

Send Request
Denied

Send Request
To ERP

Yes No

Receive Port

Send Port

Send Port

A

Quan�ty > 500?

Fig. 2.5 Example of a simple orchestration

invoked, and where the output from one application is passed on as input to another
application. In between, it is also possible to transform messages from one schema
to another, to suit the requirements of each application. An orchestration therefore
defines the message flow between all applications, so that a change of scenario leads
to a change in the orchestration, without the need to reconfigure each application.

In BizTalk, orchestrations are created through the use of shapes, where each
shape represents a certain kind of action. There are shapes to send and to receive
messages; these are the most commonly used. There are also shapes to create,
transform, and manipulate the content of messages; and there are shapes to control
the flow of the orchestration, such as deciding between alternative branches, running
parallel branches, looping, terminating the orchestration, and throwing exceptions.
Figure 2.5 shows an example of a simple orchestration, which is often used as a first
tutorial when introducing BizTalk.

The orchestration represents the following purchase order scenario: when the
company runs out of a certain item (e.g., printer cartridges), a new request is created,
specifying the desired product and quantity to be purchased. When the request is
received by BizTalk, the orchestration in Fig. 2.5 decides whether to approve the
request or not. If approved, the request is sent directly to the company’s ERP system
(branch on the right-hand side). Otherwise, if it is denied, the original message is
transformed into a new message and sent back to requester (branch on the left-hand
side). In this simple scenario, the rule for approving a purchase request is based
on the requested quantity: if the quantity exceeds 500 units the request is denied,
otherwise it is approved and forwarded to the ERP system.

24 2 Introduction to BizTalk Server

To build such orchestration, several shapes are needed. The first shape is a receive
to get the purchase request. Typically, an orchestration begins by a receive shape,
which triggers the whole process. This first receive is different from other receive
shapes that may appear along the orchestration; we say that it is an activating receive
since it creates a new instance of the orchestration. In this example, the arrival
of each new request at the receive port connected to the receive shape triggers a
new instance of this orchestration. Several orchestration instances may be active
simultaneously, while their execution is managed separately.

Following the receive, there is a branching condition that requires the use of a
decide shape. In general, a decide shape may have several branches, with each of
them corresponding to a different logical condition. In principle, these conditions
will be mutually exclusive, so that only one of them applies for a given input. Even
if the conditions are not mutually exclusive, this does not represent a problem since,
in practice, the conditions are evaluated from left to right, so execution will proceed
through the first branch having a condition that evaluates to true. By convention,
the rightmost branch is an “else” case, meaning that it will be executed if no other
branches are selected. This ensures that at least one branch will execute.

Following the decision shape, the right-side branch simply dispatches the request
message through a send shape connected to a send port. On the left-side branch, the
message is transformed and sent through another send shape connected to a send
port. For the message transformation, there are actually two different shapes, since
the transform shape is inside a construct message shape. The construct message
shape is necessary since the transform shape will fill the content of a newly created
message. This new message, with a different structure from the original request, will
be dispatched through the send shape that comes immediately afterwards.

The transform shape uses a transformation map, as explained in Sect. 2.2, to fill
in the elements of a target message based on the content of a source message. In this
scenario, the source message is the original request, and the target message is the
denied request message. To inform the requester that a particular request has been
denied, it is not necessary to repeat all the details of the request. If there is a unique
request number, or if it can be safely assumed that there are no two requests for the
same product with the same quantity, it suffices to include that info in the denied
request message in order to inform the requester of which request has been denied.
Hence, the transformation map may specify that only the request number or only
the product and quantity are to be included in the target message.

As a general rule, messages are immutable variables that cannot be changed
during orchestration execution. For example, it is not possible to transform the
initial request message into a denied request message; rather, a new message
must be created, and that is precisely the purpose of the construct message shape.
The advantage is that all messages that have been created at some point in the
orchestration (and this includes the initial message that triggered the orchestration as
well) are kept in their original form and can be used at any later step. Their original
content cannot be changed outside the scope of a construct message shape.

2.5 BizTalk Applications 25

2.5 BizTalk Applications

The four kinds of artifacts presented in the previous sections—schemas, trans-
formation maps, pipelines, and orchestrations—are the basic building blocks for
developing integration solutions based on BizTalk. Together, they define how the
solution will behave: the schemas define what kind of messages will be sent and
received, the transformation maps define how messages from one schema can be
transformed into another schema, the pipelines define how messages can be encoded
or decoded to fit the requirements of external applications, and orchestrations
implement the desired message flow between those applications. These artifacts
work in tandem with each other and together they constitute a BizTalk application.

Essentially, a BizTalk application is a software package; it takes the form of
a library of compiled code, which contains all the artifacts required to run the
application. Here, running the application means actually sending messages and
receiving messages through ports, as well as running the message flow described in
the orchestration, if there is one. However, contrary to other types of applications, a
BizTalk application is not a stand-alone executable; rather, it is a library that must
be installed in the BizTalk run-time platform, and that will be run by the BizTalk
services. The act of installing a new BizTalk application in the BizTalk run-time
platform is referred to as the deployment of the BizTalk application.

Therefore, there are two separate phases to make a BizTalk application ready to
run: one is to compile all artifacts into a library, and the other is to deploy the library
to the BizTalk run-time platform. In this context, compiling means compiling actual
code. The fact is that an orchestration, which is typically specified in graphical form
as in Fig. 2.5, is translated by BizTalk into C# code. This code is compiled, together
with the remaining artifacts, into a .NET assembly library (DLL). Deploying this
library means installing it in the operating system and registering it in the BizTalk
run-time platform. Typically, the user will then configure the send and receive ports,
if they have not been configured earlier, and will start the application. From this
moment on, the BizTalk application is ready to receive messages.

Figure 2.6 illustrates the typical behavior of a BizTalk application at run-time.
When the application starts, all receive ports and send ports become enabled; and
when a new message arrives through a receive port, the message is published in the
message box. If the message has a recognized schema, and there are subscribers for
that schema, the message is forwarded to those subscribers. A subscriber may be a
send port or an orchestration; for an orchestration to be a subscriber, it must have
a receive shape that is active at that point (i.e., waiting for a message) and that is
configured to receive messages with such schema.

Here, two scenarios must be distinguished: either the receive shape belongs to a
running instance of an orchestration, or it is an activating receive (see Sect. 2.4) that
triggers the whole orchestration (i.e., it creates a new instance of that orchestration).
In any case, be it an orchestration that was already running or an orchestration
that has just been instantiated by the arrival of the incoming message, for the
orchestration the incoming message is a newly created variable that is an instance

26 2 Introduction to BizTalk Server

Receive Port

Receive
pipeline

Receive
adapter

Message BoxMessage Box

Send Port

Send
pipeline

Send
adapter

Receive

Transform Send

Publish

Subscribe Publish

Subscribe

Incoming
message

Outgoing
message

Orchestra�on

Receive Loca�on

Fig. 2.6 Typical behavior of a BizTalk application

of a known schema. This variable may be provided as input to transformations, or it
may be sent to an external application through the use of a send shape.

While a receive shape makes the orchestration behave as a message subscriber,
the send shape makes the orchestration behave like a message publisher, as shown
in Fig. 2.6. Send ports are message subscribers, so if a message with the appropriate
schema appears in the message box, it will be dispatched through send ports that
subscribe to that schema. Usually, an orchestration includes at least a specification of
the logical ports that it uses to receive and send messages. A logical port can be seen
as a placeholder for a physical port that has not been configured yet. The physical
port has all the configurations that are necessary to fetch/deliver the message from/to
its actual location. After deployment of a BizTalk application, one of the tasks that
an administrator must do before starting the application is to create and configure the
physical ports, as shown on the left- and right-hand sides of Fig. 2.6. Alternatively,
but not as often done, the physical ports can be configured at design-time, when the
orchestration is being developed.

2.6 Business Rules

In the example of Sect. 2.4, the decision to approve or deny a purchase request was
made automatically based on the quantity value. Even though such rule may seem
unrealistic in a real-world scenario, it serves well the purpose of illustrating the
kind of decisions that can be embedded into an orchestration. However, including
this rule by means of a decide shape has a severe inconvenient: should the rule be

2.6 Business Rules 27

Header
Request

Item

UnitPrice

TotalPrice

Approved

Date

ReqID

Schema Vocabulary

Requested

Approval
Result

get

set

Rules (Policy)

IF > 500 THEN Approval Result := False

IF <= 500 THEN Approval Result := True

Quan�ty

Descrip�on

Quan�ty

Requested Quan�ty

Requested Quan�ty

Condi�ons

Ac�ons

Fig. 2.7 Specification of business rules

changed, it will be necessary to recompile and redeploy the orchestration. In a sense,
the rule is hard-coded in the orchestration, and it is not easy to change it.

In addition, it is quite likely that these rules will be changed by business
people, rather than technical developers, so it would be very convenient to provide
the possibility of configuring these rules outside the development environment of
BizTalk applications, and being able to change them for running orchestrations,
without the need to interrupt or redeploy them. Indeed, BizTalk provides such
possibilities through the use of business rules.

The business rule component of BizTalk is provided as a separate application
for business users. These can configure the rules to be invoked by an orchestration
during run-time. Since rules are defined in an external component, it is possible
to configure and change them independently of the orchestration which invokes
them. In fact, rules can be changed at any time before an orchestration actually
invokes them. The deployment of a new version of business rules implies that any
subsequent call to those rules will make use of the latest version. Rules can be
invoked in an orchestration by means of the call rules shape.

The use of business rules requires, first of all, that a business vocabulary is
created. A vocabulary is a set of terms that can be used to define business rules. In
the previous example, quantity would be a relevant term. Each term gives meaning
to a certain value that can be read from, or written to, a message. To that end, it is
necessary to specify the exact message element where the value will be read from or
written to. Since messages are instances of a given schema, the vocabulary contains
a set of definitions of each term and its corresponding schema element.

Figure 2.7 illustrates the relationship between schemas, vocabulary, and rules.
The terms in a vocabulary have a direct relationship to schema elements, and this
relationship may involve a get (read value from element) or a set (write value to
element) operation. In Fig. 2.7 there is one example of each: the term Requested
Quantity is read from the schema element Request/Item/Quantity, while Approval
Result is written to the schema element Request/Header/Approved. For simplicity,
both elements belong to the same schema, but it could be that these terms refer to
elements in different schemas. In general, it is possible to define vocabulary terms
involving get or set operations over the elements of any available schema.

28 2 Introduction to BizTalk Server

On the right-hand side of Fig. 2.7, the terms defined in the vocabulary are used to
specify business rules. In general, each rule has two parts: the first part specifies the
conditions that must hold true for the rule to be applied; the second part specifies the
actions to be carried out when the rule applies. In the example of Fig. 2.7, each rule
has a single condition and a single action. In general, it is possible to specify more
complicated conditions based on logical expressions with the usual logical operators
such as AND and OR. It is also possible to specify several actions to be done; these
will involve several set operations over different vocabulary terms.

A set of rules define a business policy, which can be invoked from within an
orchestration by means of the call rules shape. This shape is straightforward to
configure: basically, it needs to know which policy (set of rules) will be invoked,
and which messages will be provided as input. Naturally, these messages must
already exist in the orchestration at the time when the rules are invoked; either they
have been received by the orchestration, or they have been constructed during the
orchestration. Additionally, the messages must be instances of the same schemas
that have been used to define the vocabulary. For example, to invoke the rules in
Fig. 2.7 it is necessary to provide as input the request message, since the vocabulary
terms that are used in the rules have been defined based on the request schema.

The result of invoking a business policy is—should any of the rule conditions
apply—a set of actions performed over the input messages. The set operation
associated with a vocabulary term effectively changes the value of the corresponding
message element, so this is an exception to the general principle that messages are
immutable across the orchestration. Through the use of set operations, it becomes
possible to change the content of messages, so that the forthcoming steps in the
orchestration will see the new content.

A typical application of a business policy is to set the price, or discount, for a
certain product or customer. For example, a 3-for-2 promotion could state that when
buying two products, the third is for free. In this case, it would be useful to have a
rule based on the product and quantity ordered. Another example is to set the price
based on customer status, so that regular and premium customers have different
discounts; this discount can also be implemented by the use of an appropriate rule.
In any case, the invocation of the business policy sets the price or discount outside
of the orchestration, but henceforth to be used within the orchestration.

It should be noted that in the previous example of the purchase request (Fig. 2.5),
the use of a business policy does not replace the need for a decide shape in the
orchestration. In fact, the insertion of a call rules shape between the initial receive
and the decide shape in Fig. 2.5 can be used to determine whether the request should
be approved or not, according to the business rules in Fig. 2.7. However, these rules
just set the value of the Approved element in the original message request; it will be
necessary to use a decide shape to test whether this value is actually true or false.
The orchestration can then proceed either to the left or to the right branch in Fig. 2.5.
So, in conclusion, business rules are not a way to avoid decisions in an orchestration,
they are just a way of making those decision rules more explicit and easier to change
without having to redeploy the orchestration.

2.7 Conclusion 29

2.7 Conclusion

BizTalk Server is an example of a state-of-the-art platform for enterprise systems
integration. With this platform, integration solutions can be built as a collection of
artifacts, each having a different purpose: schemas are used to specify the structure
of messages to be exchanged with external applications; transformation maps are
used to create new messages from existing ones, where new messages may contain
the same data but in a different format; pipelines are a means of applying specialized
processing tasks over messages that are about to enter or exit the message box; and,
finally, orchestrations are a way to implement the process behavior associated with
message exchanges between applications.

Modern platforms for enterprise systems integration provide the ability to
develop integration solutions based on these or similar artifacts. The ability to spec-
ify schemas, transformation maps, and orchestrations is present in other platforms
as well. So, while BizTalk has certainly its own particularities, the features that have
been presented here are sufficiently representative and pervasive in other integration
platforms. The key capability of these platforms is the ability to develop integration
solutions based on orchestrating the message exchanges between systems.

In effect, the run-time environment for such orchestrations is, in general, and
as is the case with BizTalk, a messaging infrastructure. This type of infrastructure
is absolutely critical to enable the implementation of orchestrations on top of
heterogeneous systems. The required features and capabilities of such messaging
infrastructures are a topic to be discussed in detail throughout the next chapter.

Part II
Messaging

Chapter 3
Messaging Systems

One of the essential principles in enterprise systems integration is the use of asyn-
chronous communication between applications. This is because applications cannot
afford to interact synchronously, i.e., to block while waiting for the response from
other applications. Such behavior would not only decrease the overall performance,
but it would also bring the organization to a stand-still, either by mutual deadlock
of applications or by an amount of load that would make applications stop servicing
requests. An environment comprising several applications that communicate syn-
chronously would, at best, operate at the speed of its lowest component.

Enterprise systems must therefore communicate asynchronously, to allow each
application to respond to requests at its own pace, while other applications proceed
with their own work. In a sense, this is similar to the use of mail: rather than
phoning someone, which would require that person to be immediately available
to speak on the phone, one may choose to send a letter or e-mail instead, allowing
the recipient to handle the message when available. Of course, following the same
analogy, someone must take care of sending the letter or e-mail from the sender to
the recipient; both the sender and the recipient expect this to be done reliably, so
that the message does not become lost somewhere along the way.

Messaging systems fulfill a similar purpose: they provide the means for asyn-
chronous communication between sender and receiver, and they also provide
reliability in message delivery. The features and capabilities of messaging systems
are relatively standardized to the point that different systems, or systems developed
by different providers, may provide the same interface to applications. Such is the
goal of the Java Message Service (JMS), which is a platform-neutral, Java-based
interface for messaging systems. On the other hand, it becomes useful to look at
how a particular messaging system is implemented, and for that purpose this chapter
presents an overview of Microsoft Message Queuing (MSMQ) as well.

Although MSMQ does not conform to the JMS interface, it can be easily
integrated with BizTalk and it provides a different perspective of how messaging
systems can be implemented. But even if JMS and MSMQ have different imple-
mentations, they share a set of common concepts that are pervasive to all messaging
systems. These fundamental concepts of messaging systems are explained next.

D.R. Ferreira, Enterprise Systems Integration, DOI 10.1007/978-3-642-40796-3__3,
© Springer-Verlag Berlin Heidelberg 2013

33

34 3 Messaging Systems

3.1 Fundamental Concepts

In Chap. 1, Fig. 1.5 illustrated the need for a messaging platform in order to sup-
port asynchronous communication between applications. The fundamental concept
behind such messaging platform is the use of message queues, with one queue for
each application, which works as a “mailbox” for that application. There are other
fundamental concepts associated with messaging systems, and it becomes useful
to have a broad view of these concepts before focusing on any messaging system
in particular, for two reasons: on one hand, particular messaging systems can be
seen as essentially different implementations of the same common concepts; on the
other hand, a given messaging system may not implement all of these concepts, so
it becomes possible to have an idea of the extent of functionality when compared to
the full range of capabilities that are often associated with messaging systems.

Figure 3.1 illustrates the basic principle of data exchange between applications
through asynchronous messaging. The sender, or source application, creates a
new message with the desired data, to be sent to the target application. In the
source application, the data is stored in files or memory according to internal data
structures. When writing the data to a message, those data must be converted to a
schema that can be understood by the target application. The message is delivered
by the source application to the message channel, so that the channel will dispatch
it to the target application. Information about the recipient, as well as other info
such as message priority, and expiry date, are not part of the actual content of the
message, but are written on the message envelope.

The channel routes and forwards the message to the target application, just like
a post office takes care of sending a letter to the intended recipient. In principle, the
routing is based on the information contained in the message envelope alone, but
in the case of messaging systems there is also the option of determining the route
or recipient based on the actual message content. When the message arrives at the
destination, the channel delivers it to the receiving end. The target application then
has access to the envelope, to the message, and to its content. The message content
must be in a schema that can be understood, but once the data is read, those data
may be stored in some internal data structures of the target application.

The way that the source application stores the data internally may be different
from the way the target application does it. What these applications should agree
on is on the use of a given channel and a certain message schema. If this cannot
be done, because the applications have been developed independently and there is
no way to change them in order to make them use a common schema, then the
message system may provide message translation capabilities in order to convert
the schema used by the source application into that used by the target application.
This effectively corresponds to the use of transformation maps.

Overall, the mechanisms and capabilities available in messaging systems can be
divided into six groups, i.e., into those that pertain to channels, messages, pipelines,
routers, translators, or endpoints [15]. These represent the fundamental concepts
associated with messaging systems.

3.1 Fundamental Concepts 35

Source applica�on Target applica�on

Channel

Storage

Data
Message
content

Message
content Data

Message in
envelope

Message in
envelope

Send Receive

Forward

Fig. 3.1 Data exchange between applications through messaging

3.1.1 Channels

Essentially, channels correspond to the message queues available or created in
the messaging system. Sending a message means that a source application asks
the messaging system to deliver a message to the message queue of the target
application. For this purpose, each channel (queue) has a unique name within the
messaging system. Also, a channel guarantees persistence so that no message is lost
in its route between sender and receiver (this is the reason for having the storage
component associated with the channel in Fig. 3.1).

Channels can be point-to-point, i.e., connecting one sending application to one
receiving application, or they may be publish–subscribe, in which case the sender
is referred to as publisher and the receivers are called subscribers. Message queues
are appropriate for point-to-point messaging, since each queue usually belongs to a
single, determinate target application. Different senders may dispatch messages to
the same queue, but the queue is usually read by a single receiver. To implement
the publish/subscribe paradigm, where there can be several receivers for the same
message, messaging systems typically provide a different mechanism—called a
topic—which admits several subscribers. When a publisher sends a message to a
topic, every subscriber of that topic receives a copy of the message.

Between a sender and a receiver, a channel may be used to transmit several
kinds of messages. Alternatively, there may be different channels for different
kinds of messages. Also, there may be special-purpose channels, such as a channel
for dropping off invalid messages, or to drop off messages that could not be

36 3 Messaging Systems

delivered (for this purpose, there is usually a dedicated channel called the dead-
letter channel). It is the job of an administrator to keep monitoring the dead-letter
channel to check if there were messages that could not be delivered.

In some cases, there may be applications that are unable to interact directly with
a messaging system. For example, in the case of legacy applications for which the
source code is not available, it may be impossible to make them send or receive
data from message queues. In such cases, a channel adapter may be required. The
purpose of this adapter is to read data from the application and publish messages
in a channel (when sending), and to receive messages from the channel and write
data to the application (when receiving). The channel adapter is a software layer in
between the application and the messaging system.

In other scenario, if a channel cannot reach the recipient but there is a different
channel that can do so, it is possible to bridge channels so that both the sending and
the receiving application appear to be using a common channel when in fact it is a set
of channels bridged, or connected, together. It is also possible, at least conceptually,
to bridge channels across different messaging systems, so that a channel in one
platform or administrative domain may work as an extension of another channel in
a second platform or administrative domain. An example would be to have a sending
application in Java publishing messages using JMS and a receiving application in
C# consuming messages through MSMQ; in this case, a bridge between message
channels in JMS and MSMQ would be required.

3.1.2 Messages

A message can be seen as a package of data that travels through a channel.
Semantically, the message may carry a document, a command, or an event. For
example, an invoice can be regarded as a document that contains a full description
of the products that were ordered; it can also be interpreted as a command for the
customer to pay for the order; and it may mean that the products have been shipped
and in this case it serves as an event. In any case, a message typically has a header
(in a mail system, this can be seen as the envelope) and a body (its actual content).

The message header contains metadata such as information about the sender,
the destination, and the message priority. Usually the message header is used only
by the messaging system for routing purposes and is ignored by the applications.
On the other hand, the message body contains application data. The content of
the message body is used by applications and is usually ignored by the messaging
system. However, in some scenarios it may be useful to have the messaging system
determine the routing of messages based on the actual content of the message body;
such practice is known as content-based routing, to be explained ahead.

In a request–response interaction between two applications, the request message
is usually a command and the response message may contain one or more
documents. While a channel is used to deliver the request to the target application,
another channel must be used for the source application to receive the response.

3.1 Fundamental Concepts 37

Messaging system

Reques�ng
applica�on 1

Responding
applica�on

Request
message 1

Request
message 2

Response
message 1

Response
message 2

Response channel 1

Response channel 2

Request channel

Reques�ng
applica�on 2

Fig. 3.2 Request–response interaction with the response channel being specified in the request

This a analogous to what would happen in a mail system, where each user has its
own mailbox: the mailbox where the request message is dropped is different from
the mailbox where the response is returned. In other words, each requester has its
own mailbox where the response should be delivered; this is illustrated in Fig. 3.2.

When sending messages, it is possible to specify additional parameters such as
time to live or expiry date. These parameters will be stored in the message header, as
header fields. If the message is not delivered within the specified time frame, it ends
up being redirected to the dead-letter channel. These and other advanced features
depend to some extent on the particular messaging system being used. In general,
these features can be configured when the message in being created in the messaging
system, by specifying the appropriate values for the header fields. At the receiving
end, if desired, applications have access to the message header and it is possible to
read the values of all header fields. Usually, however, the receiving application will
be mainly interested in the content of the message body.

3.1.3 Pipelines

Pipelines, in a similar way to what happens in BizTalk (see Sect. 2.3), are intended
to perform specialized processing tasks as the message enters or exits the message
channel. These tasks include message encryption or decryption, authentication
based on digital certificates, and de-duping, i.e., removing duplicate messages. The
need for message de-duping in messaging systems can be explained by the fact

38 3 Messaging Systems

that, depending on the implementation, some reliability mechanisms may result in
attempts to deliver the message more than once. Such reliability mechanisms, which
include message acknowledgments and transactions, will be explained later on.

Essentially, pipelines are comprised of a linear sequence of stages, in a similar
way to what has been previously presented in Fig. 2.3. The pipeline works as a
stream, meaning that as a message goes from one stage to the next, a new message
may enter the previous stage that has just completed processing. This way, if a
pipeline has three stages (e.g., a receive pipeline with decryption, authentication,
and de-duping stages), there can be three messages being processed by the pipeline
simultaneously, with one message being processed by each stage.

Conceptually, it is possible to build a pipeline with several different stages in
any order, but in practice the order of stages is usually fixed, as it happens with
BizTalk. If predefined pipelines are available, the user or application may configure
the messaging system to make use of certain stages while leaving others with no
processing to be done. Depending on the implementation, the messaging system
may also allow the use of special-purpose pipeline stages, for custom processing
of incoming or outgoing messages. This, however, is an advanced feature that only
more sophisticated messaging systems usually provide.

Another kind of processing tasks that pipelines may provide is the possibility of
splitting and aggregating messages. These concepts are equivalent to disassembling
and assembling messages, respectively, as discussed in Sect. 2.3. Splitting means
creating several messages out of a single message, by dividing the original message
in parts. With messages whose content can represented by an XML schema, the
parts may correspond to several occurrences of a certain XML element. A typical
example is that of an order with several items, where each item must be processed
individually as if it were a separate message.

However, when splitting items coming from the same order, it may be necessary
to include and replicate the original order number in each item. This allows to
merge the items again after processing, for example to produce a shipping order
with all items. This merging corresponds to the concept of aggregation, which is the
counterpart of splitting. Typically, an aggregation stage works in conjunction with a
previous splitting stage, as illustrated in Fig. 3.3.

Aggregation brings additional problems, such as knowing how many messages
should be aggregated, or how long the aggregation should wait for message parts
until it finishes and wraps up those parts as a single output message. Also, some
notion of correlation between messages must exist, e.g., only items coming from
the same order should be aggregated in a new shipping order (the important concept
of correlation will be discussed ahead in Sect. 3.4).

In practice, given that pipelines work by processing a stream of messages, it
becomes difficult to implement aggregation since, in some cases, this would require
knowing which messages or how many messages will arrive in advance. For this
reason, some messaging systems provide splitting capabilities but do not provide
aggregation capabilities in pipelines. However, the same effect can sometimes be
obtained by other means such as implementing the behavior in an orchestration, if
the messaging system includes support for orchestration logic.

3.1 Fundamental Concepts 39

Messaging systemReques�ng
applica�on

Responding
applica�on

Request
message

Response
message

Response channel

Pipeline
{spli�er}

Request channel

Pipeline
{aggregator}

Request
item 1

Request
item 2

Response
item 1

Response
item 2

Fig. 3.3 Message splitting and aggregation through pipelines

3.1.4 Routers

Basically, routers are the components of a messaging system that decide the ultimate
destination of messages. Given that different messages may be handled by different
applications, routers allow this decision to be embedded in the messaging system
itself, so that sending applications just publish messages, and receiving applications
just wait for the messaging system to deliver them, without having to embed routing
logic in any of the applications. Placing the routing logic inside the messaging
system also provides a centralized point of control for the whole integration solution.

In an analogy with a mail system, a messaging system may also route messages
according to the metadata contained in the message header or envelope. But, in
addition to that, a messaging system may also decide the routing of messages
according to the actual content found in the message body. This is known as content-
based routing and it allows applications to publish messages without specifying
the recipient. The message system itself will decide what to do with such kind of
message.

There are therefore three options for routing messages between applications. At
this point, we know that either the sending application specifies the recipient, in
which case the routing logic is embedded in the sender; or the messaging system
decides the recipient, in which case the routing logic is embedded in the system.
The third option is to have no routing logic at all, and the messaging system just
broadcasts messages to every possible recipient. In this case, each target applications
will decide what to do with the message, either handle or just ignore it.

For this third option it becomes useful to have a special component called
a message filter. Each target application may have a message filter that decides
which messages actually go through the filter and reach that recipient. The use of
message filters is a way to simplify the routing logic at the messaging system (it just
broadcasts messages) and still have some level of control on which messages reach
a given destination. Usually, more sophisticated routing mechanisms are preferred.

One such mechanism is dynamic routing, in which receiving applications may
themselves configure, at run-time, the rules that determine which messages they will

40 3 Messaging Systems

Messaging system

Message

Dynamic
router

Receiving
applica�on

1

Receiving
applica�on

2

Receiving
applica�on

3

Sending
applica�on

Des�na�on channel 1

Des�na�on channel 2

Des�na�on channel 3

Control channel

Input channel

Fig. 3.4 Dynamic routing of messages according to run-time rules

receive. This is effectively a way to implement the publish/subscribe paradigm by
letting target applications decide which messages they are interested in. Since each
application defines its own rules, the rules for different applications are not mutually
exclusive, so any N -out-of-M (with 0 � N � M) applications may receive a copy
of the same message. This routing approach will require a special-purpose control
channel, through which applications send their subscription rules to the messaging
system. This is illustrated in Fig. 3.4.

Another routing approach which becomes especially important in the context
of integration is process-based routing. Put simply, this means having a process
manager—or orchestrator—coordinating the interactions between several applica-
tions. Figure 3.5 illustrates this concept. After a triggering message is received from
Application A, the process manager creates and initiates the execution of a new
process instance. This process may implement, for example, a linear sequence of
interactions with applications B , C , and D such that the first action is to send a
request to Application B and wait for a response, then to Application C and wait
for response, and then finally to Application D. The idea is that the process logic
can be changed in a flexible way to implement any desired behavior.

Compared to other routing mechanisms, process-based routing has the distinctive
advantage of allowing the implementation of more sophisticated behavior in a
flexible way, while providing a central point of control where the process logic
can be configured. On the downside, process-based routing may constrain the
performance of the messaging system by requiring all messages to go through that
central point. In practice, this effectively represents a problem of process-based
integration platforms which, when subject to heavy loads in terms of number and
rate at which incoming messages arrive, may have difficulties responding in a timely
fashion, or may even run out of available resources, especially memory.

3.1 Fundamental Concepts 41

Messaging system

Process
manager

Applica�on
B

Applica�on
C

Applica�on
D

Des�na�on channel 1

Des�na�on channel 2

Des�na�on channel 3

Trigger
message

Applica�on
A

Input channel

Fig. 3.5 Routing of messages through a process manager

It is therefore a common practice in integration platforms to keep loaded in
memory only those process instances which are currently active. Other instances
showing no activity for a certain period of time may be unloaded and saved to
persistent storage, usually a database. In BizTalk Server, this is precisely what
happens when, for example, an instance of an orchestration is waiting to receive
a message that is taking too long to arrive. In this case, BizTalk will unload that
instance from memory and load it back to memory when the message arrives.
Such behavior is referred to as dehydration (when unloading from memory)
and rehydration (when reloading). The act of dehydrating and rehydrating an
orchestration instance does not usually result in any noticeable decrease in the
performance of that instance.

3.1.5 Translators

In messaging systems, translators provide the ability to convert message content
from one structure into another. Since each application may have its own require-
ments regarding the messages it is able to receive, a translator becomes useful to
create messages that are in a proper format to be processed by the target application.
A translator is specified in terms of metadata: it must know the structure of the
source message, it must know the structure of the target message, and it must know
how to fill in the content of the target message based on the content of the source
message. In general, the structure of messages is specified by means of schemas, and
the translation is specified by means of a schema transformation. So the preferred
way to implement translators is by means of transformation maps.

42 3 Messaging Systems

Item
Order

Quan�ty

UnitPrice

Item
SalesOrder

Quan�ty

UnitPrice

TotalPrice

OrderTotal

NoItems

Source schema Target schema

Transforma�on map

loop

mul�ply

count

cumula�ve
sum

Fig. 3.6 Use of functoids in a transformation map

Transformation may involve not only copying elements from the source message
to the target message, but also carrying out computations with data from the source
message in order to create the results that are to be stored in the target message. A
typical example is when the source message is a sales order with several items, each
with a quantity and unit price, and the target message needs to store the number of
items, the total price for each item (i.e., multiplying unit price by quantity), and the
total price for the order (the sum of all the previous multiplications). Such capabil-
ities are usually attained through the use of special functions in the transformation
map. In BizTalk, as explained in Sect. 2.2, these functions are known as functoids.
Figure 3.6 illustrates the use of functoids to implement the above example.

A functoid may have one or more inputs, and one output. The loop functoid
replicates all occurrences of a given element from the source message into the target
message. The counting functoid, as the name implies, counts the number of occur-
rences of a given element. The multiplication is an example of a functoid that has
more than one input. Also, the output of this functoid is being used for two different
purposes: one is to fill in the total price of each item, and the other is to serve as input
to a cumulative sum functoid which sums up the results of all multiplications. Many
other functoids exists, from string operations such as concatenation and substring
extraction, to advanced functionalities such as database lookup.

Besides being able to transfer data from a source message to a destination
message, a translator can also be used as a content filter or as a content enricher.
In a content filter, only the minimal required data are transferred to the target
message, and everything else from the source message is omitted. Such filtering
finds application where an application A would not like to share sensitive data with
application B but still needs to send some minimal information so that application
B can carry out its job. On the contrary, a content enricher achieves the opposite
effect of augmenting a target message with additional data that is not available in the
source message, and that cannot be computed from the data available in the source
message. Such enrichment usually involves fetching data from external sources, and
it is used to meet the requirements of the target application.

3.1 Fundamental Concepts 43

Messaging systemSource
applica�on

Target
applica�on

Request
message

Response channel

Request channelFiltered
request

Content filter

Enriched
response

Response
message

Content enricher

Private
data

Fig. 3.7 Use of content filter and enricher to protect private data

Figure 3.7 illustrates the use of a combination of content filter and content
enricher to interact with a remote application without having to disclose the full
message data. For example, a reseller (source application) may want to ask a
supplier (target application) whether it has some product in stock. The original
request message contains the details about the product and also about the customer
that requested such product from the reseller. The details about the customer are to
be kept private, so these data are filtered out from the request. When the supplier
returns the response, the customer details are filled back into the message through a
content enricher. As another example, a company may ask a third-party logistics
partner to deliver some package without disclosing its actual contents. For this
purpose, the company sends only the package identifier, while the package details
are filtered out. Afterwards, when the partner confirms that the package has been
delivered, it returns the same package identifier, and the company is able to retrieve
the information about the products that have just been delivered.

Such filtering and enriching of message data can be accomplished in a more
flexible way through the use of orchestrations, but this may require capabilities that
are beyond those that are typically available in a messaging system. To implement
the same behavior in an orchestration, one would have to (1) receive the request
message, (2) interact with a database in order to store the private data, (3) filter
the request message via a transformation map, (4) send the filtered request to the
target application, (5) wait for the response to arrive, (6) query the database to
in order to fetch the private data, and (7) enrich the response through a second
transformation map. Such orchestration would require at least four receives, three
sends, and two transforms, but it would make the integration logic more explicit and
easier to manage than what would happen if the logic is embedded in translation
components. In general, it is good practice to implement the integration logic in an
orchestration, if possible, rather than through the use of advanced capabilities of
translators.

44 3 Messaging Systems

Messaging system Receiving
applica�on

Channel

receive()
parameters: (none)
returns: message

Incoming
messages

Messaging system Receiving
applica�on

Channel

Incoming
messages onReceive()

parameters: message
returns: (none)

Fig. 3.8 Polling vs. callback when receiving messages

3.1.6 Endpoints

The concept of endpoint has to do with the way applications connect and interact
with the messaging system. An endpoint refers to the application code that is used
exclusively to create messages and send them through the messaging system, as
well as receiving messages and accessing their content. When sending messages,
the interaction between the application and the messaging system is usually a
synchronous call: the application simply invokes a method to send messages. On
the other hand, when receiving messages there are two possible behaviors: either the
application keeps polling the messaging system to check whether a new message has
arrived, or the messaging system itself invokes a callback method on the application
to deliver messages whenever new messages arrive.

The difference between polling and callback is in who invokes whom; when
polling, the application invokes a synchronous method on the messaging system,
and this method blocks until a new message arrives in the channel. When using
callback, it is the messaging system which invokes a synchronous method on the
application to deliver a newly arrived message; the message is passed as a parameter
to the callback method, and this method should return as soon as possible in order to
release the corresponding thread in the messaging system. Figure 3.8 illustrates the
two endpoint behaviors. Usually, the polling method implemented by the messaging
system receives no parameters and returns a reference to a message object, while the
callback method implemented by the application receives a reference to the message
as input parameter and returns nothing.

Another possibility is to have transactional endpoints that support message trans-
actions between the application and the messaging system. Here, it should be noted
that the concept of transaction applies only in the context of an endpoint and should

3.2 Message Transactions 45

not be used to denote interactions between end applications. Such end-to-end inter-
actions can only be regarded as being transactional in the sense that applications at
both ends use transactional endpoints, and the messaging system itself may provide
reliability mechanisms between endpoints as well, to ensure for example that mes-
sages cannot be lost. In any case, a message transaction refers always to a interaction
between an application and the messaging system alone. The topic of transactions
is sufficiently important to be explained in a separate section, as comes next.

3.2 Message Transactions

In database systems, the concept of transaction is associated with a set of operations
that are performed as a single unit and that must leave the database in a consistent
state [27]. In messaging systems, a similar concept applies: a transaction is a set
of send and/or receive operations that are performed as a single unit and that must
not leave the system in any intermediate, inconsistent state; either the whole set
of operations succeed, or the message system must revert to the last, previous
consistent state. In particular, the successful execution of a message transaction
comprising send and/or receive operations implies that:

1. the application has successfully consumed all messages that it intended to
receive;

2. the application has successfully produced all messages that it intends to send.

Here, it should be noted the careful choice of words. The messages are consumed,
meaning that they have been received and removed from their original channel or
queue. Also, about the messages that the application produced and intends to send:
these messages will be sent to their destination only after the transaction completes
successfully. Such behavior is necessary to ensure that, should the transaction fail,
the messaging system can revert to the previous state. A transaction that fails
therefore results in the following behavior:

1. all messages that have been consumed by the application are placed back again
in their original queues;

2. all messages that have been produced are discarded by the messaging system.

This is conceptually equivalent to a transaction rollback. By returning the mes-
sages that have been consumed to their original queues, and discarding messages
that have been produced, this results in the state of the messaging system that existed
before the transaction had begun. Such recovery approach, however, has some
implications on the interactions that can actually be supported through transactions.
Since a message transaction involves a set of send and/or receive operations, one
must consider the following scenarios:

• A message transaction that comprises only send operations—this creates no
problem from the recovery point of view; in case the transaction fails, all

46 3 Messaging Systems

Messaging systemSource
applica�on

Target
applica�on

Request

Response

Request

Response

Use of a single transac�on
is recommended

Use of a single transac�on
does not work

Messaging systemSource
applica�on

Target
applica�on

Request

Response

Request

Response

T3

T2

T5

T1

T4

Fig. 3.9 The use of transactions in a request–response scenario

messages will be discarded. The messaging system will not initiate the actual
send operation before the transaction commits.

• A message transaction that comprises only receive operations—this creates no
problem as well; in case the transaction fails, all messages that have been received
are returned to their original queue. After the transaction commits, however,
there is no turning back, and the messages have disappeared from the messaging
system.

• A message transaction that comprises receive operations and send operations, in
this order—this creates no problem and is actually a common scenario for the
use of message transactions. An application that receives a message and must
produce another message in response should in fact do so within the context of
a transaction, so that, if something fails in between, on restarting the application
the original request is again available in the queue and the application can try
again. This way, it is guaranteed that no request is lost or is left without response.

• A message transaction that comprises send operations and receive operations, in
this order—if the messages to be received are responses to the messages that are
to be sent, then this will not work, because the messages to be sent will not be
sent until the transaction commits, and the transaction will not commit until the
responses are received. In a request–response scenario, the transaction will not
complete. In such scenario, the use of transactions is unnecessary since reliability
can be ensured by a transaction at the receiving end (previous scenario above) and
by the inherent mechanisms of the messaging system.

Figure 3.9 illustrates the problem of using a single message transaction in a
request–response scenario. The source application expects to send a request and
receive a response; however, the request will not reach the target application until

3.3 Message Acknowledgments 47

the transaction commits. Without receiving the request, the target application will
not produce the response, so transaction T1 will never complete. In Fig. 3.9, the
use of two individual transactions T3 and T5 solves the problem, and ensures that
no message is lost. Transaction T4 ensures that the request will not be left without
response, while transaction T5 ensures that the source application will not miss the
response. Transaction T3 makes the source application sure that the request was sent
and will eventually reach the target application. The three transactions T3, T4, and
T5 fall into the first three admissible scenarios described above.

3.3 Message Acknowledgments

Besides transactions, messaging systems implement other reliability mechanisms
such as messages acknowledgments. Basically, an acknowledgment is confirmation
that a message was successfully received at its destination. The acknowledgment
itself is a special-purpose message with several possible meanings. Usually, it
indicates whether a message that was to be delivered to a target application was
successfully received by that application; in some cases, the acknowledgment may
also indicate that the message was not only received but also processed without
errors by the target application. Usually, message acknowledgments are for internal
use of the messaging system, but they may be accessible to the sender as well, if the
messaging systems provides that feature. This is illustrated in Fig. 3.10.

A message acknowledgment may be implicit, meaning that it is generated by
the messaging system itself as soon as the message is delivered. The other option
is to have explicit acknowledgments, which means that the target applications
must themselves confirm that they received the message correctly by invoking a
method on the messaging system to generate the acknowledgment. An explicit
acknowledgment is often taken to mean that the target application not only received
the message but processed it correctly as well. All of this happens regardless of
whether the message is delivered in polling or callback mode, as shown earlier in
Fig. 3.8. Also, when acknowledgments are used, a transaction is considered to have
completed successfully only when all consumed messages have been acknowledged.

While acknowledgments are typically used to signal positive events (i.e., mes-
sage received successfully), some systems use acknowledgments to signal negative
events as well. For example, if the messaging system cannot route the message
to the destination, or if the message remains in the destination channel without
ever being received, the messaging system may generate an acknowledgment to
signal that fact. The purpose of a negative acknowledgment is to inform the original
sender that something that went wrong with the message, so the use of negative
acknowledgments is more relevant in scenarios where the sender can have access to
the acknowledgment. In general, we will refer to an acknowledgment as a positive
event that is accessible to the messaging system only.

48 3 Messaging Systems

Messaging systemSource
applica�on

Target
applica�on

Message Message

Ack.

Messaging systemSource
applica�on

Target
applica�on

Message Message

Ack.Ack.

Messaging systemSource
applica�on

Target
applica�on

Message Message

No acknowledgment

Receiver-side
acknowledgment

Receiver-side and
sender-accessible
acknowledgment

Fig. 3.10 Use of acknowledgments in messaging systems

3.4 Message Correlation

In message acknowledgments, as well as in many practical scenarios which involve
request–response interactions, there needs to be a mechanism to allow applications
to correlate messages, such that they will know that a message that has just arrived
is related to another message that was previously sent or received. Figure 3.11
illustrates the need for correlation. In this scenario, a source application sends three
independent requests to a target application, which is expected to return a response
for each request. Since the requests are independent, they will be handled separately
and the responses may be produced in any order; a response may be returned to the
sender as soon as the target application has finished handling the corresponding
request. Now, as the source application receives a response, it must be able to
determine the original request that the present response refers to.

In a messaging system, every message has a unique identifier (message id) which
can be used to keep track of the message as it is routed through the system. The
message id is unrepeatable in the sense that even if a second message has the
exact same content as a previous message, the second message will have a different
message id. In a scenario where an application receives a message and resends it
to another application, there will be two messages with different message ids. In
general, the message id can be assumed to be a sequential number that is assigned
to each new message created in the messaging system. Whenever an application asks
the messaging system to create and send a new message, the sequential number is
increased and its value is attached to the new message. Having unique message ids
is essential in order to be able to identify each message and, if necessary, refer to it
later, even if that message is no longer in the messaging system.

In a request–response scenario, an application that is responding to a previously
received request (which is no longer in the message system) may refer to that request

3.4 Message Correlation 49

Messaging system

Message 1
(Request 1)

Request channelMessage 2
(Request 2)

Message 3
(Request 3)

Message 4
(Response 2)

Response channel Message 5
(Response 3)

Message 6
(Response 1)

Reques�ng
applica�on

Responding
applica�on

Fig. 3.11 Need for correlation in request–response interactions

using its message id. However, the response to that request has its own message id,
which is naturally different from the message id of the original request. Therefore,
to be able to refer to the original request, the application needs to make use of
a second message field, called correlation id. The correlation id, if included in a
message, contains the value of the message id of another message to which the
present message is correlated. So, while the message id is always different for
every new message, the correlation id may contain the message id of any previous
message. This way it becomes possible to send a response (a new message with a
new message id) which is correlated to a previous request (because the correlation
id is the message id of the original request).

In the example of Fig. 3.11 there are six messages, each with its own message id.
Messages 1 to 3 do not have to use a correlation id. However, messages 4 to 6 must
use a correlation id since they are responses to previous requests. In this example,
message 4 has a correlation id with value 2 since it is a response to message 2;
message 5 has a correlation id equal to 3 since it is a response to message 3; and
message 6 has correlation id with value 1. One can see that such mechanism can
be used not only in request–response scenarios, but also in interactions that involve
any set of messages. Using the correlation id to refer to the message id of a previous
message allows an application to keep sending and receiving messages that are all
correlated, regardless of the direction in which these messages are exchanged.

Figure 3.12 shows a different example of a chain of interactions. In this example,
application A submits a request to application B which, in turn, creates a request
to application C ; then this triggers a request from application C to application D.
When D responds to C , then C responds to B , and finally B responds to A. These
exchanges are all triggered by the request from application A, and all messages are
numbered sequentially in the order they have been created in the messaging system.
For such scenario to work, there needs to be a correlation between every pair of
request and response. Message 4 is a response to message 3, so it must use this value
as its correlation id; in the same way, message 5 is a response to message 2, and
message 6 is the response to message 1. Messages 1 to 3 (the requests) do not use a
correlation id; messages 4 to 6 use as correlation id the message id that corresponds
to the original request. In this scenario, there are three separate correlations.

50 3 Messaging Systems

Messaging system

MsgID: 1
CorrID: null

MsgID: 2
CorrID: null

MsgID: 3
CorrID: null

MsgID: 6
CorrID: 1

MsgID: 5
CorrID: 2

MsgID: 4
CorrID: 3

Applica�on
A

Applica�on
B

Applica�on
C

Applica�on
D

Fig. 3.12 Use of correlation
in chained request–response
interactions

3.5 The Java Message Service

In the previous sections, we have seen the wide range of concepts and capabilities
that are typically associated with messaging systems. In this and the next section
we will have a look at actual messaging systems that implement those features. In
this section we will delve into the JMS and in the next into MSMQ. There are other
messaging systems as well, but these two examples provide an idea of how different
the implementations can become; also, these two examples cover the two main
platforms in use today. In particular, the JMS has a wide support in the industry,
with several Java-based products implementing this standard.

The JMS is, in effect, a standard. It is not a messaging system, but rather a
standard application programming interface (API) for messaging systems. A first
version of the JMS standard was released in 2001; the second version (version 1.1)
released in 2002 has remained since then and is in widespread use today, with a wide
range of both commercial and open-source products that implement the standard.
Basically, the JMS standard is intended to provide a common interface through
which (Java-based) applications can interact with a messaging system, regardless
of its underlying implementation. So, rather than having to adapt to a messaging
system, an application can be prepared to operate through JMS regardless of the
particular messaging system being used.

JMS provides two distinct types of messaging: queues and topics. These are
referred to in the JMS standard as types of destinations. Queues are intended
for point-to-point (one-to-one) communication between applications, while topics
provide the concept of publish/subscribe where one application may send a message
to several other applications (one-to-many). In the parlance of JMS, applications
that send messages are called producers and applications that receive messages are
called consumers. Producers and consumers are also referred to as clients, while the
messaging system that implements the JMS interface is called JMS provider.

In point-to-point communication, applications make use of queues, where only
one consumer receives each message. The consumer may or may not be online,
so a message may remain in the queue for a relatively long period of time until
it is eventually received by the consumer. JMS messages may have attributes such
as expiry time or time-to-live that determine the maximum time that the message

3.5 The Java Message Service 51

should be in the queue without being received. Messages that go past their expiry
date or time-to-live are discarded by the messaging system.

Also, all messages in JMS are acknowledged upon receipt. This receipt may
be implicit or explicit, as explained in Sect. 3.3. For the moment we will focus on
implicit acknowledgments, since this is the default in JMS. The acknowledgments
are for internal use of the messaging system only, i.e., they do not reach the sender
of the message. In addition, acknowledgments are strictly positive, meaning that an
acknowledgment is generated when the message is successfully received, and no
acknowledgment is generated if the message is not received.

In publish/subscribe communication, application use topics, for which there may
be multiple consumers. Each consumer receives a copy of the message that arrives at
the topic. However, the default behavior here is that a consumer receives the message
only if it is online and has an active subscription to the topic; if the consumer
goes offline or deactivates the subscription, the default behavior of JMS is to stop
delivering messages to that consumer. This behavior can be change through the use
of durable subscriptions, where JMS stores messages for that consumer, in case it is
currently offline. This choice of behavior must be done explicitly by the consumer;
otherwise, given the potentially large number of subscribers to a topic, this would
require the messaging system to store messages for all of them.

3.5.1 The JMS API

The JMS API defines a set of Java class interfaces, with predefined methods, that
the messaging system must implement in its own set of classes. For example, the
MessageProducer interface defines the signature of the method send() that is used
to dispatch a message to a given destination; for that purpose, the method send()
has a parameter of type Message that is used to refer to the message to be sent. On
its turn, Message is another interface that specifies the methods to get and set the
properties and content of a message. The interfaces in the JMS API work in such
a way that each interface has its own methods, and these methods have input and
output parameters that are references to objects that implement other interfaces.

The use of the JMS API begins by obtaining a reference to an object that
implements the ConnectionFactory interface. Such object must have been previously
created and must be readily accessible for applications to initiate connections to
the messaging system. Indeed, according to JMS, an application must first open a
connection to the messaging system before doing anything else, such as sending
or receiving messages. The ConnectionFactory interface is perhaps the simplest
of all JMS interfaces: it just defines a createConnection() method to be invoked
by applications in order to open such kind of connection. In order to accept the
connection, the messaging system may require some form of authentication based
on username and password; in this case, createConnection() may be provided with
those two input parameters. Otherwise, the method can be called without any input

52 3 Messaging Systems

SessionMessageProducer

Message

MessageConsumer

create

create

create

create

for

These objects have been
created previously and
are ready for use

These objects are
created in sequence by

for

create

start

Des�na�onConnec�onFactory

Connec�on

the client applica�on

Fig. 3.13 Diagram illustrating the use of JMS interfaces

parameters, and a default identity is used. In either case, createConnection() returns
a reference to an object that implements the Connection interface.

To keep track of all these interfaces and their relationships, Fig. 3.13 illustrates
the sequence associated with the usage flow of JMS. From the connection fac-
tory, the application opens a connection to the messaging system, and with that
connection creates one or more sessions. A session can be regarded as a period
of activity during which the application sends and receives messages. In general,
these messages will be sent to, or received from, preexisting destinations (queues
or topics). It is also possible for an application to create destinations dynamically
at run-time within a session, but these destinations are temporary and, at most, they
will last until the connection is closed. The use of temporary queues or topics is
not very common, since this would require other applications to learn about their
existence in order to use them; an example is when a source application sends a
request that specifies a temporary destination where the target application should
send the response to. More usual is to make use of preexisting destinations that have
already been created and are ready for use by applications.

Within a session, an application can create message producers and message
consumers for use with particular destinations. It may also create messages to be
sent through message producers. Creating a message producer means invoking the
createProducer() method of the Session interface, which returns a reference to an
object that implements the MessageProducer interface. This object is created within
the messaging system, and a reference to the object is handed over to the client appli-
cation. The procedure is analogous for creating message consumers and messages as
well. As explained above, after creating a message producer and a message object,
the message can be sent by invoking the send() method of the MessageProducer
interface. This method receives a reference to the message object as input parameter;

3.5 The Java Message Service 53

the reference to the destination is unnecessary since it has already been specified
when the message producer was created through the Session interface.

The MessageConsumer provides a receive() method to fetch messages from a
destination. Again, the destination has already been specified when the message
consumer was created. The receive() method is a blocking call that returns only
when a new message is available at the destination. Alternatively, JMS also
supports asynchronous receives through the use of a callback interface known
as MessageListener. This interface has a single method onMessage() that is to be
implemented by the client application and that is invoked by the messaging system
to deliver messages to the application. In this case, a reference to the message object
is passed as input parameter to the onMessage() method call. The JMS standard
specifies that messages are received in serial order within a session, so the messaging
system will not invoke the onMessage() method until the session has completed the
previous call.

A connection factory object and, optionally, one or more destination objects are
created before applications start using the messaging system. So the first problem
that a JMS-compliant messaging system must address is how to provide client appli-
cations with references to those objects that already exist. This is usually attained by
letting applications retrieve such references from a directory service. Basically, the
messaging system creates the object that implements the ConnectionFactory interface
and registers that object in a directory service. Applications perform a lookup
operation on the directory service to retrieve the connection factory and initiate
a connection to the messaging system. A similar scenario applies to destination
objects: these are in general created by an administrator that registers the objects
in the directory service. Applications can then lookup the destinations they want to
use. According to the JMS standard, such directory service should implement the
Java Naming and Directory Interface (JNDI), which is another standard API.

In the above description, and also in Fig. 3.13, the presentation of the JMS
interfaces was slightly simplified to abstract from the details that are specific to
the different types of destinations, namely queues and topics. Although the logic
of the API is similar in both cases, the fact is that working with queues or topics
requires the use of different JMS interfaces. In the case of queues, the interfaces
ConnectionFactory, Connection, Session, MessageProducer, MessageConsumer, and
Destination correspond, respectively, to QueueConnectionFactory, QueueConnection,
QueueSession, QueueSender, QueueReceiver, and Queue. In the case of topics, the
same interfaces correspond, respectively, to TopicConnectionFactory, TopicConnec-
tion, TopicSession, TopicPublisher, TopicSubscriber, and Topic. However, it is still
correct to refer to the common interfaces ConnectionFactory, Connection, Session,
etc., since these are parent interfaces (super-interfaces) of the specific interfaces
that apply to queues and topics. In particular:

• ConnectionFactory is the parent interface of QueueConnectionFactory and Topic-
ConnectionFactory;

• Connection is the parent interface of QueueConnection and TopicConnection;
• Session is the parent interface of QueueSession and TopicSession;

54 3 Messaging Systems

• MessageProducer is the parent interface of QueueSender and TopicPublisher;
• MessageConsumer is the parent interface of QueueReceiver and TopicSubscriber;
• finally, Destination is the parent interface of Queue and Topic.

Given this interface hierarchy, an object that implements a sub-interface also
implements the corresponding super-interface. For example, an object that imple-
ments TopicPublisher also implements MessageProducer; and similarly in other cases.

3.5.2 How to Use JMS

From the perspective of client applications, interacting with a JMS-compliant
messaging system is straightforward. Typically, applications will implement the
following behavior:

1. Use JNDI to retrieve an object that implements the ConnectionFactory interface.
2. Use the ConnectionFactory object to create a Connection object. This opens a

connection to the messaging system but, at this stage, message delivery is still
disabled.

3. Use the Connection object to create one or more Session objects.
4. Use JNDI again to lookup one or more references to Destination objects.
5. Use the Session object and the Destination references to create MessageProducer

and MessageConsumer objects.
6. To send messages, use Session to create a Message object, and use a MessagePro-

ducer to send the message. To receive messages, initiate the delivery of messages
on the Connection and use a MessageConsumer to receive the message.

The application code that is needed to perform these operations and to send a
message is shown in Listing 3.1. Line 4 obtains a reference to the directory service
that can later be used to lookup objects. The first object to be retrieved is the
connection factory (lines 6–7); in this example, we assume the object has been
registered in the directory service with the name “MyConnectionFactory.” Lines
8–11 create the connection and the session objects. When creating the session,
the two parameter values in line 11 specify that the session is non-transactional
and that message acknowledgments are to be generated implicitly. In line 12, the
application retrieves a destination object (queue) from the directory service, which
in this example has been registered with the name “MyQueue.”

Up to line 12, the code is quite general in the sense that this would be the behavior
of any application that intends to use a JMS queue, either to send or to receive
messages. In the particular example of Listing 3.1, the application will send a text
message and this behavior is shown in lines 14–17. Here, the application creates a
message producer (line 14) by passing the reference to the queue that it intends to
use. A new message, in this case a text message, is created in line 15, and in line 16
the application sets the message content. Finally, in line 17 the application uses the
message producer to send the message to the queue.

3.5 The Java Message Service 55

Listing 3.1 Application code to send a text message using JMS
1 import javax.naming.�;
2 import javax.jms.�;
3
4 Context jndiContext = new InitialContext();
5
6 QueueConnectionFactory queueConnectionFactory =
7 (QueueConnectionFactory) jndiContext.lookup("MyConnectionFactory");
8 QueueConnection queueConnection =
9 queueConnectionFactory.createQueueConnection();

10 QueueSession queueSession =
11 queueConnection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
12 Queue queue = (Queue) jndiContext.lookup("MyQueue");
13
14 QueueSender queueSender = queueSession.createSender(queue);
15 Message message = queueSession.createTextMessage();
16 message.setText("This is a text message.");
17 queueSender.send(message);

Listing 3.2 Application code to receive a text message using JMS
1 import javax.naming.�;
2 import javax.jms.�;
3
4 Context jndiContext = new InitialContext();
5
6 QueueConnectionFactory queueConnectionFactory =
7 (QueueConnectionFactory) jndiContext.lookup("MyConnectionFactory");
8 QueueConnection queueConnection =
9 queueConnectionFactory.createQueueConnection();

10 QueueSession queueSession =
11 queueConnection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
12 Queue queue = (Queue) jndiContext.lookup("MyQueue");
13
14 QueueReceiver queueReceiver = queueSession.createReceiver(queue);
15 queueConnection.start();
16 Message message = (TextMessage) queueReceiver.receive();
17 String text = message.getText();

At the other end, the application code needed to receive the message is analogous
and is shown in Listing 3.2. Indeed, the first part, up to line 12, is equal to that of
Listing 3.1; the difference is in lines 14–17. Here, the receiving application creates
a message consumer for the queue in line 14, and in line 15 the application enables
message delivery to this consumer. In line 16, the application fetches a message
from the queue by invoking the receive() method of the message consumer. This is
a blocking call that will return a reference to a message object when a new message
is available in the queue. In line 17, the application retrieves the message content.

Instead of using a blocking call, the application may receive the message through
a callback interface. This requires the application to implement the MessageListener
interface which, as previously explained, has a single method onMessage() that is
to be invoked by the messaging system every time a new message arrives. In this
case, the messaging system delivers the message to the application by invoking the
callback method onMessage(), passing a reference to the message object as input
parameter. An implementation of the MessageListener callback interface is shown in

56 3 Messaging Systems

Listing 3.3 Implementation of callback interface to receive messages asynchronously
1 class TextListener implements MessageListener
2 {
3 public void onMessage(Message message)
4 {
5 TextMessage message = (TextMessage) message;
6 String text = message.getText();
7 }
8 }

Listing 3.4 Application code to receive message asynchronously
1 QueueReceiver queueReceiver = queueSession.createReceiver(queue);
2 TextListener textListener = new TextListener();
3 queueReceiver.setMessageListener(textListener);
4 queueConnection.start();

Listing 3.3. Here, the onMessage() method simply converts the input message to an
appropriate class, and then retrieves the message content as before.

However, in addition to implementing the MessageListener interface, the appli-
cation must also make the messaging system aware of that implementation, so that
the messaging system will invoke this particular onMessage() method when a new
message arrives. Such is attained by creating a listener object and registering that
object in the messaging system, through the MessageConsumer interface, as shown
in Listing 3.4. After creating the message consumer in line 1, the application creates
a listener object (line 2) from the class defined in Listing 3.3. Then in line 3 of
Listing 3.4 the application sets this object as the callback listener for the message
consumer. In line 4, message delivery becomes enabled, so the messaging system
will invoke the listener as soon as a new message is present in the queue.

3.5.3 JMS Messages

Messages are defined in JMS as comprising three main parts: the header, a set of
properties, and the body. JMS requires all messages to have a number of standard
fields in their header. These are used by the producer, which sets fields such as
destination, priority, and correlation id. The same header fields can be read by the
consumer; and they can also be used by the messaging system itself, for example
to record whether the delivery of the same message has been attempted before. In
essence the header fields that are part of every JMS can be summarized as follows:

• JMSDestination specifies the queue or topic that the message should be delivered
to;

• JMSDeliveryMode specifies whether the message should be delivered in persistent
or non-persistent mode; non-persistent mode requires less resources, but the
message may be lost if there is a failure in the messaging system; the persistent
mode ensures reliability at the expense of requiring the messaging system to store
and keep track of the message;

3.5 The Java Message Service 57

• JMSMessageID is a unique identifier; all messages created in the messaging
system have a different message id, even if they have exactly the same content as
previous message;

• JMSTimestamp records the date and time at which the message has been handed
over to the messaging system to be sent to its destination;

• JMSCorrelationID may be used to establish a correlation to a previous message; in
this case, it contains the message id of that previous message;

• JMSReplyTo specifies the destination to which responses to the present message
should be sent to;

• JMSRedelivered is to be read by the consumer; it indicates whether the messaging
system has attempted to deliver the same message before;

• JMSType is an arbitrary, application-defined name that can be used by applica-
tions to distinguish between different “types” of messages, where this type has
an application-defined meaning;

• JMSExpiration sets a date and time after which the message will be discarded by
the messaging system, in case it has not been received by that time;

• JMSPriority defines the message priority in a range from 0 to 9, with 9 being the
highest priority; when arriving at a destination, a message with higher priority
will be place ahead of messages with lower priority; this way the consumer will
receive messages in decreasing order of priority.

In addition to these standard header fields, a JMS message may contain a set of
additional properties. These properties are optional fields that can be included in
the message header. They may be some of the optional, extended fields that JMS
defines; they may be also some specific fields defined by applications; or they may
be specific fields used by the messaging system itself. In any case, properties are
name–value pairs, where the name is a string and the value can be any of the basic
Java types. There are specific methods of Message to set properties of particular
types, for example setBooleanProperty() and getBooleanProperty() allow setting and
getting the value of a boolean property.

With regard to the set of message properties defined in JMS, which are optional
extensions to the standard header fields, they can be summarized as follows:

• JMSXUserID identifies the user who sends the message, if some sort of authenti-
cation mechanism is used;

• JMSXAppID identifies the application which sends the message;
• JMSXDeliveryCount records the number of attempts which the messaging system

has done to deliver the message; for a message that is being delivered for the first
time, this number is 1;

• JMSXGroupID identifies the group of messages to which this message belongs, if
indeed the message belongs to a group of messages that should be taken together;

• JMSXGroupSeq identifies the sequence number of this message in that group;
• JMSXProducerTXID identifies the transaction in which the message was produced;
• JMSXConsumerTXID identifies the transaction in which the message was received;
• JMSXRcvTimestamp is the time and date at which the message was received;

58 3 Messaging Systems

• JMSXState records the internal state of the message in the messaging system; this
is of interest for the messaging system only, and depends on the implementation
of the messaging system.

Finally, the message body may contain different kinds of content: in a TextMes-
sage the body contains a string; in a StreamMessage the body can be written and read
as a sequential stream that stores primitive Java types; in an ObjectMessage the body
may contain any serializable Java object; and in a MapMessage the body contains a
set of name–value pairs in a similar way to the message properties discussed above,
although here the application has complete control over the content.

3.5.4 Message Acknowledgments in JMS

As discussed in Sect. 3.3, an acknowledgment is a confirmation that a mes-
sage has been received by the target application. In JMS, such acknowledgment
can be done either implicitly (with AUTO_ACKNOWLEDGE) or explicitly (with
CLIENT_ACKNOWLEDGE). An implicit acknowledgment means that the acknowl-
edgment will be generated automatically once the message is successfully delivered
to the target application. An explicit acknowledgment means that it must be the
target application that generates the acknowledgment. A third acknowledgment
mode (DUPS_OK_ACKNOWLEDGE) is available, which is an implicit mode that is
intended to ease the work of the session with regard to acknowledgments.

When creating a session, the client application specifies the acknowledgment
mode as in line 11 of Listing 3.1. If AUTO_ACKNOWLEDGE is chosen, then the ses-
sion itself will automatically acknowledge messages as soon as the client application
receives them. On the other hand, if CLIENT_ACKNOWLEDGE is specified, then the
client application must explicitly invoke the acknowledge() method of the Message
interface after receiving the message. Such explicit acknowledgment means that the
application not only received the message but also processed it successfully, so the
messaging system can consider that its job is done.

The third mode (DUPS_OK_ACKNOWLEDGE) is another kind of implicit
acknowledgment (as AUTO_ACKNOWLEDGE) where, again, the session will auto-
matically acknowledge the messages received. However, in the DUPS_OK_ACKNO-
WLEDGE mode, the session is not required to generate the acknowledgment
immediately. This is intended to allow the session implementation to become
simpler, and to make the processing of multiple messages become faster. Instead of
generating the acknowledgment immediately, the session is allowed to generate it at
any time after the message has been received. However, if the session takes too long
to do this, the messaging system may attempt to deliver the same message a second
time, hence the designation of DUPS_OK_ACKNOWLEDGE, i.e., this mode should
be used only by applications which are prepared to handle duplicate messages.

3.6 Microsoft Message Queuing 59

3.5.5 Transactions in JMS

Transaction support in JMS is very similar to the transaction mechanisms described
earlier in Sect. 3.2. Basically, a transaction takes place between a client application
and the messaging system. In sending a message from a producer to a consumer,
transaction support is provided in three stages: (1) a message transaction at the
producer guarantees that the message is delivered to the messaging system in a
reliable way; (2) the reliability mechanisms of the messaging system guarantee
that the message is not lost on the way to its destination; (3) a second message
transaction at the consumer guarantees that message is reliably received by the target
application.

As explained in Sect. 3.2, a transaction that includes only send operations, only
receive operations, or receive and send operations (in this order) can run correctly.
However, a transaction that performs send and receive operations while expecting
to receive responses to requests that were sent within the same transaction will
not work. This is because the messaging system will not deliver messages to their
destination until the transaction successfully completes.

In the case of transaction rollback, all messages that have been produced to
be sent are discarded, and all messages that have been consumed are returned to
their original queues. These messages will be redelivered with the header field
JMSRedelivered set to true, and the property JMSXDeliveryCount increased by one.
If the session or connection is closed during a running transaction, the transaction is
rolled back by the messaging system.

To create a transactional session, the client application must indicate that option
when creating the session. For this purpose, the first parameter of the createSession()
method of the Connection interface must be set to true. When working with
queues, this means setting the first parameter of createQueueSession() to true in
line 11 of Listing 3.1. If set to true, then the second parameter, which pertains
to acknowledgments, is ignored. In a JMS transactional session, the message
acknowledgments will be generated automatically when the transaction commits.

3.6 Microsoft Message Queuing

Microsoft Message Queuing (abbreviated as MSMQ) is a messaging system that
has been part of the Windows operating system almost since its inception. It is
perhaps not very common for users to know that a full-fledged messaging system is
readily available in that operating system, but the fact is that applications can rely
on MSMQ to implement asynchronous message exchanges with other local and
remote applications. This way, MSMQ can also be used to develop distributed and
asynchronous applications in the Windows platform. Features such as guaranteed
delivery, efficient routing, security, transactions, and priority are already provided
by MSMQ, so there is no need to reimplement them in applications.

60 3 Messaging Systems

In MSMQ, the application that produces a message is simply called the sender,
and the application that consumes it is called the receiver. The communication
channel between sender and receiver is always a queue, and the most common
scenario is to use queues for one-to-one communication. MSMQ also supports one-
to-many interactions through a reliable IP multicast protocol known as Pragmatic
General Multicast (PGM). In this case, the message is sent to an IP multicast address
which, in turn, can be attached to one or more queues. A message sent to an IP
multicast address will be inserted in all queues that have been associated with that
address. For the receiver, the behavior is the same in any case: it just fetches a
message from a queue. It is interesting to note that while JMS provides the concept
of topic to support the publish–subscribe paradigm, MSMQ uses only queues and
relies on network-level facilities to implement that paradigm.

In MSMQ, messages may be delivered in express mode or in recoverable mode.
In express mode, messages are stored in memory, so they may be lost if the
system fails. In recoverable mode, MSMQ ensures reliability by saving messages
to persistent storage until they are successfully received.

An interesting characteristic and architectural difference of MSMQ when com-
pared to other messaging systems is that a message may travel across several
machines until it reaches its destination queue. In each machine, there is a compo-
nent known as Queue Manager that checks whether the message is to be delivered to
a local or to a remote queue. If the message is intended for a local queue, the Queue
Manager inserts the message in that queue; otherwise, the message is placed in an
outgoing queue from which it will be dispatched to another machine. As soon as the
local Queue Manager is able to establish contact with the remote machine, it hands
the message over to the Queue Manager running on that machine, and the remote
Queue manager proceeds in the same way. Figure 3.14 illustrates the procedure. An
outgoing queue is a temporary queue created automatically by the Queue Manager
to store one or more messages to be dispatched to a remote Queue Manager; the
outgoing queue disappears as soon as the messages have been dispatched. This
kind of behavior is known as store and forward, as opposed to direct routing which
applies when the message is immediately delivered to a local destination queue.

The outgoing queue is just one special kind of queue used by MSMQ for routing
purposes, but there are others. The dead-letter queue is used to store messages that
could not be delivered to the intended destination queue. The queue journal, if
enabled, stores a copy of every message delivered to a queue. The computer journal
does the same but for all messages arriving in all queues in the local machine.
Besides journals, there are also report queues that can be used for monitoring
purposes; as a message is being routed to its final destination, a tracking message
is created and sent to the report queue every time the message passes through
a different machine. Finally, administration queues are used to store message
acknowledgments.

3.6 Microsoft Message Queuing 61

Queue Manager

local queue

outgoing queue

Queue Manager

Other intermediate
Queue Managers

Source
applica�on

(sender)

Target
applica�on
(receiver)

des�na�on queue

Fig. 3.14 Message routing across Queue Managers in different machines

3.6.1 Message Acknowledgments in MSMQ

Message acknowledgments in MSMQ are also different from other messaging
systems in that there can be positive and negative acknowledgments, and these
become accessible to the original sender of the message. When sending a message,
the source application specifies the administration queue to be used to store the
acknowledgments; after sending the message, the same application can receive
the acknowledgments that arrive on that administration queue. Even if everything
runs without error, the source application may choose to receive more than one
positive acknowledgment: first, an acknowledgment that the message arrived at
the destination queue and, second, an acknowledgment that the message has been
successfully received by the target application. On the other hand, if the message
does not arrive at the destination queue, or if the message is not received by the
target application, a negative acknowledgment is generated and this may happen for
several reasons, which are indicated in the acknowledgment itself, such as:

• The destination queue does not exist or has been removed.
• The destination queue is full and no more messages can be added.
• If security features such as encryption and digital signatures are being used, a

negative acknowledgment may be generated if the queue manager at the receiving
end is unable to decrypt the message or to validate its signature.

• Since a message may traverse several Queue Managers, a negative acknowledg-
ment may be generated if the message exceeds a maximum hop count.

• A mismatch between message and destination queue in terms of transaction
queue may generate a negative acknowledgment as well. In particular, a non-
transactional queue can only receive non-transactional messages, a transactional
queue must receive transactional messages.

• If a maximum time to reach the destination queue or a maximum time to be
retrieved from the destination queue is specified in the message, then if the
message does not reach the queue or is not received by the target application
within that time frame, a negative acknowledgment is generated.

• Other particular errors, such as an access denied being encountered at any stage
during message routing, may also originate negative acknowledgments.

62 3 Messaging Systems

3.6.2 Public and Private Queues

In MSMQ, every queue has a unique name in the local machine. So if two
applications on the local machine use the same queue name, it is assumed that
they are referring to the same queue. To distinguish between queues in the local
machine and queues in a remote machine, the queue name is often preceded
by the computer name, in the form: ComputerName\QueueName. If the queue
is local, one can use a shorter notation, as in: .\QueueName. Also, there are
private queues and public queues, so the name for a queue may include both
the computer name and an indication of whether the queue is private, as in the
form ComputerName\PRIVATE$\QueueName or .\PRIVATE$\QueueName if the queue
is local. If PRIVATE$ is missing in the queue name, it is assumed that the queue is
public.

The most common scenario is to use private queues, i.e., queues that are only
known to the applications that use them. In general, a private queue is accessible
only to applications that know the complete name of the queue. Through the use of
public queues, it is possible for applications to discover queue names which they did
not know about. For this purpose, the queue name is published in Active Directory,
a directory service based on LDAP that is available in Windows server systems. In
this context, Active Directory plays the same role for MSMQ as JNDI does for JMS
by allowing applications to discover and use existing queues.

3.6.3 Distributed Transactions in MSMQ

Besides an optional directory service, which may be used to register and discover
information about public queues, MSMQ relies on another external component
to manage distributed transactions. In fact, in the Windows operating system,
transactions are managed by an independent component known as Distributed
Transaction Coordinator (DTC). This component is able to manage transactions
that cross several systems, such as messaging systems, databases, and file systems.
The DTC service provides a transaction scope for such distributed transactions,
and MSMQ can use the DTC to support message transactions between client
applications and the local Queue Manager. In the communication between Queue
Managers, MSMQ makes use of its own reliable transfer mechanisms.

Figure 3.15 illustrates the use of the DTC service in connection with message
transactions. As explained in Sect. 3.2, a message transaction takes place between
an application and the messaging system, and such transaction may include multiple
receive and send operations. In the example of Fig. 3.15, there are two simple
transactions: one to send a message, and another at the receiving end to receive the
message. In both cases, the client application initiates the transaction by contacting
the transaction coordinator, which provides a transaction scope to be used in all
operations that belong to the transaction. When the client application asks the local
Queue Manager to send a message within a transaction, the Queue Manager registers

3.6 Microsoft Message Queuing 63

Queue
Manager

Queue
Manager

send message

enlist

commit

commit

reliable transfer

receive message

enlist

commit

commit

2 enihcaM1 enihcaM

Sending
applica�on

Transac�on
Coordinator

Transac�on
Coordinator

Receiving
applica�on

create transac�on

create transac�on

Transac�on
at sender

Transac�on
at receiver

Fig. 3.15 Use of an external transaction coordinator in message transactions

(enlists) itself in the transaction coordinator, in order to be notified of when the
transaction commits or rollbacks, so that it can take appropriate actions in response
to those events. When the client application informs the transaction coordinator that
it intends to commit the transaction, the transaction coordinator will ask all systems
involved in the transaction to commit their work.

If the destination queue is on another machine, the local Queue Manager will
route the message to the remote Queue Manager, either directly or through other,
intermediary Queue Managers. At the receiving end, the client application initiates
a second transaction following the same behavior as described for the sending
application. In this case, the client performs a receive operation to fetch the message.
Once the Queue Manager receives the request from the transaction coordinator to
commit the transaction, the message is permanently removed from the queue and the
transaction cannot be rolled back any more. To revert the effects of a transaction that
has already committed, a client application will have to initiate a new transaction and
perform a set of operations that are the logical undo of the previous ones.

3.6.4 The Structure of MSMQ Messages

Unlike JMS, where messages are clearly divided into header, properties, and body,
in MSMQ the whole content of messages is a set of name–value pairs called
properties. In this context, the body is just one of the properties in a message, and
its value may be empty or it may contain basic data types, text, serializable objects,

64 3 Messaging Systems

or simply an array of bytes. In addition to the body, a MSMQ message may carry a
relatively large set of properties, where the most important are summarized next:

• AcknowledgeType is used by the sending application to indicate which types of
acknowledgments are desired for the present message.

• Acknowledgment indicates whether the present message is an acknowledgment, in
which case this property will contain the type of acknowledgment.

• AdministrationQueue specifies the queue to which the acknowledgments should be
delivered.

• ArrivedTime provides the time at which the message arrived at the destination
queue.

• The property Authenticated indicates whether the message contains a digital sig-
nature. In that case, two additional properties—AuthenticationProviderName and
AuthenticationProviderType—provide the details of the cryptographic component
used to generate that signature. When a message is authenticated, the receiving
Queue Manager attempts to validate the digital signature before delivering the
message to the destination queue. If authentication fails, the message will not be
delivered; in this case, it is possible to generate a negative acknowledgment to
indicate an authentication failure.

• The properties Body, BodyType, and BodyStream concern the body of the message.
Setting the body content through the Body property is perhaps the easiest way, as
it can be set to any object (its type will be specified in the BodyType property).
However, when using the Body property, the content will be serialized and
formatted in XML (unless a different formatter is specified by means of the
Formatter property). This means that when the receiving application retrieves the
message, it must be able to understand the message body in the serialized format
used by MSMQ (there is some support to ease this task, of course). To preclude
MSMQ from formatting the body content, the sending application may choose
to write the content directly to the body, as if it would be stream; in this case,
the application retains full control of how the content will be serialized in the
message body. Using the BodyStream property, it is possible to write content to
the message body as a stream; at the receiving end, the application reads data
from the BodyStream as a stream as well. In this scenario, MSMQ does not
interfere with the way the message body is serialized and formatted. It should
be noted that the body of a MSMQ message is limited to a maximum size of
4 MB.

• CorrelationId specifies the message id of a previous message to which the
present message is related to. This is typically usually in request–response
scenarios as explained in Sect. 3.4. Another use for the CorrelationId property is
in acknowledgments. If the present message is an acknowledgment, then this
property contains the id of the original message that this acknowledgment refers
to.

• DestinationQueue is set by the sending application by providing a reference to the
destination queue that the present message should be sent to.

3.6 Microsoft Message Queuing 65

• DestinationSymmetricKey is used by applications that require the message to be
encrypted. In this case, this property contains the key that was used to encrypt
the message and that can also be used to decrypt it (hence the name of symmetric
key). Of course, sending the decryption key along with the message itself would
be a useless security measure, since anyone who would intercept the message
would be able to decrypt it. Therefore, the symmetric key is itself encrypted with
the public key of the receiving Queue Manager. This Queue Manager, which will
be the only component that is able to decrypt the symmetric key, will use the
key to decrypt the message before placing it in the destination queue. In a similar
way to what happens with message authentication, failure to decrypt the message
may generate a appropriate negative acknowledgment.

• If message authentication is being used, DigitalSignature will contain the digital
signature for the present message. Another property called HashAlgorithm speci-
fies which hashing algorithm was used to create the digital signature. On the other
hand, when message encryption is being used, EncryptionAlgorithm specifies the
algorithm that was used to encrypt the message.

• Formatter specifies how the message body will be formatted after being serialized.
By default, the body will be formatted in XML, as explained above about
the Body property. However, the sending application may choose to write the
message body directly as a stream. In this case, before sending the message it
will be important to specify that the body content is in binary format, and the
Formatter property can be used for this purpose as well.

• The Id property contains the message id that distinguishes the present message
from every other. In MSMQ, the message id is generated by combining a
machine identifier (the machine where the message was created) with a unique
identifier for the message within that machine. This way every MSMQ message is
guaranteed to have a unique message id: two messages created within the same
machine will have different message ids because the message identifier within
that machine will be different; and two messages created in different machines
will also have different ids because the machine identifier will be different.
MSMQ generates a unique message id for every message, be it a regular message,
an acknowledgment, or a report.

• The Label property contains an arbitrary, application-defined value that can be
used by applications for their own purposes. The message label does not need to
be unique; multiple messages may have the same label. In practical scenarios, it
can be used to identify messages of a certain type. It plays the same role as the
JMSType field in JMS messages.

• MessageType indicates whether the present message is a regular message, an
acknowledgment, or a report. Note that if the message is an acknowledgment,
the exact type of acknowledgment can be retrieved from the Acknowledgment
property. Report messages are used when reporting is enabled; in this case,
MSMQ will send a report message (to a dedicated report queue) each time the
original message enters or leaves a Queue Manager.

• Priority specifies the message priority, from highest to lowest, on a scale of eight
levels. Actually, the scale goes from 0 to 7, with 7 begin the highest priority,

66 3 Messaging Systems

and the default level being 3. Messages of higher priority will be inserted in the
destination queue ahead of messages of lower priority, so that higher-priority
messages are received first. This means that the messages in a queue may have
to be shifted or moved in order to accommodate for an incoming message of
higher priority. For messages with the same priority, they are placed in the queue
according to their arrival time.

• Recoverable is a property that specifies whether the present message is to be
delivered in express mode or in recoverable mode. As explained in the beginning
of this section, in express mode the messages are stored in memory and may be
lost due to system failure. In recoverable mode, the message is stored locally at
every machine along the route, until it is forwarded to the next machine.

• In a request–response interaction, if the present message represents the request,
then the ResponseQueue property specifies the queue to which the response
should be sent. Typically, the response message will include the CorrelationId
property, in order to include the message id of the original request.

• If the message is digitally signed, SenderCertificate contains the public-key
certificate of the sending application so that the digital signature can be verified.

• SentTime specifies the time at which the sending application handed over the
message to the local Queue Manager for delivery.

• SourceMachine contains the name of the machine where the message was created.
• The property TimeToBeReceived specifies a time limit for the message to be

received from the destination queue. This includes the time spent on routing the
message to the destination queue together with the time spent on waiting in the
queue to be received. If the time limit is reached before the message is actually
consumed, the message is sent to the dead-letter queue.

• The property TimeToReachQueue works in a similar way to TimeToBeReceived but
it applies only to the time spent on routing the message. If the message does not
reach the destination queue within the given time limit, it is sent to the dead-letter
queue. If the message does reach the destination queue within the time limit, then
TimeToReachQueue produces no effect.

• TransactionId applies to messages that have been sent within a transaction. In this
case, the property contains the transaction identifier for the sending transaction.
In a similar way to the message id, the transaction identifier is produced as a
combination of the machine identifier and sequential transaction number. This
sequential number has a limited range, after which it goes back to the beginning
and starts all over again. For this reason, transaction identifiers are not guaranteed
to be unique. However, the receiving application can make use of two additional
message properties—IsFirstInTransaction and IsLastInTransaction—to determine
when a message initiates or completes a running transaction.

It should be noted that some of the above properties are set by the sending
application, while others are set by the MSMQ infrastructure. For example, the
sending application specifies the message body, the destination queue, the desired
acknowledgments, the priority, etc.; on the other hand, the messaging system fills

3.6 Microsoft Message Queuing 67

in other details, such as message id, arrival time, source machine, etc. So at the
receiving end, the receiver has access not only to the properties set by the sender,
but also to the array of properties set by the messaging system itself.

3.6.5 How to Use MSMQ

Although the native MSMQ API is accessible to several programming languages,
the easiest way to use MSMQ is through a higher-level API such as the one provided
for .NET languages, namely C#. In fact, the System.Messaging namespace provides
a convenient set of classes that allow .NET applications to use message queues
and to send and receive messages through MSMQ. Usually, the queues will be
created manually by a system administrator, but it is possible for applications to
create queues programmatically as well. In the following example we illustrate both
possibilities and some common tasks when using MSMQ.

To illustrate the use of MSMQ, we consider a purchasing scenario in a company,
where each purchase order is described by the following data elements: the product
and quantity to be purchased, and the date and time of the purchase order. The
structure of such purchase orders can be captured in a C# class such as the one in
Listing 3.5, where there is a class property of type string to store the product, another
class property of type int to store the quantity, and a DateTime object to store the date
and time of the purchase order. The three class properties have get and set methods,
and the class constructor initializes the Date property with the current date and time.

In this example, the goal is to show how a purchase order (an instance of the
class above) can be exchanged between two applications using MSMQ. The sender
will write the purchase order data, and the receiver will read the data. The purchase
order will be transmitted from sender to receiver through a private, local message
queue. We will develop both applications as command-line applications in C#.

Listing 3.6 shows the code for the sender. The program has a namespace (line
4) which is the same as for the PurchaseOrder class (Listing 3.5). The sender in
Listing 3.6 has also a single class (line 6) and the method Main() (line 8) that will be
invoked when the program runs. In line 2 the program imports the namespace that
provides the interface to MSMQ. One of the classes defined in that namespace is
MessageQueue, used in lines 10, 15, 20, and 39. In line 11, a string variable provides
the name of the queue. The “@” symbol before the string indicates that the string is
to be taken literally, or “as is,” without escape characters (the backslashes are part
of the queue name). In line 12 the program checks whether the queue already exists.
If it does, then line 15 obtains a reference to the queue. Otherwise, line 20 creates
the queue in the local machine, as specified in the queue name.

In line 26, the program creates an instance of the PurchaseOrder class, and in
lines 29 and 32 the product and quantity to be purchased are read from the command
line. Line 34 just prints the date and time of the purchase order, which have been
initialized in the class constructor. In line 36, the program creates a new message,
and by passing the PurchaseOrder object as input parameter, the constructor for the

68 3 Messaging Systems

Listing 3.5 A class representing the purchase order to be exchanged between applications
1 using System;
2
3 namespace MSMQSolution
4 {
5 public class PurchaseOrder
6 {
7 public string Product { get; set; }
8 public int Quantity { get; set; }
9 public DateTime Date { get; set; }

10
11 public PurchaseOrder()
12 {
13 Date = DateTime.Now;
14 }
15 }
16 }

Message class will use an XML formatter to serialize the object into the message
body. This could have been done explicitly, by setting the Body property in a similar
way to what happens with the Priority property in line 37. In line 39, the program
sends the message to the queue by invoking the Send() method of the MessageQueue
class. The second parameter passed as input to the Send() method will be used to set
the message label, another property that could have been set explicitly as well.

The sending application in Listing 3.6 has an infinite loop starting on line 23.
This means that the program will keep creating new purchase orders and asking
the user for the product and quantity details before sending the purchase order to
the queue. Since the date and time for the purchase order is being initialized in
the class constructor in Listing 3.5, it may be some time before the user provides
the details and the purchase order is sent to the queue. In this scenario, it would be
preferable to set the Date property for the purchase order only after the user provides
all the details. However, this is meant only as a simple example to illustrate the
use of MSMQ; in a real-world application, the queue name would also have to be
configured in another way instead of being hardcoded in the program at line 10.

Running the program in Listing 3.6 will result in a new message being placed
in the destination queue. If the receiving application is offline, then the message
will remain in the queue waiting to be consumed, and in that period of time it
is possible to inspect its content through the MSMQ management console. If no
security features, namely encryption, are being used then the message body will be
accessible and its content will be similar to the XML document shown in Listing 3.7
(this has been obtained from an actual run of the sender application above). From
Listing 3.7 it is clear that the XML formatter has structured the message body in a
way that resembles the original structure of the PurchaseOrder class.

The message format in Listing 3.7 might seem very convenient from the point
of view of a software developer who wants to integrate applications based on the
exchange of XML messages, as it happens with platforms such as Microsoft BizTalk
described in Chap. 2. However, as we will see in the next chapter, in practical
integration scenarios it becomes more convenient to define the message structure as

3.6 Microsoft Message Queuing 69

Listing 3.6 Application code for the sender of purchase orders
1 using System;
2 using System.Messaging;
3
4 namespace MSMQSolution
5 {
6 class Program
7 {
8 static void Main(string[] args)
9 {

10 MessageQueue mq;
11 string queueName = @".\private$\purchaseorders";
12 if (MessageQueue.Exists(queueName))
13 {
14 Console.WriteLine("Opening queue: {0}", queueName);
15 mq = new MessageQueue(queueName);
16 }
17 else
18 {
19 Console.WriteLine("Creating queue: {0}", queueName);
20 mq = MessageQueue.Create(queueName);
21 }
22
23 while (true)
24 {
25 Console.WriteLine("Create a new purchase order");
26 PurchaseOrder PO = new PurchaseOrder();
27
28 Console.Write("Product: ");
29 PO.Product = Console.ReadLine();
30
31 Console.Write("Quantity: ");
32 PO.Quantity = int.Parse(Console.ReadLine());
33
34 Console.WriteLine("Date: {0}", PO.Date);
35
36 Message msg = new Message(PO);
37 msg.Priority = MessagePriority.Normal;
38
39 mq.Send(msg, "PurchaseOrder");
40 Console.WriteLine("Message has been sent!");
41 }
42 }
43 }
44 }

Listing 3.7 Message body formatted in XML
1 <?xml version="1.0"?>
2 <PurchaseOrder xmlns:xsd="http://www.w3.org/2001/XMLSchema"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema�instance">
4 <Product>printer cartridge</Product>
5 <Quantity>3</Quantity>
6 <Date>2012�04�10T12:22:43.0410156+01:00</Date>
7 </PurchaseOrder>

a schema to be used by applications, rather than letting the MSMQ XML formatter
decide the structure based on the actual data to be transmitted. Therefore, in Sect. 4.7
we will write the message body directly through the use of the BodyStream property,
retaining full control of the body content, rather than writing that content by setting
the Body property, which in turn relies on a message formatter.

70 3 Messaging Systems

Listing 3.8 Application code for the receiver of purchase orders
1 using System;
2 using System.Messaging;
3
4 namespace MSMQSolution
5 {
6 class Program
7 {
8 static void Main(string[] args)
9 {

10 string queueName = @".\private$\purchaseorders";
11 Console.WriteLine("Receiving on queue: {0}", queueName);
12
13 MessageQueue mq = new MessageQueue(queueName);
14
15 System.Type[] types = new Type[] { typeof(PurchaseOrder) };
16 mq.Formatter = new XmlMessageFormatter(types);
17
18 while (true)
19 {
20 Message msg = mq.Receive();
21 Console.WriteLine("Received new message!");
22
23 PurchaseOrder PO = (PurchaseOrder)msg.Body;
24 Console.WriteLine("Product: {0}", PO.Product);
25 Console.WriteLine("Quantity: {0}", PO.Quantity);
26 Console.WriteLine("Date: {0}", PO.Date);
27 }
28 }
29 }
30 }

Listing 3.8 shows the code for the receiving application. The program uses the
same namespace (line 4) as before. Like the sender, the receiver is implemented as
a single class (line 6) with a Main() method (line 8). The queue name is stored in a
string variable (line 10) as before. The program opens the queue on line 13; here
it is assumed that the queue already exists. However, before the program receives a
message from the queue, it must be aware that the message body will be formatted
in XML, as a serialized PurchaseOrder object. Therefore, the receiver tells MSMQ
to use an XML formatter (line 16) based on the structure of the PurchaseOrder class
(line 15). Then it enters an infinite loop in line 18, where it waits for messages to
arrive (Receive() on line 20 is a blocking call). Once a new message is fetched from
the queue, the program retrieves the message body and casts it into a PurchaseOrder
object (line 23). The rest is just printing the purchase order data (lines 24–26).

It is interesting to note that besides Receive(), MSMQ provides a Peek() method
which retrieves a message without actually removing it from the queue. Since the
message remains in the queue, a subsequent call to Peek() will return the same
message, unless a message of higher priority has arrived in the meantime. Both
the Receive() method and the Peek method are blocking calls, i.e., either a message
is available in the queue and the method call returns immediately with a reference
to the message object, or the queue is empty and in this case the application thread
will block until a new message arrives.

3.6 Microsoft Message Queuing 71

Listing 3.9 Application code for asynchronous receive in MSMQ
1 using System.Messaging;
2
3 namespace MSMQSolution
4 {
5 class Program
6 {
7 private static void MyReceive(Object source, ReceiveCompletedEventArgs asyncResult)
8 {
9 MessageQueue mq = (MessageQueue) source;

10 Message msg = mq.EndReceive(asyncResult.AsyncResult);
11 Console.WriteLine("Message: " + (string)msg.Body);
12 mq.BeginReceive();
13 }
14
15 static void Main(string[] args)
16 {
17 ...
18 MessageQueue mq = new MessageQueue(queueName);
19 ...
20 mq.ReceiveCompleted += new ReceiveCompletedEventHandler(MyReceive);
21 mq.BeginReceive();
22 }
23 }
24 }

3.6.6 Receiving Messages Asynchronously

As with JMS, MSMQ also provides a way for applications to receive messages
asynchronously, and the mechanism is, as usual, based on implementing a callback
method. However, whereas in JMS the receiver must implement the callback
interface MessageListener together with its callback method onMessage() (as in
Listing 3.3 on page 56), in the MSMQ API provided to .NET applications the
receiver uses one of its own methods as an event handler that will be invoked
when a new message arrives. This event handler must adhere to a certain function
prototype, and in order to be invoked by MSMQ it must be registered as a handler
for the ReceiveCompleted event. In addition, the receiver must explicitly call the
BeginReceive() method to initiate the asynchronous receive of a new message.

Listing 3.9 shows the application code that would have to be used to receive
messages asynchronously. Lines 7–13 define the method that will be invoked
by MSMQ to notify the application of incoming messages. This method must
conform to the following guidelines: it must return void and it must have two input
parameters, one of type Object and another of type ReceiveCompletedEventArgs.
The first parameter provides a reference to the MessageQueue object; the second
parameter provides a set of data associated with the ReceiveCompleted event. The
program in Listing 3.9 obtains a reference to the MessageQueue (line 9) and then
uses that reference to complete the receive operation and fetch the message from the
queue (line 10).

It is worth noting that when MSMQ invokes an event handler for the ReceiveCom-
pleted event, it does not actually deliver the message but only notifies the receiving
application that a new message arrived at the queue. The application itself must

72 3 Messaging Systems

Listing 3.10 Application code to receive and send messages within MSMQ transaction
1 MessageQueueTransaction trans = new MessageQueueTransaction();
2 trans.Begin();
3 ...
4 MessageQueue mq1 = new MessageQueue(...);
5 Message msg1 = mq1.Receive(trans);
6 ...
7 MessageQueue mq2 = new MessageQueue(...);
8 Message msg2 = new Message(...);
9 mq2.Send(msg2, trans);

10 ...
11 trans.Commit();

invoke the EndReceive() method to fetch the message from the queue (line 10). The
input parameter passed to EndReceive() ensures that the application will retrieve
the exact same message that caused the ReceiveCompleted event to be raised. After
that, the application has a reference to the message object and may access the
message body as usual (line 11). To keep receiving messages asynchronously, the
application makes a call to BeginReceive() in line 12. This method must be called
after EndReceive() in order to initiate a new asynchronous receive.

In the Main() function, the application performs two important tasks. The first
task is to register the method that will serve as an event handler for the Receive-
Completed event (line 20). This is done using the standard mechanism of events
and event handlers available in the C# language. Basically, the syntax Event += new
EventHandler(method) registers a method as an event handler for the specified event.
Conversely, the syntax Event -= new EventHandler(method) removes the method as
an event handler for the event. The second important task performed in the Main()
function is to initiate the asynchronous receive with a call to BeginReceive(). From
this moment on, MSMQ knows that the application is ready to receive a message.

3.6.7 Using MSMQ Transactions

Besides the distributed transactions described earlier in Sect. 3.6.3, it is possible to
make use of message-only transactions that run within and are managed by MSMQ
alone. Not every queue supports transactions; for this purpose, queues must be
marked as being transactional when they are created. Then it is just a matter of
creating a new transaction, perform the usual receive or send operations on queues,
and commit the transaction. Listing 3.10 illustrates the procedure.

In line 1 a new transaction object is created. A reference to this object must be
passed to every receive or send operation within the transaction. This is visible in
lines 5 and 9, where the transaction object is provided as a parameter to receive and
send operations. In principle these operations will take place in different queues, and
Listing 3.10 illustrates that on lines 4 and 7. When all the desired operations within
the transaction have been performed, the application calls the Commit() method (line
11) to complete the transaction and make its effects permanent. Alternatively, the
application may invoke the Abort() method to cause rollback of the transaction.

3.7 Conclusion 73

Listing 3.11 Application code to request acknowledgments for sent message
1 MessageQueue mq = new MessageQueue(...);
2 Message msg = new Message(...);
3 msg.AcknowledgeType = AcknowledgeTypes.FullReceive;
4 msg.AdministrationQueue = new MessageQueue(...);
5 mq.Send(msg);

3.6.8 Using Acknowledgments

As explained in Sect. 3.6.1, MSMQ supports a wide range of acknowledgments,
especially in the case of negative acknowledgments. Depending on the scenario
at hand, an application may be interested in receiving some, but not all, of these
acknowledgment types. The common practice in MSMQ is to specify which
acknowledgments should be generated for each sent message. Also, the application
must specify the queue where the acknowledgments are to be returned. All of these
specifications are configured in the message itself, as illustrated in Listing 3.11.

In line 1 the application obtains a reference to the message queue and in line
2 creates a new message object. The type of acknowledgments desired for this
message are specified in line 3 and stored in the message property AcknowledgeType.
The MSMQ API available to .NET applications simplifies the task of specifying the
acknowledgments by dividing positive and negative acknowledgments into different
groups, namely positive arrival acknowledgments, positive receive acknowledg-
ments, negative arrival acknowledgments, and negative receive acknowledgments.
In this context, “arrival” means reaching the destination queue.

In the example of Listing 3.11, line 3, the application is interested in both positive
and negative receive acknowledgments, hence FullReceive is specified. This means
that a positive acknowledgment will be generated if the message is received from
the destination queue (but not peeked), and a negative acknowledgment will be
generated if an error occurs or when the time limit specified in the TimeToBeReceived
property expires. Both kinds of acknowledgment are returned to the sending
application via the administration queue specified in line 4. When the message is
handed over to the Send() method in line 5, it carries all the information that MSMQ
needs to generate and return the acknowledgments to the sending application.

3.7 Conclusion

In this chapter we have covered a lot of ground on messaging systems, from the
fundamental concepts that underlie this kind of systems to advanced capabilities
such as transactions and message acknowledgments. Before the advent of process-
oriented integration platforms, and when network facilities where not as ubiquitous
as they are today, messaging systems were a fundamental tool to integrate applica-
tions in a reliable and asynchronous way. Today, this technology still plays a key role

74 3 Messaging Systems

in enterprise systems integration, but at a more infrastructural or supporting level,
rather than at the core of the integration logic. Current integration platforms build
upon messaging systems to implement integration logic over a mature and reliable
infrastructure. However, in contrast with messaging systems, current platforms
provide mechanisms to develop a complete integration solution as a centralized
point of control where the integration logic can be changed and managed in a
more flexible way. Using messaging systems alone, as has been done in the past,
results in the integration logic being scattered and embedded in each application,
making it difficult to reconfigure the whole solution in order to support new business
processes. In the next chapter, we will make a step in this direction by explaining
how message brokers differ from traditional messaging systems. This will be a
change in paradigm that opens the way to understand the integration platforms
available today.

Chapter 4
Message Brokers

The messaging systems described in the previous chapter can be seen as an
integration infrastructure based on message queues that applications can use to
communicate with each other asynchronously. The use of such infrastructure has
several advantages. One is that all applications use the same interface (the messaging
system API) to communicate with each other, rather than having to integrate each
application with the custom API of other applications. The second advantage is that
the use of message queues decouples applications from each other by allowing each
application to handle requests at its own pace, without blocking other applications.
And the third advantage is that applications can rely on the mechanisms of the
messaging system that provide guaranteed delivery, efficient routing, storage, etc.
without having to implement those mechanisms themselves.

However, from the point of view of integration, the use of a messaging system
alone does not suffice, since it leaves up to the applications the decision of how
they will interact with each other. If application A is configured to send messages
to application B , and B is configured to send messages to application C , then if
the need arises to change the sequence of interaction between these applications, it
will be necessary to reconfigure the behavior of each application. In such scenario,
the integration logic is distributed across applications, and changing this logic
requires not only reconfiguring several applications but also checking that the
new configuration works as expected. In a large infrastructure comprising many
heterogeneous applications, such effort may be cumbersome and also error-prone.

Message brokers are different from messaging systems in that they themselves
control how applications will interact with each other. Rather than letting each
application decide the destination for a message, it is the message broker who will
decide which application the message should be sent to. In this scenario, the sending
application simply produces and delivers the message to the message broker which,
in turn, will route the message according to its own rules. These rules can be as
simple as specifying the subscribers for each kind of message, hence the connection
between message brokers and the publish–subscribe paradigm. However, the simple
fact that these rules are stored in a single place changes the nature of the integration
solution and provides much more flexibility when the integration logic needs to

D.R. Ferreira, Enterprise Systems Integration, DOI 10.1007/978-3-642-40796-3__4,
© Springer-Verlag Berlin Heidelberg 2013

75

76 4 Message Brokers

be reconfigured. In this scenario, it becomes much easier to modify the interaction
between applications, as this can be done at the message broker, by rewiring them
in order to implement a different business process.

Already in Sect. 3.1 we discussed the concept of content-based routing, where
a messaging system is configured to route messages to different destinations
according to the actual message content. This can be based not only on the type
of message, but even for messages of the same type it may be the case that some
have an attribute with a certain value and should be forwarded to one queue,
while others have a different value for the same attribute and should be routed to
another queue. A more sophisticated routing mechanism was presented in Fig. 3.5,
where a process manager controls the sequence of interactions and the flow of
data between applications. This provides much more flexibility in implementing
the desired behavior and at the same time provides a single point of control. The
downside is that, under heavy load, the process manager may become a performance
bottleneck, since all traffic must pass through that routing component.

In the messaging technologies described in Sect. 3.5 (JMS) and Sect. 3.6
(MSMQ) we have not seen such mechanisms as content-based routers or process
managers since they are usually reserved for message brokers, i.e., systems which
not only provide the messaging infrastructure, as messaging systems do, but also
provide capabilities for configuring the whole interaction between applications. In
this context, both JMS and MSMQ can be regarded as belonging to the category of
messaging systems, whereas a system such as the one presented in Chap. 2 (BizTalk)
belongs to the category of message brokers. There are other integration platforms
with capabilities similar to those of BizTalk Server, and all of them provide process-
based routing on top of a messaging infrastructure.

4.1 Message-Level vs. Orchestration-Level Integration

A message broker is a composite system that comprises a messaging platform and
an orchestrator, as illustrated in Fig. 4.1. Using a message broker, it is possible to
integrate applications at two different levels: at the level of the messaging platform,
or at the level of the orchestrator. At the level of the messaging platform, messages
are routed between applications according to the publish–subscribe rules configured
in the platform. If an application is configured as being a subscriber for a certain
kind of message (or for a message that obeys certain criteria), then the message
will be forwarded to that application. The publish–subscribe rules are stored in
the messaging platform itself; applications connected to that platform have no
control over that configuration and it is possible to change the interaction between
applications just by changing the configuration in the messaging platform.

The same publish–subscribe mechanism can be used to integrate applications via
the orchestrator. Here, the orchestrator is automatically configured as a subscriber
for the messages that the orchestration is waiting to receive. Also, when the
orchestration specifies that a certain message should be sent to an application,

4.2 Publish–Subscribe with Message Filters 77

Source
applica�on

Target
applica�on

Orchestrator

Messaging pla�orm

Fig. 4.1 Message-level and
orchestration-level routing in
a message broker

that application is automatically configured as a subscriber for that message. So
the orchestrator works together with the messaging platform by configuring the
publish–subscribe rules that enable the orchestration to work as expected. In other
words, the publish–subscribe rules are configured automatically in the messaging
platform in order to support the behavior defined in the orchestration.

As a result of these mechanisms, applications can be integrated in two different
ways. One way is to use the messaging platform alone and manually configure a set
of publish–subscribe rules in the messaging platform. These rules are static and, if
needed, they must be changed by a system administrator. Another way is to develop
an orchestration, and the publish–subscribe rules will be configured automatically
in the messaging platform when the orchestration is deployed. Deployment means
installing and configuring the orchestration in the message broker, both in the
orchestrator and in the messaging platform, so that everything is prepared for the
orchestration to run. In this case, the publish–subscribe rules are dynamic and they
will be reconfigured automatically if the orchestration is changed and redeployed.

4.2 Publish–Subscribe with Message Filters

Perhaps the simplest way to implement a publish–subscribe system is through the
use of message filters. The concept of message filter has been briefly described in
Sect. 3.1 as a special kind of router. Basically, a message filter is a component that
can be associated with a receiving application; the application will receive a message
only if the message complies with the condition specified in the filter. If each
application connected to the messaging platform has its own filter, then message
routing between applications becomes as simple as iterating through all filters and
checking whether the message produced by a sending application complies with the
conditions in any of those filters. The filters which yield a positive result will let the
message go through to the corresponding receiving application.

Figure 4.2 illustrates this concept. A message that enters the messaging platform
will be inspected in order to determine which filter conditions hold true. In the
example of Fig. 4.2, a message will be forwarded to application A if the property
Customer has the value XYZ; it will be forwarded to application B if Price is

78 4 Message Brokers

Source
applica�on

AppFilter

ACustomer = XYZ

BPrice > 1000

C

Messaging
pla�orm

Target
applica�on

A

Target
applica�on

B

Target
applica�on

C
Quan�ty < 500

Fig. 4.2 Use of filters to
route messages in a message
broker

over 1,000; and it will be forwarded to application C if Quantity is less than 500.
These conditions are independent and, in general, they do not have to be mutually
exclusive, so the same message may be forwarded to n-out-of-m applications, where
n � m. In particular, it may happen that none of the conditions hold true (i.e.,
n D 0); in this case, the message is not delivered to any destination. Although such
behavior may be the intended one for a given message, the message broker is likely
to generate an error or warning if such situation occurs. For example, this is the
reason why BizTalk generates the error “no subscribers found.”

The use of message filters requires the message broker to inspect an incoming
message in order to retrieve the property values that are needed to evaluate the filter
conditions. In the example of Fig. 4.2, Customer, Price, and Quantity are properties to
be retrieved from the message body. Clearly, the message broker must know how to
find these properties in the message. Usually, the message schema will be available
to the broker (in case, for example, transformations are needed) so it would not
be difficult to inspect the message content. However, for performance reasons, it
is a good idea to facilitate the access to the required properties, so that the message
broker spends as little time as possible in the processing of each message. This leads
to the concept of promoted properties, as explained next.

4.3 Promoted Properties

When the routing of messages is to be decided based on the actual message content,
as in the example of Fig. 4.2, it becomes necessary to provide the message broker
with all the properties required for evaluating the filter conditions. Rather than
requiring the message broker to go through the whole message content in order to
find those properties, it is more convenient to bring those properties to the forefront
of the message, where they can be accessed more easily. This can be done, for
example, by writing those properties in the message header, so that the message
broker can read them without having to open and go through the message body.

4.3 Promoted Properties 79

To understand this concept, an analogy can be established with a traditional mail
system. Instead of sending a letter to the destination specified in the envelope,
suppose that the destination is to be determined based on some information
contained in the letter itself. In this scenario, the postman would have to open the
letter and read its content in order to find that info. Rather than allowing this to
happen, it is more convenient to write that information outside in the envelope, so
that the letter can be delivered without being opened.

The same principle applies to the messaging platform in a message broker.
For routing purposes, it is more convenient to make the required properties easily
accessible, rather than requiring the message broker to read and retrieve them from
the message body. Making properties (that are inside the message body) accessible
from the outside is referred to as property promotion.

Property promotion is a mechanism that should be used with care. In general, it is
possible to promote all properties in the message body. However, properties should
not be promoted because they can be promoted, but because they must be promoted.
The way in which property promotion is implemented depends on the particular
message broker being used but, in its simplest form, promoting a property may
imply writing additional message headers. These headers inform the message broker
that the message carries properties that are required for content-based routing. The
presence of such headers also instructs the message broker to read and use those
property values. If the message contains promoted properties that are not being
used for message routing, then the message broker undergoes unnecessary work
and delay while processing the message.

Therefore, system developers and integrators should have a good understanding
of promoted properties and what they are used for, in order to avoid making
suboptimal decisions which may have an impact on the performance of the message
broker and of the integration solution overall.

In BizTalk, the use of promoted properties is implemented by means of a special-
purpose property schema, as illustrated in Fig. 4.3. A property schema defines which
properties will be used for message routing. The conditions specified in a message
filter must refer to properties defined in a property schema. So, in a sense, a property
schema defines the vocabulary to be used by message filters. A different matter is
how to obtain the values for these promoted properties; this is done by establishing
a relationship between the elements in a message schema and the properties defined
in a property schema.

For example, suppose that an incoming message (e.g., a purchase request) has
an element Qty used to denote the quantity of the product to be purchased. Also,
suppose that this information is used to route the purchase request in the following
way: if the quantity exceeds 500 units the request is denied and is routed back to
the original sender; otherwise, the request is approved and forwarded to an ERP
system. (This is similar to the example that was used in Sect. 2.4 to present a simple
orchestration; here we resort to the same scenario to illustrate the use of content-
based routing at the message level.) In this scenario, it would be necessary to create a
property schema and to define a promoted property, e.g., Quantity. Then, in a second
step, it would be necessary to establish a relationship between the Qty element in

80 4 Message Brokers

Receive
port

Message BoxMessage Box

Incoming
message

Property
schema

Send
port

Filter

Send
port

Filter

Send
port

Filter

...

Messaging pla�orm

Fig. 4.3 Use of property schemas in BizTalk

the purchase request schema and the Quantity promoted property. This is equivalent
to promoting the Qty element, and such promotion has two effects:

• The first is that the value for the Qty element will be brought to the forefront of
the message, so that the message broker can read it without having to read and
parse the message body.

• The second effect is that, as a new purchase request enters the messaging
platform, the value of the Qty element will be used to set the value of the Quantity
property defined in the property schema.

In general, the name of the promoted property (Quantity in this example) does
not have to match the name of the element (Qty) which provides the value for that
property. However, the names used to specify the filter conditions (e.g., Quantity �
500) must be the names of properties defined in the property schema.

After reading the promoted properties in the message and setting the value for the
corresponding properties in the property schema, these properties can now be used
to evaluate the filter conditions. Figure 4.3 illustrates the use of property schemas
in connection with filters at each send port. As explained in Sect. 2.3, a send port
has an adapter, a pipeline, and an optional transformation map. In addition, a send
port may have another optional component, which is the message filter. The filter
contains a set of logical expressions, each yielding a result of true or false. These
expressions are based on the values of properties defined in a property schema, and
they can be combined with logical AND and OR operators. The filter condition may
therefore comprise several expressions on different properties.

The concept is similar to that presented in Fig. 4.2, but while in Fig. 4.2 the
filter condition for each target application had a single expression, in practice the
conditions may be composed of several expressions connected by logical operators.
Another difference between Figs. 4.2 and 4.3 is in the place where these filter
conditions are actually stored. In Fig. 4.2 these appear to be stored together,
somewhere inside the messaging platform, while Fig. 4.3 shows that, in BizTalk,
the filter conditions are actually stored in the filter within each send port.

4.4 Orchestration-Level Integration 81

4.4 Orchestration-Level Integration

In enterprise systems integration, the behavior of an integration solution can often
be implemented in different ways. In the previous section, a solution that checked
the quantity of a purchase request and decided where to send that request was
implemented at the messaging level based on message routing mechanisms. The
same behavior can be implemented at the orchestration level, with much more
flexibility. At the orchestration level the solution is not confined to the publish–
subscribe paradigm and, in principle, it is possible to implement any kind of
interaction between applications. In this context, the message routing mechanisms
of the messaging platform are essential in order to ensure that the orchestration
runs as expected. The key feature of an orchestrator is that it allows specifying
the interaction between applications at a different level, on top of the messaging
platform.

When using an orchestrator, the messaging platform is configured in such a
way that the orchestrator becomes a subscriber for all messages that the deployed
orchestrations are waiting to receive. On the other hand, the orchestrator also
becomes the producer of messages that are to be delivered to target applications.
In this context, the orchestrator publishes and subscribes messages just like a
regular application. The difference is the close connections that exist between the
orchestrator and the messaging platform, especially in terms of receive and send
ports: the ports defined in an orchestration can be bound to specific ports that exist in
the messaging platform, so that receiving or sending a message at the orchestration
level has the same effect as routing messages at the messaging level.

Figure 4.4 illustrates the use of an orchestration to implement the behavior of the
same scenario as before, where a purchase request is received and the decision of
what to do with it depends on some property of that request, in this case the quantity
specified in the Qty element. To implement this scenario, the orchestration has the
following steps:

1. It receives the purchase request through a receive port.
2. It checks whether the Qty element in the purchase request is greater than 500, and

then:

a. If so, it transforms the request into a denied request message and sends it
through a send port back to the original requester (left branch).

b. If not, then it just forwards the message to the ERP system through another
send port (right branch).

3. In either case, the orchestration has nothing left to do afterwards and terminates.

It is worth noting that the transformation on the left branch can be attained
by a transformation map, so the use of a transformation map in the orchestration
effectively dispenses the use of a transformation map in the send port. This mere
detail is quite significant, as it shows that the use of an orchestration brings visibility
to components of the integration solution that would otherwise be embedded in the

82 4 Message Brokers

Physical
Receive Port

Orchestrator

Receive
Request

Construct Message

Transform

Send Request
Denied

Send Request
To ERP

Qty > 500?

Yes No

Logical
Receive Port

Logical
Send Port

Logical
Send Port

Message Box

Physical
Send Port

Physical
Send Port

Messaging pla�orm

Fig. 4.4 Integration through an orchestrator on top of a messaging platform

messaging platform. Also, in the orchestration the send port can be changed while
keeping the same transformation, whereas at the messaging platform changing to
another send port would require configuring the transformation map in the new send
port. These are just some examples of the advantages in using an orchestration rather
than relying solely on the mechanisms of the messaging platform.

Figure 4.4 also illustrates the connections between ports in the orchestration and
ports in the messaging platform. At the orchestration level, ports are referred to
as logical ports, and they specify the points of entry and exit of messages in the
orchestration. In the messaging platform, ports are referred to as physical ports and
they contain all the required configurations (in terms of protocols and addresses) to
communicate with the application associated with that port. After an orchestration
has been deployed, but before it can actually run, it is necessary to establish a
connection between each of its logical ports and a physical ports existing, or to
be created, in the messaging platform. Such connection between a logical port and
physical port is referred to as a port binding.

When a message enters a physical receive port, if that port is bound to a logical
port, then the message is forwarded to the orchestration containing that logical port,
as in Fig. 4.4. Likewise, when the orchestration sends a message through a logical

4.5 Distinguished Properties 83

send port, the message is sent through the physical send port that is bound to that
logical port. For physical ports that are not bound to logical ports, the messaging
platform will make use of its own routing mechanisms, as described in the previous
section. In particular, a physical send port that is not bound to a logical port will
need to have a filter in order to subscribe to messages.

4.5 Distinguished Properties

In the example of Fig. 4.4, the orchestration receives a purchase request and decides
whether to deny the request (left branch) or to forward it to the ERP system (right
branch). The decision is based on the value of the Qty element in the incoming
message, so the orchestration must have access to this element in order to determine
how to proceed. Contrary to what happens in the messaging platform (Sect. 4.3),
where the properties to be accessed for the purpose of message routing must have
been promoted, at the orchestration level there is no need to promote such properties,
since the orchestration has full access to the actual message content.

As explained in Sect. 3.1, and as shown in Sects. 3.5 and 3.6, a message has two
main parts known as header and body. While the header is used by the messaging
platform for routing purposes, the body carries the actual content that is of interest to
applications. This is similar to a traditional mail scenario in which the information
in the envelope is used by the post office to deliver a letter to its destination; but
once the letter arrives at the destination, the receiver will throw away the envelope
and focus on its actual content. The same happens with the messaging platform and
the orchestrator: while the messaging platform will use the message header to route
the message, the orchestrator will be working with the actual message body in order
to implement the desired integration logic.

Therefore, the orchestrator can make use of any content available in a message
to implement the orchestration logic. For example, if a message needs to be
transformed to another schema, the orchestration can use a transformation map
to create a new message with the same content but with a different structure.
However, some elements in particular may play a critical role in determining how
the orchestration will be executed, as is the case with the element Qty in the example
of Fig. 4.4. To allow the use of expressions such as Qty > 500 in the orchestration,
those elements need to be marked in a special way, so that the orchestrator knows
that Qty refers to a specific element in the purchase request message. An element
that is marked for this purpose is called a distinguished property. Essentially,
distinguished properties are message elements that can be used in expressions
throughout an orchestration, to determine how the orchestration will be executed
at run-time.

Distinguished properties, contrary to promoted properties, do not pose a problem
from the performance point of view. The use of promoted properties requires the
messaging platform to retrieve and store them for routing purposes, and this may
result in a slight increase in the time required to handle each message at run-time. On

84 4 Message Brokers

the other hand, distinguished properties have no significant impact on performance;
they are used at design-time to specify how the behavior of an orchestration may
change depending on the actual content of messages. Regardless of how this content
affects the orchestration flow, it does not require any additional processing, since
that content (the message body) is available to the orchestration in any case.

To summarize, promoted properties are used at the message level to implement
message routing based on filters associated with send ports. Distinguished properties
are used at the orchestration level to specify how the orchestration will behave at
run-time according to the content of messages. In both cases, the message content
is used to determine the behavior of the integration solution. However, at the
message level one can only make use of publish–subscribe mechanisms, while at
the orchestration level there is a wide range of constructs allowing to implement
any form of desired behavior, as we will see in later chapters.

4.6 Correlations

In Sect. 3.1 we explained the concept of process-based routing which relies on a
process manager to coordinate the interaction between applications, as illustrated
in Fig. 3.5. The purpose of this process manager is exactly the same as that of
an orchestrator in a message broker, and just as a process manager is able to
execute multiple instances of the same process, so an orchestrator is able to execute
multiple instances of an orchestration. As an example, in Fig. 4.4 the first step in the
orchestration is to receive a purchase request from a receive port. This means that
the orchestration is triggered every time a purchase request arrives at that receive
port. Triggering the orchestration means creating and starting a new orchestration
instance. Each orchestration instance has a life of its own and is independent from
other instances. In particular, there will be instances where the purchase request will
be denied because the quantity exceeds 500, and other instances where the request
will be accepted because the quantity is lower. Also, in general, some instances may
run successfully while others may end in error, and some instances may take long
to complete while others may be rather quick. It all depends on the particular data
and conditions that an orchestration instance finds at run-time.

For a better understanding of the concept of orchestration instance, an analogy
can be established with an order placed in an online bookshop. As the customer
enters a new order, a new instance of an order processing orchestration is triggered.
This orchestration may consist in, for example, fetching the books from the
warehouse, packing them, and shipping them to the customer. Each order originates
an instance of this orchestration that is independent from other instances being
created by the orders of the same or different customers. For example, a customer
may check the status of an order at any time, and each order has its own status.
Also, an order may be canceled without affecting the processing of other orders.
Since orders are handled as separate process instances, they can be managed
independently.

4.6 Correlations 85

When a customer wants to check the status of an order, a small but important
problem arises: the customer must be able to identify the order whose status is
to be retrieved. Naturally, providing the title of the ordered book does not suffice,
since many customers may have ordered the same book. Perhaps providing the title
together with the customer info may suffice, if the customer did not order the same
book more than once. In any case, a precise, unambiguous way of identifying the
customer order is needed in order to locate the correct orchestration instance in the
midst of all instances for all book orders. This is not just a problem of choosing an
appropriate identifier as when selecting a primary key for a relational database table;
the problem of identifying a particular orchestration instance may appear several
times during the execution of that instance, and it has far-reaching implications with
respect to the inner workings of a message broker.

Figure 4.5 illustrates the problem by means of a simple orchestration which, at a
certain point, sends a request and receives a response from an external system. To
begin with, three messages enter the messaging platform through the first receive
port shown in the left side. These three messages trigger three instances of the same
orchestration, all of which will do exactly the same thing: they will send a shipping
request to a logistics provider application, they will receive the response from that
application, and they will send an confirmation to the customer. At the point shown
in Fig. 4.5, the three instances have already sent the shipping request to the logistics
provider and are now waiting for a response. When the first response comes in,
which orchestration instance should it be sent to?

Clearly, there needs to be a mechanism for correlating the present response with
a previously sent request. Such correlation is necessary in order to determine which
orchestration instance is the correct recipient for each response. This becomes a
matter of determining the subscriber for an incoming message, and therefore must
be dealt with at the message level, in much the same way as explained in Sect. 4.2. In
particular, it will be necessary to use promoted properties (explained in Sect. 4.3) to
correlate a response with a previous request based on some property or properties. In
the context of a correlation, the set of promoted properties that are used to correlate
messages is referred to as the correlation id.

In a relational database, it is often easier to create a new column to serve as the
primary key for a table, rather than selecting a subset of existing columns, which is
not guaranteed to yield a unique identifier. The same scenario applies to correlation
ids: often it becomes easier to create a new element in the message schemas just for
the purpose of serving as a correlation id, rather than using an identifier based on the
existing message elements, which are not guaranteed to be unique. In the example
of the online bookshop from above, when a customer wants to check the status of an
order, a suitable identifier must be provided to identify the desired process instance.
For this purpose, it is common to have a unique order id, which can be used to
identify the process instance without having to resort to other order data.

In any case, regardless of the actual message elements that are selected to serve as
a correlation id, these elements must be promoted so that the orchestration instance
can be determined at the message level.

86 4 Message Brokers

Receive
order

Send shipping
request

Receive
shipping
response

Receive
order

Send shipping
request

Receive
shipping
response

Receive
order

Send shipping
request

Receive
shipping
response

Receive
Port

Send
Port

Receive
Port?

Send order
confirma�on

Send order
confirma�on

Send order
confirma�on

Messaging pla�orm

Third-party
logis�cs
provider

applica�on

Orchestra�on instances

Fig. 4.5 Need for correlation in an orchestration with a request–response interaction

For the moment, let us assume that each orchestration instance shown in Fig. 4.5
has a unique order id. For simplicity, it can be assumed that this order id is
provided in the original order message that triggered the whole orchestration.
When an orchestration instance creates the shipping request, it includes the order
id as a promoted property to serve as correlation id. The orchestration then sends
the shipping request through the messaging platform, which reads the promoted
properties that are being used as correlation id. In the future, any incoming message
that arrives at the messaging platform having the same values for the same promoted
properties will be forward to the same orchestration instance.

The scenario in Fig. 4.5 can therefore be implemented in the following way:

1. In the initial order message that triggers the whole orchestration, provide a unique
order id value that can be used in correlations within the orchestration.

2. In the schema for the shipping request to be sent to the logistics provider, include
an additional element to store the order id. Also in the schema for the shipping
response, include an additional element to store the order id.

3. Create a property schema to define the promoted property that will be used as
correlation id. We assume that this promoted property will be called OrderId.

4.6 Correlations 87

4. Promote the order id elements of step 2. In both the shipping request and the
shipping response, establish a relationship to the OrderId property defined in the
property schema created in step 3.

5. In the orchestration, create a new correlation based on the OrderId property. This
correlation will be used at two points in the orchestration: when the shipping
request is being sent, and when the shipping response is being received.

In the BizTalk platform, step 5 is a bit more intricate because it requires
several sub-steps. In particular, BizTalk makes a distinction between the concepts
of correlation type and correlation set. Basically, a correlation type is an artifact
that specifies the properties on which the correlation will be based. In this example,
there is a single property called OrderId. So, by defining a correlation type with
OrderId, it becomes possible to create correlations based on that property. To create
an actual correlation that can be used in the orchestration, it is necessary to define a
correlation set. Therefore, a correlation set can be seen as an instance of a previously
defined correlation type. In general, it is possible to create several correlation sets
from the same correlation type; this would mean having several correlations across
the orchestration, all of which are based on the OrderId property.

After creating the correlation type and at least one correlation set, which repre-
sents the actual correlation, the next sub-step is to indicate where the correlation will
be used in the orchestration. The point where the correlation is first used is the point
where the correlation set will be initialized. In this example, the correlation set will
be initialized when the shipping request is being sent. Subsequent actions within
the same correlation are said to follow the same correlation set. In this example, the
correlation set will be followed when the shipping response is being received. No
other actions in this orchestration initialize or follow correlations.

Although the correlation is being initialized when the shipping request is sent, it
would be possible to initialize it even earlier, at the point where the initial order is
received. This is because the order id is assumed to be available at that point, so it
would be possible to initialize the correlation set immediately. On the other hand,
it would also be possible to extend the use of the same correlation to later actions,
such as to the point when the order confirmation is sent to the customer. In other
words, all the actions in the orchestration of Fig. 4.5 could be performed within
a correlation, although that is not necessary. The point at which the correlation
is strictly required is when receiving the shipping response, since at this point it
is necessary to determine the orchestration instance that the response is intended
for. For this to work, the correlation must have been initialized previously, so it is
required also when sending the shipping request. However, nothing precludes the
same correlation to be used at other points in the orchestration as well.

This shows that the use of correlations is not confined to request–response
scenarios, and in fact they can be extended to include any set of interactions with
the outside world. Examples are a request that results in multiple responses, or a
sequence of several request–response pairs within the same correlation.

Another important and often misunderstood issue has to do with receive actions.
The first receive in an orchestration is the action that triggers the orchestration,

88 4 Message Brokers

so that when a message is received, a new orchestration instance is created. As
explained in Sect. 2.4, such kind of receive is called an activating receive. Clearly,
no actions can precede an activating receive, since before that the orchestration has
not been instantiated yet. However, after the activating receive it is possible to have
other receive actions, as in the example of Fig. 4.5 where the orchestration receives
the shipping response. Obviously, such kind of receive is non-activating, since the
orchestration instance is already running. Now, if a receive is non-activating, then
it must follow a correlation; otherwise, the messaging platform would be unable to
forward messages to that running orchestration instance.

The conclusion is that a receive action must either be the initial, activating receive
in an orchestration (and there is a single activating receive in an orchestration),
or be a non-activating receive which follows a correlation (several such receives
may exist in an orchestration). In the latter case, the correlation must have been
previously initialized by a previous action, usually a send. Developers often find it
strange that they have to make such an elaborate decision when using something
as simple as a receive action. Hopefully, this section has contributed to clarify why
such decision is necessary: it has to do with the fact that several instances of the same
orchestration may be running at the same time on top of the messaging platform.
The activating receive creates such instances; the non-activating receive requires
correlation to determine which instance a message is intended for.

4.7 Using Asynchronous Messaging

In the previous sections we have explained that a message broker is a combination
of a messaging platform and an orchestrator, such that the orchestrator works on top
of the messaging platform, i.e., it coordinates the exchange of messages between
applications connected to the messaging platform. In this context, the messaging
platform has been presented as a messaging system similar to those described in
Chap. 3. In practice, however, the features provided by a messaging system and by
the messaging platform of a message broker are slightly different.

On one hand, there is no need for a message broker to replicate the functionality
and reliability mechanisms of a messaging system; if such capabilities are required,
the message broker can be integrated with an existing messaging system, such as
a JMS provider or MSMQ. On the other hand, the message broker extends the
capabilities of traditional messaging systems by making use of the concepts of
receive and send ports. Receive ports are entry points of messages in the messaging
platform, i.e., they are message publishers, and they are connected to applications
that produce messages. Send ports are message subscribers, and they are con-
nected to applications that consume messages. Therefore, a message broker works
according to the publish–subscribe paradigm, while traditional messaging systems
typically support point-to-point communication through channels or queues.

In addition, a message broker is able to coordinate message exchange between
applications through an orchestrator, and for that purpose it is necessary to configure

4.7 Using Asynchronous Messaging 89

the port bindings between the logical receive and send ports in an orchestration and
the physical receive and send ports created or available at the messaging level.

Despite these differences, it is possible to use messaging systems of the kind
described in Chap. 3 in combination with a message broker. For this purpose, it is
possible to specify that a physical receive port is connected to a messaging system,
so that it receives messages from a message queue. Similarly, it is possible to specify
that a send port is connected to a messaging system, so that it sends messages from
a message queue. The queue from which messages are received and the queue to
which messages are sent may be in the same or in different message systems. In the
latter case, one can see the potential of using a message broker to create a bridge
between different messaging systems.

In Sect. 2.3 (Fig. 2.4) we have seen that both receive and send ports comprise an
adapter, a pipeline, and an optional transformation map. (Furthermore, in Sect. 4.3
we have seen that a send port may contain an optional message filter as well.) The
adapter in a port is the component that specifies the protocols and parameters to
connect to the source (in case of a receive port) or the target application (in case of
a send port). As explained in Sect. 2.3, a message broker typically includes a set of
predefined adapters, so configuring the adapter for use in a port becomes a matter of
selecting one of the existing adapters. In particular, there are adapters for messaging
systems. For example, BizTalk includes an adapter for MSMQ that allows receive
ports and send ports to connect to message queues.

To configure the MSMQ adapter in a receive port, one basically specifies the
queue name and whether the message should be received within a transaction or
not. When configuring the MSMQ adapter in a send port, a lot more options are
available; besides the queue name and transaction support, one can specify the
priority of the message to be sent, whether it should be sent in express or recoverable
mode, whether acknowledgments should be generated, etc. In general, all those
message properties that can be configured by a sending application using MSMQ
can also be configured in the MSMQ adapter of a send port.

However, there is one important difference in an application that communicates
with BizTalk through MSMQ, as opposed to an application that communicates with
another application through MSMQ. When two applications exchange messages
through MSMQ, as described in Sect. 3.6, it is possible to use the Body property.
In this case, the sender application sets the Body property and the receiver retrieves
the content of that property. During transmission, MSMQ automatically formats
the body content into an XML message (an example is shown in Listing 3.7 on
page 69). When using an integration platform such as BizTalk, such automatic
formatting interferes with the processing of messages because the message broker
is expecting an XML message with a user-defined schema, rather than the schema
used by MSMQ. In fact, in integration platforms such as BizTalk, developing a new
solution begins by defining the schemas of messages that will go across the message
broker. If MSMQ is allowed to wrap the message content into a new, previously
undefined schema, then the message broker will be unable to handle the message
correctly.

90 4 Message Brokers

Listing 4.1 Application code to send a message to BizTalk through MSMQ
1 string requestMsg = File.ReadAllText("PurchaseRequest.xml");
2
3 string queueName = @".\private$\requests";
4 MessageQueue queue = new MessageQueue(queueName);
5
6 Message queueMsg = new Message();
7
8 StreamWriter writer = new StreamWriter(queueMsg.BodyStream);
9 writer.Write(requestMsg);

10 writer.Flush();
11
12 queue.Send(queueMsg);

Clearly, something must be done in order to avoid having MSMQ interfere with
the message content. In particular, the message body must be written to the message
in such a way that it reaches the message broker without having been changed or
reformatted. The solution to this problem is to write the message body through
the BodyStream property rather than through the Body property. When writing to
the BodyStream property, the content is written directly to the message body, as if
it would be a file or stream. At the receiving end, the message broker reads the
message body data through the BodyStream property as well. This way, it is possible
to have the message content arrive at the message broker intact.

The only problem with this approach is that the source application must
guarantee that the body content adheres to the schema that the message broker is
waiting for. This is easy to achieve if the source application has access to an example
of the message to be sent. For this purpose, it is possible to create a sample instance
from the predefined schema and provide it to the source application, so that this
application has only to modify the data elements and send the whole message to the
message broker, in the body stream. The procedure is illustrated in Listing 4.1.

This example is based on the same scenario as in Sect. 4.4, particularly Fig. 4.4
on page 82. Here we suppose that the physical receive port in Fig. 4.4 is connected
to a message queue, and Listing 4.1 shows the application code for the source
application that sends a message to that queue. For this purpose, we assume that
an instance of the purchase request schema is available in an XML file (line 1). For
simplicity, we also assume that such instance already contains the correct data to be
sent. Now it is a matter of opening the specified queue (lines 3–4), creating a new
message (line 6), writing the message body (lines 8–10), and sending the message
(line 12). The main difference to the example of Listing 3.6 on page 69 is that the
message body is being written directly as a stream through the BodyStream property.
Line 8 opens the stream, line 9 writes the content, which comes from line 1, and line
10 ensures that the content has actually been written to the message object before
sending it on line 12. This way, the message broker (BizTalk) will receive the exact
same content as in the XML file specified in line 1.

If the Qty element in the purchase request contains a value that is less than or
equal to 500, then the orchestration in Fig. 4.4 will approve the request and forward
it to the ERP system (right-side branch). Assuming that the send port is connected to

4.8 Conclusion 91

Listing 4.2 Application code to receive a message from BizTalk through MSMQ
1 string queueName = @".\private$\requestsaccepted";
2 MessageQueue queue = new MessageQueue(queueName);
3
4 Message queueMsg = queue.Receive();
5
6 StreamReader reader = new StreamReader(queueMsg.BodyStream);
7 string requestMsg = reader.ReadToEnd();
8
9 Console.WriteLine(requestMsg);

a message queue, then the application code at the receiving end should do something
similar to Listing 4.2 to retrieve the message and its content.

In lines 1–2 the application just opens the message queue where the message
sends the message to. In line 4, there is a synchronous receive, but an asynchronous
receive, as in Listing 3.9 on page 71, could be used as well. The important feature
is in lines 6–7, where the application reads the message body. Again, this is done
by accessing the body content as a stream, through the BodyStream property. In this
example, the application just reads the entire body content (line 7) and writes it to
the command line. A real ERP system would probably store the purchase request in
a database or handle it in some other way.

4.8 Conclusion

Message brokers provide the possibility of implementing the integration logic
outside the applications and in the integration platform itself. This provides a much-
desired centralized point of control, where the integration logic can be maintained
and changed according to business needs. A message broker differs from a
traditional messaging system in that it makes extensive use of the publish–subscribe
paradigm, and it includes an orchestrator to coordinate message exchanges between
applications. The desired behavior can be implemented by means of orchestrations
which define the routing of messages between receive ports and send ports in the
underlying messaging platform.

Although orchestrations represent a process-oriented and flexible way to imple-
ment the integration logic, it is possible to integrate applications through a message
broker without the use of orchestrations. In this case, the integration solution will
rely on the publish–subscribe mechanisms of the messaging platform alone, and
for this purpose it becomes necessary to define message filters to specify which
messages should be sent through each send port. The use of transformation maps
in receive and send ports also allows messages to be transformed if necessary.
A disadvantage of this approach is that the overall behavior is embedded in
the messaging platform and is not as easy to understand as in the case of an
orchestration.

92 4 Message Brokers

In conclusion, as far as the external applications are concerned, the same behavior
can be implemented at the messaging level or at the orchestration level. For solutions
at the messaging level, it becomes necessary to promote certain message properties
in order to evaluate filter conditions and determine which send ports the message
should be sent to. The message properties that must be promoted are the ones that
are used to define the filter conditions. For solutions at the orchestration level, it
is necessary to promote certain message properties as well, in order to determine
which orchestration instance the message should be sent to. In this case, the message
properties that must be promoted are the ones that are used to establish a correlation
with a previous message belonging to the same orchestration instance.

The last section (Sect. 4.7) has shown how to connect a message broker with a
messaging system, so that the broker receives messages from and sends messages
to a message queue, which provides asynchronous interaction with the external
applications. The same section also explained how the applications should write and
read the message body in order to exchange messages with a predefined schema.

In the same way as messaging systems can be connected to a message broker,
other kinds of systems can be connected to a message broker as well. We have
already discussed that such connection can be made through the use of adapters in
receive and send ports. In the next chapters, we will have a closer look at the concept
of adapter and at the way other systems—namely databases and Web services—can
be invoked from within an orchestration running in the message broker.

Part III
Adapters

Chapter 5
Data Adapters

Integration is an effort to bring heterogeneous applications to interoperate with each
other. Had these applications been devised to interoperate with each other in the first
place, there would be no need for integration. Integration is therefore something that
is typically done after applications have already been developed and deployed in the
organization. Through time, as the organization evolves and changes, it is likely
that new applications are developed, acquired, upgraded, replaced, etc., leading
to a heterogeneous landscape of information systems. It is in this scenario that
system integrators must come up with solutions to connect applications, old and
new, in order to implement the desired business processes. So while developers keep
creating applications according to particular business requirements, it is the job of
system integrators to ensure that it is possible to implement processes that span the
whole organization on top of those heterogeneous applications.

The job of a systems integrator would be much easier if all applications were
developed using the same technology. In this case, by mastering such technology it
would be possible either to change the application code or to develop new code in
order to make applications interoperate. However, technologies keep changing all
the time, and applications from different technology generations will coexist in an
organization. Some of these technologies can be so old that there are no longer any
developers or any system integrators with experience in the technology or having
the appropriate tools to keep working with it. However, such applications are still
in use because they fulfill some business need for which a newer application is not
available. Such applications are referred to as legacy systems.

Often a legacy system can only be regarded as a black box. Knowledge of how it
works on the inside is unavailable, and both the source code and the documentation
may be missing as well. The only way to integrate with such applications is through
the mechanisms of input and output available to the users. This is certainly the
worst-case scenario, since then the integration must be done either manually or
through an adapter that simulates the behavior of a user. Fortunately, applications are
usually developed according to a common and well-known architectural model—
namely, the three-tier model—which provides several possibilities for integration. It
is these possibilities that we explore in this and the next chapter.

D.R. Ferreira, Enterprise Systems Integration, DOI 10.1007/978-3-642-40796-3__5,
© Springer-Verlag Berlin Heidelberg 2013

95

96 5 Data Adapters

Applica�on

User interface layer

Applica�on logic layer

Data persistence layer

Capture the user interface
(screen scraping, Web scraping, etc.)

Use a programming interface
(methods, objects, APIs, services, etc.)

Integrate at the data level
(files, databases, ODBC, SQL, etc.)

Fig. 5.1 Integration
approaches at different
application layers

5.1 The Three-Tier Model

The three-tier model is an architectural pattern that reflects a common practice
in software engineering. Essentially, applications are developed according to a
common architecture that comprises three different layers: the data persistence
layer, the application logic layer, and the user interface layer. The user interface layer
refers to the application functionality that has to do exclusively with user interaction
such as displaying data and receiving user commands. At the opposite end, the data
persistence layer is where the data reside; at this layer, persistence is usually attained
by storing data in files or in a database. The application logic layer is where the
application manipulates entities (or objects) and executes program logic.

As an example, a purchase order may be regarded as a different entity at each
layer: at the user interface layer, it is a set of data that the user can visualize on the
screen and possibly change by means of certain commands; at the application logic
layer, it is an object (i.e., a class instance) with certain data attributes; and at the data
persistence layer, it is a row in a database table that stores all purchase orders.

Figure 5.1 illustrates the layers in a three-tier model, suggesting that each
application layer actually represents a different possibility for integration. At the
data persistence layer, it is possible to integrate through files or through a database;
at the application logic layer, one integrates with application code directly in order
to perform the desired operations; and at the user interface layer, it is possible to
access and submit data using the same I/O mechanisms available to end users.

Such possibilities can be put into practice only under certain assumptions. For
example, to integrate through files, one assumes that the file format used by the
application is known and documented. To integrate through a database, one assumes
that the database schema is known and that there are sufficient privileges to access
and change the data. To integrate at the application logic layer, one must have either
the original source code for the application or a programming interface to invoke its
functionality. If none of these assumptions hold, then the only remaining option is to
integrate via the user interface, by developing an adapter that simulates the behavior
of a user that reads data and sends commands. Clearly, this is the least desirable
option, since the user interface may not provide a convenient way to access data and
to invoke the full range of application functionality.

5.2 Capturing the User Interface 97

An easier and more flexible approach is to integrate at the data layer. Integrating
through files seems rather primitive but it can be quite effective; also, the use of
standard file formats can facilitate this task. On the other hand, if a relational
database system is being used, then there are several mature technologies that
can be used to connect and interact with the database from any programming
language. In either case, some care must be taken in order to avoid unpredictable
application behavior. If the application logic is not completely known, then feeding
the application with data through the data layer may cause exceptions, bugs, or other
forms of undesired behavior. Therefore, integration at the data layer must be based
on solid knowledge about how the application processes the data.

The ideal option is to integrate at the application logic layer. Here one can
have complete control of how the application functionality will be invoked. This is
also the option that requires the deepest knowledge about the application internals,
since it may involve programming the application to do something it was not
originally prepared to do. If the source code is available, then this becomes
more of a software engineering issue. Typically, the source will not be available,
but a suitable application programming interface (API) will be provided by the
application developer. In this case, one has to learn the API in order to develop
an adapter.

Often the purpose of an adapter is just to provide a different API on top of the
proprietary application API. This is especially the case for applications that have a
rather comprehensive and complicated API, when only a subset of the application
functionality will actually be used for integration. In this case, the adapter works as
a software layer that provides a simplified API to interact with the application.

The way in which APIs can be built on top of other APIs can be seen at work
in other application layers as well, namely at the data layer where there are several
alternative APIs, as well as database APIs that build on top of one another. Also at
the user interface layer, it is possible to build an adapter that interacts with the user
interface and exposes an API to other applications. From this perspective, an adapter
can be seen as a software layer that brings the problem of integration to the level of
application logic, regardless of how data is actually exchanged with the application,
be it through the data layer, through the application logic layer, or through the user
interface layer. In this chapter we will be mostly concerned with adapters at the user
interface layer and at the data layer, leaving adapters at the application logic layer
to be studied in the next chapter.

5.2 Capturing the User Interface

In an organization, there may be applications for which no source code is available,
no documentation is available, no APIs are provided, no experience with the
programming language exists, the technological platform is obsolete, integration
is not supported, etc. In this scenario, the only option is to integrate through the user
interface layer, by using the same I/O mechanisms as those available to the users.

98 5 Data Adapters

This involves reading data from whatever mechanism the application has to display
them (e.g., text boxes), and sending commands through whatever user interface
elements that the application provides (e.g., buttons). Clearly, the implementation
of an adapter for the user interface layer is very dependent on the particular UI
features provided by the application. In some cases, the more sophisticated the user
interface, the more difficult it will be to grab data from that UI in an automated way.

As with other application layers, integration at the user interface layer is only
possible under certain assumptions. For example, some very old systems such as
the first generation of computer mainframes (dating from the 1960s) had no user
interface at all; instead, data I/O was based on punched (perforated) cards. Teletype
devices (a kind of typewriter with communication capabilities) were also used as
a command line interface to mainframe computers, but still the output was printed
on paper. In the 1970s, mainframes started having client terminals with text-mode
user interfaces. Later, during the 1980s, these client terminals were replaced by
personal computers equipped with terminal emulation software. It was only in the
1990s that enterprise systems acquired graphical user interfaces (GUIs). After 2000,
proprietary GUIs were discontinued in favor of Web-based user interfaces.

From this brief overview of how user interfaces evolved over the years, it
becomes apparent that a user interface adapter may not be a straightforward thing
to develop. Integrating with punched cards is out of question, and fortunately it will
be hardly necessary, as enterprise systems have evolved well beyond that. On the
other hand, a text-mode user interface may not be too difficult to integrate with, if
the communication protocol is well documented; in this case, the adapter can work
in a similar way to a terminal emulator, while providing external applications with
a convenient API to access the system.

Graphical user interfaces, despite being more sophisticated, can be harder to
integrate with, since it is not easy to capture the layout of a GUI and interact with its
elements in an automated way. In some cases, this can be made easier by resorting
to features of the operating system, such as querying the graphical elements that
are currently being presented on the screen. In the Windows operating system, for
example, it is possible to write a native application (in C/C++) that retrieves a handle
to an application window that is being displayed on the screen, and from that handle
it is possible to retrieve a further set of handles for the GUI elements within that
application window. Such kind of approach is referred to as screen scraping and it
can be used to capture any data that is currently being displayed on the screen.

Figure 5.2 illustrates the kind of elements that may be present in a GUI. After
retrieving a handle to the main application window, it is possible to retrieve a handle
to each of the GUI elements contained in that window. (In general, a GUI is built as
a hierarchy of windows that contain other windows.) The user interface may include
data-displaying elements (such as grid controls), data input elements (such as text
boxes), and also action elements (such as buttons). After retrieving the handles to
those elements, it is possible to fill in data and send commands to the application
by sending system events to the main application window. This is done by calling
special functions available in the operating system API. The events that are sent
to the application are the same as those that would be generated if a user was

5.2 Capturing the User Interface 99

Screen

Applica�on Window

Text box

Text box

Label:

Label:

Grid control

Bu�on

Bu�on

Bu�on

Fig. 5.2 Examples of graphical user interface elements

interacting with the application. This kind of adapter can be the most difficult to
implement and it depends on the capabilities and API of the underlying operating
system.

Fortunately, GUIs have evolved to become less platform-dependent, as devel-
opers started adopting more standard technologies. With the advent of the World
Wide Web, application vendors started putting less effort on developing proprietary,
native interfaces, and turned instead to lighter, Web-based user interfaces based on
HTML and associated technologies, which can be displayed in any standard Web
browser. In this case, the content is transmitted over the standard HTTP protocol, so
it becomes fairly easy to write an adapter that opens a HTTP connection to a Web
server, parses the HTML content, and submits new content through the use of HTTP
commands.

In fact, this is the principle behind Web crawling applications and Web robots
that collect data from the Web in an automated way. This can be used for either
useful purposes (such as Web indexing and search) and unfortunately for malicious
purposes as well (such as collecting e-mail addresses for spamming). In enterprise
systems integration, and especially in cases where the integration logic requires
interacting with external systems available on the Web, the use of adapters to
automatically query Web sites and other resources on the Web is a normal procedure
and can be implemented from any programming language.

A simple example is when the postal code for a certain address is required;
typically, this can be fetched from some Web site or service available on the Web,
so an adapter can be written to fetch these data automatically at run-time. What the
adapter would do is open a HTTP connection to the Web site, request the Web page
that contains the data, and parse the HTML content in the response. Alternatively,
if the postal code must be retrieved by filling out some online form, the adapter can
also perform this task automatically by assembling a request with the given postal

100 5 Data Adapters

Web browser

Ref. Descrip�on Price

Bicycle Rockrider 6.068454 250,00

Bicycle Triban 567038 400,00

Bicycle Elops City63885 170,00

Bicycle Subsin Klassik69778 320,00

...... ...

Bicycle Rockrider 6.068454 250,00

Bicycle Triban 567038 400,00

Bicycle Elops City63885 170,00

Bicycle Subsin Klassik69778 320,00

...... ...

Search results:

Database

Web Server

Script

...
SELECT *
FROM Products
WHERE Price <= 500
...

Backoffice system Company website Customers

Fig. 5.3 A sample application for Web scrapping

address, send an HTTP POST command with that request to the Web site, and again
retrieve the response and parse the HTML content.

Here we present a simple example of a Web-based application that serves as
an online catalog for the bicycles being sold in a bike store. The prices are stored
in a database somewhere in the backoffice of the company, but the information is
made available to the public via the company Web site. This scenario is illustrated
in Fig. 5.3, where a script running at the Web server retrieves all bicycle models
that meet certain search criteria, e.g., price below a certain value. The results are
transmitted to the client and rendered in the form of a HTML table.

Listing 5.1 shows an excerpt of C# code that illustrates how to connect to the Web
server and retrieve the Web page (lines 1–5), as well how to extract the results from
the HTML table using regular expressions (lines 7–12). The URL is hard-coded
in line 1 but it could be generated dynamically by string concatenation with values
obtained at run-time. Line 2 creates the HTTP request and line 3 sends the request to
the Web server. Lines 4 and 5 read the response, which contains the HTML code for
the Web page. It is possible that this HTML contains a lot of code that is used only
for the purpose of rendering the Web page. The relevant data will be found inside
a table with three columns and an unknown number of rows. In this example, we
use regular expressions to retrieve all occurrences of the pattern specified in line 7.
Line 8 obtains a collection of all such occurrences, and line 9 iterates through those
occurrences in order to print them to the command line in line 11.

To devise such regular expression, the application developer must retrieve the
Web page manually at least once, in order to inspect its content. In particular,
there should be no other instances of table rows with three divisions (where a table
division is delimited by <td>...</td>) that could be mistakenly interpreted as a result.
If there are, then the regular expression must be changed in order to find only those
table rows that contain the results that are of interest to the application.

Different techniques can be used to parse HTML content to find the desired data.
The simplest way is to use substring search but this can become quite cumbersome
if the HTML code contains nested structures. A more robust and powerful way is to
use regular expressions as in the example of Listing 5.1. Still a third option is to use
an XML parser to find the desired elements, although this will be possible only if
the Web page is well formed, for example by following the XHTML standard.

5.3 Integrating Through Files 101

Listing 5.1 Application code to retrieve Web page and parse HTML content
1 string url = "http://bikestore.com/search.php?maxprice=500";
2 WebRequest request = WebRequest.Create(url);
3 WebResponse response = request.GetResponse();
4 StreamReader reader = new StreamReader(response.GetResponseStream());
5 string html = reader.ReadToEnd();
6
7 Regex rx = new Regex(@"<td>.�</td><td>.�</td><td>.�</td>");
8 MatchCollection matches = rx.Matches(html);
9 foreach (Match match in matches)

10 {
11 Console.WriteLine(match.Value);
12 }

In conclusion, the move towards Web-based user interfaces actually facilitates
the development of adapters at the user interface layer. Over the years, the user
interface went from text-mode to full-fledged native GUIs (which are difficult
to integrate with) and then back to text-mode, Web-based interfaces, with the
important difference that now these UIs rely on standard content and communication
protocols. The focus on standards has also had a profound impact on the remaining
application layers, namely at the data layer, as we will see ahead in Sect. 5.4.

5.3 Integrating Through Files

Some legacy applications have a closed architecture and do not make use of a
standard data layer such as a relational database or, if they use, such database is
not accessible. Still, they read and write data to files that are kept somewhere in
the system, such as in a hard drive or in another storage device. If the location and
content of these files are documented or otherwise known, then this represents an
opportunity for integration that may become easier to implement than integrating
at the user interface layer. If one has access to the data files that the application
is using, then it may be possible to exchange data with the application by having
an adapter read and write data to those files. Like when reading and writing data
to an application database, one must be careful to ensure that such file I/O does not
disrupt the application behavior. Still, if such integration is possible, then it becomes
an interesting possibility to be considered, since most of the current integration
platforms have specialized file adapters to handle a variety of file formats.

The first issue to be considered is whether the legacy application reads and writes
files in text mode or in a binary format. If a binary format is being used, then special-
purpose file adapters and pipelines may be required to correctly serialize and de-
serialize the data. If the binary format is known or documented, it may be laborious
but not at all difficult to develop such an adapter. However, if the binary format is
unknown, then this is usually a sufficient reason to abandon all attempts to integrate
through files and try to integrate at another application layer instead.

102 5 Data Adapters

Ref. Descrip�on Price
Bicycle Rockrider 6.068454 250,00
Bicycle Triban 567038 400,00
Bicycle Elops City63885 170,00
Bicycle Subsin Klassik69778 320,00

68454;Bicycle Rockrider 6.0;250,00
67038;Bicycle Triban 5;400,00
63885;Bicycle Elops City;170,00
69778;Bicycle Subsin Klassik;320,00

68454 Bicycle Rockrider 6.0 250,00
67038 Bicycle Triban 5 400,00
63885 Bicycle Elops City 170,00
69778 Bicycle Subsin Klassik 320,00

Fig. 5.4 Data represented in a database table, in a delimited flat file, and in a positional flat file

The scenario is quite different if the legacy application stores data in text mode.
In this case, even if the file format is not documented, the data content is plainly
readable and it is not difficult to identify and figure out how the application stores
the different data fields. In fact, it is very common for legacy applications to be able
to accept or produce data in text files, and this type of files are typically referred to as
flat files. Applications typically use one of the following two possible mechanisms
to organize their data in flat files: delimited flat files or positional flat files.

5.3.1 Delimited and Positional Flat Files

Delimited flat files separate the data fields with a special character, such as a comma
(,) or a semicolon (;). This allows the application to store data in a structure that is
similar to a relational database table. Basically, each line in the text file contains
a number of comma- or semicolon-separated values. Each line is conceptually
equivalent to a database record, and the file may contain several such lines (records).
In general, each line contains the same number of data fields. This is the basis for
the well-known CSV (Comma-Separated Values) format. However, it is possible to
use any character as delimiter, other than comma and semicolon. The use of a tab
stop, for example, leads to the TSV (Tab-Separated Values) format.

Figure 5.4 shows a set of data represented in a delimited flat file format. Here
we used a semicolon to separate the data fields, in order to avoid a clash with the
comma that is being used in the values for price. Had we used a comma to separate
the values, it would appear that each line had four data fields rather than three. In
practice, in a large data set such clashes cannot be avoided, no matter what delimiter
is chosen. In such cases, one must indicate that a certain occurrence of the delimiter
character is to be interpreted as belonging to the data itself, and not as a separator.
For that purpose, it is common to use an escape character such as a backslash (\)
before the character occurrence. For example, in a comma-separated file the price
value 250,00 would be represented as 250\,00.

The problem with this approach is that it requires inserting escape characters
throughout the data, which may be quite inconvenient in large data sets. In addition,
the escape character itself may happen to occur in the data, meaning that such
occurrences of the escape character must be escaped as well. Another approach
is to enclose the data values with double quotes, such as “250,00.” In this case,
the comma will not be interpreted as a separator since it occurs within the double
quotes. However, if the data itself contains double quotes then these are escaped by

5.3 Integrating Through Files 103

the double quote symbol itself (e.g., ” is represented by ”” inside a data field). This
again requires inserting escape characters through the data.

An alternative approach that does not require the use of special separator symbols
is provided by positional flat files. These specify that each data field begins at a fixed
position in each line. Figure 5.4 shows an example. Here, the first 8 characters are
reserved for the product reference number, the next 26 characters are reserved for
the description field, and the rest of the line is used to store the price. (Given that
the description can be rather long, whereas the price value is more self-contained,
a better solution would be to leave the description for last, where it can occupy an
arbitrary number of characters.) So, the product reference number begins at position
1, the description begins at position 9, and the price begins at position 35. These
positions apply to every line, hence the name of positional flat file.

While positional flat files do not have the sort of problems that occur with special
symbols in delimited flat files, they do have the major disadvantage of limiting the
size or length of each data field. In the above example, the description field is limited
to 26 characters. Anyway, this is not a decision that the systems integrator has to do;
in practice, such decision has already been made by system developers and what is
left to do is to use the correct file adapter to be able to both read and write data files
in the same format as expected by the legacy application.

An important issue to mention about flat files, both delimited and positional,
is that they usually do not include any self-explaining data headers. So, while in
Fig. 5.4 we know that the first data field is the product reference number, the second
data field is the description, and the third is the price, in practical scenarios the
systems integrator has to discover this from some sample data. This becomes an
especially difficult task if the legacy application makes use of some additional data
fields whose purpose is unclear. In this case, a useful idea is to run the application
in several testing scenarios in order to discover the purpose of those data fields.

5.3.2 Using XML Files

One of the major advantages of using XML instead of flat files is precisely the fact
that XML tags serve as self-explanatory labels for the various data fields contained
in the file. In addition, and this is well known, the nesting of XML tags into other
XML tags provides the possibility of building much more complex structures than
in plain text files (this is the main reason why plain text files are often called “flat”
files). A more complex structure will require more complex processing, but this is
made easier by the fact that each data field is delimited by its own tag. A well-
designed XML structure is able to accommodate much more than the flat content
shown in Fig. 5.4. In fact, in an XML file it is possible to associate a record with a
set of other records by nesting their corresponding XML elements.

To begin with a simple example, Fig. 5.5 shows in the left-hand side the same
content of Fig. 5.4 but now represented as an XML file. There is a single root
element called Catalog and below this root element there are several Product

104 5 Data Adapters

Fig. 5.5 A sample XML file together with its corresponding XSD definition

elements. These Product elements all have a similar structure: there is an attribute
called ref to store the product reference number, and there are two nested elements,
Description and Price, to store the remaining data fields. Such nesting of elements
can be used to build complex hierarchical structures in an XML file. In general, an
XML element can have a number of attributes and contain either plain text or other
XML elements.

On the right-hand side of Fig. 5.5 there is another XML document, whose
purpose is to define the structure of the XML document on the left. The document
on the right-hand side has also a root node and several nested elements with different
attributes; so, in essence, it conforms to the general structure of an XML document.
The difference between the XML document on the left-hand side and the one on
the right-hand side is that the elements on the left have been defined by the user
or are application-defined, whereas the elements on the right are defined by the
XML Schema standard (abbreviated as XSD for XML Schema Definition), which
establishes an XML structure that can be used to define other XML documents.

The first element that appears in the XSD definition (xs:schema) provides an
identifier for this definition and also defines where the namespace xs: comes from.
So every element that is preceded by xs: is a building block defined in the XML
Schema standard. Such elements include the xs:schema element itself, the xs:element
elements that appear throughout the definition, as well as xs:complexType, xs:choice,
xs:sequence, xs:attribute, etc. It is curious to note that the XSD element that is used
to define the elements in other XML documents is called element. At first this may
seem confusing, but it is just a result of the fact that XSD allows defining the
structure (elements) of XML documents using some special-purpose elements of
its own.

For example, the definition on the right-hand side of Fig. 5.5 says that any XML
document that is an instance of this definition will have a root element (xs:element)
called Catalog and inside this root element there will be a complex type. Such
complex type includes an arbitrary (unbounded) number of Product elements. In

5.3 Integrating Through Files 105

turn, each of these Product elements is also a complex type that contains a sequence
of two elements: Description and Price, both of type string. The Product element also
contains an attribute ref of type string.

In practice, the XSD definition is a XML document that defines the structure of
another XML document. Because they are both XML documents, and because they
both need to have a clear structure, they make use of the same XML mechanisms.
The structure of any XML document can be defined by an XSD definition. The XSD
definition is itself an XML document whose structure is defined by a standard.

This scenario has not always been like this. In the beginning, when XML was
developed, there was a general idea that the structure of an XML document would
be defined using a special-purpose language called document type definition (DTD)
which was quite different from XML itself. This meant that whoever understood
the mechanisms of XML documents did not necessarily understand how to define
them, if they were not familiar with the language of DTDs. This all changed when
XML-based languages for schema definition were developed; then knowing the
basic mechanisms of XML was enough to both use and define XML documents,
fostering the wide dissemination of XML itself. Currently, XSD definitions are
largely preferred over DTD definitions.

There is also another reason why XML documents are defined using an XML-
based language, and that has to do with the possibility of using the same kind of
parser to process both XML documents and their definitions. If the languages were
different, then it would be necessary to have a parser for XML documents, and
another parser to process a DTD definition. With an XML document being defined
by an XSD definition which is an XML document in itself, it becomes possible to
reuse the same logic to parse both kinds of documents.

Nowadays, XML parsing is needed in so many applications that most pro-
gramming languages already include libraries to parse XML and facilitate the
development of applications that make use of XML documents. In addition, there are
a number of third-party XML parsers that can be used freely. With such possibilities,
it is no surprise that new applications are developed with XML in mind. For older
applications which do not make use of XML, it is relatively easy to convert their
data into an XML structure, regardless of where the data comes from, be it from a
relational database, flat files, or other sources.

5.3.3 Canonical Data Formats

When integrating through files, the same data may have to be converted across
several formats, be it plain text, XML, or other. Also, each application may have
its own format, and for the purpose of implementing the integration logic between
applications, it may be necessary to convert to yet another format that is more
convenient for processing. All of these factors can combine to create a scenario
similar to that of Fig. 5.6, where each application to be integrated has its own
format, and yet for the purpose of integration none of these formats is the most

106 5 Data Adapters

Applica�on
D

Applica�on
C

Applica�on
A

Applica�on
B

Applica�on
E

Integra�on
logic

Format A

Format E

Format D

Format B

Format C

Canonical
format

Fig. 5.6 Use of a canonical
format which all other
formats can be converted into

convenient, hence an additional, canonical format is used. It may be the case that the
canonical format coincides with the format of one of these applications, but usually
the integration logic will have to combine data coming from multiple applications,
and therefore a more complete format may be required to accommodate those data.
This new format that is defined only for the purpose of integration, and which all
other formats can be transformed into, is referred to as a canonical format.

In the scenario of Fig. 5.6, every document coming from each source application
will have to be transformed into the canonical format, and every document going
to each target application will have to be transformed from the canonical format
to the corresponding target format. Such transformations are not depicted here, but
they have been introduced in Sect. 2.2 in connection with BizTalk Server, and in
Sect. 3.1.5 as well, from a conceptual point of view.

The schemas that are defined in a BizTalk solution are usually created to
represent the structure of data coming from or going to external applications. These
will be the schemas of messages that come through receive ports or go through
send ports, so they are equivalent to the proprietary data formats of each application
in Fig. 5.6. On the other hand, there are usually additional schemas in order to
combine and allow processing of data as a whole. These schemas are typically used
only within orchestrations, for the purpose of collecting all the necessary data to
subsequently create new messages to be sent to each application. These schemas
that are hidden within the orchestration but play a key role in implementing the
integration logic can be regarded as canonical formats.

A canonical format may be hidden inside an orchestration for several reasons.
The first is that such format is of no real use for external applications, since it is not
an appropriate target format. The second reason is that, even if external applications
would be able to handle the canonical format, most likely it would be undesirable
to grant access to those data by external applications. After all, a message in a
canonical format may contain private or business data that is not to be disclosed to
external applications; instead, only those data that are necessary for the interaction
are actually transmitted. Figure 5.7 illustrates this concept. A canonical format used
within the orchestration is transformed to a particular request format and sent to

5.4 Database Access APIs 107

Orquestra�on

Canonical
format

Transform

Send

Receive

Transform

Canonical
format

External
applica�onRequest

format

Response
format

Fig. 5.7 Orchestration-level transformation between canonical and target formats

an external application; the application returns a response in a proprietary format,
which is then transformed back into the canonical format.

This kind of logic can be used, for example, in a scenario where it is necessary to
fetch additional data from an external application in order to complete the canonical
message. The data that are used to create the request to the external application
come from the canonical message, but not all data in the canonical message will
end up being included in the request. When the external application returns the
response, the data contained in that response will be used to enrich the content of
the canonical message. This kind of behavior can be seen as an orchestration-level
implementation of the behavior depicted in Fig. 3.7 on page 43. Here, the message
transformations are playing the role of content filter (when creating the request) and
of content enricher (when processing the response).

We will now move to the issue of exchanging data with applications at the data
layer, but using a database rather than files. As we will see, it is possible to retrieve
data from a database in XML (Sect. 5.5) and the same pattern of request–response
applies when an orchestration interacts with a database (Sect. 5.6).

5.4 Database Access APIs

Rather than using files, nowadays most enterprise applications are built on top
of some sort of database where data can be stored and managed with improved
reliability and efficiency. The use of a database relieves an application from having
to deal with several concerns regarding data persistence, such as where and how data

108 5 Data Adapters

is stored. Instead, the application just interacts with the database, and the database
takes care of committing and retrieving data from persistent storage.

For applications that are built on top of a database, the most common scenario
is to have a relational database and the possibility of interacting with this database
using SQL. In this context, SQL is just the query language; i.e., it is the language
that the application uses to specify the data that it wants to read or write. Besides
specifying the queries in SQL, the application must have some way of submitting
the queries to the database system and to retrieve the results. These mechanisms are
provided by a database API, which is a set of functions that the database system
provides to interact with client applications.

Now, the interesting thing about database APIs is that they have been standard-
ized. For example, the Open Database Connectivity (ODBC) standard defines a
programming interface for use with the C language. This API is independent of any
particular database system, and an application written in C can use ODBC to query
data from any database system that implements the standard. This allows application
developers to replace the underlying database system without having to change
the application code, since the interface to the database system remains the same.
A similar database API exists for Java-based applications, and it is called JDBC
(Java Database Connectivity). Today, virtually every programming language has
one or more standard APIs through which applications written in that programming
language can interact with a relational database system.

Despite the fact that there are different database APIs for every programming
language, these APIs share some common concepts. Therefore, using a database
API in one programming language versus using a different database API in another
programming language becomes mainly a matter of syntax. Typically, interacting
with a relational database system through a database API requires the following
steps, regardless of the actual API being used:

1. Opening a connection to the database system—This requires specifying the
machine where the database system is located (it is usually in a remote machine,
possibly using a different operating system), as well as a username, password,
and the name of the database that the application needs to use or access.

2. Preparing the SQL query to be sent to the database—Sometimes, the query is
fixed and can be hardcoded in the application itself. Other times the query is to
be built dynamically according to some user input, as in Fig. 5.3 on page 100
where the products to be returned are only those with a price up to 500. In this
case, the user specifies a price limit and that limit must be taken into account in
the query; therefore, the application can only build the exact query at run-time.

3. Sending the SQL query to the database—This usually consists in calling a
specific function of the database API in order to execute the desired SQL query.
The exact function to be called may depend on the type of query being performed.
For example, a SELECT statement requires calling a function that returns a cursor
to fetch the results. On the other hand, an INSERT, UPDATE or DELETE can be
done with another function that returns only a success code.

5.4 Database Access APIs 109

4. Fetching and iterating through the results—A fundamental but often poorly
understood feature of database APIs is the need to iterate through the results
rather than fetching everything at once. When querying a database, the result is
a relation with data that may not fit the working memory (after all, databases are
typically used to store large amounts of data). For this reason, the application is
given a cursor which can be used to iterate through the results and fetch each row
at a time. Then, from each row, the values for each column can be easily accessed
by name or position index.

5. Closing the connection—This seems trivial, and indeed it is just a matter
of calling the appropriate function, but the absence of this step can have
dramatic consequences. Database systems have a maximum number of possible
connections, and therefore applications must be rather conservative and careful
in making use of those connections. Each application that opens a connection
should also close it; otherwise, other applications (or other instances of the same
application) may be unable to connect to the database, which may cause them to
crash or bring them to a standstill. Some database systems will close connections
that remain idle for a long time, but even then there may be times at which
the database is inaccessible to other applications. Also, even if the connection
limit can be increased indefinitely, the underlying operating system will reach its
limits when the number of connections becomes too high. For these reasons, it is
imperative that application programmers (and system integrators as well) make
sure that all database connections will eventually be closed. In object-oriented
programming languages with automated garbage collection (e.g., Java) this may
be easier to ensure, since it is just a matter of inserting a call to the appropriate
function in the class destructor. In any case, either implicitly or explicitly, the
API function that closes the database connection must be invoked.

Interacting with a database through an API can therefore be summarized as
comprising the following five main steps: opening the connection, preparing the
query, executing the query, iterating through the results, and closing the connection.
As explained above in step 2, usually the desired query is known beforehand, except
for one or more parameters that the user will provide at run-time. After constructing
the SQL query as a string (step 2), the query is sent to the database system where it
will be compiled and executed (step 3). In case it is necessary to perform the same
query multiple times with different parameter values, then it becomes inefficient to
compile the query for every run, when only some parameter value has changed. In
this case, it is possible to use prepared statements. A prepared statement is a SQL
query whose overall structure is known but which includes some parameters that
can be set at run-time. For example, the query in Fig. 5.3 on page 100 could be
implemented as a prepared statement with the form:

SELECT * FROM Products WHERE Price <= ?

where the question mark is a placeholder for a parameter value. This statement can
be compiled by the database beforehand, so that in subsequent executions all that
is left to do is to set the parameter values and execute the statement without having

110 5 Data Adapters

to compile it again. A prepared statement is therefore a precompiled SQL query
which can be executed efficiently multiple times with different parameter values.
The use of prepared statements does not change the procedure described above in
steps 1–5. Rather, it is a different way of performing steps 2–3, where in step 2 the
application prepares the SQL statement and sets its parameters, and in step 3 the
application sends the SQL statement for execution in the database system. There
are specialized functions to perform these tasks in every database API.

The above steps 1–5 describe the main procedure through which an application
can connect and interact with a database, and software engineers make use of
this procedure to develop applications. Alternatively, in some object-oriented
programming languages it is possible to make use of object-relational mappings
that provide easier access to the data from the application code. One way of creating
such mapping is through the use of Language Integrated Query (LINQ) in C#, as
we will see ahead. In any case, the mechanisms that are available to applications
developers can also be used by system integrators to integrate with an application
at the data layer. Therefore, a study of the main database APIs is of interest also to
system integrators. In the following paragraphs, we will present a brief overview of
the main database APIs, mainly from the perspective of the steps described above.
The fact is that it is possible to recognize these same steps when working with
different database APIs in several programming languages, be it C, Java, C#, PHP,
etc.

5.4.1 Using ODBC

Listing 5.2 illustrates the kind of application code that is necessary in order to
perform a database query using ODBC. The code is written in C++ and was
developed for the Windows platform. For those who are familiar with Windows
programming, it is not surprising to find several handles throughout the code, such
as HENV, HDBC, and HSTMT. Basically, a handle is similar to a pointer to an object
that has been created inside the Windows kernel. There are many types of objects
that can be created in this way, and hence there are different types of handles as
well. In the example of Listing 5.2 we see a handle for the OBDC environment
(HENV in line 1), a handle for a database connection (HDBC in line 4), and a
handle for a SQL statement (HSTMT in line 8). These objects exist in the Windows
kernel while the program is running and are eventually freed in lines 32, 34 and
35, respectively. The ODBC API is not object-oriented; it was originally developed
having the C language in mind, and therefore these handles are being passed as
input parameters to function calls such as SQLConnect() (line 6), SQLExecDirect()
(line 13), SQLBindCol() (lines 22–24), and SQLFetch() (line 26). The ODBC API
includes these and other functions.

In Listing 5.2 the program begins by retrieving a handle to the ODBC envi-
ronment (lines 1–2). This is basically an initialization of the ODBC driver within
the application. In lines 4–6, the program creates and opens a connection to the

5.4 Database Access APIs 111

Listing 5.2 Application code to perform a database query through ODBC using C++
1 HENV env;
2 SQLAllocEnv(&env);
3
4 HDBC conn;
5 SQLAllocConnect(env, &conn);
6 SQLConnect(conn, "BikeStore", SQL_NTS, "user", SQL_NTS, "password", SQL_NTS);
7
8 HSTMT stmt;
9 SQLAllocStmt(conn, &stmt);

10
11 char sqlquery[] = "SELECT � FROM Products WHERE Price <= 500";
12
13 RETCODE error = SQLExecDirect(stmt, sqlquery, SQL_NTS);
14
15 if (error == SQL_SUCCESS)
16 {
17 int ref;
18 char description[80];
19 float price;
20 int lenOut1, lenOut2, lenOut3;
21
22 SQLBindCol(stmt, 1, SQL_C_SLONG, &ref, 0, &lenOut1);
23 SQLBindCol(stmt, 2, SQL_C_CHAR, description, 80, &lenOut2);
24 SQLBindCol(stmt, 3, SQL_C_FLOAT, &price, 0, &lenOut3);
25
26 while(SQLFetch(stmt) == SQL_SUCCESS)
27 {
28 printf("%d %s %f", ref, description, price);
29 }
30 }
31
32 SQLFreeStmt(stmt, SQL_DROP);
33 SQLDisconnect(conn);
34 SQLFreeConnect(conn);
35 SQLFreeEnv(env);

database system. For this purpose, it is necessary to provide the name of the ODBC
data source, together a username and password, to the SQLConnect() function. (In
Windows, this ODBC data source must have been previously created and configured
in the operating system, through the control panel.) The values for these parameters
are provided as null-terminating strings, hence the use of SQL_NTS for each of them.
Lines 8–9 create a statement; this could have been a prepared statement but instead
the program here uses a hardcoded SQL query (line 11). In line 13, the query is
executed on the database without any further preparation.

Assuming that the query runs successfully (line 15), lines 26–29 contain a loop
that fetches each row from the results and prints the data to the standard output. The
actual values being printed in line 28 are those of a set of local variables defined
in lines 17–19, namely ref, description, and price. These variables are bound to the
three columns of each row in the results (lines 22–24). The function SQLBindCol()
establishes a binding between a table column and a local variable, so that each time
a new row is fetched from the table, the variable is updated with the value in that
column. Here, “table” refers to the results of a statement that has been previously
executed. The binding mechanism is illustrated in Fig. 5.8.

112 5 Data Adapters

Bicycle Rockrider 6.068454 250,00

Bicycle Triban 567038 400,00

Bicycle Elops City63885 170,00

Bicycle Subsin Klassik69778 320,00

...... ...

SQLBindCol()

ref

SQLBindCol()

descrip�on

SQLBindCol()

price

SQLFetch()

SQLFetch()

SQLFetch()

ref = 63885
descrip�on = ‘Bicycle Elops City’
price = 170,00

Ref. Descrip�on Price

Fig. 5.8 Binding between table columns and local variables in ODBC

The function SQLBindCol() in lines 22–24 of Listing 5.2 seems rather complicated
only because of the number of parameters it requires. The first parameter is a handle
to the statement, the second parameter is the column index, and the third parameter
specifies the C-language data type that the incoming data should be converted to. In
ODBC, there is a one-to-one mapping between the data types that can be used in a
database and the corresponding C data types, so it is important to use local variables
of a type that is compatible with the data types used in the database. Assuming that
the product reference number is stored as an integer, the description is stored as
a string, and the price is stored as a real number in the database, then one should
choose appropriate C types as in lines 17–19 of Listing 5.2.

The fourth parameter of SQLBindCol() is a pointer to the local variable. The fifth
parameter is the maximum number of bytes that can be stored in the local variable,
and it is used only for data with variable length, such as character or binary data.
The sixth and final parameter in SQLBindCol() will contain the actual number of
bytes that have been written to the local variable. That result will be stored in the
variables lenOut1, lenOut2, and lenOut3, which have been declared in line 20.

In line 33, the program closes the connection to the database.
In addition to the basic features presented here, the ODBC API provides

several other features that have been introduced over successive versions of the
standard. For example, it is possible to run and manage database transactions using
ODBC. The AUTO_COMMIT option that is usually switched on by default in most
database systems can be switched off with a call to SQLSetConnectOption(conn,
SQL_AUTOCOMMIT, 0). Transactions can be committed or aborted with SQL-
Transact(conn, SQL_COMMIT) and SQLTransact(conn, SQL_ROLLBACK), respectively.
Furthermore, ODBC has support for retrieving information (metadata) about the
database or table schema, for example by calling SQLDescribeCol() to obtain the
name and type of a table column. These and other functions can be invoked using a
similar logic to the function calls in the example of Listing 5.2.

5.4 Database Access APIs 113

Listing 5.3 Application code to perform a database query through JDBC using Java
1 try
2 {
3 Class.forName("com.mysql.jdbc.Driver");
4 Connection conn = DriverManager.getConnection(
5 "jdbc:mysql://localhost/bikestore", "user", "password");
6
7 Statement stmt = conn.createStatement();
8
9 ResultSet rset = stmt.executeQuery(

10 "SELECT � FROM Products WHERE Price <= 500");
11
12 while(rset.next())
13 {
14 System.out.println(
15 rset.getInt("Ref") + " " +
16 rset.getString(2) + " " +
17 rset.getFloat("Price"));
18 }
19 }
20 catch(SQLException sqle)
21 {
22 System.out.println("SQLException: " + sqle);
23 }
24 finally
25 {
26 stmt.close();
27 conn.close();
28 }

5.4.2 Using JDBC

Java Database Connectivity (JDBC) is a Java-based API to integrate with relational
database systems. Much like ODBC, it supports querying and modifying data as
well as retrieving metadata. Communication with the database system follows the
same steps as before, namely: opening a connection, creating a query statement,
executing the statement on the database, retrieving the results, and closing the
connection. In many respects, JDBC can be regarded as the Java counterpart of
ODBC. Perhaps the most noticeable differences are in the fact that JDBC is an
object-oriented API and in the fact that JDBC uses exception handling to deal with
errors.

Listing 5.3 illustrates the application code that is needed to interact with a
database through JDBC. First of all, it is necessary to load the JDBC driver; this
is done with a call to Class.forName() in line 3, which causes the specified Java class
(i.e., the JDBC driver) to be instantiated dynamically, at run-time. Lines 4–5 open
the connection to the database by specifying a URL with the location and name of
the database, along with a username and password for authentication. Line 7 creates
a statement; this could have been a prepared statement, but for the sake of simplicity
there are no parameters here, as the query is hardcoded in line 10. The fact that the
statement is created from the connection object (line 7), and the query is executed
through the statement object (line 9) illustrates how an object-oriented API such as
JDBC makes it possible to write much clearer code than with ODBC.

114 5 Data Adapters

Listing 5.4 Example of a prepared statement in JDBC
1 PreparedStatement stmt;
2 stmt = conn.prepareStatement(
3 "SELECT � FROM Products WHERE Price <= ?");
4
5 stmt.setFloat(1, 500);
6
7 ResultSet rset = stmt.executeQuery();
8 while(rset.next())
9 {

10 System.out.println(
11 rset.getInt("Ref") + " " +
12 rset.getString(2) + " " +
13 rset.getFloat("Price"));
14 }
15
16 stmt.close();

The method executeQuery() (line 9) returns a reference to another object of type
ResultSet. This is basically an iterator that works as a cursor over the results of
the query. The iterating loop in lines 12–18 fetches each row at a time and prints
the results to the standard output. In each row there are three column values: Ref,
Description, and Price. Lines 15 and 17 retrieve the column value by name, whereas
line 16 retrieves the value by column index. This is just to illustrate that column
values can be retrieved in one of these ways.

In lines 20–23, the program contains a catch block that is intended to handle
any JDBC exception that may occur during program execution. The most common
error is when it is not possible to connect to the database (the server may be down,
the network may be down, the maximum number of connections may have been
exceeded, the database may have been dropped, the user may have lost privileges,
etc.). In this example, the program just prints the exception to standard output. In any
case, with or without the occurrence of exceptions, the database connection must be
closed. This is ensured by the finally block in lines 24–28: this block always executes,
regardless of whether an exception has occurred or not. Even if the statement or
connection has been closed before, attempting to close it again will not cause any
harm, since the JDBC standard defines this situation as a no-op (no operation).

Listing 5.4 illustrates the use of a prepared statement in JDBC. Here, rather than
creating a regular Statement object (as in line 7 of Listing 5.3), the program creates a
PreparedStatement (line 1 of Listing 5.3). This object will be used to prepare a query
(line 2) with a single parameter, as indicated by the question mark in the expression
of line 3. To set this parameter, one must call an appropriate function, depending
on the parameter type. In line 5, the program sets parameter 1 to 500, which is
given as float value through setFloat() for compatibility with the column type in the
database table. The parameter numbered 1 corresponds to the first question mark in
the prepared statement; should there be more parameters in the prepared statement,
these would be referred to as 2, 3, etc. In line 7, the program executes the query;
there is no need to provide an expression here, since it has been already prepared
through the statement. Then in lines 8–14 the program iterates through the results in

5.4 Database Access APIs 115

the same way as before. Line 16 closes the statement; this has the effect of releasing
any resources associated with this statement, as well as closing the result set that
was obtained from executing the statement.

5.4.3 Types of JDBC Drivers

To connect with a particular database system using JDBC, it is necessary to have an
appropriate driver. Usually, this driver is provided by the database system vendor.
The need for an application to use a JDBC driver was only briefly mentioned in
Sect. 5.4.2. However, in Listing 5.3 it is apparent that the program is making use of
a JDBC driver to connect to MySQL (lines 3–5). Although this is of no concern to
the application, there are actually different types of JDBC drivers. Being aware of
the different kinds of drivers is useful to understand how database APIs are built, and
this view can serve as a source of inspiration when developing application adapters.

Basically, JDBC drivers are built in layers, and the different types of JDBC
drivers can be distinguished by the number of software layers that exist between the
client application and the database system. Figure 5.9 illustrates the different types
of JDBC drivers. A JDBC type 1 driver is a driver that relies on a JDBC-ODBC
bridge to connect to the database system. The JDBC API is indeed quite similar in
its usage logic to the ODBC API, so creating a bridge (or adapter) between the two
is not too difficult, and several implementations are already available. Therefore,
this is perhaps the easiest way to develop a JDBC driver, provided that an ODBC
driver is available for the database system.

A JDBC type 2 driver is a driver that does not rely on ODBC or other third-party
drivers. Instead, the type 2 driver is a layer of Java code that can directly invoke the
client API of the database system. In other words, most database system have their
own client APIs; an ODBC or a JDBC type 2 driver is a software layer that knows
how to communicate with the database system using its client API, but exposes a
standard API such as ODBC or JDBC to the outside world. For an application that
uses a JDBC type 2 driver, this usually requires a client-side library to be installed
in the local machine. This client-side library will connect to the database system on
a remote machine through some network protocol.

A JDBC type 3 driver is used in a scenario where there is no database
client software installed in the local machine. Rather, the JDBC type 3 driver
communicates through the network with the remote machine where the database
system, or an application server that connects to the database system, is available.
If there is an application server between the client and the database system, then
the communication with the application server can be made independently of the
specific database system being used. However, this requires the application server
to use some driver to connect to the database system, so for the application it seems
that it is connecting directly to the database system, when in fact the requests are
going through the application server and its own database driver.

116 5 Data Adapters

JDBC driver (Type 1)

Na�ve API

Network protocol

Client API

ODBC driver

JDBC-ODBC bridge

JDBC driver

JDBC driver (Type 2)

Na�ve API

Network protocol

Client API

JDBC driver

JDBC driver (Type 3)

Na�ve API

Network protocol

JDBC driver

JDBC driver (Type 4)

Na�ve API

JDBC driver

Database system

JDBC API

Java applica�on

Fig. 5.9 Different types of JDBC drivers

A JDBC type 4 driver is able to perform function calls directly on the database
system using its own native, proprietary protocol. A JDBC type 4 driver converts
JDBC function calls into database function calls. It is therefore database-specific,
and it provides the best performance, since there are no other software layers
between the client application and the database system. Typically, a type 4 JDBC
driver can be provided by the database vendor alone. For example, Microsoft
provides a JDBC type 4 driver for their SQL Server database system.

5.4.4 Database APIs in Windows

As with the different types of JDBC drivers, in the Windows platform there are also
several possible ways of connecting an application to a database system through
different stacks of software layers. The fundamental database API and the first to be
available on Windows was ODBC, but over time additional APIs have been included
to facilitate application development. Some of the newer database APIs that are
available on Windows were developed to provide a uniform interface not only to
database systems but also to other data sources, such as message stores, directory
services, spreadsheet documents, and several kinds of legacy data. The idea was that
applications could use the same API to query different data sources regardless of the
actual system the data are stored in. The API that was developed to implement this

5.4 Database Access APIs 117

Windows Data Access Components

Na�ve Client API

Database system, message store, directory service, document, legacy data, etc.

Na�ve applica�on

ODBC

OLE DB

ADO ADO.NET

ODBC

.NET applica�on

Fig. 5.10 Database APIs in the Windows platform

idea is known as OLE DB and, contrary to what the name suggests, it can be used
to query data sources other than database systems.

Figure 5.10 illustrates the software stack in the Windows platform. The ODBC
drivers work with database systems only, and they use the native API of those
systems to implement and expose the standard ODBC API to applications. For data
sources that have no ODBC driver, the application can interact with them through
their native client APIs, as shown in the far left of Fig. 5.10 (e.g., it is possible to
use a native API to retrieve data from a spreadsheet file).

Besides the native client API and the ODBC API, the third main option in
the Windows platform is to use the OLE DB API. In the terminology of OLE
DB, the “driver” (i.e., the software component that implements the OLE DB API
and provides access to the data source) is referred to as a provider and the client
application that needs to access the data is referred to as a consumer. Originally,
OLE DB was meant as an alternative to ODBC, since an OLE DB provider can be
implemented directly on top of a native client API, and today there are OLE DB
providers for a wide range of systems. However, there is also an OLE DB provider
for ODBC, which means that OLE DB can work on top of ODBC to provide access
to all ODBC data sources. Both of these options are illustrated on the left side of
Fig. 5.10.

A fourth database API that is available on Windows is ADO, which is basically a
simplification of OLE DB to facilitate the development of database applications in
programming languages other than C/C++. Due to the intricacies of the Component
Object Model (COM) in the Windows platform, the OLE DB API is accessible
to native applications written in C/C++ only. However, there are several other
programming languages in the Windows platform, and these are unable to work with
interface pointers and other advanced COM features required to make use of OLE
DB. Therefore, the ADO API was developed to make OLE DB providers accessible
to those languages. For these reasons, ADO works exclusively on top of OLE DB.

118 5 Data Adapters

Listing 5.5 Example of using the .NET data provider for SQL Server in C#
1 using System.Data.SqlClient;
2
3 SqlConnection conn = new SqlConnection(
4 "Data Source=localhost;Integrated Security=SSPI;Initial Catalog=BikeStore");
5
6 conn.Open();
7
8 string sql = "SELECT � FROM Products WHERE Price <= 500";
9

10 SqlCommand cmd = new SqlCommand(sql, conn);
11
12 SqlDataReader reader = cmd.ExecuteReader();
13 while (reader.Read())
14 {
15 Console.WriteLine("{0} {1} {2}", reader["Ref"], reader["Description"], reader["Price"]);
16 }
17
18 reader.Close();
19 conn.Close();

5.4.5 Database Access in the .NET Framework

A different type of applications that exist in the Windows platform are .NET
applications. Rather than being compiled to native code, .NET applications are
compiled to an intermediate language that runs in a controlled environment—
the .NET framework—which provides advanced features such as code safety,
garbage collection, and exception handling. These .NET applications have their
own database API, which is called ADO.NET. Despite the similarity in the
designations of ADO and ADO.NET, the latter is a different API and has a separate
implementation from ADO. The implementation of ADO.NET includes a data
provider for OLE DB, a data provider for ODBC, and a couple of data providers for
specific database systems, namely SQL Server and Oracle. Therefore, using these
providers that are already included in the .NET framework, a .NET application can
choose whether to connect to a data source through OLE DB, ODBC, or a native
client API. These possibilities are illustrated in the right-hand side of Fig. 5.10.

In any case, the API that the .NET application needs to use is very similar in
terms of function calls. In essence, only the software library to be included (in order
to select the appropriate data provider) is different. Listing 5.5 illustrates the use of
the .NET data provider for SQL Server. Basically, the program opens a connection
(lines 3–6), creates a SQL query (lines 8–10), executes the query (line 12), iterates
through the results (lines 13–16), and finally closes the connection (lines 18–19).

The ADO.NET API is object-oriented and in the particular case of the provider
for SQL Server (included in line 1), all class names are preceded by the “Sql”
prefix (e.g., SqlConnection, SqlCommand, and SqlDataReader). Should the program
make use of the data provider for ODBC, the namespace to be included would
be System.Data.Odbc and the class names would be preceded by “Odbc” (e.g.,
OdbcConnection, OdbcCommand, and OdbcDataReader). The same applies to the

5.4 Database Access APIs 119

OLE DB provider, whose namespace is System.Data.OleDb and the prefix is “OleDb.”
Apart from the change in names, the program logic would be exactly the same.

5.4.6 Using LINQ

Up to this point, we have seen how it is possible to use different database APIs in
different programming languages to execute a SQL query over a database. For this
purpose, the SQL query is embed in the application code. One problem with these
approaches is that there is no checking of the SQL query at compile time; i.e., the
application code may compile successfully and yet the SQL query embedded in the
code may be wrong or may not work, something that can only be discovered at
run-time, when the application is already running.

This problem has led IT vendors to think about ways to develop applications in
which both the application code and the SQL queries embedded in the code can
be compiled seamlessly in one step. In the .NET framework, this effort resulted in
the development of LINQ as an extension to .NET languages such as C#. Basically,
LINQ extends C# with SQL-like operators in such a way that the query is written in
C# code and can be checked by the compiler.

For this to happen, the compiler must be aware of the data structure that is being
accessed, and therefore the data schema must be somehow “lifted” to the level of
application code. This is achieved by an automated procedure that inspects the data
source and generates a number of C# classes to represent the data structure. The
query can then be written in the programming language as an operation over those
classes. Since this data abstraction mechanism is an integral part of LINQ, this
technology is regarded as a kind of object-relational mapping.

The first step when using LINQ is to create a connection to the data source. (Here
we are assuming that the data source is a relational database, but in practice LINQ
can be used to connect to a variety of data sources other than relational databases,
such as XML files, CSV files, object-oriented databases, and online services.) From
this connection, an automated procedure associated with LINQ is able to inspect
the data source and generate a number of classes to represent the data structure. The
first class to be created is a DataContext. This class connects to the data source and is
able to retrieve the entities (i.e., tables) found in the data source. Then there is also
a separate class to represent each of these entities. The attributes of these classes
correspond to the columns in a database table. Querying these attributes equates to
querying the corresponding database table.

All these classes are generated automatically by LINQ and they can be used
directly in application code. Listing 5.6 provides an example. In line 3, the
program instantiates the BikeStoreDataContext which is a subclass of DataContext
generated automatically by LINQ. Instantiating this class is equivalent to opening
the connection to the database. Then lines 5–8 contain the query. There are no string
delimiters here, since the query is written in C# (or an extension thereof). The query

120 5 Data Adapters

Listing 5.6 Example of querying a database using LINQ in C#
1 using System.Linq;
2
3 BikeStoreDataContext db = new BikeStoreDataContext();
4
5 var query =
6 from product in db.Products
7 where product.Price < 500
8 select product;
9

10 foreach(var result in query)
11 {
12 Console.WriteLine("{0} {1} {2}", result.Ref, result.Description, result.Price);
13 }

syntax is reminiscent of SQL: the select, from, and where clauses are present, albeit
in a different order, where the select comes last.

In line 6, product is an object that represents a row in table Products. This table
is accessed via the DataContext object; hence the use of db.Products, where db is the
DataContext object created earlier in line 3. Line 7 specifies that only those rows with
price up to 500 will be returned, where Price is an attribute of the product object. The
complete product object, with all its attributes, is returned as a result in line 8. Then
lines 10–13 show the typical loop that is used to iterate through the results. Using
result as an alias for every returned record, line 12 just prints each column value to
the standard output. Note that, here too, the column values are being accessed as
attributes of the result object.

Overall, the program in Listing 5.6 appears to be shorter and simpler than
previous examples with other APIs, but it must be recalled that there is an additional
amount of automatically generated code that is not shown here. More importantly,
in contrast with previous examples there is no embedded SQL code in Listing 5.6;
rather, the query is specified using language constructs in lines 5–8. This means that
the query is assured to be well formed at compile time, even before the program is
run. Naturally, this kind of mechanism introduces new possibilities and improved
reliability to programs and adapters for integration at the data layer.

5.5 Returning Data in XML

In modern integration platforms, the integration logic is implemented using mes-
sage brokers and orchestrations to coordinate the exchange of messages between
applications. To facilitate processing, these messages are usually expressed in XML.
In Sect. 5.3.2 we have already discussed the advantages of using XML when
compared to other formats, namely flat files. However, when describing the database
APIs for integration at the data layer in Sect. 5.4, in every example the program just
fetches the results one by one with a loop and prints the data to standard output
without any special format. Clearly, for the purpose of integration it would be useful
if these data would come out in some sort of XML structure.

5.5 Returning Data in XML 121

Listing 5.7 Example of using RAW mode
1 SELECT �
2 FROM Products
3 WHERE Price <= 500
4 FOR XML RAW
5
6 <row Ref="68454" Description="Bicycle Rockrider 6.0" Price="250.00" />
7 <row Ref="67038" Description="Bicycle Triban 5" Price="400.00" />
8 <row Ref="63885" Description="Bicycle Elops City" Price="170.00" />
9 <row Ref="69778" Description="Bicycle Subsin Klassik" Price="320.00" />

One possibility would be to write the program in such a way that it produces
an XML structure as it loops through the results. This would require defining an
appropriate XML structure for the data that is being retrieved from the database, and
also making sure that the program would create and fill the XML structure correctly.
Fortunately, there is no need to go through such effort since most database systems
provide the possibility of returning the query results in XML form. Such feature is
not yet standardized, so the functionality that allows data to be returned in XML
is implemented in different ways across database systems from different vendors.
Here we will focus on the example of SQL Server and on the SQL extensions that
it provides to return data in XML.

Conceptually, the mechanism provided by SQL Server to return data in XML
form is quite simple. Basically, it is a matter of inserting the clause FOR XML at
the end of the SQL statement (SELECT ... FROM ... WHERE ... FOR XML ...). Using
the FOR XML clause, it is possible to make the database system generate XML in
several different ways. The problem with this approach is that, while it is easy to get
the data in some XML structure generated automatically by the database system,
it can get fairly complicated for the client application to have full control over that
XML structure so as to specify how exactly that structure should be.

For this reason, SQL Server provides four different modes to generate the XML
structure: FOR XML RAW, FOR XML AUTO, FOR XML EXPLICIT, and FOR XML PATH.
While the first two modes (RAW and AUTO) are intended to let the database system
decide the XML structure to be returned, the last two modes (EXPLICIT and PATH)
provide the client with full control over that XML structure. However, the latter are
significantly more complicated to use than the former, so we will dedicate some
attention to each of these modes in the following paragraphs.

5.5.1 Using the RAW Mode

The RAW mode is the simplest option of all: it just generates one <row> element
for each record in the results of the SQL query. Listing 5.7 shows an example of a
query using FOR XML RAW (lines 1–4) together with the results (lines 6–9). In the
results, there is one XML element per record and the column values are included as
attributes of that element. These attributes have been given the same names as the
corresponding table columns.

122 5 Data Adapters

Listing 5.8 Example of using RAW mode with ELEMENTS
1 SELECT �
2 FROM products
3 WHERE Price <= 500
4 FOR XML RAW(’product’), ELEMENTS
5
6 <product>
7 <Ref>68454</Ref>
8 <Description>Bicycle Rockrider 6.0</Description>
9 <Price>250.00</Price>

10 </product>
11 <product>
12 <Ref>67038</Ref>
13 <Description>Bicycle Triban 5</Description>
14 <Price>400.00</Price>
15 </product>
16 <product>
17 <Ref>63885</Ref>
18 <Description>Bicycle Elops City</Description>
19 <Price>170.00</Price>
20 </product>
21 <product>
22 <Ref>69778</Ref>
23 <Description>Bicycle Subsin Klassik</Description>
24 <Price>320.00</Price>
25 </product>

The RAW mode can be customized in order to change the name of the <row>
element, and also to insert the column values as sub-elements rather than attributes
of the <row> element. Listing 5.8 illustrates the use of both options. Again, the query
(lines 1–4) is presented together with the corresponding results (lines 6–25). Here,
the row element <product> has been given the name specified in the FOR XML clause,
and the use of ELEMENTS has the effect of including the column values as sub-
elements of <product>. This provides some, although limited, degree of control over
the XML structure generated by the database system.

5.5.2 Using the AUTO Mode

The AUTO mode is intended to let the database system decide on a proper XML
structure for the output data. This XML structure will be based on the actual data
to be returned and also on the way the query is specified. Using the AUTO mode in
a trivial query, such as the one that has served as an example before, is illustrated
in Listing 5.9. Apparently, the difference towards the RAW mode (Listing 5.7) is
not very meaningful, since only the row element has been renamed to Products.
However, the fact that this row element has been given the same name as the table
that appears in the query is already a sign of how the AUTO mode operates.

The full potential of the AUTO mode can only be appreciated in more complicated
queries, where the database systems succeeds in accommodating the output data in
an appropriate XML structure. For example, a query which involves a join of two
tables, where each record of the first table is paired with multiple records of the

5.5 Returning Data in XML 123

Listing 5.9 Example of using AUTO mode
1 SELECT �
2 FROM Products
3 WHERE Price <= 500
4 FOR XML AUTO
5
6 <Products Ref="68454" Description="Bicycle Rockrider 6.0" Price="250.00" />
7 <Products Ref="67038" Description="Bicycle Triban 5" Price="400.00" />
8 <Products Ref="63885" Description="Bicycle Elops City" Price="170.00" />
9 <Products Ref="69778" Description="Bicycle Subsin Klassik" Price="320.00" />

second table, is likely to result in the creation of an element for each record of the
first table with several sub-elements for each record in the second table.

We can build such an example by adding another table to our sample database.
Up to this point we have been using a Products table with columns Ref for product
reference number, Description for the product description, and Price. Assuming that
the company has several stores, we can add a table to keep the stock level of
each product in each store. This new table will be called Stocks and it will have
the column Ref for product reference number, the column Store to identify each
store, and the column Available to record the available quantity of each product
in each store. The resulting database schema then comprises the following tables:
Products(Ref, Description, Price) and Stocks(Ref, Store, Available).

To illustrate the use of the AUTO mode, we will retrieve the available quantity
for each product in each store. To make the results more easily understandable, we
will include the product description along with its reference number. The example is
presented in Listing 5.10 where the query is in lines 1–4 and the results are in lines
6–25. Here it is apparent that there are two sets of row elements: those that come
from the Products table, and those that come from the Stocks table; and since there
are several records of Stocks associated with each record of Products (a consequence
of the fact that each product is available in multiple stores), the <Stocks> elements
are nested in the <Products> elements. As before, the system has decided to place
column values as attributes with the same name in each of those elements.

For comparison, Listing 5.11 presents the results (in lines 6–17) that would
be obtained using the RAW mode. Here, there is no clue about the one-to-many
relationship between Products and Stocks that is represented hierarchically in
Listing 5.10. Rather, the query in Listing 5.11 returns a flat structure where each
<row> element corresponds to a different record in the results. Even if RAW mode is
used together with ELEMENTS as in Listing 5.8, this does not produce the results of
Listing 5.10; rather, the attributes in lines 6–17 of Listing 5.11 become sub-elements
but there is no nesting of elements from Stocks into elements from Products.

5.5.3 Using the EXPLICIT Mode

The EXPLICIT mode is one of two modes (together with PATH) that provide complete
control over the XML structure to be returned by the SQL query. Of all the four

124 5 Data Adapters

Listing 5.10 A second example of using AUTO mode
1 SELECT Products.Ref, Products.Description, Stocks.Store, Stocks.Available
2 FROM Products, Stocks
3 WHERE Products.Ref = Stocks.Ref
4 FOR XML AUTO
5
6 <Products Ref="63885" Description="Bicycle Elops City">
7 <Stocks Store="Main" Available="0" />
8 <Stocks Store="City 1" Available="2" />
9 <Stocks Store="City 2" Available="3" />

10 </Products>
11 <Products Ref="67038" Description="Bicycle Triban 5">
12 <Stocks Store="Main" Available="2" />
13 <Stocks Store="City 1" Available="4" />
14 <Stocks Store="City 2" Available="1" />
15 </Products>
16 <Products Ref="68454" Description="Bicycle Rockrider 6.0">
17 <Stocks Store="Main" Available="1" />
18 <Stocks Store="City 1" Available="3" />
19 <Stocks Store="City 2" Available="0" />
20 </Products>
21 <Products Ref="69778" Description="Bicycle Subsin Klassik">
22 <Stocks Store="Main" Available="5" />
23 <Stocks Store="City 1" Available="3" />
24 <Stocks Store="City 2" Available="4" />
25 </Products>

Listing 5.11 The previous example in RAW mode
1 SELECT Products.Ref, Products.Description, Stocks.Store, Stocks.Available
2 FROM Products, Stocks
3 WHERE Products.Ref = Stocks.Ref
4 FOR XML RAW
5
6 <row Ref="63885" Description="Bicycle Elops City" Store="Main" Available="0" />
7 <row Ref="63885" Description="Bicycle Elops City" Store="City 1" Available="2" />
8 <row Ref="63885" Description="Bicycle Elops City" Store="City 2" Available="3" />
9 <row Ref="67038" Description="Bicycle Triban 5" Store="Main" Available="2" />

10 <row Ref="67038" Description="Bicycle Triban 5" Store="City 1" Available="4" />
11 <row Ref="67038" Description="Bicycle Triban 5" Store="City 2" Available="1" />
12 <row Ref="68454" Description="Bicycle Rockrider 6.0" Store="Main" Available="1" />
13 <row Ref="68454" Description="Bicycle Rockrider 6.0" Store="City 1" Available="3" />
14 <row Ref="68454" Description="Bicycle Rockrider 6.0" Store="City 2" Available="0" />
15 <row Ref="69778" Description="Bicycle Subsin Klassik" Store="Main" Available="5" />
16 <row Ref="69778" Description="Bicycle Subsin Klassik" Store="City 1" Available="3" />
17 <row Ref="69778" Description="Bicycle Subsin Klassik" Store="City 2" Available="4" />

modes available (RAW, AUTO, EXPLICIT, and PATH), the EXPLICIT mode is perhaps
the most complicated and less understood. This is because the XML generation in
EXPLICIT mode involves in two different steps:

• The first step is to produce an intermediate table with the output data. This
intermediate table must be created according to certain requirements, and the
need to present the output data according to these requirements is what makes
the EXPLICIT mode especially difficult to use. However, once the structure of this
intermediate table is understood, using the EXPLICIT mode becomes much easier.

• The second step is an automatic translation of the data in the intermediate table
to an XML structure. For this step to be done automatically, most of the work

5.5 Returning Data in XML 125

Listing 5.12 Desired XML output for a query over the Products table
1 <Product Ref="63885">
2 <Description>Bicycle Elops City</Description>
3 <Price>170.00</Price>
4 </Product>
5 <Product Ref="67038">
6 <Description>Bicycle Triban 5</Description>
7 <Price>400.00</Price>
8 </Product>
9 <Product Ref="68454">

10 <Description>Bicycle Rockrider 6.0</Description>
11 <Price>250.00</Price>
12 </Product>
13 <Product Ref="69778">
14 <Description>Bicycle Subsin Klassik</Description>
15 <Price>320.00</Price>
16 </Product>

Tag Parent Product!1!Ref Description!2 Price!3
1 NULL 63885 NULL NULL
2 1 63885 Bicycle Elops City NULL
3 1 63885 NULL 170.00
1 NULL 67038 NULL NULL
2 1 67038 Bicycle Triban 5 NULL
3 1 67038 NULL 400.00
1 NULL 68454 NULL NULL
2 1 68454 Bicycle Rockrider 6.0 NULL
3 1 68454 NULL 250.00
1 NULL 69778 NULL NULL
2 1 69778 Bicycle Subsin Klassik NULL
3 1 69778 NULL 320.00

Fig. 5.11 Intermediate table
to generate the XML data in
Listing 5.12

must have been done in the previous step, and this is effectively what happens in
practice. The intermediate table that is a result of the previous step describes an
XML structure (the nodes and relationships between them) in tabular form. Then
the clause FOR XML EXPLICIT just produces the XML from this intermediate
table, which is quite simple to do. For example, this is much simpler than in the
AUTO mode, which must figure out for itself the XML structure to be returned.
In the EXPLICIT mode, the responsibility of specifying the XML structure is left
to the client application, so the database system has actually less work to do.

Suppose that we would like to perform the query “SELECT * FROM Products
WHERE Price <= 500” and obtain the results in the form of Listing 5.12. This output
is different from what either the RAW mode or the AUTO mode would be able to
produce. The Ref value is included as an attribute (line 1), while the remaining
column values are inserted are sub-elements of a <Product> element (lines 2–3). The
exact structure of this XML output can be obtained with the EXPLICIT mode by
writing a query that can generate the intermediate table in Fig. 5.11.

Before we delve into the SQL query, for the moment we will focus on the
structure of the table in Fig. 5.11. The table has five columns, each with a particular

126 5 Data Adapters

purpose. The Tag and Parent columns refer to the XML elements and their nesting in
one other. Each element is identified by a tag (in the Tag column), and has a parent
which is also identified by tag (in the Parent column). For example, the tags 1, 2,
and 3 represent three different XML elements, and the elements with tags 2 and 3
both have element 1 as the parent; therefore, elements 2 and 3 are nested in element
1. The root element, which has no parent, has NULL in the Parent column.

Each row in this table refers to a different XML element. The tag numbers may
repeat along the table if the same structure is intended to be repeated in the XML.
Comparing Fig. 5.11 with Listing 5.12 it is possible to recognize the correspondence
between each block with tags 1, 2, and 3 in the table and a <Product> element
together with its sub-elements in the XML, respectively.

As with regular XML, each element may have a number of attributes and some
text (or other elements) between the start and closing tags. The values for the
attributes or text are specified in the remaining columns of the intermediate table
in Fig. 5.11. The column Product!1!Ref refers to the elements with tag 1; similarly,
the columns Description!2 and Price!3 refer to the elements with tags 2 and 3,
respectively. Now it becomes clear why the table in Fig. 5.11 has so many NULL
values in the last two columns: it is because these columns only apply to elements
with the given tag (in the column header). Filling in these columns for rows with
a different tag is irrelevant, since they will not be considered when creating the
corresponding XML element. However, the attentive reader may have noticed that
the column Product!1!Ref has values for all rows; this was done in order to sort rows
by Ref value, as will be explained ahead.

The column headers have also the interesting function of setting the names for
the XML elements. For example, the column header Product!1!Ref means that the
element with tag 1 will be called Product, the header Description!2 means that the
element with tag 2 will be called Description, and Price!3 means that the element
with tag 3 will be called Price. In addition, Product!1!Ref (with Ref after the tag
number) means that the value provided under this column will be used as the value
for an attribute called Ref. On the other hand, the values under Description!2 and
Price!3 (with no attribute after the tag) are to be used as text content within those
elements. This fits the overall structure of the <Product> elements in Listing 5.12.

With this background information, we are now in a position to understand the
query that must be written to generate the XML in Listing 5.12. Basically, the query
will have to generate the intermediate table shown in Fig. 5.11, and it will have to
include the FOR XML EXPLICIT clause in order to translate the intermediate table
into the output XML. The query is shown in Listing 5.13.

By looking at Fig. 5.11 it becomes clear that the query has to generate different
kinds of rows, and these correspond to the three different SELECT statements in
Listing 5.13. In essence, the first SELECT statement in lines 1–8 retrieves the
elements with tag 1 (the <Product> elements with a Ref attribute); the second
SELECT statement in lines 10–16 retrieves the elements with tag 2 (the product
descriptions); and the third SELECT statement in lines 18–24 retrieves the elements
with tag 3 (the prices). Everything is brought together by the union operators in lines

5.5 Returning Data in XML 127

Listing 5.13 Example of using EXPLICIT mode
1 SELECT
2 1 AS Tag,
3 NULL AS Parent,
4 Ref AS [Product!1!Ref],
5 NULL AS [Description!2],
6 NULL AS [Price!3]
7 FROM Products
8 WHERE Price <= 500
9 UNION ALL

10 SELECT
11 2 AS Tag,
12 1 AS Parent,
13 Ref AS [Product!1!Ref],
14 Description AS [Description!2],
15 NULL AS [Price!3]
16 FROM Products
17 UNION ALL
18 SELECT
19 3 AS Tag,
20 1 AS Parent,
21 Ref AS [Product!1!Ref],
22 NULL AS [Description!2],
23 Price AS [Price!3]
24 FROM Products
25 ORDER BY Ref, Tag
26 FOR XML EXPLICIT

9 and 17. Note that for this union to work, all records must have the same number
of columns and compatible data types between corresponding data fields.

The reason for using the UNION ALL rather than simply UNION is to guarantee that
all records will be included in the result even in case there are duplicate records (i.e.,
records with the same values in all fields). These duplicates would be eliminated if
the UNION operator was used. In this particular example, there are no duplicates,
but in a general scenario that may occur if the query does not select a key or
discriminator column such as Ref in this example.

Once the results are collected by the UNION ALL operator, the ORDER BY operator
in line 25 sorts the rows by Ref, and then by Tag within Ref. This sorting is absolutely
necessary, since it ensures that the XML elements will be nested correctly when the
table is processed sequentially in one pass. As the database system goes through
the table, the current value for Parent refers to the last row with such tag number
(except when it is NULL). For example, with the order of rows shown in Fig. 5.11,
the rows with description “Bicycle Triban 5” and price “400.00” will be nested in the
<Product> element with Ref no. 67038. This reveals how important the final ordering
is, and also why the value for Ref had to be included in every row, so that the data
for each product can be brought together by sorting.

5.5.4 Using the PATH Mode

The PATH mode provides a much simpler way of achieving the same sort of thing as
with the EXPLICIT mode. Rather than requiring the construction of an intermediate

128 5 Data Adapters

Listing 5.14 Example of using PATH mode
1 SELECT
2 Ref AS "@Ref",
3 Description AS "Description",
4 Price AS "Price"
5 FROM Products
6 FOR XML PATH (’Product’)
7
8 <Product Ref="68454">
9 <Description>Bicycle Rockrider 6.0</Description>

10 <Price>250.00</Price>
11 </Product>
12 <Product Ref="67038">
13 <Description>Bicycle Triban 5</Description>
14 <Price>400.00</Price>
15 </Product>
16 <Product Ref="63885">
17 <Description>Bicycle Elops City</Description>
18 <Price>170.00</Price>
19 </Product>
20 <Product Ref="69778">
21 <Description>Bicycle Subsin Klassik</Description>
22 <Price>320.00</Price>
23 </Product>

table, in PATH mode the columns can be mapped directly to XML attributes or
elements through the use of XPath expressions. Listing 5.14 shows an example that
produces the same kind of XML structure as in Listing 5.12 (the only difference
being in the ordering of products). Line 2 in Listing 5.14 selects the Ref column as
an attribute, whereas lines 3–4 select the Description and Price as elements. In line 6,
the FOR XML clause specifies the name for row elements (similar to what happened
in Listing 5.8); therefore the selected attributes and elements will be nested into a
row element called Product. The result is in lines 8–23.

5.5.5 How to Obtain the XML Schema

In RAW and AUTO modes, where the XML structure is decided by the database
system, it may be useful to obtain a description (in the form of an XML schema)
of the XML structure that is being used by the system to present the results. For
practical purposes, such description may be necessary so that other applications are
able to understand the results that are coming out from the database.

There are actually two ways to obtain the XML schema: either by the use
of XMLDATA or by the use of XMLSCHEMA. Either one of these keywords can
be appended to the FOR XML RAW and FOR XML AUTO commands (e.g., FOR
XML AUTO, XMLDATA or FOR XML AUTO, XMLSCHEMA). The XMLDATA command
generates the schema in XDR (XML Data Reduced) format, which is an older
format for specifying the structure of XML documents. The newer and more widely
used standard for specifying the structure of XML documents is known as XSD and

5.5 Returning Data in XML 129

Listing 5.15 Example of using XMLDATA
1 SELECT �
2 FROM Products
3 WHERE Price <= 500
4 FOR XML AUTO, XMLDATA
5
6 <Schema name="Schema1" xmlns="urn:schemas�microsoft�com:xml�data"
7 xmlns:dt="urn:schemas�microsoft�com:datatypes">
8 <ElementType name="Products" content="empty" model="closed">
9 <AttributeType name="Ref" dt:type="i4" />

10 <AttributeType name="Description" dt:type="string" />
11 <AttributeType name="Price" dt:type="number" />
12 <attribute type="Ref" />
13 <attribute type="Description" />
14 <attribute type="Price" />
15 </ElementType>
16 </Schema>
17 <Products xmlns="x�schema:#Schema1" Ref="68454" Description="Bicycle Rockrider 6.0"
18 Price="250.00" />
19 <Products xmlns="x�schema:#Schema1" Ref="67038" Description="Bicycle Triban 5"
20 Price="400.00" />
21 <Products xmlns="x�schema:#Schema1" Ref="63885" Description="Bicycle Elops City"
22 Price="170.00" />
23 <Products xmlns="x�schema:#Schema1" Ref="69778" Description="Bicycle Subsin Klassik"
24 Price="320.00" />

has already been introduced in Sect. 5.3.2. The XSD description can be obtained
with the XMLSCHEMA command. An example of each will help clarify both options.

Listing 5.15 illustrates the results obtained with XMLDATA. Lines 1–4 contain the
query, where the command XMLDATA has been included in line 4. Lines 6–24 display
the results, where two separate segments can be identified: the first segment in lines
6–16 describes the XML schema in XDR format, and the second segment in lines
17–24 contains the results. These are the same results which have been obtained
earlier in Listing 5.9 on page 123. In Listing 5.15 each element in the results (lines
17–24) refers to XML namespace called Schema1 which is defined in line 6. Lines
8–15 define the element type Products with the three attributes in lines 12–14; the
types for these attributes are defined in lines 9–11.

Listing 5.16 illustrates the results obtained with XMLSCHEMA. The query is in
lines 1–4 with the command XMLSCHEMA in line 4. The results are in lines 6–41
where again two segments can be identified: the first segment in lines 6–33 contains
the XML Schema specification and the second segment in lines 34–41 include the
results, which are the same as before except from the XML namespace being used.
The XML Schema specification in Listing 5.16 appears to be significantly longer
and more complicated than the XDR definition in Listing 5.15. However, this is
mostly due to the use of several namespaces, including a namespace that defines
SQL data types (lines 9, 11, 12 in Listing 5.16). Line 13 begins the definition of
the Products element as a complex type which includes three attributes: Ref (line
15), Description (line 16), and Price (line 23). The lines in between these attribute
definitions specify the data types. Therefore, Ref is an integer, Description is a string
with a maximum length of 255 characters, and Price is a numeric data value with 2
fractional digits. These data types correspond to the data types that have been used

130 5 Data Adapters

Listing 5.16 Example of using XMLSCHEMA
1 SELECT �
2 FROM Products
3 WHERE Price <= 500
4 FOR XML AUTO, XMLSCHEMA
5
6 <xsd:schema targetNamespace="urn:schemas�microsoft�com:sql:SqlRowSet1"
7 xmlns:schema="urn:schemas�microsoft�com:sql:SqlRowSet1"
8 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
9 xmlns:sqltypes="http://schemas.microsoft.com/sqlserver/2004/sqltypes"

10 elementFormDefault="qualified">
11 <xsd:import namespace="http://schemas.microsoft.com/sqlserver/2004/sqltypes"
12 schemaLocation="http://schemas.microsoft.com/sqlserver/2004/sqltypes/sqltypes.xsd" />
13 <xsd:element name="Products">
14 <xsd:complexType>
15 <xsd:attribute name="Ref" type="sqltypes:int" />
16 <xsd:attribute name="Description">
17 <xsd:simpleType>
18 <xsd:restriction base="sqltypes:varchar">
19 <xsd:maxLength value="255" />
20 </xsd:restriction>
21 </xsd:simpleType>
22 </xsd:attribute>
23 <xsd:attribute name="Price">
24 <xsd:simpleType>
25 <xsd:restriction base="sqltypes:numeric">
26 <xsd:totalDigits value="12" />
27 <xsd:fractionDigits value="2" />
28 </xsd:restriction>
29 </xsd:simpleType>
30 </xsd:attribute>
31 </xsd:complexType>
32 </xsd:element>
33 </xsd:schema>
34 <Products xmlns="urn:schemas�microsoft�com:sql:SqlRowSet1" Ref="68454"
35 Description="Bicycle Rockrider 6.0" Price="250.00" />
36 <Products xmlns="urn:schemas�microsoft�com:sql:SqlRowSet1" Ref="67038"
37 Description="Bicycle Triban 5" Price="400.00" />
38 <Products xmlns="urn:schemas�microsoft�com:sql:SqlRowSet1" Ref="63885"
39 Description="Bicycle Elops City" Price="170.00" />
40 <Products xmlns="urn:schemas�microsoft�com:sql:SqlRowSet1" Ref="69778"
41 Description="Bicycle Subsin Klassik" Price="320.00" />

for the columns of the table in the database; hence the need to include a proper
namespace that defines these data types.

In both Listing 5.15 and Listing 5.16, the query returns the results in an XML
structure together with the definition of that structure, be it in XDR or XSD,
respectively. Naturally, there is no need to provide the XML structure definition
every time a query is run. If the query being executed is always the same (possibly
with different input parameters), then the XML schema is already known from
previous runs. Actually, for a given query with FOR XML RAW or FOR XML AUTO
it is possible to run the query with XMLDATA (or XMLSCHEMA) only once in order
to get to know the XML schema. In subsequent runs, there is no need to include
XMLDATA (or XMLSCHEMA) since the XML schema is already known.

In the next section, we will see that this point plays an important role when
integrating with a database system through the exchange of XML messages.

5.6 Using the SQL Adapter 131

5.6 Using the SQL Adapter

In Chap. 2 we have introduced an integration platform (BizTalk Server) which,
in a similar way to other integration platforms available today, is based on the
concept of having orchestrations to coordinate the exchange of messages between
applications. To facilitate processing and message transformation, messages are
usually represented in XML. Basically, an orchestration specifies the integration
logic by means of a sequence of steps (called shapes in the BizTalk platform). These
steps represent activities such as sending, receiving, and transforming messages.

In a practical scenario, the integration logic may require, for example, that some
data is retrieved from an external database. In this case, the orchestration must have
at least one activity to send the request to the database and another activity to receive
the results. In addition, the request to be sent to the database must be somehow
constructed, i.e., if the request is to carry some input data, then these input data
must be included when the request is created. This suggests that before sending the
request to the database system, the orchestration will probably have a transformation
activity in order to create the request. But having this transformation means that
there will be some preexisting message from which the database request will be
created. Indeed, the request will be created from the initial message that triggers the
orchestration and brings the input data to be sent to the database.

This behavior is illustrated in Fig. 5.12. The orchestration begins with a receive
shape to receive an initial message that triggers (i.e., instantiates) the whole
orchestration. After that comes a transform shape inside a construct shape to create
the request message. The transform shape creates the request message through a
transformation map that uses the initial message as input. The construct shape
around the transform indicates that a new message is being created at this point.
The orchestration then sends the request message to the database system and waits
for a response. Once the response is received, if needed it can be transformed to
another schema and returned as an output message from the orchestration.

Figure 5.12 is conceptually important because it depicts the main steps in an
orchestration that invokes an external application. In this case it interacts with a
database system, but if it would be another kind of application, such as a Web service
or a message queuing system, the steps in the orchestration would be the same.

In Chap. 2 we have seen that orchestrations communicate with external applica-
tions through ports. Each port includes an appropriate adapter to communicate with
the external application. There are several adapters available (e.g., e-mail, HTTP,
FTP, etc.) and there is also a special-purpose SQL adapter. The SQL adapter is
a software layer that manages the interaction between the orchestration and the
external database which is being accessed. From the orchestration, the SQL adapter
receives a request in the form of an XML message. It reacts to this request by
executing a command over the database system and then retrieving the results. In
this context, the SQL adapter acts as a client which communicates with the database
through a database API, in a similar way to the example programs that we have
seen throughout Sect. 5.4. After collecting the results, the SQL adapter assembles an

132 5 Data Adapters

Send
Request

Receive
Response

request
to database

Transform

Construct RequestConstruct Request

Receive
Ini�al

Send
Result

Transform

Construct ResultConstruct Result

ini�al
message

response
from database

final
message

A

Fig. 5.12 Basic orchestration
to query a database

XML message with the output data and returns it to the orchestration. This behavior
is illustrated in Fig. 5.13.

5.6.1 Creating the Stored Procedure

The request that the SQL adapter receives from the orchestration, in the form of an
XML message, contains the input data that is necessary in order to run a query over
the database. It should be emphasized that this request does not contain the query
itself, but only the parameters that are necessary to complete the query. So, for the
example query,

SELECT Description, Price FROM Products WHERE Ref <= ? FOR XML AUTO

the XML message that is sent from the orchestration to the SQL adapter contains
only the product reference number to be filled in as a parameter. The query itself
must have been previously created and stored in the database, and for that purpose
the SQL adapter relies on a stored procedure. Using a stored procedure means that
all that the SQL adapter has to do is to invoke the stored procedure by passing

5.6 Using the SQL Adapter 133

Orchestra�on

Send
Request

SQL
Adapter

Receive
Response

External
database
system

External
database
system

Database
interface

XML
messages

……

……

Fig. 5.13 The SQL adapter
as a mediator between the
integration logic and the
external database

Listing 5.17 Example of a stored procedure to be used with the SQL adapter
1 CREATE PROCEDURE GetProductInfo(@Ref int) AS
2 SELECT Description, Price
3 FROM Products
4 WHERE Ref = @Ref
5 FOR XML AUTO
6 RETURN
7
8 EXEC GetProductInfo 67038
9

10 <Products Description="Bicycle Triban 5" Price="400.00" />

the input parameters. Such stored procedure, along with an example of its use, is
illustrated in Listing 5.17.

In lines 1–6 the command CREATE PROCEDURE creates a stored procedure
called GetProductInfo with one input parameter of type integer named @Ref. The
stored procedure contains a single SELECT statement that corresponds to the
example query shown earlier. In this query, the WHERE clause selects only those
rows whose product reference number matches the value of the input parameter.
Line 8 shows an example of how this stored procedure can be invoked manually,
and line 10 shows the result of such execution. However, such invocation is shown
here for illustrative purposes only, since the stored procedure will be invoked
automatically by the SQL adapter, when this adapter is properly configured.

5.6.2 Defining the Message Schemas

In order to configure the SQL adapter to be used in an orchestration, it is necessary
to define two XML schemas: (1) the schema for the message to be sent to the SQL
adapter, which we will call the request schema, and (2) the schema for the message
that will be returned by the SQL adapter, which we will call the response schema.
The request schema will carry the input parameter values for the stored procedure,

134 5 Data Adapters

Listing 5.18 Including the XMLDATA command in the stored procedure
1 ALTER PROCEDURE GetProductInfo(@Ref int) AS
2 SELECT Description, Price
3 FROM Products
4 WHERE Ref = @Ref
5 FOR XML AUTO, XMLDATA
6 RETURN
7
8 EXEC GetProductInfo 67038
9

10 <Schema name="Schema1" xmlns="urn:schemas�microsoft�com:xml�data"
11 xmlns:dt="urn:schemas�microsoft�com:datatypes">
12 <ElementType name="Products" content="empty" model="closed">
13 <AttributeType name="Description" dt:type="string" />
14 <AttributeType name="Price" dt:type="number" />
15 <attribute type="Description" />
16 <attribute type="Price" />
17 </ElementType>
18 </Schema>
19 <Products xmlns="x�schema:#Schema1" Description="Bicycle Triban 5" Price="400.00" />

so it will have a set of elements that correspond to those parameters. For the stored
procedure shown in Listing 5.17, the request schema will have a single element in
order to supply the value to the input parameter @Ref.

With regard to the response schema, this can be obtained by running the stored
procedure so as to retrieve the XML schema along with the query results. As
explained in Sect. 5.5.5, the XML schema can be obtained by including either the
XMLDATA or the XMLSCHEMA command in the query. The XMLDATA command
generates the XML schema in XDR format, and XMLSCHEMA generates the schema
in XSD format. The current version of the SQL adapter included in BizTalk Server
works with the XDR format, so it is necessary to include the XMLDATA command in
the stored procedure. This can be done as shown in Listing 5.18.

In lines 1–6 the procedure is changed by the command ALTER PROCEDURE
in order to include the XMLDATA keyword in line 5. Executing now the stored
procedure, as in line 8, returns the output shown in lines 10–19, where the response
schema is in lines 10–18 and the query result is in line 19. In line 12 it is possible to
see that the each row element in the results will be called Products, and this element
will have two attributes called Description and Price (lines 15–16) of type string and
number, respectively (lines 13–14). This can be confirmed in line 19.

Listing 5.19 shows an example of the XML messages that will flow between
the orchestration and the SQL adapter. In the request message (lines 1–3) the root
element contains a single child element called GetProductInfo with an attribute Ref
that provides the value for the input parameter of the stored procedure. In the
response message (lines 5–7) the Products element contains the Description and Price
elements as explained above. It should be noted that the response message does not
carry the product reference number (Ref) of the original request. If needed, these
data can be brought together in a third message by means of a transformation map.
This is precisely the purpose of having the second transform shape in Fig. 5.12.

5.6 Using the SQL Adapter 135

Listing 5.19 Example of request and response messages exchanged with the SQL adapter
1 <InProduct>
2 <GetProductInfo Ref="67038" />
3 </InProduct>
4
5 <OutProduct>
6 <Products Description="Bicycle Triban 5" Price="400.00" />
7 </OutProduct>

5.6.3 Defining the Transformation Maps

In addition to the request and response messages exchanged with the SQL adapter,
the orchestration in Fig. 5.12 receives an initial message with the product reference
number and returns a final message with the product info (Ref, Description, and
Price). For simplicity, we will assume that the initial message and the final message
have the same schema. In particular, they both have an element for Ref, Description,
and Price. However, in the initial message only the Ref element will be filled in,
while the other elements will be empty (if they are not empty, their values will be
ignored anyway). In the final message, all elements will be filled in.

Figure 5.14 illustrates the two transformation maps for the orchestration shown
earlier in Fig. 5.12. The first map has one source schema and one target schema; it
collects the product reference number from the initial message and copies its value
to the Ref attribute in the request message to be sent to the SQL adapter. The second
transformation map, which is used after the SQL adapter returns the response, has
actually two source schemas: one for the initial message in order to get the product
reference number, and another for the response message in order to get the product
description and price that came from the database. The three elements are loaded
into the final message to be sent in the last step of the orchestration.

5.6.4 Configuring the Ports in the Orchestration

Now that the schemas, the transformation maps, and the orchestration logic have
been defined, it is time to complete the orchestration in Fig. 5.12 by including the
send and receive and ports. The orchestration will have three different ports: one
receive port for the initial message, one bidirectional port to send the request and
receive the response from the SQL adapter, and one send port to return the final
message. We will refer to these ports simply as the receive port, the SQL adapter
port, and the send port, respectively. The ports are illustrated in Fig. 5.15.

For simplicity, we assume that the receive port fetches the initial message from
some folder in the file system. In a similar way, we assume that the send port places
the final message in some other folder in the file system. (The folders for the receive
port and for the send port must be different, otherwise as soon as the send port would
place the final message in the folder, the message would be immediately consumed

136 5 Data Adapters

Descrip�on
Ref

Product

Price
Ref

GetPRoductInfo
InProduct

Descrip�on
Ref

Product

Price

Descrip�on
Products

OutProduct

Descrip�on
Ref

Product

Price

Price

Ini�al
message

Request
message

Transforma�on map

Response
message

Final
message

Transforma�on map

Ini�al
message

Source
schema

Source
schema

Source
schema

Target
schema

Target
schema

Fig. 5.14 The two transformation maps used in the orchestration

Send
Request

Receive
Response

Transform
ini�al to request

Construct RequestConstruct Request

Receive
Ini�al

Send
Result

Transform
response to final

Construct ResultConstruct Result

ini�al
message

Receive
port

final
messageSend

port

SQL adapter
port

request
message

response
message

A

Fig. 5.15 Orchestration and ports to invoke the SQL adapter

5.6 Using the SQL Adapter 137

by the receive port and this would trigger a new instance of the orchestration.)
Therefore, both the send port and the receive port will use file adapters, and it is
necessary to configure the folders to be used with those ports.

On the other hand, the SQL adapter port will be used to interact with the SQL
adapter. This special-purpose component will receive the request message, extract
the Ref value, execute the stored procedure with that parameter value, and return the
result back to the orchestration in a response message.

As explained in Sect. 2.3, besides an adapter each port also has an associated
pipeline. However, in this scenario there is no need for special processing as the
messages enter or leave the orchestration, so the default pipelines (XMLReceive
and XMLTransmit) will suffice. Also, since the messages are being transformed in
the orchestration through the use of transform shapes, there is no need to include
transformation maps in any port.

Although configuring the ports is relatively straightforward, it should be noted
that the SQL adapter port is of a different type than the receive ports and sends
ports that are commonly used in orchestrations. The simple receive ports and send
ports (such as those in this orchestration) can be created and configured manually
by specifying the port direction (inwards or outwards) and the message that will
be received or transmitted. However, in the case of the SQL adapter port the
configuration is more complicated because the actual messages that will be sent
and received through that port (it is a bidirectional port) must be determined by
inspecting the stored procedure and running it at least once in order to obtain
the response schema. To facilitate this task, in the BizTalk platform the port type
for the SQL adapter port is generated automatically by a wizard available in the
development environment. This wizard inspects and invokes the stored procedure
in order to generate several artifacts, namely the XML schemas for the request and
response messages, and the port type to be used in the SQL adapter port. Therefore,
when creating the SQL adapter port it is necessary to specify that this port is of an
existing type, i.e., the port type that has been generated automatically by the wizard.

5.6.5 Removing the XMLDATA Command

One thing that should not be forgotten before deploying and starting the orches-
tration is to remove the XMLDATA command from the stored procedure. As shown
in Listing 5.18, including the XMLDATA command results in the stored procedure
returning the response schema together with the results. When running the orches-
tration, the presence of the XML schema in the response is undesirable since it
interferes with message processing and prevents the orchestration from handling the
message correctly. Therefore, only the actual results (as in line 10 of Listing 5.17)
should be returned.

Removing the XMLDATA command from the stored procedure can be done by
running ALTER PROCEDURE once more, as shown in Listing 5.20, where line 5 was
changed back to FOR XML AUTO rather than FOR XML AUTO, XMLDATA as before.

138 5 Data Adapters

Listing 5.20 Removing the XMLDATA command from the stored procedure
1 ALTER PROCEDURE GetProductInfo(@Ref int) AS
2 SELECT Description, Price
3 FROM Products
4 WHERE Ref = @Ref
5 FOR XML AUTO
6 RETURN
7
8 EXEC GetProductInfo 67038
9

10 <Products Description="Bicycle Triban 5" Price="400.00" />

Testing the stored procedure as in line 8 produces the result in line 10, which can be
directly inserted into the response message shown in lines 5–7 of Listing 5.19.

5.6.6 Deploying and Running the Orchestration

As explained in Sect. 2.5, a set of schemas, transformation maps, orchestrations
and possibly other artifacts as well, such as pipelines, can be brought together
to create a complete integration solution. In such solution, each artifact has its
own purpose: the schemas define the structure of messages to be exchanged, the
transformation maps define how messages from one schema can be transformed into
messages of another schema, and the orchestration specifies the integration logic as
a sequence of messages exchanges between ports connected to external applications.
In the BizTalk platform, such solution is referred to as a BizTalk application.

The solution must be compiled and deployed to the run-time infrastructure. In
some cases, the solution may have to be configured after deployment. At this stage,
configuration typically involves creating a physical port for each logical port defined
in the orchestration. (The concepts of logical port and physical port have been
introduced in Sect. 2.5.) This distinction is necessary because the logical ports in
an orchestration, such as those shown in Fig. 5.15, define the direction and type of
message that will be exchanged, but the actual addresses and other parameters that
are needed to connect to the external applications are defined in physical ports.

For example, the receive port in Fig. 5.15 reads the initial message from a folder
in the local file system. However, the specific folder being used is defined in the
physical port rather than in the logical port in the orchestration. This way, it is
possible to take the entire solution to another machine or environment and deploy it
there with different configurations for the physical ports, but with exactly the same
behavior in terms of integration logic. For the SQL adapter port, the actual machine
where the database system resides is also configured in the physical port.

Once the solution is deployed and all physical ports have been configured, it
is possible to start the orchestration. The orchestration is then ready to receive
messages. As soon as a new message is placed at the location of the physical receive
port, the message is consumed and a new instance of the orchestration is created
and triggered. (For this to work, the first receive shape in the orchestration must be

5.7 Conclusion 139

Listing 5.21 Example of initial and final messages for the orchestration
1 <ns0:Product xmlns:ns0="http://BikeStore.ProductInfo">
2 <Ref>67038</Ref>
3 <Description></Description>
4 <Price></Price>
5 </ns0:Product>
6
7 <ns0:Product xmlns:ns0="http://BikeStore.ProductInfo">
8 <Ref>67038</Ref>
9 <Description>Bicycle Triban 5</Description>

10 <Price>400.00</Price>
11 </ns0:Product>

configured as an activating receive, as explained in Sect. 2.4.) The initial message
should have a similar structure to what is shown in lines 1–5 of Listing 5.21.

According to the behavior shown in Fig. 5.15, the orchestration will transform
the initial message into the request message to be sent to the SQL adapter. For this
purpose, it uses the transformation map shown at the top of Fig. 5.14. The SQL
adapter will receive the request message and invoke the stored procedure, and a
response message will be returned to the orchestration. The response will be used
in the second transformation map of Fig. 5.14 to build the final message, which will
then be sent to the folder specified in the physical send port. The final message will
be similar to what is shown in lines 7–11 of Listing 5.21.

5.7 Conclusion

In this chapter we have introduced the idea of performing integration at different
application layers. When the application architecture is completely closed, then the
only option is to integrate at the user interface layer, but this requires the use of ad-
hoc techniques to capture the user interface and send commands to the application.
Things get easier if the data layer is accessible, particularly if the application relies
on a standard database system. If the application relies on files then it may be
possible to handle these files as plain text, or preferably as XML. When using a
database, there are several technologies and APIs to connect to the database system.
In general, all of these APIs are based on the concept of opening a connection,
executing the query, iterating through the results, and closing the connection.

Since current integration platforms favor the use of XML messages and of
XML schemas to define the structure of messages, it becomes very convenient
to retrieve data from a database system in XML form. Several database systems
provide this possibility, although the mechanisms associated with retrieving XML
are not yet standardized. Here we have seen how to produce XML from a SQL
Server database. This can be done in several different ways, but for the purpose of
integration it is often enough to use the AUTO mode, provided that it is possible to
retrieve a description of the XML schema used by the database system.

140 5 Data Adapters

The XML coming from the database can then be used directly as an XML
message in an orchestration. In particular, it can be easily transformed to another
schema, in order to send part or all of the data to another application. Integration,
after all, is all about exchanging data between applications. The current approach to
integration is to implement this exchange with XML schemas, transformation maps,
and orchestrations. However, in addition to these artifacts it is necessary to solve the
problem of how to actually connect to an application in order to be able to exchange
data with it. In this chapter we have seen how this can be done at the user interface
layer and at the data layer as well. The next chapter is devoted to the technologies
that allow integration to be performed at the application layer.

Chapter 6
Application Adapters

In the previous chapter we have introduced the approaches that can be used
to integrate with an application either at the user interface layer or at the data
persistence layer. When the application is completely closed and there is no way
to interact with it other than through its user interface, then it is possible to create an
adapter that mimics the behavior of a user in order to automate the exchanges with
that application. However, this is perhaps the most unfavorable scenario, since inte-
gration through the user interface is highly application-dependent, i.e., it requires a
solution that is highly customized for the application at hand. Also, the technology
that is used to integrate with the user interface may be different for each application.

A more favorable scenario is to integrate at the data layer, especially if the
application relies on a relational database system. Here, it is possible to make use
of more standard and mature database technologies, as described in the previous
chapter. Still, this provides no direct access to the application functionality; instead,
it relies on the assumption that the application will seamlessly handle the data that
is read from or written to its database. Integrating at the data layer provides a more
convenient mechanism for data exchange but still does not allow to invoke particular
functions of the application, as would be desirable in order to make the application
perform some action within the scope of an orchestration, for example.

The most favorable scenario for integration is when the application logic layer
(the middle tier in Fig. 5.1) is accessible and it is possible to interact directly with it.
This scenario is definitely more advantageous than integrating at the data layer since
it does not require knowing how the application manages its own data. By being able
to invoke functionality at the level of the application code, it is possible to build more
efficient and sophisticated integration solutions by composing the functionality of
different applications into an overall integration logic. In its simplest form, this
composition can be done with additional application code that “glues” together the
applications to be integrated. However, this is not the most flexible solution; better is
to integrate through an orchestration that can be easily configured and reconfigured
to address new requirements.

If integration at the data layer can be done with well-known, mature, and
often standardized technologies, then one would expect the same to be true about

D.R. Ferreira, Enterprise Systems Integration, DOI 10.1007/978-3-642-40796-3__6,
© Springer-Verlag Berlin Heidelberg 2013

141

142 6 Application Adapters

integration at the application layer. In a certain way, it is true: if we look at the
Web services technology available today, then it is a standard, vendor-neutral, and
platform-independent way of exposing and invoking application functionality. On
the other hand, the Web services technology that exists today is the result of years
of evolution over a wide range of technologies (such as RPC, RMI, and CORBA)
that have tried to achieve similar goals in slightly different ways. In general, every
time a new technology came along, it combined a small set of new features with
a large set of existing concepts from previous technologies. Therefore, while each
new technology was introduced as something entirely new and revolutionary, in
reality it was more of an incremental improvement over previous technologies.
These stepwise improvements eventually led to the Web services technology, which
can be regarded as a distillation of the essential features of previous technologies,
influenced by the general use of XML and HTTP as the preferred transport protocol.

Therefore, in order to understand how and why Web services came about, it is
useful to have a look at its predecessors and some alternative technologies. It is only
after having a look at other technologies that one can fully appreciate the advantages
of using the level of abstraction and the run-time infrastructure of Web services.
These provide the ideal way to build application adapters today, since the concept
of orchestration itself has arisen out of the need to orchestrate the invocation of Web
services. If everything can be exposed as a service, then indeed an orchestration
becomes simply an orchestration of services. However, not every application is
amenable to being exposed as a service or set of services (although it is possible
to build adapters that expose themselves as services), so it will still be necessary to
invoke different kinds of systems from an orchestration.

In the next sections we will focus on integration at the application layer, and
particularly on technologies that allow different applications to interoperate with
each other. Knowing about the inner workings of these technologies is important in
order to be able to assess the merits of different technological solutions. We will start
by the crudest approach, which is to integrate application code directly, and then
move on to integration over the network, RPC, CORBA, and finally Web services.
But before that, we will start by reviewing some software engineering concepts that
are present in all of these technologies.

6.1 Methods and Interfaces

In its simplest form, a program can be a sequence of instructions that runs linearly
from begin to end. However, this does not support any kind of reuse; if the same task
must be carried out twice or more within the program, the code must be repeated
in the sequence. An easy way to avoid such repetition is to have the possibility
of jumping back in order to repeat a segment of code. That segment of code is
now being reused, but it executes every time in the same way. Since it may be
necessary to parameterize each execution, it is useful not only to jump but also to
provide some input parameters for the next execution. Hence the concept of function

6.1 Methods and Interfaces 143

is born as a delimited segment of code that can be invoked multiple times with
different parameters. Functions provide modularity since they encapsulate units of
application logic that can be reused multiple times. A function may also call other
functions, meaning that it is possible to use functions as building blocks to develop
other functions, leading to the paradigm of structured programming.

However, functions operate over data, and the data being used depends on the
problem at hand. For example, scientific problems use quantities that are represented
as numbers with a certain precision, while business problems manipulate objects
with a set of attributes of different types. For different problems (or sub-problems)
there are different data structures, and functions can be grouped according to the
data structures that they use. In fact, some data structures have an associated set
of functions so that the program can manipulate the data structure through the use
of those functions, rather than accessing the data directly. In this case, both the
data structure and associated functions can be encapsulated into an object, with the
functions serving as methods to change the state of the object, while the inner data
structure inside the object is not directly accessible in order to avoid unintended
modifications by other parts of the program. Indeed, the encapsulation of data
within objects and the use of methods to control data access and modification are
considered to be much better practices than just allowing the data to be modified
in any (and possibly inconsistent) way by all parts of the program. The idea of
developing applications with data encapsulated in objects with callable methods led
to the paradigm of object-oriented programming.

In the object-oriented paradigm, modularity is provided by the fact that objects
can themselves be used in the inner data structures of other objects, and the
interaction with that inner data structure is also attained through method invocation.
The paradigm is then pervasive across the program, since everything is turned into
an object and the program logic becomes a sequence of method invocations.

The concept of having data encapsulated in objects and having to call methods to
interact with those objects introduced an unprecedented level of decoupling between
the different parts of a program. In particular, the inner data structure and the
implementation of the methods in an object can be changed without affecting the
callers of those methods, as long as the methods keep the same function prototype
and the object appears to provide the same functionality to the outside world. In
other words, one can change the object implementation as long as its interface (i.e.,
the set of methods) to the outside world remains the same. The interface of an object
serves as a contract that cannot be broken, but its implementation is a different story
since it can be changed, for example, to improve efficiency.

6.1.1 Interfaces and Adapters

In many technologies, such as RPC, CORBA, and Web services, the decoupling
between interface and implementation is an essential feature in order to have objects
or components that are developed independently and are still able to interoperate

144 6 Application Adapters

Target
applica�on

ITarget::method1()

Adapter

IAdapter::method1()

Client
applica�on ITarget::method2()

Client
applica�on Adapter

Target
applica�on

IAdapter::method1()

ITarget::method1()

return

ITarget::method2()

return

return

Fig. 6.1 An adapter providing a simplified API to interact with a target application

with one another when brought together. Interoperability is ensured by the fact
that both the caller and the object being called adhere to the published interface.
This interface then has a life of its own: it becomes independent of the object that
implements it or of the object that invokes it. The interface is the cornerstone of
interoperability, and a whole system can be specified in terms of a set of interfaces.

Naturally, the use of interfaces is extremely important in the context of inte-
gration. The interface, as a set of methods that are exposed by an application or
component, is what allows it to be invoked by other applications. The notion of API
(Application Programming Interface) is based precisely on the idea of having an
application expose a callable interface to the outside world. It may be the case that
other applications are able to invoke this interface directly; in this case, integration
is greatly facilitated. Otherwise, in case other applications are unable to call the API
directly, or in case they use only a subset of that API, or in case the original API
is unnecessarily complicated and could be simplified, then it is more convenient to
create and use an adapter to translate the original API into another API that can be
more easily invoked by the potential callers.

This corresponds directly to the concept of application adapter. An adapter is
a layer of software that sits between the caller and the application that is being
invoked. On the side of the caller, the adapter provides an interface that the caller
can easily understand; on the other side, the adapter is able to speak to the invoked
application using its original API. In the context of integration, the caller may be
an orchestration; we have already seen a similar scenario in Fig. 5.13 on page 133,
where the SQL adapter sits between the orchestration and the external database
system in order to translate the request coming from the orchestration into the
execution of a stored procedure in the database. Here we are dealing with method
calls, and the idea is to translate a method call on the adapter into one or more
method calls in the target application, as illustrated in Fig. 6.1.

6.1 Methods and Interfaces 145

In Fig. 6.1 the target application provides an interface ITarget and the adapter
provides a simplified interface IAdapter for the same target application. When the
client application calls method method1() of IAdapter, the adapter in turn calls
method1() and method2() of ITarget. The adapter returns the result to the client
application only after the necessary calls to ITarget have completed. In this scenario,
the client application is able to achieve with a single call to the adapter what would
otherwise require two calls to the original API of the target application.

For simplicity, Fig. 6.1 does not depict any input parameters or return values for
these method calls. However, it is possible to imagine that the adapter will receive
some input parameters from the call to method1() of IAdapter, and will use these
parameters to derive the input parameters for method1() and method2() of ITarget. In
a similar way, the adapter will use the output parameters or return values from those
methods of ITarget to create the return value or output parameters to be sent back to
the client application as a result of the invocation of method1() on IAdapter.

6.1.2 Forward and Callback Interfaces

In Fig. 6.1 the interaction between the client application and the adapter, as well as
the interaction between the adapter and the target application, are being done using
blocking calls. In particular, the client application does not receive the result of
calling method1() on IAdapter until the adapter completes its multiple-call interaction
with the target application. (Similarly, the calls on method1() and method2() on
ITarget are assumed to be blocking.) It would be interesting to make the call to
method1() on IAdapter asynchronous, so that the client application is not blocked
while waiting for a response from the adapter.

This can be done through the use of an asynchronous call together with a callback
interface, which is implemented by the client application, so that the adapter can
invoke it whenever the result is ready to be returned. Figure 6.2 illustrates the use
of such callback interface. Here, the call to method1() on IAdapter is asynchronous,
so the client application is free while the adapter is busy interacting with the target
application. When the result is ready, the adapter will call the receive() method on
ICallback in order to return it to the client application.

It should be noted that the call to receive() is now a synchronous method call,
but it should be rather short-lived since its sole purpose is to make sure that the
client application receives the result. The client application is not supposed to do
any lengthy processing here, and should rather do such processing in another thread,
since otherwise it will be blocking the adapter (for this reason, calls to callback
methods are usually carried out in a separate thread on the caller itself). In addition,
the callback method does not have to return anything back to the adapter, so in
languages such as C/C++ or Java the return type is usually void.

It is interesting to note that, usually, an interface is implemented by the object
that defines it. For example, the IAdapter interface is defined by the adapter, it is
implemented by the adapter, and it is invoked by the client application. On the

146 6 Application Adapters

Target
applica�on

ITarget::method1()

Adapter

IAdapter::method1()

Client
applica�on ITarget::method2()

Client
applica�on Adapter

Target
applica�on

IAdapter::method1()

ITarget::method1()

return

ITarget::method2()

return

ICallback::receive()

ICallback::receive()

Fig. 6.2 Use of callback interface for asynchronous calls to the adapter

other hand, the ICallback interface is defined by the adapter, it is implemented by
the client application, and it is invoked by the adapter. Here it becomes apparent
what we meant earlier with an interface having a life of its own and serving as a
contract between parties. Indeed, an interface defined by an object does not have
to be implemented by that same object; that is usually the case, but it may also be
the case that the interface is intended to be implemented by other objects so that it
becomes callable by the first object. To distinguish between the two cases, we refer
to forward interface or callback interface depending on whether the interface is to be
implemented by the object that defined it or is to be implemented by other objects.

Before we conclude this section, it should be noted that the use of callback
interfaces has already been illustrated in Sect. 3.1.6, particularly in Fig. 3.8 on
page 44, where a callback interface is used by the messaging system to deliver the
message to the receiving application. In this case, the callback interface is defined
by the messaging system, it is implemented by the receiving application, and it
is invoked by the messaging system. In this scenario, the messaging system must
have been developed (or at least specified) before the receiving application, so that
the callback interface to be implemented by the receiving application was already
defined.

Therefore, a component that defines a callback interface—be it the adapter in
Fig. 6.2 or the messaging system in Fig. 3.8—is prepared to communicate with
any application, provided that the application implements the callback interface that
has been defined by the component. This is an interesting and powerful concept,
since the callback interface serves as an advanced preparation of the component
to be able to interact with future applications. On one hand, the forward interfaces
implemented by the component allow other applications to invoke the component;
on the other hand, the callback interfaces enable the component to invoke other
applications. Using both mechanisms, the component is ready to communicate with
other applications in a bidirectional way.

6.2 Integration of Application Code 147

6.2 Integration of Application Code

When integrating at the application logic layer, we assume that either the source
code or a set of interfaces for the target application are available. If the source code
is available and can be changed, then the problem becomes more of a software
engineering nature than a systems integration one. On the other hand, if only the
interfaces are available, which is usually the case, then it is necessary for other
applications to communicate directly through the API or use an adapter. If both the
source code and an API are available, it may be preferable not to change the code
(which could introduce unexpected bugs) but to use the provided API, again either
directly or through an adapter. The conclusion is that in most cases using an API is
the preferred method to integrate at the application layer.

However, in some cases there may be no API available, while it may be possible
to work with the source code directly. Then the problem arises of whether the
applications to be integrated run on the same platform and are written in the same
programming language. For the moment, let us assume that they are.

In general, all programming languages provide some mechanism to make use
of code developed by third parties. For example, in C/C++ there is a distinction
between source files, header files, and library files. Library files contain code that
has already been compiled and that can be linked with other code to build a new
application. But in order to invoke the code in the library, the new application must
have access to the data structures and function prototypes that are implemented in
the library file. For this purpose, in addition to the library file there must be one or
more header files that describe those data structures and function prototypes. These
header files are to be included in the source files for the new application. When
the new application is compiled, the function calls will be linked to the code in the
library file. This is illustrated in Fig. 6.3.

The situation is slightly different in Java. Here, there is no separation between
library, header and source files, there are only source files and compiled source
files (referred to as class files). Java code can be organized in packages, and
these packages can be imported in other applications. Whether the packages are
available in source files or class files does not matter, because everything will be
compiled into class files, if it has not been compiled already. Java packages follow a
naming convention which translates into a folder structure where the code is located.
For example, the package javax.xml.transform refers to a set of class files that are
located somewhere in a directory structure in the form ..\javax\xml\transform\ (or
..=javax=xml=transform= depending on the operating system). In order to use these
classes in a new application, it is necessary to import the package (with, e.g.,
import javax.xml.transform) and to make sure that their root folder is included in the
classpath variable. Figure 6.4 illustrates this scenario.

Things get more complicated when the applications to be integrated are written
in different programming languages. In this case it may still be possible to integrate
their code through some mechanism provided by one of those programming

148 6 Application Adapters

Applica�on 1Applica�on 2

Source file
(*.c; *.cpp)

Header file
(*.h)

Library file
(*.lib)

include

link

Fig. 6.3 Use of header files
and library files to integrate
code in C/C++

Applica�on 1Applica�on 2

Source code
(*.java)

import

invoke

javax

xml

transform

Java package
(*.java; *.class)

Fig. 6.4 Use of Java
packages to integrate code in
Java

Listing 6.1 Function to convert temperature from Fahrenheit to Celsius
1 double ConvertTemperature(double fahrenheit)
2 {
3 return ((fahrenheit � 32) � 5) / 9;
4 }

languages. For example, Java provides a mechanism known as Java Native Interface
(JNI) that allows Java programs to call native code written in C/C++ and also allows
native code in C/C++ to call Java code. Such possibilities can be used to create an
adapter in Java for a C/C++ application (when Java calls C/C++) or to create an
adapter in C/C++ for an existing Java application (when C/C++ calls Java). The
following sections explain these possibilities in more detail.

6.2.1 Calling C/C++ Code from Java

Suppose that there is a C/C++ application with a function to convert a temperature
value in Fahrenheit to Celsius. The function could look like the one in Listing 6.1.

6.2 Integration of Application Code 149

Listing 6.2 Creating an exported function in C to be called from Java
1 #include <jni.h>
2 #include "Convert.h"
3
4 JNIEXPORT jdouble JNICALL Java_Convert_convertTemperature(JNIEnv� env, jobject obj,
5 jdouble fahrenheit)
6 {
7 return ConvertTemperature(fahrenheit);
8 }

To invoke this function from Java, one needs to wrap this code into an exported
function that can be invoked by the Java Virtual Machine (JVM). For this purpose,
the function can be wrapped as shown in Listing 6.2.

In lines 4–8 of Listing 6.2 a new function is being implemented. The prototype
for this function is shown in lines 4–5 and it contains the JNIEXPORT and JNICALL
macros required by JNI. The return type for the function is specified between
those two macros. Note that the function makes use of JNI data types (e.g., jdouble
rather than double, although there is a direct mapping between these data types). In
addition, the exported function has three parameters rather than a single one. The
first two parameters are required for any function to be called by the JVM. The first
parameter (of type JNIEnv*) provides a pointer to a data structure that gives access
to several JNI functions, but these are not used in this simple example (they will
be used, though, when calling Java code from C/C++). The second parameter is a
reference to the Java method or class that calls this exported function. Finally, the
third parameter carries the temperature value to be converted.

It should be noted that there is no need to write the function prototype in
Listing 6.2 manually. In fact, it has been generated automatically (as we will see
ahead) and the name of the function itself was also generated automatically. The
function prototype is contained in Convert.h and that is the reason why this header
file is being included in line 2. Basically, Listing 6.2 is a source file that implements
the exported functions declared in that header file. In line 1, the header file jni.h is
being included to account for the JNI data types that are being used in this code.

Now, the code in Listing 6.2 must be loaded by the JVM when the Java
application is about to invoke the exported function. Therefore, it must be compiled
into a shared library such as Dynamic-Link Library (DLL) or Shared Object (SO)
file, depending on the system being used. In this example, we assume that the shared
library is called Convert.dll (or Convert.so). At run-time, the Java application will
request the virtual machine to load this shared library and then invoke the exported
function. The code to achieve this is illustrated in Listing 6.3.

In line 3 of Listing 6.3 the program declares a native method. This method is
not implemented in Java; rather, the keyword native indicates that the method is
mapped to an external function. The JNI conventions are such that this method will
be mapped to an external function called Java_Convert_convertTemperature(), which
is obtained by concatenating the prefix Java_ with the class name and the method
name. Hence the function name in line 4 of Listing 6.2 now becomes clear.

150 6 Application Adapters

Listing 6.3 Calling a native method from Java
1 public class Convert
2 {
3 public native double convertTemperature(double fahrenheit);
4
5 public static void main(String args[])
6 {
7 System.loadLibrary("Convert");
8
9 Convert conv = new Convert();

10 celsius = conv.convertTemperature(100);
11 System.out.println(celsius);
12 }
13 }

When the program in Listing 6.3 runs, it will start with the static function
main() in line 5. Line 7 loads the shared library where the external function is
implemented. In line 9 the program instantiates the class, and in line 10 it invokes the
convertTemperature() method by passing an input value of 100 ıF. This will result in
the external function being called. Line 11 prints the result, which is around 37.8 ıC.

In practice, since the prototype for the function in Listing 6.2 is generated from
the code in Listing 6.3 (line 3), things are done in a slightly different order from
what we have presented here. To start with, we assume that there is an existing
C/C++ application whose source code is available (in the example above, this role
is played by Listing 6.1). Then the following sequence of steps apply:

1. The first step is to write the Java code (equivalent to Listing 6.3) where all the
required native methods are included (as in line 3). Note that this involves an
early decision of how the shared library where those methods are implemented
will be called (e.g., Convert.dll or Convert.so in this example).

2. The next step is to compile the Java program (with, e.g., javac Convert.java) to
generate the corresponding class file (i.e., Convert.class).

3. The third step is to run the javah command on the class file in order to generate a C
header file with all the function prototypes for the native methods to be invoked.
Every call to a native method (e.g., convertTemperature()) will be mapped to a call
to the corresponding external function (e.g., Java_Convert_convertTemperature()).
For the example above, running javah -jni Convert will generate the Convert.h
header file that is included in Listing 6.2 (line 2) and that contains the prototype
for the Java_Convert_convertTemperature() function.

4. Finally, what is left to do is to implement the external functions (as in lines 4–8 of
Listing 6.2) using the available source code from the legacy C/C++ application.
The implementation must be compiled into a shared library with the same name
as the one used in step 1.

After these steps, running the Java code will make the JVM load the shared
library and invoke the native methods as external functions implemented in C/C++.

6.2 Integration of Application Code 151

Listing 6.4 Java method to convert temperature from Fahrenheit to Celsius
1 public class Convert
2 {
3 public static double convertTemperature(double fahrenheit)
4 {
5 return ((fahrenheit � 32) � 5) / 9;
6 }
7 }

6.2.2 Calling Java Code from C/C++

Invoking Java code from C/C++ is more straightforward. We assume that there is a
legacy Java application for which the class files (or source code that can be compiled
into class files) are available. The goal is to invoke methods of these classes in a
C/C++ program. For that purpose, it is necessary to write C/C++ code to instantiate
the Java Virtual Machine (JVM), find the desired class and method to be called, and
invoke the method by passing a set of input parameters. Finally, it is necessary to
release resources by unloading the JVM.

Listing 6.4 shows perhaps the simplest possible example of a Java class that
contains a single static method to convert a temperature in Fahrenheit to Celsius.
The goal is to invoke this method from a C/C++ program. The fact that the method
is static facilitates the task even further, since it is not necessary to instantiate the
class in order to invoke that method.

Listing 6.5 contains the full source code that is necessary to invoke the Java
method. The program begins by including the jni.h header file in order to have access
to the complete set of JNI functions and data structures which, among other things,
allow instantiating the JVM, finding Java classes, and invoking their methods. Lines
5–8 declare a set of variables that will be used to initialize the JVM. In particular,
these include options and arguments such as the classpath and the JNI version to be
used, which are specified in lines 15–19. In this example, the classpath points to the
local directory (line 15) and the JNI version is set to 1.2 (line 17).

The env and jvm variables in lines 7–8 will hold pointers to the JNI execution
environment and to the JVM, respectively (we will see these pointers in action
ahead in the program). The env and jvm pointers will be valid only if the
JNI_CreateJavaVM() function (line 21) returns successfully; this can be checked
through the returned value that is stored in the status variable (line 22).

With the env pointer to the JNI execution environment, the program retrieves
the Java class by name in line 24 (note that for this to work, the class must be in
the classpath, hence the need to set the classpath when initializing the JVM). As a
result, the cls variable will hold a handle to that class. Next, in line 27 the program
obtains a handle to the method. The fact that the method is static requires the use
of GetStaticMethodID() rather than the more general GetMethodID() function; anyway,
both functions are very similar. The function receives a pointer to the environment,
a handle to the Java class, and the name of the desired method. However, due to
the possibility of overloading there may be several methods with the same name

152 6 Application Adapters

Listing 6.5 Calling a Java method from C
1 #include <jni.h>
2
3 int main()
4 {
5 JavaVMOption options[1];
6 JavaVMInitArgs vm_args;
7 JNIEnv� env;
8 JavaVM� jvm;
9

10 long status;
11 jclass cls;
12 jmethodID mid;
13 jdouble celsius;
14
15 options[0].optionString = "�Djava.class.path=.";
16 memset(&vm_args, 0, sizeof(vm_args));
17 vm_args.version = JNI_VERSION_1_2;
18 vm_args.nOptions = 1;
19 vm_args.options = options;
20
21 status = JNI_CreateJavaVM(&jvm, (void��)&env, &vm_args);
22 if (status != JNI_ERR)
23 {
24 cls = (�env)�>FindClass(env, "Convert");
25 if (cls != 0)
26 {
27 mid = (�env)�>GetStaticMethodID(env, cls, "convertTemperature", "(D)D");
28 if (mid !=0)
29 {
30 celsius= (�env)�>CallStaticDoubleMethod(env, cls, mid, 100);
31 printf("Result: %f\n", celsius);
32 }
33 }
34 (�jvm)�>DestroyJavaVM(jvm);
35 return 0;
36 }
37 else return �1;
38 }

but with different parameter types. For this reason it is necessary to specify the
desired method more precisely, by indicating the data types for the parameters
and for the return value. In line 27, the fourth parameter that is being passed to
GetStaticMethodID() is “(D)D”. This is called the method signature and it specifies
that there is a single parameter of type double and a return value of type double as
well.

Using the method identifier (mid) obtained in line 27, the program invokes
the method through the use of a special-purpose function named CallStaticDou-
bleMethod() in line 30. There are other similar functions for calling methods that
return different data types, but their use is very similar: basically, the function
receives the pointer to the environment, the handle to the class, the handle to the
method, and finally a set of parameters to be forwarded to the method. The return
value is stored in the celsius variable and printed to standard output in line 31. In
line 34, the program terminates by unloading the JVM.

It should be noted that the three methods FindClass(), GetStaticMethodID(), and
CallStaticDoubleMethod() have been made available through the env pointer, while

6.2 Integration of Application Code 153

Source code
Applica�on 2
(language Y)

Source code
Applica�on 1
(language X)socket socket

request

Fig. 6.5 Integration through
network communication

the jvm pointer has been used solely to release the JVM at the end of the program.
This illustrates how JNI has its own API, and how this API is far from trivial. On
the other hand, the API that we used as an example for integration was very simple,
since it comprised a single method to convert between two temperature values. In
practice, it may be possible that the API of the application to be integrated is of
comparable or even greater complexity than JNI or other standard APIs. For the
systems integrator, it is important to be exposed to several different APIs, as this
will improve the ability to address difficult integration problems in practice.

6.2.3 Integrating Across the Network

In this section we have seen how it is possible to invoke code from applications
written in different programming languages, using C and Java as an example.
This required the use of a special mechanism, which in this case was JNI, to
create a bridge between two different execution environments, namely the native
environment of the C application and the JVM environment of the Java application.
In some cases, it may be possible to rely on common mechanisms provided by the
operating system in order to create such bridge, provided that such mechanisms are
accessible from both programming languages.

An example is the use of network communication. Suppose that there is an
application written in a programming language X whose source code can be
changed so that the application opens a network socket in order to listen for requests
on some port on the local machine. Now, suppose that there is another application
written in a programming language Y which opens its own network socket (on the
same or on a different machine) in order to send requests to application X . This
scenario is illustrated in Fig. 6.5. Naturally, such approach will work regardless of
the programming languages of both applications, but provided that it is possible to
do this sort of network programming in both languages.

Even though such approach can be quite generic, it creates some problems from
a practical point of view. First, assuming that the network connection is established
between both applications, there is the problem of defining the syntax for the
requests or commands to be sent to the target application. If something similar to
a method call is intended, then it is necessary to transmit at least the method and
its parameters. Conversely, it is necessary to send the result back to the requesting
application. For these purposes, one needs to define some wire format for the data
to be transmitted in both directions between these applications.

154 6 Application Adapters

Other kinds of problems may also arise. For example, it is necessary to specify
the network port that the target application will use to listen for requests. This
network port must not be in use by other applications running on the same machine.
Also, the requesting application must somehow know or learn about the port that
is being used by the target application. Hardcoding this port in both applications
will reduce flexibility and possibly generate conflicts with future applications. Most
likely, it would make sense to define a standard port to be used for this purpose,
in a similar way to what is done for a variety of network protocols. This need for
standardization also applies to the wire format mentioned above.

Clearly, although the approach in Fig. 6.5 looks feasible, one should avoid
developing this kind of solution in an ad-hoc way. On one hand, there are technical
issues associated with this approach that should be given proper attention and should
be addressed in a systematic way. On the other hand, the proliferation of ad-hoc
connections between applications can easily lead to a scenario similar to the one
discussed in Sect. 1.3, particularly Fig. 1.3 on page 10. If the connections between
applications are developed in an ad-hoc way, then the resulting scenario will be very
hard to manage and to change in the future.

Nevertheless, network communication does provide an interesting mechanism
for integrating applications written in different programming languages or running
in different platforms, machines, or environments. What is need is a convenient and
standard way of performing method invocation across the network. Unsurprisingly,
there are technologies to perform just that, such as RPC, CORBA, and Web services.
What is surprising is that some of these technologies—especially CORBA—which
were once seen as the most advanced middleware platforms for distributed systems
and were used to build large-scale and mission-critical enterprise systems, have been
completely abandoned and are today virtually unheard of.

This was, most of all, due to a change in direction. As the CORBA platform
and its associated services grew and increased in sophistication and complexity,
a much simpler alternative was in the making, one which relied on widely used
Web standards such as XML and HTTP rather than on special-purpose protocols as
CORBA did. That alternative is called Web services, and it completely replaced RPC
and CORBA. This is not to say, however, that Web services is a better technology
than CORBA. In fact, by the time Web services appeared, CORBA was much more
sophisticated, with a wide range of associated services and functionality. In part,
Web services drew on some of the same concepts, but implement them in a simpler
and more widely accessible run-time platform.

6.3 Revisiting RPC and CORBA

To understand where CORBA came from, one can go back to the original ideas of
RPC (Remote Procedure Call). The goal of RPC was to facilitate the invocation
of functions on a remote application, called server, as opposed to the invoking
application which is referred to as client. The idea was that the function call would

6.3 Revisiting RPC and CORBA 155

Server applica�onClient applica�on

Communica�on module

Client code

socket socket
request

Client stub Server stub

Server code

Interface
definiton

interface

interface

Compiler

RPC run-�me
infrastructure

Fig. 6.6 Communication between RPC client and server

be issued by having the client send a request over the network to the server, in a
similar way to Fig. 6.5. However, rather than having the client and server agree
on the communication protocol and wire format, this is taken care of by the RPC
run-time infrastructure. A server needs only to specify the procedure to be exposed,
in the form of a function prototype, and the RPC infrastructure will provide the
mechanisms that allow such procedure to be invoked by remote clients.

Figure 6.6 illustrates those mechanisms. The RPC run-time infrastructure
includes a communication module to transmit the request between the client and
the server. However, neither the client nor the server needs to be aware that such
communication is taking place. Instead, they both interact with local modules, so
the function call appears to be made locally in either case. For the client, the RPC
infrastructure provides a client stub, which works as a surrogate for the actual server.
The client stub provides the same interface as the server, and the client performs
the invocation locally on that stub. The invocation is done in the same programming
language and in the memory space of the client application.

The client stub is implemented in such a way that, when it is invoked, it passes on
the request to the communication module. The communication module transmits the
request over the network to the server application. On the server application, there
is a server stub, which acts as a surrogate for the client. Upon receiving the request
from the network, the server stub performs the invocation of the server code. Again,
this invocation takes place locally, using the same programming language and
memory space of the server application. The RPC run-time infrastructure therefore
achieves the interesting feat of transforming one remote invocation into two local
invocations, with network communication in between.

However, for this to work the client stub and the server stub need to have some
common knowledge about the procedure to be invoked. This knowledge is provided
by an interface definition, also depicted in Fig. 6.6, which is essentially a piece of
code that contains the function prototypes for the available remote procedures. This
interface definition is written in a special-purpose language called IDL (Interface

156 6 Application Adapters

Definition Language) which is very akin to C both with respect to syntax and to the
data types that it supports (for specifying the function parameters).

The use of this special-purpose language is justified by the fact that it may
include special configurations for the RPC run-time infrastructure. For example,
the interface definition must clearly state whether each function parameter is being
used as input (in this case it will be marked as [in]), output ([out]), or both ([in,out]).
This may not be clear from the original function prototype, but it is important for
the RPC infrastructure to know the data to be transmitted in each direction.

Being written in IDL, the interface definition needs its own compiler. This
compiler works as a code-generation tool that creates both the client stub and the
server stub. The client stub is a component that looks as a server to the client. The
server stub is a component that looks as a client to the server. The code for both the
client stub and the server stub can be generated automatically, since the interface
definition specifies the function parameters, their data types, and their direction.
The RPC infrastructure will therefore have all the information that it needs in order
to handle the procedure call between client and server.

The process of packaging the function parameters for transmission over the
network is referred to as marshalling in the RPC terminology. Marshalling is
the process of transforming a data structure that exists in application memory
into a format that is suitable for transmission. When sending the procedure call,
marshalling is done by the client stub. At the receiving end, the parameters are
transformed back to their original form by the server stub, through a process known
as unmarshalling. Through the use of marshalling, transmission, and unmarshalling,
it is possible to replicate the data from the client at the server end. When the
server executes the procedure and produces the output parameters or result, the
same process takes place in the opposite direction, with marshalling being done
by the server stub and unmarshalling being done by the client stub. In this case, the
transmission takes place from server to client.

6.3.1 From RPC to CORBA

With the advances in object-oriented methodologies in software engineering and the
adoption of object-oriented programming languages such as C++ and Java, there
was a natural need to extend RPC into the object-oriented paradigm. Rather than
simply calling remote functions, there was a need to instantiate remote objects,
invoke their methods, pass them references to other remote objects, etc., all of this
taking place in a distributed environment. Moreover, such environment should be
open to multiple platforms and to different programming languages.

The result was the development of CORBA (Common Object Request Broker
Architecture) where the name comes from the fact that the main component in
the CORBA run-time infrastructure is the ORB (Object Request Broker) which
connects applications in a similar way to the RPC run-time infrastructure discussed
above. In CORBA, the server stub is called skeleton, while the client stub is simply

6.3 Revisiting RPC and CORBA 157

referred to as stub. The skeleton and stub are conceptually similar to their RPC
counterparts, and they fulfill the same role, respectively.

As in RPC, there is a compiler to generate the skeleton and stub automatically
from an interface definition, and this interface definition is also written in a language
called IDL, albeit a slightly different one from RPC. In particular, the CORBA
IDL allows specifying interfaces with both attributes (data members) and operations
(methods). Also, the language supports method parameters with the usual data types
as well as object references. In addition, there is interface inheritance, exceptions,
and other advanced features.

In CORBA, there is an additional reason to have a special-purpose interface
definition language, and that is the fact that the interface is defined independently
of the programming language that will be used for implementation. In fact, there
are IDL mappings for different programming languages, including C++ and Java as
well as several others. In general, for each programming language there is an IDL
compiler in order to generate the skeleton and stub in that language.

It should be noted, however, that the fact that the IDL compiler can generate both
skeleton and stub does not mean that they will both be used. It could be that an IDL
compiler in C++ is used to generate the skeleton for the server implementation in
C++, while an IDL compiler in Java is used to generate the stub for a client in Java.
The multi-language support in CORBA comes from the fact that the mapping of IDL
to each programming language is subject to standardization. Application developers
can therefore work with their preferred programming language, while the CORBA
run-time infrastructure will ensure interoperability with objects implemented in
other programming languages.

Figure 6.7 illustrates the possibilities introduced with CORBA. A language-
specific IDL compiler is able to generate the skeleton or stub as needed for each
application. There may be multiple implementations of the same server object in
different applications, and there may be different clients for each server object.
The interaction between client and server objects takes place across one or more
ORBs. It is possible for the client and server objects to use the same ORB, if they
belong to the same application. In general, however, client and server objects will be
distributed across applications, so a client object from one application will invoke
a server object from another application. In this case, each application uses its own
ORB, and the ORBs communicate through a standard inter-ORB protocol.

One of the original goals of CORBA was to provide a mechanism through which
applications can invoke local and remote objects in the same way. Such goal is
achieved by having all invocations—both remote and local invocations—go through
the ORB. At first sight, this would seem to be an unnecessary requirement and could
even be thought to degrade application performance. However, this is not much of a
problem since local interactions will be handled by the local ORB alone, whereas for
remote invocations the local ORB will communicate with the remote ORB without
the need to perform any additional work by either the client or server. This way,
CORBA promotes the development of truly distributed applications by completely
abstracting from the location of the object being invoked.

158 6 Application Adapters

Applica�on 2Applica�on 1

Stub Skeleton

Interface
definiton

Applica�on
object
(client)

Applica�on
object

(server)

Compiler

Applica�on
object
(client)

ORB

Stub Skeleton

Applica�on
object
(client)

Applica�on
object

(server)

ORB
Inter-ORB
protocol

CORBA services

Naming Service Time Service No�fica�on
Service

Transac�on
Service

...

Dynamic Invoca�on
Interface

design �me
run �me

Compiler

Fig. 6.7 Distributed application objects and services with CORBA

This means that the CORBA mechanisms can be used not only for interacting
with remote objects but also to support the interaction between objects within the
same application. For this to happen, it is necessary to define the interfaces for
all objects—both remote and local—using IDL. Then by compiling the IDL, one
obtains the skeletons and stubs for all interfaces. By making sure that all calls are
done through client stubs (rather than, say, calling a local server object directly),
every call will go through the ORB, and therefore it becomes irrelevant whether the
server object is implemented in the same or in another application.

In the example of Fig. 6.7, we assume that there is a single interface defined
in IDL, and that there are two applications written in two different programming
languages. One compiler is used to generate the stub and skeleton for Application 1,
and another IDL compiler is used to generate the stub and skeleton for application 2.
Now, in general one application acts as server and another acts as client, but in this
example both applications implement a client and a server. This means that the
client object from Application 1 can invoke either the local server object available
in Application 1 or the remote server object available in Application 2 (the same
applies to the client object from Application 2). For the client, the two server objects
look exactly the same. It is only at the level of the ORB that the requests are
processed differently; in particular, in the remote invocation the ORB of the client
interacts with the ORB of the server using the standard inter-ORB protocol.

6.3.2 The CORBA Services

A distinctive feature of CORBA in comparison with other similar technologies
is the fact that CORBA includes a rich set of associated services, as depicted at

6.3 Revisiting RPC and CORBA 159

the bottom of Fig. 6.7. These services can be used for multiple purposes, such
as discovering objects by name, synchronizing time between objects, subscribing
to events from other objects, and managing transactions across objects. These
correspond, respectively, to the Naming Service, the Time Service, the Notification
Service (which, in turn, is based on the Event Service), and the Transaction Service
depicted in Fig. 6.7. Other services exist, and these are meant just as an example of
some of the services that are most commonly used.

In itself, CORBA is a set of standards that can be implemented by different
vendors. The CORBA services are also part of these standards, but not all CORBA
implementations may provide these services. Anyway, it is possible for an ORB
implemented by one vendor to interact with CORBA services implemented by
another vendor, since each service is accessible through the same mechanisms
that are used to invoke remote objects. A vendor may also specialize in the
implementation of CORBA services alone, where these services are intended to
interoperate with ORBs from other vendors. However, the most common scenario
is to have a CORBA implementation that includes the ORB and at least a few basic
services, such as the Naming Service.

The role of the CORBA Naming Service is especially important since it is often
the only means for an object to obtain a reference to another object. For example,
a client must somehow obtain a reference to the server object to be invoked. The
preferred way to do this is to have the server object register itself in the Naming
Service as soon as it is instantiated. Registering means providing an object reference
and a convenient name which clients can use to lookup the object reference in the
Naming Service. The clients need to know only the name which the server uses
to register itself in order to retrieve the object reference from the Naming Service.
Naturally, such name must not be used by other objects, and the Naming Service
ensures this by not allowing other objects to register with the same name.

It is interesting to note the conceptual similarity between the CORBA Naming
Service and centralized facilities used in other technological platforms as well. For
example, in Sect. 3.5.2 on page 54 we have seen how a JMS (Java Message Service)
client application must use JNDI (Java Naming and Directory Interface) to retrieve
references to different kinds of objects, namely in order to create a connection to
JMS and to send a message to a destination. In this context, JNDI plays the same
role as the CORBA Naming Service by allowing objects to be registered and clients
to lookup those objects by their registered name.

Also, in the Web services technology to be introduced ahead in Sect. 6.4, a
similar role is played by UDDI (Universal Description Discovery and Integration).
A UDDI registry is used to publish and discover Web services. Here, the published
information may go well beyond the address to invoke the Web service and may
include a complete specification of the Web service interface for potential clients.
Still, it is possible to recognize a parallel between the way Web services can be
registered and discovered through an UDDI registry, and the way object references
can be registered and retrieved from the CORBA Naming Service.

The CORBA Naming Service in particular has been devised in such a way that
there is an IDL definition that clients can use to invoke the service like they would

160 6 Application Adapters

invoke any other CORBA object, i.e., by compiling the IDL, generating the stub, and
invoking the service through that stub. Vendors intending to implement the Naming
Service have to compile the IDL, generating the skeleton, and use that skeleton
in their implementation. In fact, the standard that defines the Naming Service is
essentially a specification of the IDL interfaces that the service provides. The same
applies to the remaining CORBA services. For example, the CORBA Notification
Service is a specification of the IDL interfaces for a publish–subscribe service where
objects can subscribe to particular types of events produced by other objects.

6.3.3 Dynamic Invocations in CORBA

CORBA includes an advanced mechanism called the Dynamic Invocation Interface
(DII), which is illustrated at the left-hand side in Fig. 6.7. Using DII, it is possible for
a client to invoke any server object without having a stub for that object. Given that
the stub is usually generated from an IDL file, the Dynamic Invocation Interface
becomes especially useful to invoke an object for which an IDL definition of its
interface is not available at design-time. Through the use of DII, a client can learn
about the interface of a server object at run-time.

However, the use of DII alone does not completely remove the need to use
IDL. In fact, the IDL specification for the server object must exist at some point,
and it has to be imported into a special service called the Interface Repository
(abbreviated as IFR). Only then can other objects learn about the interface from
the IFR and invoke those objects through DII. Basically, from the IFR, the client
learns about the methods and parameters to be supplied. The client then creates a
special Request object which contains the method name and the parameters to be
passed. This Request object has a special method called invoke() which performs the
invocation on the remote object. The Request object defined by DII therefore works
as a dynamic stub that can be adapted for calling any CORBA interface.

Another mechanism that is closely related to DII is the Dynamic Skeleton
Interface (DSI). Using DSI, it is possible to build a server object with a dynamic
skeleton, which can respond to any call issued by a client. To illustrate how DSI
might be useful, suppose that a client has been programmed to invoke a certain
server object, through a stub that has been properly generated from the IDL.
However, suppose that when the server object is being developed, the IDL is not
available (e.g., because the server is being developed before the IDL interface is
actually defined). Then using DSI it is possible to implement a server that can learn
about the method name and the parameters being passed at run-time, as it is being
invoked. Such server is called a DSI servant and it receives a special ServerRequest
object that brings all the call info, including the expected return type. The servant
can then return a result in a way that is compatible with what the client is expecting.

Dynamic invocations in CORBA, either through the use of DII or DSI, are
usually (and perhaps mistakenly) considered to be a complicated topic and are
often avoided in practice. However, they can be extremely useful for the purpose

6.4 Web Services 161

of integration. Given a legacy application developed with CORBA, and for which
no documentation or IDL specifications are available, it may be possible to write an
adapter to invoke the application functionality through DII, or to write an adapter to
receive calls from the application through DSI.

Such dynamic binding between client and server is so important nowadays that
even Web services, which superseded CORBA, provide the possibility for clients
to learn about the interface of a Web service at run-time, and to interact with the
Web service without having to know its interface at design-time. That is in fact
one of the main purposes of using UDDI registries, i.e., to have a repository of
interface definitions where clients can discover Web services according to their
needs. The dynamic invocation of Web services is further facilitated by the fact
that this technology makes extensive use of XML, both for the purpose of defining
the Web service interface and for the purpose of serializing and transmitting method
calls between client and service, as we will see in the next section.

6.4 Web Services

As described in the previous section, CORBA is an advanced and comprehensive
platform for distributed applications. In the CORBA platform, each application uses
an ORB to handle the method calls between objects, both local and remote. In the
case of a remote method call, and in a similar way to RPC, the ORB performs
marshalling of the method parameters and sends the request to the destination ORB,
where unmarshalling takes place and the server object is invoked. The return result
and possibly output parameters as well are transferred back to the client in another
marshalling–transmission–unmarshalling sequence. A special-purpose inter-ORB
protocol is used for communication between ORBs.

The fact that such an advanced and comprehensive platform as CORBA has
lost popularity and has virtually disappeared today has been attributed to multiple
factors [14], of which the complexity of use, and the lack of vendor support for the
full range of CORBA standards, are often the most cited. However, a careful analysis
of the technology that came to replace CORBA (i.e., Web services) suggests that
while there was nothing wrong with the CORBA platform itself, the attention shifted
to different standards and protocols. Indeed, the essential concepts underlying RPC
and CORBA can still be recognized in the Web services technology; however, these
concepts have been implemented using a different and more widely accepted set of
standards for the supporting infrastructure.

The first factor to shift attention away from CORBA was the disseminated use
of XML. At a time when RPC had already been improved to make use of XML
to serialize the data going back and forth during a procedure call (resulting in a
technology known as XML-RPC), CORBA was still making use of proprietary
marshalling mechanisms that led to a binary and opaque representation of data.
Naturally, the ease with which XML can be created and processed at the receiving
end made it an attractive alternative to conventional marshalling and unmarshalling

162 6 Application Adapters

mechanisms. Any primitive data type, as well as more elaborate structures such
sequences or arrays, can be easily represented in an XML structure.

The second factor that contributed to the development of an alternative to
CORBA was the widely disseminated use of HTTP as a transport protocol.
In particular, HTTP can be used to carry an XML payload, making it an ideal
transport protocol for data serialized in XML. In contrast, CORBA required
the implementation and use of a special-purpose inter-ORB protocol. Given the
widespread use of HTTP in the World Wide Web, and the fact that it was a perfect
fit for the problem at hand, the development of inter-ORB protocols lost pace and
together with it the use of ORBs also started to be looked upon as an inconvenience.

The third factor that sentenced the use of CORBA was the development of an
alternative to IDL. In CORBA, IDL was devised as a neutral language for interface
definitions that could be mapped to several programming languages, especially C++
and Java, but others as well. However, using IDL had the inconvenience of requiring
a special syntax and a dedicated compiler to generate the stubs and skeletons. Then
the idea arose that it would be much easier to handle interface definitions if these
were defined in XML and processed through an XML parser rather than a special-
purpose compiler, as in IDL. This would also enable client applications to retrieve
and use the interface definition at run-time in order to perform dynamic invocations,
similar to those described in Sect. 6.3.3 but using much simpler mechanisms.

The result was the development of WSDL (Web Services Description
Language),1 an XML-based language to define the interface of a Web service.
Together with SOAP (Simple Object Access Protocol), which defines how a service
invocation can be serialized in XML and transmitted over HTTP, these standards
are at the core of the Web services technology.

A third element known as UDDI (Universal Description Discovery and
Integration) was part of the original set of standards for Web services, but it is
not as widely used as the other two (SOAP and WSDL). Basically, UDDI specifies
a repository for storing information and metadata about Web services that enables
client applications to discover and interact with Web services at run-time. However,
a UDDI repository was originally intended to store much more info than just the
service interface, and practice has shown that there was not much use for that
extended info. In most cases, Web services have a limited or private scope, which
makes them inappropriate for being published in a wider or even public repository.

The most common way to locate a Web service is to provide a URL where
the Web service is available. This makes sense since Web services are usually
hosted in a Web server. Most Web service platforms (i.e., implementations from
different vendors or for different programming languages) include the possibility of
generating the WSDL interface definition on-the-fly (i.e., at run-time) by querying
the Web service URL. This provides an additional level of flexibility since the
interface definition can be generated after the Web service has been implemented.
For a client, this also provides a convenient way to retrieve the service interface

1WSDL is usually pronounced informally as “wisdle.”

6.4 Web Services 163

Listing 6.6 A C# Web service
1 using System.Web.Services;
2
3 [WebService(Namespace="http://example.org/")]
4 public class TempConvert : WebService
5 {
6 [WebMethod]
7 public double ConvertTemperature(double dFahrenheit)
8 {
9 return ((dFahrenheit � 32) � 5) / 9;

10 }
11 }

from the Web service itself rather than from an external repository. The client can
then parse the WSDL file to learn about all the operations that can be invoked on the
Web service. Each operation requires the exchange of one or more SOAP messages,
whose XML content and structure are also specified in the WSDL file.

6.4.1 A Simple Example

Listing 6.6 shows a simple example of a Web service written in C# to convert a
temperature in Fahrenheit to Celsius. The Web service is implemented as a subclass
of System.Web.Services.WebService available in the .NET framework (line 4) and
that is why the System.Web.Services namespace is being included (line 1). The class
has a single method called ConvertTemperature() that accepts a Fahrenheit value and
converts it to Celsius using the same formula as in Listing 6.1.

Besides the fact that the TempConvert class in Listing 6.6 is a subclass of
System.Web.Services.WebService, what makes this code behave as a Web service
are the code attributes in lines 3 and 6. In line 3, the [WebService] attribute is used to
indicate that this class provides a Web service to the outside world. Since there may
be other services out there on the Web with the same name, a namespace can be
used to distinguish this Web service from others. In line 6, the [WebMethod] attribute
specifies that the method that comes afterward is exposed as an operation of the
Web service. Together, the attributes [WebService] and [WebMethod] allow the system
where the Web service is hosted (usually, a Web server) to automatically generate
the interface definition by introspection. In this case, it will expose one Web service
(TempConvert) with a single operation (ConvertTemperature()).

When hosted in a Web server, the Web service will be accessible through a
Web page, which will execute the code in Listing 6.6. Since this Web service is
implemented in C#, it can be hosted in the Web server of the Windows platform,
which is known as IIS (Internet Information Services). In addition, the Web page
that exposes the Web service can be written in a server-side scripting language
known as ASP.NET. Fortunately, the ASP.NET code required to expose the Web
service in IIS is quite simple and is shown in Listing 6.7. The actual code is between

164 6 Application Adapters

Listing 6.7 Contents of the TempConvert.asmx file
1 <%@ WebService Language="C#" CodeBehind="TempConvert.asmx.cs" Class="TempConvert" %>

Listing 6.8 SOAP request to Web service
1 POST /TempConvert/TempConvert.asmx HTTP/1.1
2 Host: localhost
3 Content�Type: text/xml; charset=utf�8
4 Content�Length: nn
5 SOAPAction: "http://example.org/ConvertTemperature"
6
7 <?xml version="1.0" encoding="utf�8"?>
8 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
9 <soap:Body>

10 <ConvertTemperature>
11 <dFahrenheit>100</dFahrenheit>
12 </ConvertTemperature>
13 </soap:Body>
14 </soap:Envelope>

the delimiters <%@ and %> and it contains a single directive called WebService to
specify that this page is a front-end to a Web service.

The Web service can be found in the TempConvert.asmx.cs file that is specified in
the CodeBehind parameter. The remaining parameters specify that the Web service is
written in C# (Language parameter) and that its implementation can be found in the
class TempConvert (as indicated by the Class parameter). The TempConvert.asmx.cs
file simply contains the C# code in Listing 6.6. The ASP.NET code in Listing 6.7
is saved in a file called TempConvert.asmx. According to ASP.NET conventions, the
supporting code for an .asmx file should be in a .asmx.cs file, where the .cs extension
denotes the fact that the code is written in C#. The Web service can then be invoked
by accessing the TempConvert.asmx page. In the following, we assume that the page
is available on the URL: http://localhost/TempConvert/TempConvert.asmx.

6.4.2 Invoking Operations with SOAP Messages

A Web service hosted in a Web server will wait for a client to invoke one of its
operations by sending a request in the form of a SOAP message. On its turn, the Web
service will produce a response also in the form of an SOAP message. Basically, an
SOAP message is an HTTP message with an XML payload, where the content of
the XML payload depends on the operation being invoked and its parameters. As an
example, Listing 6.8 shows a SOAP request that could be sent to the Web service
defined earlier. The request contains two main parts: the HTTP command together
with a set of headers in lines 1–5, and the XML payload in lines 7–14.

In line 1 it can be seen that the SOAP request is being transmitted with an HTTP
request using the POST method. The HTTP request is for the TempConvert.asmx
page which, as explained before, is hosting the Web service. Line 2 indicates that
the request is being sent to a Web server running on the local machine. Line 3

http://localhost/TempConvert/TempConvert.asmx

6.4 Web Services 165

Listing 6.9 SOAP response from Web service
1 HTTP/1.1 200 OK
2 Content�Type: text/xml; charset=utf�8
3 Content�Length: nn
4
5 <?xml version="1.0" encoding="utf�8"?>
6 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
7 <soap:Body>
8 <ConvertTemperatureResponse>
9 <ConvertTemperatureResult>37.7777777777778</ConvertTemperatureResult>

10 </ConvertTemperatureResponse>
11 </soap:Body>
12 </soap:Envelope>

specifies the media type of the payload contained in this HTTP request, as well as
the character encoding. Line 4 specifies the length of the payload, where nn will be
replaced by the number of bytes using the current character encoding. Finally, line
5 contains a special-purpose header field (SOAPAction) to indicate that this HTTP
request is actually a SOAP request. This header is used in case the Web server
wants to handle SOAP requests in some special way. The value in this header field
is simply an identifier (not necessarily a URL) that may or may not be used; the
important thing is that this header is present in all SOAP requests.

Line 7 begins the XML content of the SOAP request. The request comprises an
Envelope (line 8) and a Body (line 9). The Envelope element serves as root node
for the document, while the Body contains the actual request to be forwarded to
the Web service. The body of the SOAP request contains an element that relates
to the operation being invoked (ConvertTemperature in line 10) and one or more
parameters as required by that operation (dFahrenheit in line 11). These names come
from the WSDL interface of the Web service; since the WSDL interface definition
is usually generated by introspection from the Web service code, the operations and
parameters in the WSDL usually end up having the same names as the methods and
parameters in that code. In the particular example of Listing 6.8, the request is to
convert a temperature value of 100 ıF to Celsius.

Listing 6.9 shows the SOAP response. It is basically an HTTP response (as can
be seen from line 1) with an XML payload (lines 5–12). Lines 2–3 contain similar
HTTP headers to the request message described above. The SOAP response has an
Envelope (line 6) and a Body (line 7) as before. The body contains the response
from the Web service operation. The response is being returned as a message
called ConvertTemperatureResponse (line 8). In turn, this message contains the
return value in the ConvertTemperatureResult element (line 9). Again, these names
come from the WSDL interface definition for the Web service. The return value
for the ConvertTemperature() method is actually anonymous (as can be seen in
Listing 6.6) so the names for the ConvertTemperatureResponse message and the
ConvertTemperatureResult element have been generated based on the method name.
The next section will help clarify where these names come from.

166 6 Application Adapters

Listing 6.10 Overview of the WSDL interface definition
1 <?xml version="1.0" encoding="utf�8"?>
2 <wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" ... >
3
4 <wsdl:types> ... </wsdl:types>
5
6 <wsdl:message name="..."> ... </wsdl:message>
7 ...
8
9 <wsdl:portType name="..."> ... </wsdl:portType>

10 ...
11
12 <wsdl:binding name="..." type="..."> ... </wsdl:binding>
13 ...
14
15 <wsdl:service name="..."> ... </wsdl:service>
16
17 </wsdl:definitions>

6.4.3 The WSDL Interface Definition

For a Web service that is hosted in IIS, it is possible to obtain the WSDL interface
definition by appending the suffix “?WSDL” to the Web service URL. For the
Web service we have been working with, the WSDL can be obtained by access-
ing the following URL: http://localhost/TempConvert/TempConvert.asmx?WSDL.
As explained above, the resulting WSDL is generated on-the-fly by introspection
of the Web service code (this is the main reason for using the declarative attributes
[WebService] and [WebMethod] in the code of Listing 6.6). Rather than presenting
the WSDL definition all at once, here we will look at it in several parts. Listing 6.10
shows the overall structure of the WSDL definition.

The WSDL has five main parts, whose purpose can be described as follows:

• The <types> element defines the data structures to be used when interacting
with the Web service. In particular, there will be a request and a response
when invoking the ConvertTemperature() method, and since these messages are
transmitted using SOAP, they will have an XML structure. In general, the <types>
element defines the XML structures that will be used when interacting with the
Web service through any of its operations. Each data structure is defined as an
XML schema element in XSD (XML Schema Definition) format.

• The <message> elements specify the set of messages that can be exchanged with
the Web service, either from the client to the service or from the service to
the client. Messages are closely related to the operations that the Web service
provides. For example, the ConvertTemperature() method involves two messages:
the request message and the response message. Each of these messages has a
certain type, which corresponds to one of the XML structures defined in <types>.
There may be multiple <message> elements, and there may be more than one
message using the same XML structure, hence the need to define these XML
structures separately in <types>.

http://localhost/TempConvert/TempConvert.asmx?WSDL

6.4 Web Services 167

• The <portType> element is used to define the operations that the Web service
provides. Each port type may comprise multiple operations (i.e., <operation>
elements), and together these operations can be regarded as an interface (in the
same sense of an IDL interface with multiple methods). In general, there may be
several <portType> elements, representing the different interfaces that the Web
service implements. Within a port type, each operation usually consists in a
pair of messages that are exchanged between the client and the Web service.
The message being sent from the client to the Web service is referred to as the
input message (and takes the form of an <input> element), while the message
being sent from the Web service to the client is referred to as the output message
(<output> element). An interesting feature of WSDL is that it allows for several
possibilities regarding the input and output message:

– if the operation consists in an input message followed by an output message
then the interaction is referred to as request–response;

– if the operation consists in an input message alone then the interaction is
referred to as a one-way request;

– if the operation consists in an output message followed by an input message
then the interaction is referred to as solicit-response; in this case it is the Web
service who initiates the interaction with the client;

– if the operation consists in an output message alone then the interaction is
referred to as a notification.

• The <binding> elements specify how the Web service operations are mapped to
a particular transport protocol. Each <binding> element associates one port type
with one transport protocol. The same port type can be associated with other
(alternative) transport protocols through the use of multiple <binding> elements.
If the Web service has multiple port types, then there will be at least one
<binding> element for each port type. In our example, the binding specifies that
the ConvertTemperature operation uses SOAP as the transport protocol and is
mapped to a particular SOAP action, and also that the input and output messages
are transmitted “literally,” without any special kind of encoding.

• The <service> element is used simply to specify the address (URL) where the
Web service can be found. There may be multiple addresses in case there are
multiple bindings. In general, each binding has its own address, so that a client
can choose between one of the available transport protocols.

In more detail, the WSDL definition begins with a series of namespace decla-
rations as in Listing 6.11. The namespace “wsdl” in line 2 is used to distinguish
between the original WSDL elements and possibly other elements with the same
name but unrelated to WSDL. The namespace “s” in line 3 is used due to the XML
schema definitions to be introduced in the <types> section. The namespaces “soap”
and “soap12” are used to define bindings for two different versions of SOAP.

In line 6, a target namespace is being specified. The purpose of having this
target namespace is to enable the WSDL definition to refer to elements that have
been introduced in this WSDL document itself. For example, the WSDL defines

168 6 Application Adapters

Listing 6.11 Beginning of the WSDL interface definition
1 <?xml version="1.0" encoding="utf�8"?>
2 <wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
3 xmlns:s="http://www.w3.org/2001/XMLSchema"
4 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
5 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
6 targetNamespace="http://example.org/"
7 xmlns:tns="http://example.org/">
8 ...
9 </wsdl:definitions>

Listing 6.12 WSDL types element
1 <wsdl:types>
2 <s:schema elementFormDefault="qualified"
3 targetNamespace="http://example.org/">
4 <s:element name="ConvertTemperature">
5 <s:complexType>
6 <s:sequence>
7 <s:element minOccurs="1"
8 maxOccurs="1"
9 name="dFahrenheit"

10 type="s:double" />
11 </s:sequence>
12 </s:complexType>
13 </s:element>
14 <s:element name="ConvertTemperatureResponse">
15 <s:complexType>
16 <s:sequence>
17 <s:element minOccurs="1"
18 maxOccurs="1"
19 name="ConvertTemperatureResult"
20 type="s:double" />
21 </s:sequence>
22 </s:complexType>
23 </s:element>
24 </s:schema>
25 </wsdl:types>

two messages called ConvertTemperatureSoapIn and ConvertTemperatureSoapOut,
respectively, for the request and the response from the ConvertTemperature operation.
These messages are defined within the specified target namespace. Line 7 introduces
a prefix “tns” for the target namespace, so that the two messages can be referred to
as tns:ConvertTemperatureSoapIn and tns:ConvertTemperatureSoapOut.

Listing 6.12 presents the data types to be used in those messages. There is
actually a single schema being defined in lines 2–24. This schema has two elements
named ConvertTemperature and ConvertTemperatureResponse. The ConvertTempera-
ture element (line 4) has a single child element called dFahrenheit (line 9) of type
double (line 10). The ConvertTemperatureResponse element (line 14) has also a single
child element called ConvertTemperatureResult (line 19) of type double (line 20).
These definitions are consistent with the SOAP request and response shown earlier
in Listings 6.8 and 6.9, respectively.

Listing 6.12 defines the data types to be used in messages, but it does not
define the actual messages. The messages are defined in Listing 6.13. As previously
mentioned, there are two messages: one is called ConvertTemperatureSoapIn (line 1)

6.4 Web Services 169

Listing 6.13 WSDL message elements
1 <wsdl:message name="ConvertTemperatureSoapIn">
2 <wsdl:part name="parameters"
3 element="tns:ConvertTemperature" />
4 </wsdl:message>
5 <wsdl:message name="ConvertTemperatureSoapOut">
6 <wsdl:part name="parameters"
7 element="tns:ConvertTemperatureResponse" />
8 </wsdl:message>

Listing 6.14 WSDL port type element
1 <wsdl:portType name="TempConvertSoap">
2 <wsdl:operation name="ConvertTemperature">
3 <wsdl:input message="tns:ConvertTemperatureSoapIn" />
4 <wsdl:output message="tns:ConvertTemperatureSoapOut" />
5 </wsdl:operation>
6 </wsdl:portType>

and represents the request from the client to the Web service; the other is called
ConvertTemperatureSoapOut (line 5) and represents the response from the Web
service to the client. The message ConvertTemperatureSoapIn has a single part which
corresponds to an element of type ConvertTemperature defined in Listing 6.12.
The message ConvertTemperatureSoapOut has also a single part which corresponds
to an element of type ConvertTemperatureResponse.

Now comes the port type (i.e., interface) implemented by the Web service in
Listing 6.14. This port type is called TempConvertSoap (line 1) and has a single
operation named ConvertTemperature (line 2). Note that there is a collision between
this operation name and a schema element defined in Listing 6.12. This is just the
way the WSDL has been generated automatically, and fortunately this collision is
harmless since there is no place in the definition where the operation and the schema
element can both be used, which would cause ambiguity. Back to Listing 6.14, the
operation ConvertTemperature uses the message ConvertTemperatureSoapIn as input
(line 3) and the message ConvertTemperatureSoapOut as output (line 4). These are
the messages that have been previously defined in Listing 6.13.

Listing 6.15 shows the bindings of the port type to transport protocols. The first
binding in lines 1–14 specifies that the HTTP protocol will be used (line 3) and
that the operation ConvertTemperature will be mapped to a SOAP action (line 5).
This SOAP action has the same identifier (http://example.org/ConvertTemperature)
that we have seen earlier in Listing 6.8. Lines 7–12 in Listing 6.15 specify that the
input and output messages can be included directly in the SOAP body without any
special encoding. The same applies to the second binding defined in lines 15–28.
This is actually a binding for version 1.2 of the SOAP standard.

Finally, Listing 6.16 shows the <service> element. This contains the addresses
for each binding defined in Listing 6.15. Lines 2–5 in Listing 6.16 define a first
port which refers to the binding TempConvertSoap defined earlier in Listing 6.15.
This means that the Web service is accessible via the SOAP protocol at the URL
specified in line 4. In the same way, lines 6–9 in Listing 6.16 define a second port

http://example.org/ConvertTemperature

170 6 Application Adapters

Listing 6.15 WSDL binding elements
1 <wsdl:binding name="TempConvertSoap"
2 type="tns:TempConvertSoap">
3 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />
4 <wsdl:operation name="ConvertTemperature">
5 <soap:operation soapAction="http://example.org/ConvertTemperature"
6 style="document" />
7 <wsdl:input>
8 <soap:body use="literal" />
9 </wsdl:input>

10 <wsdl:output>
11 <soap:body use="literal" />
12 </wsdl:output>
13 </wsdl:operation>
14 </wsdl:binding>
15 <wsdl:binding name="TempConvertSoap12"
16 type="tns:TempConvertSoap">
17 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" />
18 <wsdl:operation name="ConvertTemperature">
19 <soap12:operation soapAction="http://example.org/ConvertTemperature"
20 style="document" />
21 <wsdl:input>
22 <soap12:body use="literal" />
23 </wsdl:input>
24 <wsdl:output>
25 <soap12:body use="literal" />
26 </wsdl:output>
27 </wsdl:operation>
28 </wsdl:binding>

Listing 6.16 WSDL service element
1 <wsdl:service name="TempConvert">
2 <wsdl:port name="TempConvertSoap"
3 binding="tns:TempConvertSoap">
4 <soap:address location="http://localhost/TempConvert/TempConvert.asmx" />
5 </wsdl:port>
6 <wsdl:port name="TempConvertSoap12"
7 binding="tns:TempConvertSoap12">
8 <soap12:address location="http://localhost/TempConvert/TempConvert.asmx" />
9 </wsdl:port>

10 </wsdl:service>

for the SOAP 1.2 protocol. As can be seen from lines 4 and 8, the URL is the same
in both ports; this means that the Web service is able to respond via any of those
protocols at the same address. The URL points to the page where the Web service is
hosted, here assumed to be in a Web server on the local machine.

6.4.4 Creating a Client for the Web Service

The WSDL interface definition above provides all the details about the Web service:
it specifies the address where the Web service is located (<service> element), the
transport protocols that can be used to communicate with the service (<binding>
elements), the operations that the Web service provides (<portType> elements),
the messages that are to be exchanged during the invocation of those operations

6.4 Web Services 171

Listing 6.17 Excerpt of proxy code
1 public partial class TempConvert : System.Web.Services.Protocols.SoapHttpClientProtocol {
2
3 ...
4
5 public double ConvertTemperature(double dFahrenheit) {
6 object[] results = this.Invoke("ConvertTemperature", new object[] {dFahrenheit});
7 return ((double)(results[0]));
8 }
9

10 ...
11
12 public void ConvertTemperatureAsync(double dFahrenheit, object userState) {
13 this.InvokeAsync("ConvertTemperature", new object[] {dFahrenheit},
14 this.ConvertTemperatureOperationCompleted, userState);
15 }
16
17 ...
18
19 }

(<message> elements), and the data types that are used in those messages (<types>
element). Therefore, for a client that wants to invoke the Web service, having access
to its WSDL is the first step, since it contains all the information that is necessary in
order to be able to interact with the Web service.

In a similar way to what happened in CORBA, where a client had to compile the
IDL interface definition in order to generate a stub that could be used to invoke the
server object, a Web service client will compile the WSDL interface definition in
order to generate a proxy to communicate with the Web service. And just like there
were different IDL compilers for different programming languages, there are also
different WSDL compilers for each platform and programming language. In C#, for
example, the WSDL is compiled using a command-line utility which, for our Web
service, can be invoked as follows:

wsdl /language:cs /protocol:soap /out:TempConvertProxy.cs

http://localhost/TempConvert/TempConvert.asmx?WSDL

In the first line, wsdl is the command and the remaining parameters are compiler
options: /language:cs specifies C# as the language to be used when generating the
service proxy; /protocol:soap specifies the protocol to be used when communicating
with the Web service; and /out:TempConvertProxy.cs tells the compiler to write the
proxy code to a file named TempConvertProxy.cs. The second line contains simply
the path or URL where the WSDL can be found.

Running the command above instructs the compiler to fetch the WSDL definition
and generates a C# proxy to interact with the Web service via the SOAP protocol.
Most users will not care about looking at the generated code and will start
implementing the client immediately. However, a brief inspection of the generated
proxy provides some insight on how things work under the hood. Listing 6.17 shows
an excerpt of the generated code, where one can find a class called TempConvert that
inherits from SoapHttpClientProtocol (line 1). This superclass has a method Invoke()
that is able to invoke any Web service operation through SOAP.

172 6 Application Adapters

In lines 5–8 there is a method that works as a wrapper for the ConvertTemperature
operation. This is called a wrapper because it is not the actual Web service operation,
but it has the same signature and its sole purpose is to serve as a proxy to invoke
that operation. Note that the function prototype for the ConvertTemperature() method
has been generated automatically and exclusively from the information available
in the WSDL, namely the <portType>, the <message>, and the <types> elements.
This eventually resulted in a method that has the same signature as the original Web
service method in Listing 6.6. This is not entirely surprising if one considers the fact
that the WSDL has been generated automatically from the Web service code.

Inside the ConvertTemperature() method in Listing 6.17, line 6 calls the Invoke()
method of the superclass SoapHttpClientProtocol, which implements the required
functionality to invoke a Web service operation through SOAP. The first parameter
is the operation name, and the second is an array of objects to be passed as input
arguments. In this case, there is just one argument, which is the temperature to be
converted. In a similar way, the result of the invocation is an array of objects (line 6).
Since there is a single output (the result of the temperature conversion), the proxy
method returns the first element in the array to the client (line 7).

In lines 12–15 there is a second wrapper, called ConvertTemperatureAsync(), for
the Web service operation. This second wrapper is intended to allow the client to
call the operation asynchronously. Note that the Web service itself does not include
any asynchronous version of the ConvertTemperature() method. This possibility is
introduced by the proxy alone. If the client so desires, it may call ConvertTem-
peratureAsync() rather than ConvertTemperature(). The first is an asynchronous (i.e.,
non-blocking) method, while the second is a synchronous (i.e., blocking) method.

The ConvertTemperatureAsync() method relies on the InvokeAsync() method of the
SoapHttpClientProtocol superclass to create and submit the SOAP request to the Web
service. The proxy then waits for the response from the Web service, while the client
is free to proceed. As soon as the response arrives, the proxy delivers it to the client
through a callback method. This method is called ConvertTemperatureOperationCom-
pleted() and it can be seen in line 14. This callback method must be implemented by
the client if the client wants to use ConvertTemperatureAsync().

Basically, the client may call ConvertTemperatureAsync() in line 12, passing the
temperature value and also an arbitrary object as input. This object will be passed
again to the client when the proxy invokes the callback method, so it can be
used for the purpose of correlating the response with the previous request. Inside
ConvertTemperatureAsync(), the proxy calls InvokeAsync() in lines 13–14 by passing
the method name, the parameters as an array of objects, a reference to the callback
method in order to deliver the response, and the correlating object (userState). For
simplicity, we will use the synchronous ConvertTemperature() method instead.

Listing 6.18 shows the code required to implement the client, once the proxy code
has been generated by the WSDL compiler. The client is surprisingly simple, and in
essence it is implemented in just two lines (lines 7–8 in Listing 6.18). Basically, line
7 creates an instance of the TempConvert class, which is the proxy class generated
by the WSDL compiler (introduced in line 1 of Listing 6.17). Then line 8 invokes
the synchronous ConvertTemperature() method (declared in line 5 of Listing 6.17).

6.4 Web Services 173

Listing 6.18 A C# Web service client
1 using System;
2
3 class TempConvertClient
4 {
5 static void Main(string[] args)
6 {
7 TempConvert tc = new TempConvert();
8 double celsius = tc.ConvertTemperature(100);
9 Console.WriteLine(celsius);

10 }
11 }

The result returned by the Web service is stored in the celsius variable. In line 9, the
program just prints the result to standard output.

In summary, creating a client for a Web service can be done in three steps. First,
one must retrieve or obtain the WSDL definition by some means, be it from a
repository, from the Web service itself, or from a third-party in some other way.
Then the second step is to compile the WSDL in order to generate a proxy for the
Web service. Finally, the third step is to write the client code that uses the proxy in
order to invoke the Web service operations.

Strictly speaking, the second step (using the WSDL compiler to generate a proxy)
is not absolutely mandatory since it is possible to generate SOAP requests by other
means. One can imagine, for example, an application that creates a SOAP request,
sends it through HTTP to the Web server where the Web service is located, and
then listens for the response. However, the main purpose of using Web services is to
have the WSDL serve as a contract between client and service, so, although possible,
it would not be a good practice to bypass the WSDL altogether and to implement
the interaction with a Web service using low-level mechanisms alone.

Some authors have actually argued in favor of simplifying the Web services
technology in order to take full advantage of low-level HTTP mechanisms, as an
alternative to the combination of SOAP and WSDL. Such view has led to the
development of REST and “RESTful” Web services [25]. According to the REST
philosophy, Web services are replaced by online data resources (equivalent to dis-
tributed objects) which can be queried or modified through the use of standard HTTP
methods, such as PUT for creating, GET for reading, POST for updating, and DELETE
for deleting. Every REST resource has then the same interface, which corresponds to
the set of available HTTP methods, and each resource gives its own meaning to those
methods. For example, for a resource that manages customers, the POST method
may be used to change customer data such as the customer address; while for a
resource that manages products, the POST method may be used to change the price.

In typical REST applications, the result of invoking an operation (through an
HTTP request) is to receive a plain (i.e., non-SOAP) XML document in the HTTP
response. Other kinds of payload are also possible; in general, any HTTP content
type is supported. Basically, REST dispenses with the need to define Web service
interfaces and the need to serialize messages in a special format. Therefore, rather
than a simplification of the Web services, REST should be regarded as an alternative
to the technology branch that includes RPC, CORBA, and Web services.

174 6 Application Adapters

6.5 Invoking a Web Service from an Orchestration

In integration scenarios, Web services can be used as adapters for existing
applications. This may occur either because the applications to be integrated
have been originally developed as a set of Web services, or because the existing
applications (or a subset of their functionality) have been exposed as Web services.
For example, using a similar code to Listing 5.5 on page 118, it would be possible
to write a Web service in C# that connects to the database and retrieves the price for
a given product. Additional methods, for example to update the product info in the
database, could be implemented as well. Then other applications could invoke this
Web service instead of having to query the database directly. In this scenario, the
Web service would work as an adapter for the database.

In Sect. 5.6 we have used a special-purpose adapter—the SQL adapter—to
query the database through a stored procedure. This adapter was invoked in an
orchestration and served as a mediator between the orchestration and the external
database, as illustrated in Fig. 5.13 on page 133. A Web service can also be invoked
from within an orchestration and it can serve as a mediator between the orchestration
and an external application, if the Web service is an adapter for that application.
Alternatively, the Web service may represent the application itself, if the application
exposes one or more Web service interfaces. In any case, invoking the Web service
in an orchestration allows the application to participate in the flow of message
exchanges in a complex integration scenario.

In this section, we develop an orchestration to invoke the simple Web service
for temperature conversion that was used as a running example in the last section.
The orchestration to invoke the Web service is very similar to the one that was
used to invoke the SQL adapter, and it is shown in Fig. 6.8. Basically, the orches-
tration receives an initial message that brings a temperature value in Fahrenheit.
The orchestration then uses this temperature value to construct the request message
to be sent to the Web service. However, rather than using a transformation map as
in the case of the SQL adapter, here the request to the Web service is constructed
through the use of a different shape called message assignment.

The use of a message assignment rather than a transformation map is explained
by the fact that this Web service, in contrast to the SQL adapter in Chap. 5, works
with simple data types (double) as input and output, instead of more elaborate input
and output XML as the SQL adapter does. Of course, the actual request and response
from the Web service will both be transmitted as SOAP messages, but this takes
place at the transport layer. At the application (or rather, orchestration) layer, the
Web service is seen as having a method that takes a double value as input and returns
another double value as output. Therefore, in order to construct the request to be sent
to the Web service, the orchestration needs to set the value of the double parameter to
be provided as input to the Web service method. This can be done using a message
assignment shape, which is basically a placeholder for C# code.

By using C# in a message assignment shape, it is possible to write code to set
the content of a message while it is being constructed. In particular, here we would

6.5 Invoking a Web Service from an Orchestration 175

Send
Request

Receive
Response

request to
Web service

Message
Assignment

Construct RequestConstruct Request

Receive
Ini�al

Send
Result

Message
Assignment

Construct ResultConstruct Result

ini�al
message

response from
Web service

final
message

A

Fig. 6.8 Basic orchestration
to invoke a Web service

like to set the Fahrenheit value to be provided as input to the Web service. For this
to happen, the element whose value is to be set must be a distinguished property
in the message schema. As explained in Sect. 4.5, a distinguished property is a
message element that can be explicitly used in an orchestration, for example to
make decisions that change the flow of the orchestration.

Here we use the Fahrenheit value that comes in the initial message as a
distinguished property, so that it can be copied to the request to be sent to the Web
service. In the same way, the Celsius value in the Web service response is to be
copied to the Celsius element in the final message, which is also a distinguished
property. Therefore, in this scenario there are two distinguished properties: the
Fahrenheit element is a distinguished property in the initial message that arrives
(and triggers) the orchestration, and the Celsius element is a distinguished property
in the final message produced as an output from the orchestration. The Fahrenheit
property value is copied from the initial message to the Web service request in the
first message assignment, and the Celsius property value is copied from the Web
service response to the final message in the second message assignment.

176 6 Application Adapters

Listing 6.19 XML schema definition for the initial and final messages of the orchestration
1 <?xml version="1.0"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
3 targetNamespace="http://DemoWS.Temperature">
4 <xs:element name="Temperature">
5 <xs:annotation>
6 <xs:appinfo>
7 <b:properties xmlns:b="http://schemas.microsoft.com/BizTalk/2003">
8 <b:property distinguished="true"
9 xpath="/�[local�name()=’Temperature’]/�[local�name()=’Fahrenheit’]" />

10 <b:property distinguished="true"
11 xpath="/�[local�name()=’Temperature’]/�[local�name()=’Celsius’]" />
12 </b:properties>
13 </xs:appinfo>
14 </xs:annotation>
15 <xs:complexType>
16 <xs:sequence>
17 <xs:element name="Fahrenheit" type="xs:double" />
18 <xs:element name="Celsius" type="xs:double" />
19 </xs:sequence>
20 </xs:complexType>
21 </xs:element>
22 </xs:schema>

6.5.1 Defining the Message Schema

For simplicity, we will use the same schema for the initial message and for the final
message in the orchestration. This means that the schema will have to accommodate
both the temperature value in Fahrenheit (that comes as input to the orchestration
in the initial message) and the value in Celsius (that is sent as output from the
orchestration in the final message). The schema definition is shown in Listing 6.19.
It begins by declaring the xs prefix in line 2 that refers to the namespace where the
XML Schema syntax is defined. In line 3, a target namespace is used to specify that
the new elements to be defined in this schema will belong to that namespace. That is
the case, for example, of the Temperature element in line 4, which will serve as root
node in messages that are instances of this schema.

In general, each message flowing in or out of an orchestration can be regarded
as having a certain type (i.e., schema). In the Biztalk system, the message type is
defined as a combination of the target namespace and the root node, separated by the
symbol ‘#’. For example, a message that is an instance of the schema in Listing 6.19
has the target namespace http://DemoWS.Temperature (line 3) and the root node
Temperature (line 4), and therefore can be said to have the following type:

http://DemoWS.Temperature#Temperature

After the definition of the root element in line 4, there are two different parts,
one in lines 5–14 and another in lines 15–20, which can be better explained in
reverse order. Lines 15–20 specify what comes within the root element. Basically,
there is an element of type double to store the temperature in Fahrenheit (line 17)
and there is another element of type double to store the temperature in Celsius
(line 18). Now, these two elements have been distinguished, as can be seen in

http://DemoWS.Temperature

6.5 Invoking a Web Service from an Orchestration 177

lines 5–14. In line 8, the schema defines a distinguished property which can be
retrieved through the XPath expression in line 9. This XPath expression points to
the Fahrenheit element inside the Temperature node. In a similar way, line 10 defines
a distinguished property which can be retrieved through the XPath expression
in line 11. This expression points to the Celsius element inside the Temperature
node.

The schema definition in Listing 6.19 would be a regular schema if it were not
for the special annotations in lines 5–14. These are used to define the distinguished
properties in this schema. Since the concept of distinguished property is specific to
the BizTalk system, line 7 introduces the namespace (through prefix b) to be used
when defining these properties. When using C# code to access the Fahrenheit and
Celsius elements, BizTalk will know, from the XPath expressions, where to find
those properties in the XML message.

6.5.2 Adding a Reference to the Web Service

The schema for the initial and final messages of the orchestration has been defined
above in the way that seemed most convenient for the scenario at hand. However,
the schema for the messages that are to be exchanged with the Web service cannot
be defined arbitrarily in the same way, because they are fully determined by the
WSDL interface definition for the Web service (see Sect. 6.4.3). In particular, the
WSDL specifies that the ConvertTemperature operation takes a message with a double
element named dFahrenheit as input, and produces a message with a double element
named ConvertTemperatureResult as output (Listing 6.12).

Therefore, the messages to be exchanged with the Web service must be defined
according to the requirements that are specified in the WSDL. At first sight, this
would appear to complicate matters, but it actually simplifies them. Having the
message details completely defined in the WSDL allows a platform such as BizTalk
to automatically generate the required artifacts to communicate with the Web
service, much in the same way that the WSDL compiler automatically generates
a proxy for a client from the WSDL definition. In fact, BizTalk invokes a WSDL
compiler to generate two kinds of artifacts:

• it creates the message types (as multi-part message types) for each message
defined in the WSDL; in contrast with regular XML messages, these multi-
part messages are capable of carrying arbitrary objects in addition to XML; in
the present scenario, there will be one ConvertTemperature_request message type,
and one ConvertTemperature_response message type; both of these message types
carry an object of type System.Double;

• it also creates a port type to communicate with the Web service; this port type is
automatically configured with the SOAP binding specified in the WSDL.

Invoking the Web service in the orchestration is then a matter of creating a pair
of messages and adding a new port. The messages should be of the same type as the

178 6 Application Adapters

multi-part message types that have been automatically generated from the WSDL.
In the BizTalk platform, these multi-part message types are sometimes referred to
as Web message types. Regarding the new port to be created, this should have the
same port type as the one that has been generated from the WSDL.

6.5.3 Configuring the Message Assignments

The first message assignment in Fig. 6.8 is inside a construct message shape. This is
used to indicate that a new message is being created at that point of the orchestration,
and not before. The message that is being created is the request to be sent to the
Web service. This request must carry the Fahrenheit value that comes in the initial
message. Therefore, the value must be copied from the initial message into the
request message. This can be achieved by inserting the following C# expression
in the message assignment shape:

msgRequest.dFahrenheit = msgInitial.Fahrenheit;

In the expression above, msgInitial refers to the initial message that triggers the
orchestration, and msgInitial.Fahrenheit refers to a distinguished property in that mes-
sage (the Fahrenheit element). On the left-hand side, msgRequest refers to the request
to be sent to the Web service. This message is of type ConvertTemperature_request; it
is a multi-part message that carries an object of type System.Double that is identified
as dFahrenheit. Therefore, the expression above is setting the dFahrenheit object to
be equal in value to the distinguished property Fahrenheit.

The second message assignment in Fig. 6.8 takes care of transferring the result
coming from the Web service, i.e., the temperature value in Celsius, to the final
message produced by the orchestration. This message assignment is also inside a
construct message shape. The message being constructed is the final message; this
message does not exist in the orchestration before the construct message shape,
and after this point it cannot be modified anymore. It can be modified only during
construction. In this case, the message is being constructed through a message
assignment shape, and this message assignment has the following C# instructions:

msgFinal = msgInitial;

msgFinal.Celsius = msgResponse.ConvertTemperatureResult;

The first instruction sets the content of the final message (msgFinal) to be equal
to that of the initial message (msgInitial). As explained in Sect. 6.5.1, these two
messages have the same schema, so there is no problem in making them have the
same content. By equating one to the other, the final message will carry the original
Fahrenheit value that came in the initial message. Regarding the Celsius value, this
is being overwritten in the second instruction; here, msgFinal.Celsius refers to a
distinguished property in the final message (i.e., the Celsius element). The value for
this property is being obtained from the response of the Web service (msgResponse).
This response is a message of type ConvertTemperature_response, which carries

6.5 Invoking a Web Service from an Orchestration 179

msgIni�al

Receive
port

msgFinal
Send
port

Web service
port

msgRequest

msgResponse

Send
Request

Receive
Response

Message
Assignment

Construct RequestConstruct Request

Receive
Ini�al

Send
Result

Message
Assignment

Construct ResultConstruct Result

A

Fig. 6.9 Orchestration, ports, and messages to invoke the Web service

an object of type System.Double that is identified as ConvertTemperatureResult.
The value of this object is being copied to the distinguished property Celsius.

6.5.4 Configuring the Ports in the Orchestration

The orchestration that invokes the Web service will have three ports: one port to
receive the initial message, one port to send the final message, and one bidirectional
port to invoke the Web service in between. These ports are shown in Fig. 6.9 and they
must be configured separately. The receive port and the send port can be bound to
any kind of physical receive port and physical send port, respectively. The simplest
option is to bind these logical ports to physical ports using the file adapter. In this
case, the receive port fetches the initial message from some folder in the file system,
and the send port writes the final message to some other folder.

180 6 Application Adapters

With respect to the bidirectional port to invoke the Web service, the configuration
must be done in a special way. In particular, this port must be an instance of the port
type that was automatically generated from the WSDL, as explained in Sect. 6.5.2.
That port type is already pre-configured to communicate with the Web service via
SOAP. Therefore, by creating a port that is an instance of that port type, and by
connecting the send and receive shapes in the orchestration to that logical port, as
shown in Fig. 6.9, the orchestration is ready to invoke the Web service without the
need for additional bindings as it happens for the other ports.

6.5.5 Deploying and Running the Orchestration

To develop the solution above, a number of artifacts have been created, namely:
the input and output schema for the orchestration (Sect. 6.5.1), the message
types and port type that have been automatically generated from the WSDL
(Sect. 6.5.2), and the complete orchestration (Sect. 6.5.4) with the message
assignments (Sect. 6.5.3). These artifacts comprise what is called a BizTalk
application (Sect. 2.5). This application must be compiled and deployed to the
BizTalk run-time infrastructure. Also, if it has not been done before, it is necessary
to configure the logical ports in the orchestration by binding them to physical ports.
Only then is the orchestration ready to start.

The orchestration is triggered by the arrival of a message on the initial receive
port, hence the first receive shape in the orchestration (i.e., “Receive Initial”) must
be an activating receive. The concept of activating receive has been discussed in
Sects. 2.5 and 4.6. A receive shape is either activating or it must participate in a
correlation. In the orchestration in Fig. 6.9, there is second receive shape to receive
the response from the Web service, and this receive is non-activating (i.e., it does
not start a new orchestration instance). However, there is no need for an explicit
correlation in the orchestration since the request and response from the Web service
are implicitly correlated through the use of a bidirectional port.

Listing 6.20 shows an example of an initial message that can be used to trigger
the orchestration (lines 1–4). This message conforms to the schema shown earlier in
Listing 6.19. Note that the root element in Listing 6.20 (line 1) includes a namespace
so that the message type can be determined as explained in Sect. 6.5.1. In the initial
message (lines 1–4) only the Fahrenheit value is filled in, while the Celsius value has
been left empty. In the final message produced by the orchestration (lines 6–9), both
elements are filled in. The Fahrenheit value comes from the initial message, and the
Celsius value comes from the Web service response. These values are set during the
second message assignment. After constructing the final message, the orchestration
sends it through the send port and terminates.

Termination means the end of the current process instance. In practice, there
may be multiple orchestration instances running concurrently, and the same Web
service will be invoked by all of them. For this reason, special care must be taken
in scenarios where the Web services being invoked make use of limited resources,
such as memory, network bandwidth, or database connections.

6.6 Conclusion 181

Listing 6.20 Example of initial and final messages for the orchestration
1 <ns0:Temperature xmlns:ns0="http://DemoWS.Temperature">
2 <Fahrenheit>100</Fahrenheit>
3 <Celsius></Celsius>
4 </ns0:Temperature>
5
6 <ns0:Temperature xmlns:ns0="http://DemoWS.Temperature">
7 <Fahrenheit>100</Fahrenheit>
8 <Celsius>37.7777777777778</Celsius>
9 </ns0:Temperature>

6.6 Conclusion

In this chapter we have discussed a number of technologies that are relevant for
integration at the application logic layer. Such kind of integration usually involves
having to change or to extend application code in order to develop mechanisms that
allow applications to interoperate with each other. For applications that have been
developed in different programming languages, it might be possible to integrate their
code directly by resorting to special mechanisms (e.g., JNI) available in one of those
programming languages. A more generic approach is to integrate through network
communication, since in general every programming language allows for some
form of network programming (e.g., sockets). However, this is impractical without
the ability to specify the remote interface and to define the way in which method
calls and parameters must be transmitted between both ends. This explains why
technologies such as RPC and CORBA have been developed: these technologies
raise the level of abstraction and allow applications to invoke functions and objects
across different platforms and programming languages.

The problem of RPC and CORBA was that they relied on special mechanisms
and dedicated protocols when some of the same features could be achieved through
open standards based on XML and widely used protocols such as HTTP. Eventually,
this led to the development of Web services, which completely replaced CORBA as
the preferred technology to develop distributed applications. Web services are also
especially convenient to build application adapters. The fact that their interfaces
are defined in an XML-based language (WSDL) facilitates interoperability. Also,
the fact that communication with Web services is based on the exchange of XML
messages reduces the overhead and complexity of the underlying infrastructure.

The Web services technology was so successful that the concept of service (rather
than object) has become central in modern application architectures, hence all the
emphasis on service-oriented architectures. Having such a profound impact on the
way applications are designed, the concept of service would also have a profound
impact on systems integration, as we will see in the next chapter.

Part IV
Orchestrations

Chapter 7
Services and SOA

As we have seen in the previous chapter, a Web service is a software component
with a well-defined interface that can be invoked in an automated way. The fact that
Web services make extensive use of XML-based technologies—namely SOAP for
message exchange and WSDL for interface definitions—is one of the main reasons
for their large success and wide adoption.

In fact, Web services opened up new possibilities for interoperability across
different systems, platforms, and languages. The fact that interfaces are defined in
XML finally removed the bias that existed towards certain languages, namely the
proximity of IDL to C/C++ both in RPC and CORBA. Nowadays, any program
written in any programming language and running in any platform can interpret
the interface definition of a Web service, provided that it has some minimal XML-
processing capabilities. Also, the fact that a Web service can be hosted in a Web
server makes it easier for clients to communicate and interact with the service using
a network infrastructure and network protocols that are widely available, rather than
special-purpose run-time platforms as in the case of RPC or CORBA.

In addition, Web services facilitate reuse while maintaining a high degree of
decoupling between their outside interface and their inner implementation. The
interface that a Web service exposes to the outside world is like a contract.
Everything runs well when both client and service adhere to the interface contract.
Breaking the contract is not impossible, but it may have serious consequences such
as broken code, malfunctions, application errors, and other undesired situations that
render the interaction useless. A Web service adheres to the contract by having
an implementation that conforms to the specified operations in the WSDL. The
client adheres to the contract by invoking the operations correctly as specified in
the contract. In general, every Web service operation involves a set of message
exchanges, and both the service and the client are expected to perform their role
in those exchanges, by producing or consuming messages as determined by the
contract.

Now, the concept of contract and the decoupling between interface and imple-
mentation can be discussed independently of the supporting technologies, such as
WSDL or SOAP. From a conceptual point of view, it is unnecessary to keep referring

D.R. Ferreira, Enterprise Systems Integration, DOI 10.1007/978-3-642-40796-3__7,
© Springer-Verlag Berlin Heidelberg 2013

185

186 7 Services and SOA

to Web services; instead, one can simply refer to services, where a service has
a contract and an implementation, and there is some technological infrastructure
through which clients can communicate with services. Present day technology
mandates WSDL and SOAP, but one can imagine that the same concepts could be
achieved with other technologies as well. What is important here is to focus on the
possibilities introduced by such conceptual (rather than technological) framework.
Services, whether implemented as Web services or as something else, have the
potential to change the way applications can be developed and integrated.

Even more importantly, and as we will see in this chapter, services have the
potential to change the whole IT landscape in an organization by providing, for the
first time, an approach that can be systematically applied to bridge the gap between
low-level systems and high-level business processes and related requirements.

7.1 Services and Applications

The fact that a service exposes an interface to the outside world while its actual
implementation is hidden allows for a service to become a gateway for a wide variety
of systems. In Sect. 6.5 we have mentioned the possibility of developing a service
that connects to a database system and serves as an adapter for a database. This
would replace the need for a client to interact with the database directly, and instead
would make it possible to query or modify data by invoking service operations.
The advantage of doing this is that the service can provide a simpler interface than
what would be the case if the client would have to interact with the database system
through a database API as explained in Sect. 5.4. As an alternative to this scenario,
the service can hide the details of creating and using a database connection, while
exposing an interface that focuses on data operations alone.

In general, when integrating with a legacy application the same approach can be
employed to create a service-based adapter that hides the integration mechanisms
that are being used to exchange data with the application. At the same time, the
adapter can expose a set of methods that appear to the client as if it is invoking
the application logic directly. For example, some applications are completely closed
and integration can only be done at the user interface layer, as discussed in Sect. 5.2.
In this case, it becomes very convenient to have an adapter that hides the details of
how the integration is being performed, while at the same time providing access
to the application functionality. This is possible to achieve with a service whose
internal implementation can be rather complicated, but whose external interface may
be quite simple to invoke from the client perspective.

A service may also provide an interface to access not one, but multiple
applications simultaneously. A typical scenario is when there is a service that must
invoke multiple systems (in a parallel or serial fashion) before returning a result
to the client. In this case, the client simply invokes an operation from the service
interface, and the service is implemented in such a way that it interacts with multiple
applications in order to achieve the desired goal or generate the desired result.

7.1 Services and Applications 187

Service Applica�on Service

Service

Service

Applica�on

Applica�on

Applica�on

Service
Applica�on

Applica�on
Service

Fig. 7.1 Possible relationships between services and applications

Such operation is effectively at a higher level of abstraction than the underlying
systems that are being invoked. A service or set of services comprising such kind of
operations may be developed in order to create a layer of abstract functionality on
top of an infrastructure comprising several heterogeneous applications.

If it is true that a service can become a point of access to multiple applications,
it is also true that a single application can provide several services to the outside
world, depending on how its functionality has been structured and exposed. Today,
applications can be designed from the beginning while having in mind the set of
services to be provided. However, in the context of integration a more common
scenario is to have legacy applications that were not developed in a service-oriented
way but have to be integrated using a service-based approach. In this case, and
especially if the application code is available, it may be possible to extend those
applications in order to expose their functionality, or the required subset of their
functionality, as a set of services. Even if the application code is not available, in
general it is possible to develop adapters that expose a service interface, or a set of
service interfaces, to the outside world.

The relationship between applications and services can therefore take many
forms, and Fig. 7.1 illustrates the main possibilities. In the upper-left corner, an
application is exposed as a single service interface, and this corresponds to a one-
to-one mapping between service and application. This scenario takes place, for
example, when the service is serving as an adapter for the application. In the upper-
right corner, a service exposes functionality that can only be obtained by invoking
multiple applications; this corresponds to a one-to-many relationship. In the lower-
left corner, an application exposes its functionality through multiple services (many-
to-one). Finally, in the lower-right corner, the combined functionality of multiple

188 7 Services and SOA

applications is exposed as a set of services, illustrating a many-to-many relationship.
Note that this many-to-many scenario is different from having several one-to-one
scenarios brought together; what the many-to-many relationship means is that there
are several possible combinations of functionality from both applications, and each
of these combinations can be exposed as a separate service.

The key point about services and applications is that in general there is not a
direct mapping between the two. The applications are just there, they represent
preexisting systems that the organization acquired or developed over time and that
need to be integrated at some point. The services, on the other hand, are developed
in order to reshape these applications into a set of easily callable components that
can facilitate the task of integrating those applications.

7.2 Service Composition

An important issue that is not illustrated in Fig. 7.1 is the possibility of having
services invoking other services. In the same way that services can be used to
create a layer of abstraction over the functionality of one or more applications, new
services can also be developed to create a layer of abstraction over the functionality
of existing services. In this context, every box that represents an application in
Fig. 7.1 can be replaced by a circle representing a service, and the same relationships
would still hold. For example, a one-to-one relationship between two services would
mean that a new service is created to encapsulate an existing service. Although at
first sight such one-to-one encapsulation would appear to be of hardly any use, it
can actually serve useful purposes, such as providing the same service functionality
through a different interface, or extending the functionality of an existing service
while keeping its interface unchanged.

For example, a new service with logging capabilities could be used as a wrapper
for an existing service without logging capabilities. In this case, the new service
would have the same interface as the old one and would forward all calls to the old
one. However, in every method call the new service would log some data (e.g., by
writing to a file) before invoking the same method on the old service. This could be
useful, for example, for debugging purposes.

Of special interest is the one-to-many relationship depicted in the upper-right
corner of Fig. 7.1. If the applications are to be replaced by services, then this one-to-
many relationship essentially means that a new service will provide a combination of
functionality from other services. In practice, this means that when a client invokes
an operation from the new service, this operation will consist in invoking several
operations from other services. The new service is effectively an abstraction over
the functionality provided by other services and such scenario can be regarded as
being a form of service composition.

Service composition is a concept with far-reaching implications that adds
an additional degree of flexibility when developing integration solutions over a
landscape of legacy applications. Figure 7.2 illustrates how a new layer of services

7.2 Service Composition 189

Applica�on Applica�onApplica�onApplica�on

Service Service Service ServiceServiceService

Service Service Service Service

Fig. 7.2 Service composition

can be built on top of a layer of existing services through composition. The bottom
layer of services represents a set of low-level services whose main purpose is
to expose application functionality. In general, the interfaces of these low-level
services will be very much related to the specific application logic that needs to
be exposed, and most likely the methods provided by these services will correspond
to specific operations that can be performed by those applications.

On the other hand, the top layer of services consists in a set of higher-level
services which are obtained by composition of the low-level ones. Composition
means that these high-level services rely on low-level services in order to provide
operations with a higher level of abstraction. For example, if a low-level service
manages product information (e.g., by providing access to the product database)
and another service manages customer information (e.g., by providing access to a
CRM system), then a third, higher-level service might need to use both of those
services in order to place an order for a given customer.

This means that while low-level services are very much connected to the
underlying application infrastructure, high-level services built through composition
can achieve a level of abstraction that is closer to the actual business tasks that
must be performed in an organization. Figure 7.2 shows just two layers of services,
but more services could be built on top of these in order to support business tasks
of increasing complexity. In terms of integration, what is especially challenging is
to build the first layer of services that expose the functionality of the underlying
applications. From that point onward, it is a matter of developing as many layers of
services as necessary in order to address the business requirements.

This is not to say that the integration problems cease to exist above the first
layer of services; rather, there will always be integration problems to solve across
the whole infrastructure, with services included. What happens above the first
layer of services is that the integration problems can be addressed in a systematic
way through the use of service technology. There is no longer the need to create
application adapters or having to deal with native APIs. Once all of the required

190 7 Services and SOA

functionality from the underlying applications has been exposed as a set of services,
integration solutions can be developed by composing and invoking these services
using standard service mechanisms alone.

7.3 Service Orchestrations

In the previous section we have discussed the possibilities introduced by service
composition without getting into the details about how such composition can actu-
ally be implemented in a service. At first sight, implementing service composition
does not appear to be a big issue since it is just a matter of writing the code to invoke
other services through standard mechanisms. However, if one would do so for every
new service to be created, the integration logic would end up being embedded in
service code, and this would significantly reduce the flexibility to reconfigure the
integration solution to meet changing business requirements.

Therefore, while implementing service composition through code is certainly
possible within the realm of software engineering, it is definitely not the approach
that should be systematically employed to create new layers of services in an
integration scenario. Sooner or later such services would suffer from some of the
same problems of legacy applications, namely the fact that they would become
closed and rigid, and new services would have to be developed to address new
business requirements. Over time, this would contribute to a proliferation of services
without an overall strategy, and it would make it very difficult to maintain and
develop new solutions over that infrastructure. In the context of integration, a more
systematic and flexible way of implementing service compositions is required, and
that is precisely the purpose of having service orchestrations.

In general, a service composition involves multiple operations from other ser-
vices, and these operations must be invoked according to some logic. In most cases,
the composition is such that the output from one service operation is processed
and forwarded as input to another service operation, so a composition involves a
structured sequence of steps. It may also involve data transformation between steps,
since the output data from previous operations may not be in an appropriate format
to be directly forwarded as input to subsequent operations. Furthermore, invoking
service operations means exchanging messages with services, so a composition can
be described as a sequence of message exchanges. All of these characteristics point
to the fact that a service composition can be implemented as an orchestration.

Figure 7.3 illustrates the use of service orchestrations to implement service
compositions. As before, at the bottom layer there is a set of services that expose the
functionality of the underlying systems and applications. On top of these, there is a
new layer of services built as service compositions. Each of these compositions is
implemented as a service orchestration, i.e., a sequence of steps where, in general,
each step consists in the invocation of some service. The orchestrations themselves
are exposed as services, and therefore they can be used in further compositions as
well. This allows the development of services with an increasing level of abstraction,

7.3 Service Orchestrations 191

Applica�on Applica�on Applica�on Applica�on

Service
interface

Service
interface

Service
interface

Service
interface

Service
interface

Service
interfaces

Service
interfaces

Service
interfaces

Service
interfaces

Orchestra�onOrchestra�onOrchestra�on

Orchestra�on

Orchestra�on

Fig. 7.3 Service composition through orchestrations

while at the same time retaining the flexibility to modify or reconfigure these
services by changing the corresponding orchestrations.

Figure 7.3 highlights one of the most important concepts in service-oriented
approaches, which is the mutually reciprocal and recursive relationship that exists
between services and orchestrations. The relationship is reciprocal in the sense
that a service is an orchestration and an orchestration is a service. More precisely,
a service can be implemented as an orchestration, and an orchestration can be
exposed as a service. This means that often one can use the terms “service” and
“orchestration” interchangeably, depending on whether one is referring to the outer
interface (“service”) or to the inner implementation (“orchestration”).

The relationship between services and orchestrations is recursive in the sense that
a service may be implemented as an orchestration of services, which in turn may be
implemented as orchestrations of yet other services, and so on, until one finally
reaches the bottom layer of the underlying applications. In the limit, one could
consider the theoretically interesting case of a service whose implementation is an
orchestration that invokes itself. Although this may seem unrealistic, the problem
that it creates may occur in practice, if there is a loop in service invocations, for
example due to an orchestration that invokes a service from an upper layer, rather
than from a lower layer as is usually the case.

This recursive relationship can be seen from the point of view of orchestrations
as well. Each orchestration invokes services that are possibly implemented as
orchestrations themselves. Therefore, a service interface provides a mechanism
through which one orchestration can invoke another orchestration. If the invocation
is synchronous, then the child (i.e., the invoked) orchestration will run within the
life cycle of the parent (i.e., the invoking) orchestration. This makes it possible
to devise integration solutions where one orchestration comprises one or more
sub-orchestrations. Besides the aesthetic appeal that this concept may have when

192 7 Services and SOA

designing service orchestrations, such possibility is of much practical interest since
it allows for processes at different levels of abstraction, as discussed in the next
section.

7.4 Orchestrations and Business Processes

In this book we are mostly concerned about the integration of enterprise appli-
cations, and therefore any mechanism that allows applications to interoperate or
exchange data with one another might be of relevance for this purpose. That is
why Chaps. 5 and 6 delved into a series of mechanisms that allow integration
at different application layers. However, we have also seen in Chaps. 3 and 4
that such integration can be done asynchronously and reliably through the use
of messaging systems and message brokers. Therefore, rather than integrating
applications directly, one can use the technologies in Chaps. 5 and 6 to build
application adapters, and then use the platforms described in Chaps. 3 and 4 to
implement the integration logic through message exchanges and orchestrations.

In this context, orchestrations are seen mainly as a special kind of artifact that
allows implementing the integration logic in a flexible way. Instead of hardcoding
and therefore hiding this logic into a program, an orchestration is an explicit
description of the sequence of steps, including the message exchanges and message
processing that must take place in order to glue applications together and implement
a desired business process over a heterogeneous application infrastructure. Com-
pared to a program, an orchestration can be easily modified by reconfiguring the
sequence of message exchanges between applications without, in general, having
to deal with application code. This is because an orchestration represents the
integration logic as a process, and this brings the process to the forefront and allows
it to be changed and configured according to business requirements.

In this sense an orchestration is a process, or better, an executable implementation
of a process. If an orchestration is used simply as a means to integrate applications,
then the process is rather low level since it is very much connected to the way
in which applications are structured and to the specific application functionality
that must be invoked at each step. However, in this chapter we have seen that the
concept of orchestration has also its roots in the need to coordinate a sequence
of service invocations, together with the possibility of creating new, higher-level
services as compositions of existing ones. This means that orchestrations can be
regarded as a general mechanism to automate the invocation of services, regardless
of the level of abstraction of those services. If the services to be orchestrated are
the service interfaces exposed by the application infrastructure at the bottom layer,
then the orchestration will be at a low-level of abstraction. If, on the other hand, the
services to be orchestrated are compositions on top of layers of other services, then
the orchestration will be at a higher level of abstraction.

Eventually, if one is to keep developing layers of services and orchestrations
with an increasing level of abstraction, as suggested in Fig. 7.3, at some point these

7.4 Orchestrations and Business Processes 193

services will be far away from the underlying application infrastructure and will be
closer to the actual business tasks that are performed in an organization. It is possible
to imagine, for example, that at the lowest level a service may be opening a database
connection and fetching some rows from a table, while at the highest level another
service is invoking that functionality to check a customer’s credit status and then
approve a new shipment to that customer. However, not every task can be carried
out automatically by services, and this becomes one of the main differences between
orchestrations and business processes.

A business process, like an orchestration, can be defined in terms of a sequence
of activities, where each activity is performed by some resource. However, unlike
an orchestration, where these resources are mainly services and applications, in
a business process the resources may also include people, teams, organizational
units, as well as different kinds of systems and machines. Regardless of the type of
resource being invoked, each activity in the process can be regarded as transforming
a set of inputs into a set of outputs. At any time during process execution, the outputs
produced by previous activities can be provided as inputs to subsequent activities.
As a whole, the process can be seen as producing some desired result, so it is usual
to define a business process in terms of the goal that it achieves or in terms of the
product or service that it provides to some customer, be it external (e.g., the end
customer) or internal to the organization (e.g., a department).

Figure 7.4 tries to convey the multiple views that it is possible to have over a
business process. At the top of the diagram, the process is represented as a single
box with inputs and outputs, which is used to indicate that the main goal of the
process is to perform such transformation. Below that, the process is divided into a
set of stages, where each stage comprises a subset of the activities in the process,
hence a stage can be also referred to as a subprocess. Dividing the process into
stages is useful to facilitate understanding, and it is also a common practice during
process design, when the actual sequence or flow of activities is not yet fully
determined but there is a already notion that the process should achieve some set of
intermediate results, or milestones. Then each stage encapsulates the process logic
that is necessary to achieve a certain milestone in the process.

At the third layer from top in Fig. 7.4, one gets to the point where the process
is described in terms of executable tasks or activities. In general, each of these
activities is assigned to some resource or group of resources. If the activity is to
be performed automatically, then it can be further refined into a sequence of steps or
instructions to be executed by some kind of system. In Fig. 7.4 this is illustrated by
having a sequence of steps similar to an orchestration over multiple systems. On the
other hand, if the activity is to be performed manually, it is assigned to a user. The
assignment can be done in one of several different ways (called assignment rules or
policies), such as assigning the task to a predefined user or assigning it to a group of
users, from which one of them will pick the task according to availability, expertise,
or current work load, for example.

Now, the hierarchical structure of a business process that is illustrated in Fig. 7.4
bears a resemblance to the way in which orchestrations can be stacked on top of
each other as suggested in Fig. 7.3. In fact, each block in Fig. 7.4—be it a step, an

194 7 Services and SOA

Process
(Goal)

Stage
(Sub-process)

Stage
(Sub-process)

Stage
(Sub-process)

Ac�vity
(Task)

Ac�vity
(Task)

Ac�vity
(Task)

Step
(Instruc�on)

Step
(Instruc�on)

Step
(Instruc�on)

DatabaseDatabase ServiceService SystemSystem UsersUsers
(Resources)(Resources)

inputs outputsinputs outputs

Fig. 7.4 Hierarchical structure of a business process

activity, a stage, or even the whole process—can be represented as a service that
takes some input and produces some output, and the sequencing of blocks within
each layer can be implemented as an orchestration.

At the bottom layer, there is an orchestration to automate a sequence of steps over
an application infrastructure. This orchestration is exposed as a service and invoked
in another orchestration that implements a sequence of activities, where each activity
invokes a different service (for the moment we assume that the interaction with
users can be managed through a service). The orchestration of activities is exposed
as a service that represents a stage in the process; other stages have their own
orchestrations as well. Finally, the sequence of stages can also be represented as
orchestration and exposed as a service. The topmost service represents the whole
process and provides an interface through which the process can be invoked.

Services and orchestrations therefore provide a general mechanism for the
implementation of business processes. If the interaction with every resource can be
abstracted as a service, then it is possible to use one or more layers of services and
orchestrations to automate the process logic at any level of abstraction. In practice,
what happens is that not every resource is captured as a service, and therefore other
mechanisms are needed in order to involve those resources in the process. Also, it
is often the case that a business process is not structured to the point that it can
be described by orchestrations. In some scenarios, users can simply interact in any
possible way to get the job done. This means that the above vision of having a

7.5 SOA and Service Design Principles 195

fully automated business process may not apply to every business scenario, but it
certainly provides a systematic way of looking at business processes.

7.5 SOA and Service Design Principles

The term Service-Oriented Architecture (SOA) is commonly used to refer to
a paradigm which advocates a set of principles for service design [11]. These
principles can be used both for systems development and for systems integration
based on services. Although there are different views regarding what exactly these
principles should comprise, the following ideas are commonly associated with
SOA:

• A service is defined by a contract (i.e., an interface definition and possibly
additional information regarding the use of the service). Knowing the service
contract must be enough for a client to be able to interact with the service.

• The service is defined in a way that is independent of its implementation. The
same contract can be implemented in different languages or platforms without
having an effect on the interaction with clients. A client does not need to know
how a service is implemented in order to be able to use it. This is referred to as
the principle of decoupling between the service contract and implementation.

• A service is an abstraction of some functionality. Ideally, the service contract
should be defined before the functionality is actually implemented. This principle
is meant to ensure that services are designed according to a purpose and that
potential dependencies from a concrete implementation are minimized.

• The principle of abstraction applies to legacy applications as well. When a legacy
application is being exposed as a service (or as a set of services), the service
contract should be an abstraction of the desired functionality. The contract does
not have to adhere to the logic of the underlying application and may expose a
different interface in order to focus on its essential purpose.

• Services should be sufficiently generic in order to be reusable in multiple
scenarios. Any dependencies on time, state, context, or environment in which the
service is being invoked should be avoided in order to maximize the usefulness
and potential reuse of the service in different compositions, for example.

• Somewhat related to reusability is the principle that services should not maintain
an inner state. This principle is known as statelessness. A service that maintains
an inner state may have to be instantiated multiple times in order to keep a
separate state for each client or even for each call. Such service would require an
indefinite amount of resources for its own state management and could possibly
become a performance bottleneck as well. Instead, services are intended to be
as light as possible and be as ready as possible for each new invocation. For
services that cannot avoid some kind of inner state, the state management can
be delegated to other components, such as a database, so that the service itself
remains as stateless as possible.

196 7 Services and SOA

• Services should be autonomous, i.e., they should not have dependencies between
each other, and they should avoid relying on shared resources to the furthest
extent possible. In some cases, it may be difficult to comply with this principle.
For example, several services may need to query the same database, and
depending on the workload, number of connections, or transactions running on
the system, some services may be prevented from doing that until other services
complete their job. Such behavior is undesirable since it introduces a level of
uncertainty and even a possible lack of availability or reliability.

• Services should be composable, i.e., it should be possible to design new services
on top of existing ones, meaning that the functionality of existing services should
be reused as much as possible to build more abstract or more complex services,
rather than developing these new services from scratch. The design of services
with a view towards composition also contributes to having a more coherent
service infrastructure, and more potential to facilitate the development of new
services with higher levels of abstraction. Composition can be implemented
through orchestrations to automate invocation and data exchange between ser-
vices.

• Services should be discoverable both at design-time and at run-time. At design-
time, service discovery facilitates reuse, prevents duplication, and provides an
overall view of the current service infrastructure. At run-time, service discovery
allows for clients to find and perform dynamic invocations over existing services.
Service discovery is typically supported through the use of a service registry,
which can be used to store not only the service contracts but also information
about the parties who provide the services (i.e., the service providers).

These and other principles are advocated in order to build a scenario similar to
Fig. 7.5. In this scenario, there are business processes, services, and applications,
and services play a central role in bridging the gap between the business processes
coming from business requirements at the top layer, and the underlying application
infrastructure at the bottom layer. At first sight, one could think that business
processes could be directly connected to applications and there would be no need
for the middle layer. This, in fact, has been tried over and over again for many years,
even decades, with mixed results. Organizations that succeeded in doing this can be
divided into two main groups:

• Organizations that are able to adapt their processes to their application infrastruc-
ture, sometimes resulting in suboptimal processes and even awkward activities
that have to be done just because of the way systems are structured. In these
organizations, flexibility to change the business processes is reduced due to the
fact that processes are tied to the application infrastructure.

• Organizations that are able to completely revise or to devise an entirely new
application infrastructure to support their business processes. This results in
extraordinary large and costly IT projects. If successful, in the end the orga-
nization is left with an optimal implementation of its business processes, but
only for a short period of time, until new business requirements arise. In these

7.5 SOA and Service Design Principles 197

Service interface layer

Applica�on layer

Business process layer

Ac�vity

Ac�vity

Ac�vity

Ac�vity

Ac�vity

Ac�vity

Service Service Service

Applica�on Applica�on Applica�on Applica�on Applica�on

Service ServiceService

Applica�on

Service Service Service

Service

Service

ServiceService

Service

Service

Fig. 7.5 The three main layers of SOA

organizations, flexibility to change the business processes is reduced due to the
fact that it implies new changes to the application infrastructure.

Clearly, the middle layer of services in Fig. 7.5 serves to decouple the business
process layer from the application layer, while at the same time providing the
mechanisms to implement one on top of the other. Within the service interface layer,
there may be several levels of services. As explained in the previous sections, at the
lowest level there are services whose purpose is to expose the functionality of the
underlying applications as a set of service interfaces. The next level of services, to
be built by composition on top of the previous ones, creates abstractions to represent
meaningful operations on business entities. For example, if a first-level service
encapsulates access to an ERP system, then a second-level service may provide
an abstraction to manage customer orders stored in that system.

The third level of services comprises further abstractions that can be directly
invoked within the scope of an activity in a business process. For example, if a
second-level service is able to retrieve the pending orders for a given customer,
and another second-level service is able to determine the shipping costs for a given
item, then a third-level service may use both of these second-level services in order
to generate an invoice and send it to the customer. This step could be represented as
an “invoicing” activity in an order-fulfillment process.

198 7 Services and SOA

In Fig. 7.5, the service interface layer comprises three levels of services, but
this was done for illustrative purposes only. In general, the service interface layer
may comprise an arbitrary number of levels, depending on the existing application
infrastructure and on the business processes to be implemented. If there is a large
mismatch between the functionality provided by the application infrastructure and
the level of abstraction of the activities in the business process, then it is likely that
several levels of services will be necessary. At a bare minimum, a single level of
services could do the trick, but these services would have to encapsulate the whole
logic of an activity and would hardly be reusable in other contexts. The principles
of SOA suggest that services should be built incrementally and should give origin
to reusable components of business logic.

7.6 The Benefits of SOA

Besides bridging the gap between business processes and the application infrastruc-
ture, the service interface layer introduces additional benefits in terms of flexibility
and ability to cope with change. Figure 7.6 illustrates these benefits. Basically, the
service interface layer can be adapted to changes coming either from the business
process layer or from the application layer. If there are significant changes in a
business process, then rather than having to embark on a major overhaul of the
application infrastructure, those changes can be absorbed by the service interface
layer. In this case, the first services to be changed are the top-level ones, and if
necessary the changes propagate to lower levels but with a decreasing impact at
each subsequent level. Eventually, no change will be required at the lowest level of
services, and definitely no change will be required to the underlying applications
either. This means that services and SOA provide a means to cope with changes in
business processes without affecting the underlying application infrastructure.

The converse is also true. If there are changes in one or more of the supporting
applications, these do not necessarily affect the business processes. Changes in
an application may affect, first of all, the service interfaces through which the
application exposes its functionality. In turn, changes in these low-level services
may propagate to higher levels but, again, with a decreasing impact at each
subsequent level. Eventually, no change will be required at the highest level of
services, and no change will be required at the business process layer.

At this stage, we already know that higher-level services are compositions of
lower-level ones, and that compositions are implemented through orchestrations,
as illustrated in Fig. 7.3. If a business process can be described as a series of
service invocations, as in Fig. 7.5, then it too can be implemented through an
orchestration. This means that there is not a clear-cut separation between the service
interface layer and the business process layer, as suggested in Figs. 7.5 and 7.6.
Rather, the service interface layer and the business process layer are a continuum
of services and orchestrations built on top of each other. While going across this
hierarchy of services and orchestrations, the point at which one starts regarding these

7.7 Support for Human Workflows 199

Service interface layer

Applica�on layer

Business process layer

Ac�vity

Ac�vity

Ac�vity

Ac�vity

Ac�vity

Ac�vity

Applica�on Applica�on Applica�on Applica�on

Service ServiceService

Applica�on

Service Service

Service

Service

Service

Service

[Changes
to ac�vity]

[Changes to
applica�on]

ServiceService

[Changes
to service]

[Changes
to service] ServiceService

[Changes
to services]

Ch
an

ge
s f

ro
m

 b
us

in
es

s p
ro

ce
ss

 la
ye

r

Ch
an

ge
s f

ro
m

 a
pp

lic
a�

on
 la

ye
r

Service

Service

Applica�on

Fig. 7.6 The effect of changes on the service infrastructure

orchestrations as business processes becomes a matter of subjectivity. Also, since
every process that is implemented as an orchestration can be exposed as a service,
the top-most business process can be exposed as business service both within the
organization and to external customers or business partners.

7.7 Support for Human Workflows

As discussed in Sect. 7.4, in practice not every resource can be represented as a
service and therefore not every business process can be implemented as a service
orchestration. However, in the context of integration it may be the case that some
system is not exposed as a service, and yet it is possible to develop an orchestration
to coordinate the exchange of messages through the use of adapters. This means that
orchestrations can be used not only to compose services, but also to implement an
integration logic that spans across different kinds of systems. Whether these systems
include the required functionality to support human participation in the process, it
depends on the particular scenario at hand.

In scenarios that involve human participation, typically one of the available
systems is a user portal through which users can retrieve tasks assigned to
them, through a mechanism that is similar to a mailbox. An orchestration can
communicate with such system through an adapter in order to deliver a task to a
certain user. Then, as soon as the user completes the task, the portal sends a message

200 7 Services and SOA

User portal

Orchestra�on

Ac�vity

Ac�vity

Ac�vity

Ac�vity

Ac�vity

Ac�vity

Users Users Users Users Users Users

Worklist Worklist Worklist Worklist

Fig. 7.7 Execution of human workflow through user portal

back to the orchestration, which proceeds to the next activity. Such activity may
consist in dispatching a new task to another user, and so on. This kind of process,
where most activities consist in user tasks, is known as human workflow.

Figure 7.7 illustrates the execution of a human workflow through a user portal.
Here, every activity has been depicted as requiring user participation, but some of
these activities may consist in invoking services, applications, or other kinds of
systems, and the process can still be referred to as a workflow. By definition, a
workflow is “the automation of a business process, in whole or in part, during which
documents, information or tasks are passed from one participant to another” [16].
According to the workflow terminology, the list of tasks that are currently assigned
to a user (or group of users) is referred to as the worklist or to-do list. The worklist
is managed by a special-purpose workflow client application which receives tasks
(also referred to as work items) from the workflow engine. In Fig. 7.7, the workflow
engine is the integration platform where the orchestration is running, and the user
portal is playing the role of workflow client application.

One aspect that should not go unmentioned is that even though each activity in
Fig. 7.7 is assigned to a different worklist, each worklist may end up having multiple
tasks, since the orchestration itself can be instantiated multiple times. For each new
instance of the orchestration, a new instance of the each task will be dispatched to
the corresponding worklist. In the meantime, the user (or group of users) may not
have had enough time to complete the previous task instances, so tasks can stack up
in a worklist to the point that the user becomes overloaded with work items. To deal
with this problem, some systems that are purposely built for human workflows have
dynamic assignment rules, such as dispatching tasks according to workload.

Another important aspect is that when a user completes a task and the portal
returns the result to the orchestration, it must be possible to route this result to the
correct orchestration instance. This can be done through the use of correlations,
as explained in Sect. 4.6 (see in particular Fig. 4.5 on page 86). In any case,

7.8 Conclusion 201

the mechanisms that are employed to interact with services and applications from
within orchestrations can also be employed to interact with workflow clients that
manage the worklists of users. Therefore, in this book we will keep focusing on the
integration of services and applications, knowing that user participation in a process
can be supported as an extension of the same mechanisms.

To provide an idea of how the mechanisms described in previous chapters can be
extended to support human participation, the portal and worklists in Fig. 7.7 could
be replaced by a set of message queues (as in Fig. 3.5 on page 41), where each
worklist would be stored in a queue, and users (or their workflow clients) would
fetch tasks from their respective queues. The use of asynchronous messaging is an
especially interesting solution to support human participation, and it would also
provide the possibility of setting message priorities in order to prioritize tasks.

Alternatively, the portal could be implemented as a publish–subscribe system (as
in Fig. 4.2 on page 78) where the target applications would be workflow clients that
manage the worklist for each user. In the orchestration, one could also use ports with
e-mail adapters in order to interact with users directly, and in this case the worklists
would be stored in their mailboxes. Still, the most common solution is to have a
user portal, possibly with service interfaces so that it can be easily invoked from an
orchestration, while at the same time providing sophisticated capabilities to manage
worklists and support users in performing their tasks.

7.8 Conclusion

The concept of service, rather than the technology itself, has the potential to
change the way enterprise systems are developed and integrated. While previous
technologies focused mainly on how distributed objects can interoperate with each
other, services introduced the idea and possibility of using composition to create
new services out of existing ones. This means that, through composition, it is
possible to create services with an increasing level of abstraction, to the point that
some of these services can implement the logic of business tasks to be invoked
within the scope of a business process. While previous generations of technologies
addressed “horizontal” concerns, i.e., interoperability at the application layer,
services and SOA address “vertical” concerns by providing a methodical approach
to bridge the gap between the application layer and the business process layer.

A key enabling concept for service compositions is that of service orchestrations.
A composition may involve several services, and orchestrations provide the means
to coordinate the exchanges with those services. In fact, an orchestration allows
automating a series of service invocations as a sequence of steps, much in the
same way that a workflow automates a sequence of tasks. And like workflows,
orchestrations can implement sophisticated behavior such as branching, parallelism,
and loops, as we will see in the next chapter.

Orchestrations can also invoke systems and applications other than services, as
we have seen in previous chapters. For example, in Sect. 4.7 we have discussed how

202 7 Services and SOA

an orchestration can interact with a messaging system; in Sect. 5.6 we have seen
how an orchestration can interact with a database system; and in Sect. 6.5 we have
seen how an orchestration can invoke a Web service.

The orchestration itself can be exposed as a service, which in turn can be
invoked from higher-level orchestrations. This allows an orchestration to be used
as a subprocess in another orchestration. Eventually, as it happens with services
too, orchestrations can reach a level of abstraction where they can be regarded
as direct implementations of business processes. This means that orchestrations
are a pervasive concept that finds application across all layers of SOA, from the
application layer where they can be used to integrate application functionality, to
the business process layer where they can be used to automate business processes.

In the following chapters, we will go through the main constructs that can be
used to build orchestrations in different integration platforms.

Chapter 8
Orchestration Flow

An orchestration is both an abstraction and an executable implementation of a
certain process logic. It is an abstraction because it captures the essential behavior
of a process as a sequence of steps. It is also executable because it includes the
mechanisms to invoke the required run-time components at each step in the process.
In the context of integration, the process logic can be something as low-level as a
series of method calls over the application infrastructure, or something as high-level
as a series of business tasks, where each task is handed over to some resource for
remote execution. The advantage of approaching integration with a service-oriented
paradigm is that everything—be it a low-level application, a high-level resource,
or even the orchestration itself—can be regarded as a service. For this reason,
orchestrations are often referred to as service orchestrations, although in practice
they can interact with different kinds of systems.

In general, the interaction between an orchestration and an external system
is achieved through message exchanges. The most typical scenario is to have
an orchestration sending a request to an external system and then waiting for
the response. Usually, both the request and the response take the form of XML
messages, since the use of XML facilitates the definition of different message
schemas according to the particular requirements of each system to be invoked.
The request–response interaction is the most typical, but in general any sequence
of message exchanges may take place between the orchestration and an external
system. For example, the orchestration may send out one request and receive two
responses, or it may send out three requests and only wait for a single response.
Any combination of outgoing and incoming messages is possible, in any order. In
particular, an orchestration may itself be the recipient of an incoming request and
produce an outgoing response; this pattern is referred to as solicit–response [30].

Sending and receiving messages from within an orchestration is achieved
through the use of special constructs. In fact, every step within an orchestration
is achieved by means of some special-purpose construct. There are constructs to
create messages and to transform them, and there are also constructs to control the
sequence of steps in the orchestration, such as decisions between alternative paths,
parallel branches, loops, and even the possibility of invoking other orchestrations

D.R. Ferreira, Enterprise Systems Integration, DOI 10.1007/978-3-642-40796-3__8,
© Springer-Verlag Berlin Heidelberg 2013

203

204 8 Orchestration Flow

as subprocesses. These constructs enable the development of orchestrations which
can implement virtually any process logic that one may find in practice. There
are also advanced constructs to support exception handling and transactions, but
these will be discussed in the next chapter. For the moment, we will focus on the
basic elements to define the control flow. However, before we begin it is useful to
introduce some general remarks about the structure of orchestrations.

8.1 Block Structure

Every orchestration is built as a sequence of blocks. In its simplest form, a block
may stand for a specific activity, such as sending or receiving a message. A block
may also represent a more elaborate construct, such as a set of alternative or parallel
branches. In any case, each branch is in itself a sequence of blocks where, again,
each block may be either a simple activity or a more elaborate construct comprising
other blocks. Blocks can therefore be nested into other blocks, and orchestrations
are said to follow a nested block structure. Figure 8.1 illustrates such block structure.

In Fig. 8.1 the orchestration is defined as a sequence of two blocks between
the leftmost Begin element and the rightmost End element. The first block in the
sequence is an activity (Activity 1) and the second block is an elaborate construct
(Decide 1) that is used here to specify that there are two alternative branches. Either
the top branch or the bottom branch will be executed depending on some condition
(the condition is not shown in Fig. 8.1). Both branches contain a sequence: the top
branch is a sequence of an activity (Activity 2), a decision construct (Decide 2), and
another activity (Activity 4), while the bottom branch is a sequence comprising a
single block (Parallel) which introduces two parallel branches. Again, each of these
parallel branches is a sequence by itself. The upper branch is a sequence of an
activity (Activity 5) and a loop construct, where the loop executes a sequence of two
activities (Activity 6 and Activity 7). The loop block is nested into the parallel block,
which in turn is nested into a decision block (Decide 1).

The second decision block in Fig. 8.1 (Decide 2) deserves a further explanation.
This is a decision between two alternative branches where the upper branch in
particular will result in the orchestration terminating at that point (after Activity 3). If
not, then the orchestration will proceed to Activity 4. Apparently, the decision block
Decide 2 does not seem to fit perfectly in the philosophy of nested block structure,
since the orchestration flow may never come out of that block (if terminates inside
the block). However, it is worth noting that whatever happens inside the Decide
2 block, there is only one way in and one way out, and therefore this block can
certainly be used in combination (i.e., sequence) with other blocks.

The Decide 2 block can also be redesign to avoid the use of the End element inside
it. Since another End element follows Activity 4, it is possible to bring Activity 4 into
the decision block and have the two branches come out as a single connection to the
final End element, as illustrated in Fig. 8.2.

8.1 Block Structure 205

Ac�vity 1

Ac�vity 6 Ac�vity 7Ac�vity 5

Ac�vity 8

Ac�vity 2 Ac�vity 4

Ac�vity 3

Decide 1
Decide 2

End

EndBegin
Parallel

Loop

Fig. 8.1 The nested block structure of an orchestration

Ac�vity 4

Ac�vity 3

Decide 2

End

End

Ac�vity 4

Ac�vity 3

Decide 2

End

Fig. 8.2 Two alternative designs for the Decide 2 block in Fig. 8.1

Note, however, that this strategy would be more complicated to employ if there
would be an additional activity, say Activity 9, between the Decide 1 block and the
rightmost End element in Fig. 8.1. As shown in Fig. 8.3, it would still be possible to
avoid the use of an End element in Decide 2, but only at the expense of duplicating
Activity 9 in each branch of Decide 1. (This duplication must be done in order to
ensure that Activity 9 is executed also in case the orchestration follows the lower
branch in Decide 1.) In general, given the possibility of using such tricks, one can
always redesign an orchestration in order to check that the desired behavior actually
fits into a nested block structure.

The original Decide 2 block in Fig. 8.1 also illustrates the fact that it is possible
to have a branch with no activities at all (Activity 4 appears later on that branch, but
is already outside the block). Besides duplicating activities, having empty branches
is another trick that can be used to fit behavior into a nested block structure. It is
often used when there is a path in the flow that can be skipped in certain conditions.

Another common behavior that often appears in practice is the need to “jump
back” to a previous step in the orchestration. Although the first idea that comes to
mind is the use of a decision with a branch that goes back to some earlier step the
sequence, this solution does not fit into a nested block structure, since the branch

206 8 Orchestration Flow

Ac�vity 6 Ac�vity 7

Ac�vity 8

Ac�vity 4

Ac�vity 3

Decide 2

End

End

Loop

Activity 9

Ac�vity 6 Ac�vity 7

Ac�vity 8

Ac�vity 4

Ac�vity 3

Decide 2

End

Loop

Ac�vity 9

Ac�vity 9

Decide 1

Decide 1

Fig. 8.3 Duplication of Activity 9 in order to avoid End element in Decide 2

going backwards would have to come out of the block that has just been initiated by
the decision. Figure 8.4 illustrates the problem, along with a possible solution. The
solution is to use a loop construct and to insert, in that loop, all the activities which
may have to be repeated during execution. The loop has a condition (not shown in
the Fig. 8.4) that is to be evaluated at each new iteration. The loop executes for as
long as the condition remains true; as soon as the condition evaluates to false, the
loop block is exited and execution proceeds to Activity 4.

In some scenarios, such as when the execution flow may have to jump back
but this is allowed to occur only once, it may be simpler to actually duplicate the
required activities in a decision block, rather than using a loop block. The decision
block will have one branch with the duplicated sequence (in this case, Activity 2

8.2 Beginning the Flow 207

Ac�vity 1

Begin

Ac�vity 2 Ac�vity 3 Ac�vity 4

Ac�vity 2 Ac�vity 3

Loop

Ac�vity 4Ac�vity 1

Begin

Decision

Fig. 8.4 Jumping back
implemented using a loop

followed by Activity 3), and another branch which is completely empty. This way it
is possible either to run those activities once more or to skip them entirely. Then
Activity 4 may follow the decision block (but already outside the block).

The problem of duplicating elements in an orchestration is that, up to this point,
we have been assuming that they are simple activities. However, if the blocks
to be duplicated contain an intricate logic with other nested blocks, then all of
this logic will have to be duplicated in the orchestration. This is not much of a
problem to do (most likely it can be done with some copying and pasting) but it
can become a troublesome solution to maintain, because a change in one block may
have to be replicated in all duplicates of that block. This is prone to error, either
by forgetting to do the change in all duplicates or by introducing mistakes when
doing the same change in multiple blocks. This can be recognized as the general
problem of introducing redundancy, which can lead to inconsistencies. As a general
principle, redundancy should be avoided in orchestrations, unless there is no other
way to fit the desired behavior into a nested block structure.

8.2 Beginning the Flow

In the previous section we have seen that an orchestration is made up of building
blocks, where each building block may be a specific activity or a more elaborate
construct that contains other blocks within. For the moment we will focus on
blocks that represent simple activities such as sending or receiving a message. To
distinguish between different types of activities, it is common to refer to blocks
as of shapes, so there is a send shape, a receive shape, and so on. In general, every
orchestration begins with a receive shape, and it should not be difficult to understand
why: an orchestration must be triggered somehow, and since most of what it does
is to send and receive messages from applications, the easiest way is to have the
orchestration waiting to receive a message before it starts.

What is missing in this equation is that orchestrations send and receive messages
through ports, so in order to receive a message there must be a receive port. We
therefore need a receive shape and a receive port in order to deliver a message to
an orchestration. Figure 8.5 illustrates these constructs. There is an orchestration

208 8 Orchestration Flow

Receive

Receive
port

...

Message

Receive

...
Message

Orchestra�on
instance

Orchestra�on
model

A

Fig. 8.5 An activating
receive shape

model where the first activity takes the form of a receive shape; this receive shape
is connected to a receive port, so that once a new message arrives to that port, the
message is handed over to the receive shape, where it enters the flow.

Up to this point, we have described the standard behavior of a receive shape,
and this could be any receive shape in the orchestration (an orchestration may
have multiple receive shapes along the flow). However, the receive shape that is
represented in Fig. 8.5 must be of a special kind, which is different from any other
receive shape possibly contained in the same orchestration. The first receive shape
in an orchestration must be an activating receive, i.e., it is a receive shape that
creates a new instance of the orchestration every time a new message arrives on its
port. Each new orchestration instance will have a separate life and will be executed
independently from every other orchestration instance.

To understand why there must be separate orchestration instances, we draw an
analogy with an online bookstore. Every time a customer places an order for some
books, a new instance of an order handling process is triggered. The process is
the same for every customer and for every order, but each order corresponds to
a different instance of the order handling process. In fact, each order is usually
given a unique number, which allows the store to identify the corresponding process
instance. For inquiries about the status of an order, the customer must provide
the order number; the bookstore then retrieves the process instance and checks its
current status. Each order is processed independently, and therefore there must be
separate process instances to keep track of the status of each order.

This is precisely what the initial receive shape in an orchestration must do: it must
create a separate instance of the orchestration, to be run and managed independently
from other instances. In Fig. 8.5, this is illustrated by having an orchestration model
from which several orchestration instances can be created. The model begins with
an activating receive, meaning that whenever a new message is received at that point
in the orchestration, a new instance is created. Naturally, this can apply only to the
first receive shape in an orchestration; any subsequent receive shapes are assumed
to be running within a previously created instance.

In other words, in an orchestration there must be at most one activating receive,
and this must be the first shape in the orchestration, before anything else happens.

8.3 Message Construction 209

On the other hand, everything that happens after the activating receive is already
taking place within the scope of a separate orchestration instance. We say that an
orchestration has at most one activating receive because in some rare cases it may
have none. For example, an orchestration could begin immediately by constructing
a message and sending it to an external application through a send shape. However,
such orchestration cannot be triggered by a message; instead, it can only be invoked
from within another orchestration. Invoking a child orchestration from a parent
orchestration results in the creation of a new instance of the child orchestration.
This instance will run within the scope of the parent orchestration.

Every orchestration instance is an identical copy of its original model. However,
instances are executed separately and their behavior may be different depending
on particular conditions that are found at run-time, or depending on the input data
(i.e., the message) that was used to trigger the orchestration. In any case, the set of
allowed behaviors must have been fully specified in the original model. For example,
using a decision shape it is possible to specify alternative branches depending
on conditions to be evaluated at run-time (as in Fig. 2.5 on page 23). A given
instance may follow one path, while another instance may follow another path; the
orchestration model specifies what happens in every possible path.

8.3 Message Construction

In Fig. 8.5 the orchestration is instantiated by the arrival of a new message
to the initial receive shape. After the orchestration instance is created, it starts
executing the flow from that point onward. The message that was used to trigger the
orchestration now becomes part of that instance (and of that instance alone) and it
is accessible to every shape in the orchestration. (In general, a message is accessible
to every shape that comes after the point at which the message has been received
or created.) However, the initial message may be only a means to bring some input
data to the orchestration, while the applications that the orchestration will interact
with may require the use of a different format and content as well.

Now, in some integration platforms, notably BizTalk, messages are treated as
immutable objects, i.e., once they are created or received they cannot be changed
anymore throughout the orchestration. They can certainly be used as input to
external applications, but they cannot be changed in any way, so messages will
always keep their original form. This means that if a message with a different format
or content is required to communicate with a certain application, that message will
have to be created from scratch as a brand new message. Fortunately, there are ways
to reuse data from existing messages in order to create new message, but this can be
done only at the point where the new message is being created and not afterwards,
since after that the message becomes an immutable object.

As a result of this behavior, as an orchestration is being executed more and
more messages are available to the next shapes. These are the messages that the
orchestration either received or created along the flow up to the present point. Every

210 8 Orchestration Flow

one of these messages is available for reuse in forthcoming shapes, but none of them
can be changed. The minimum change requires the creation of a new message, and
this message will be available to any subsequent step.

At first sight one could think that this behavior could lead to a lot of messages
being created for a single use at some point in time, and that the orchestration would
be increasingly populated with extraneous messages along the way. However, in
practice this is not the case, as the number of messages is, typically, significantly less
than the number of shapes in the orchestration. Having a large number of messages
would mean that the orchestration itself would be very large and/or complex, and
then the real problem would be the size of the orchestration and not the number of
messages that are created along the way.

On the other hand, having immutable messages is actually an advantage when
developing orchestrations, since it is always possible to access the data that has
been previously used at some point during the flow. For example, at the end of the
orchestration it is still possible to reuse data from any previous message, up to the
initial message that triggered the orchestration. That is precisely what happens in the
orchestration shown in Fig. 6.9 on page 179, where the second message assignment
picks the temperature value in ıF from the initial message and the temperature value
in ıC form the Web service response, and brings them together to create a final
message to be sent out as the output from the orchestration.

The immutable nature of messages also plays an important role in avoiding errors
and unexpected bugs during execution. If messages could be changed freely, then
this could lead to their content being overwritten in unpredictable ways, depending
on the flow of the orchestration. At the point where the message is being needed,
it could be the case that it no longer contains the data that it was expected to
contain, and this might lead to run-time errors and malfunctions of the entire
orchestration. These arguments in favor of immutable messages also seem to agree
with the common perception that functional programming (where variables cannot
be changed) tends to be less error-prone than imperative programming (where
variables can be changed at will, if they have not been declared as constants).

8.3.1 Constructing Messages Through Transformation

Messages can be created through the use a special shape called construct message.
This shape can be placed at any point within the flow of an orchestration. As with
other shapes, the construct message shape has access to all messages that have
been previously received or created during the flow. For messages that have been
previously received, these must have been received through the use of a receive
shape; similarly, for messages that have been previously created, these must have
been created through the use of a construct message shape.

The construct shape allows the creation of a single message; for multiple
messages, multiple construct shapes must be used. However, if several construct
shapes are used in alternative or parallel branches, they will not be aware of the
messages that are being created by each other. In general, a construct shape (like any

8.3 Message Construction 211

Element2
Element1

Root node

Element3
Element2
Element1

Root node

Element3

Element2
Element1

Root node

Element2
Element1

Root node

Transform

CConstruct messageConstruct message

Output message

Input messages

Source
schemas

Target
schemaTransforma�on map

+

Fig. 8.6 The transform shape as a placeholder for a transformation map

other shape) has access to the messages that have been created along the execution
path that precedes it. Other messages are simply not available as input.

On its own, the construct shape does little more than specifying the type of
message being created (here, the message type corresponds to a certain schema).
However, the construct shape is a placeholder for other shapes, and it is these other
shapes that fill in the content for the output message. In other words, the construct
shape just instantiates the message (from a given schema), and then relies on other
shapes to write the actual content. Typically, the content for a new message is a
combination of data from previous messages. Such combination can be obtained,
for example, through the use of transformation maps.

Figure 8.6 illustrates the use of a transform shape within a construct shape. The
purpose of this transform shape is to perform a transformation based on a map
depicted at the right-hand side of the figure. Since there are multiple input messages
available, the transformation can make use of some or all of these messages in order
to retrieve the data to be written to the output message. This example shows the
transformation map using all three input messages, but it is not uncommon to have
a transformation map that uses a single input message, if the purpose is simply to
convert one message from one schema to another.

As explained in Sect. 2.2, the transformation map is defined based on an XSLT
transformation between XML schemas. The schema or schemas on the left are
called the source schemas and they represent the schema of each input message,
respectively. On the other hand, the schema on the right is called the target schema
and it represents the schema of the output message. The transformation map is
defined in terms of schemas rather than messages, because it can be defined in
a way that is independent of the actual message content. In simple terms, the
transformation map specifies that the content of a certain element in a source
schema is to be copied to another element in target schema, so this operation can be
performed on any pair of messages that adhere to those schemas.

In addition to simply copying values from a source schema to a target schema, a
transformation map may contain special mechanisms (called functoids) to perform
more sophisticated operations, such as combining multiple source elements in order
to derive a result to be written to some target element. Figure 8.6 illustrates the
use of a sum functoid to add the values of two elements from the source schemas

212 8 Orchestration Flow

and transfer the result to a third element in the target schema. Other functoids
for mathematical operations, string manipulation, logical functions, etc. may be
available, depending on the particular integration platform being used.

In summary, the construct shape creates a message as an instance of a certain
schema, and the transform shape writes the content of the message. In Fig. 8.6,
there is nothing else inside the construct shape besides the transform shape, so after
the transformation the construction is also complete, and we can say that a new
message (i.e., the output message) has been constructed. From that moment onward,
the message is available to any subsequent shape.

In Fig. 8.6 the content of the output message is written in one step, i.e., through
one transformation, but it could be constructed in several steps, such as having
several transform shapes with different transformation maps, where each map would
fill in a different part of the message. These transform shapes would be executed as
a sequence inside the construct shape. As long as the flow is inside the construct
shape, the output message is still being constructed and therefore can be changed as
many times as necessary. However, once the construct shape completes, the message
is considered to be in its final state and cannot be changed anymore.

8.3.2 Constructing Through Message Assignment

In Sect. 5.6 we developed an orchestration to invoke the SQL adapter, and this
orchestration used transform shapes to construct messages (see Fig. 5.15 on
page 136). However, in Sect. 6.5 we built another orchestration to invoke a Web
service, and this orchestration used message assignment shapes instead (see Fig. 6.9
on page 179). These are, in fact, the two options available for constructing messages:
either through the use of transformation maps, as described in the previous section,
or through the use of message assignments.

Both options can be used interchangeably, but it may be easier to use one instead
of the other, depending on the particular message being constructed. Typically,
transformation maps are used when the output message has a schema that is either
relatively large or significantly different from those of the input messages. In this
case, each element in the output message has to be filled in by applying a specific
operation over a set of input elements. The transformation map then becomes a
convenient tool to visualize and configure all the operations that are required to fill
in the different elements in the output message.

On the other hand, when the output message has only a few elements or when it
is to a large extent similar to an existing message, it may be easier to use a message
assignment shape instead. Basically, a message assignment is a placeholder for
expressions written in some programming language (C# in the case of BizTalk).
These expressions specify how the content of the output message is to be filled in.
In other words, the message assignment allows the output message to be constructed
through actual code, rather than through the use of a transformation map. Figure 8.7
shows an example, based on the same logic of Fig. 8.6.

8.3 Message Construction 213

Message
assignment

Construct messageConstruct message

Output message

Input messages

OutputMsg.Property1 = InputMsg1.Property2;

OutputMsg.Property2 = InputMsg1.Property3;

OutputMsg.Property3 = InputMsg2.Property1 + InputMsg3.Property1;

Fig. 8.7 The message assignment shape as a placeholder for expressions

Here, the output message has three elements which have been defined as
distinguished properties (the concept of distinguished property has been introduced
in Sect. 4.5). The elements from input messages that are required for the purpose of
constructing the output message have also been defined as distinguished properties.
Hence, the expressions in Fig. 8.7 refer to properties, rather than elements as in
Fig. 8.6. The purpose of defining a certain element of a schema as distinguished
property is precisely to be able to access it (i.e., both read and write it) in expressions
throughout the orchestration. Such expressions appear in message assignment
shapes and may appear in a few other kinds of shape as well.

The first expression in Fig. 8.7 specifies that Property1 in the output message is to
be filled in with the value of Property2 from InputMsg1. A similar assignment in the
second expression involves OutputMsg.Property2 and InputMsg.Property3. In the third
expression, Property1 in InputMsg2 and Property1 in InputMsg3 may refer to similar
elements (if InputMsg2 and InputMsg3 are instances of the same schema) or they may
refer to different elements (if InputMsg2 and InputMsg3 have different schemas). This
illustrates the fact that the name of a distinguished property is valid only within the
scope of a given schema. Back to the third expression, the value of both properties
is being added and given to Property3 in the output message.

Overall, the three expressions in Fig. 8.7 implement a similar logic to the
transformation map in Fig. 8.6. This has been done deliberately, in order to
illustrate that the same logic can be implemented either through a transformation
map (possibly with functoids) or through a message assignment shape. In general,
since virtually any code can be included in a message assignment, it is possible to
implement operations as sophisticated as certain advanced functoids, and even more.
However, in practice this is not usually done, since the logic will be embedded in
code, defeating the whole purpose of having an orchestration in the first place.

For this reason, the message assignment shape is used only when it leads to an
implementation that is simpler than what would be obtained through the use of a
transformation map. In particular, if the output message has only a few elements
(or properties) to be set, then it is possible to do this easily through a couple of
expressions. An especially important use for the message assignment shape is when
the output message has the same schema as one of the input messages and can
therefore be created (or at least initialized) as a copy of an input message. This is

214 8 Orchestration Flow

precisely what happens in Sect. 6.5.3 on page 178, where the final message of the
orchestration is made equal to the initial message, and then the Celsius property is
updated with the result coming from the Web service.

Therefore, one of the advantages of using a message assignment shape is that it
is possible to easily create a copy of an existing message. Using a transformation
map, this would require setting the source schema and target schema to be the same,
and then connecting all elements so that all values in the source schema are copied
to the target schema. In a message assignment, this can be done through a single
expression and even without the need to define any promoted properties, since the
message content will be copied as is, and all at once. In general, however, the input
and output schemas will be different, and the transform shape provides a more
explicit way to specify the mapping between the input and output messages.

8.4 Controlling the Flow

The concept of having an orchestration driving the message exchange between
applications is especially interesting due to the fact that orchestrations can support
different kinds of behavior through special constructs. Among these constructs,
one can find the possibility to decide between alternative branches, to run parallel
branches, and even to execute loops. These behavioral patterns are intimately
associated with the nature of process logic, and they often appear in depictions
of business processes such as flowcharts, UML activity diagrams [7], and process
models created with modeling languages such as BPMN [34].

An orchestration is in itself an implementation of some process logic. At higher
levels of abstraction, an orchestration can even be regarded as an implementation of
some business process. Therefore, it makes sense to have the behavioral patterns
that are used during process modeling also available for the development of
orchestrations. In the literature, the common behavioral patterns that can be found in
process models are known as workflow patterns [2]. The ability to decide between
alternative branches, run parallel branches, and execute loops are among some of
the most well-known and recurrent patterns in practice.

As explained in Sect. 8.1, orchestrations are built according to a nested block
structure. Basically, this means that any given construct must be used in a sequence
with other constructs or inside other constructs. For example, it is possible to nest
parallel paths into a decision (as in the lower branch of Decide 1 in Fig. 8.1), it is
possible to nest a decision inside another decision (as in the upper branch of Decide
1 in Fig. 8.1), it is possible to nest a loop in a parallel path (as in the upper path
of the Parallel shape in Fig. 8.1), etc. In general, any combination is possible, and
this is what provides the flexibility to implement any desired process behavior in an
orchestration. What is not allowed is to create paths in the flow that go across the
boundaries of any given block, as illustrated in Fig. 8.4.

In the following presentation and discussion of decisions, parallel paths, and
loops, one should bear in mind these principles:

8.4 Controlling the Flow 215

• Any of those flow constructs can appear anywhere in an orchestration, either in
the main (i.e., top-level) flow of the orchestration, or as a nested block somewhere
inside other constructs in the orchestration.

• All of those flow constructs involve one or more possible paths, where each path
contains a sequence of activities (such sequence may contain zero, one, or more
activities). Each activity in a path may be a simple activity (such as sending or
receiving a message), but it may also represent a placeholder for nesting other
blocks at that point in the orchestration.

So even though we will discuss each construct based on examples with simple
activities, the reader should be aware that these constructs can be nested into each
other to build much more complex structures.

8.4.1 The Decide Shape

The decide shape is what allows the orchestration to have multiple possible paths
built in, and to be able to select one of those paths based on conditions that are to be
evaluated at run-time. In terms of workflow patterns, it corresponds to a combination
of an OR-split (at the point where the decision of which path to take is made) and an
OR-join (at the point where the alternative paths merge back to the main flow in the
orchestration). Figure 8.8 illustrates the use of a decide shape. Here, some message
(called MsgOrder) is received and then follows a decision.

The left branch has a condition specifying that, if the order quantity is above
500, then this path should be taken. This condition is being evaluated as a code
expression, much like in the way the expressions in a message assignment shape
are evaluated (see Fig. 8.7). The difference is that while the expressions in Fig. 8.7
represent assignments between message properties, in Fig. 8.8 the expression takes
the form of a boolean condition yielding a value of either True or False. If the
condition is true, then the orchestration flow proceeds along this branch, and other
branches are simply ignored as if they would not be there. On the other hand, if the
condition is false, then this branch will be disregarded, and the engine executing the
orchestration will look for another branch whose condition will yield True.

In the condition associated with the left branch in Fig. 8.8, the expression refers to
Quantity, which must be a distinguished property in the message schema. The value
of this property is being compared to a constant, in order to determine whether the
condition is True or False. In contrast, the condition in the branch on the right-hand
side of Fig. 8.8 has no expression at all. It simply says “Else,” which means that this
branch will be executed if no other branch has a condition which yields True. In this
example, the “Else” branch will be executed if the promoted property Quantity has a
value of 500 or lower.

From this example, it should be clear that there is some order for evaluating
the conditions associated with branches in a decision shape. Naturally, it would
not make sense to consider executing the “Else” branch before the conditions for

216 8 Orchestration Flow

Receive

Receive
port

Send 1

Condi�on

Send
port 1

Send 2

Else

Decide

Send
port 2

MsgOrderMsgOrder

MsgOrder

MsgOrder.Quan�ty > 500

Fig. 8.8 The decide shape

Condi�on2 ElseCondi�on1

Decide

MsgOrder.Quan�ty > 500 MsgOrder.Quan�ty > 250

Fig. 8.9 Multiple conditions in a decide shape

all other branches have been evaluated. Therefore, in Fig. 8.8 the condition in left
branch must be evaluated before the condition in the right branch.

In general, in a decide shape the conditions of the several possible branches
are evaluated in a left-to-right fashion and, as a consequence, the “Else” must
be the rightmost branch. At first sight, such convention might seem strange,
since it imposes a left-to-right priority between branches. However, this structure
corresponds to the programming construct if ... else if ... else ... available in most
programming languages, and such prioritization actually helps avoiding conflicts
when the conditions of different branches are not mutually exclusive.

Figure 8.9 illustrates the logic of a decide shape with non-exclusive conditions.
In this case, the Quantity property is being used in two conditions associated with
different branches. According to the left-to-right evaluation rule, the first condition
to be evaluated is Condition1, then Condition2 if Condition1 does not hold, and finally
the “Else” branch will be considered if none of the previous conditions holds true.

Now, any Quantity value that obeys Condition1 will also obey Condition2. There-
fore, both conditions will be true for any Quantity value above 500. The fact that
conditions are evaluated in a left-to-right fashion serves to disambiguate the problem
of which branch should be followed: the branch to be followed is the leftmost

8.4 Controlling the Flow 217

branch with a condition yielding True, so the orchestration will follow at most one
branch. For quantity values above 250 but not above 500, the second branch will
be followed. For quantity values up to 250, the “Else” branch will be followed.
An important fact about the “Else” branch is that it guarantees that execution will
proceed in any case (i.e., even if no other condition is true) so the orchestration will
never be stuck, even if the conditions for branches have been badly designed.

8.4.2 The Parallel Shape

The parallel shape is a construct that allows multiple branches to run in parallel.
This is the logic counterpart of the decide shape: if the decide shape corresponds
to an OR-split, then the parallel shape corresponds to an AND-split. In addition,
while the branches in a decide shape come together in the form of an OR-join,
the branches in parallel shape come together as an AND-join, which becomes a
synchronizing merge. This means that all branches in a parallel shape must complete
their execution before the orchestration can move on to the next shape in the
flow. Even if some branches run much faster than others (because they have fewer
activities), the orchestration still has to wait for all branches to complete.

Figure 8.10 illustrates the use of a parallel shape by means of an example. After
receiving a customer order (MsgOrder), the orchestration starts two branches in
parallel. The left branch sends the order (as is) to the sales department, while the
right branch transforms the order into a new message to be sent to the shipping
department. The transformation is needed because the shipping department has its
own system that requires shipping orders to arrive in a certain format. The two
branches run in parallel and each message is sent to the corresponding department,
independently of what is happening in the other branch. The left branch will
probably complete first, since it has less to do. However, the orchestration will not
proceed beyond the parallel shape until both branches complete.

Although there are only two branches in the example of Fig. 8.10, in general
a parallel shape can have any number of branches, all of which will be executed
in parallel and synchronized at the end. One could imagine that each branch
corresponds to a separate thread, and that a multi-threaded orchestration engine
would manage the execution of these threads concurrently. However, in practice
the execution engine is usually single-threaded and it only appears to be running
things in parallel, when in reality it is not executing more than one step at a time.

What happens is that the execution engine picks one branch at a time and checks
whether it can execute anything in that branch. If the branch has actions that can
be immediately executed (such as send shapes, construct shapes, and other shapes
that do not require any waiting time), then they are executed immediately. But as
soon as the branch reaches a point where it has to wait for something to happen
(typically, receiving a message through a receive shape), then execution moves to
another branch, where it follows the same behavior. So, in essence, the execution

218 8 Orchestration Flow

Receive

Receive
port

MsgOrder

Send to
SalesSend

port 1

MsgOrder

Send to
Shipping

Parallel

Send
port 2

MsgShipping

Construct messageConstruct message

Transform

Fig. 8.10 The parallel shape

engine proceeds in a round-robin fashion over all branches (e.g., left-to-right and
then back to the beginning) until every action in every branch is completed.

Therefore, the parallel shape, rather than specifying true parallelism, specifies
that a set of tasks can be executed in any order, but subject to the ordering constraints
established in each branch. Going back to the example of Fig. 8.10, the parallel
shape specifies that the three shapes “Send to Sales,” “Construct message,” and
“Send to Shipping” can be executed in any order, as long as “Send to Shipping” takes
place after “Construct message.” This means that “Send to Sales” can take place
either before, after, or in between “Construct message” and “Send to Shipping,” and
no other ordering is allowed. As the number of branches or the number of shapes
in each branch increases, there will be an increasing number of possible orderings;
these represent the different ways in which a single-threaded execution engine can
emulate the behavior of a parallel shape.

8.5 Using the Loop Shape

Conceptually, the behavior of the decide shape and of the parallel shape are quite
simple to understand and these shapes are also relatively simple to use. The parallel
shape is perhaps the simplest to include in an orchestration, since it is just a matter

8.5 Using the Loop Shape 219

of specifying a number of parallel branches. The decide shape is only slightly
more complicated since it requires specifying the alternative branches as well as
the condition associated with each branch. Typically, these conditions are specified
in terms of boolean expressions involving some message elements. These elements
need to be distinguished in the message schema (hence becoming distinguished
properties) in order to be accessible in expressions within the orchestration.

Besides having alternative and parallel branches, there is also the possibility
of running loops through the use of the loop shape. The loop shape, as a means
to control the flow of an orchestration, could have been presented in Sect. 8.4
together with the decide shape and the parallel shape. However, in comparison
with those shapes, the use of a loop shape can be rather complicated, because the
typical scenarios where the loop shape finds application almost invariably involve
iterating through message elements or assembling a new message out of several
parts. As explained in Sect. 8.3, messages are immutable objects and there are
special mechanisms to construct them. These mechanisms do not fit very well with
the logic of the loop shape, and therefore it becomes necessary to use some tricks in
order to be able to carry out some forms of message processing inside a loop.

In Sect. 6.5 we developed an orchestration to invoke a Web service that converted
a temperature value in Fahrenheit to degrees Celsius. Here we will use the same
Web service to build a complete example of an orchestration that uses a loop shape
in order to convert several temperature values. This will allow us to illustrate not
only the iteration over message elements but also the assembly of all results into a
new message. Besides illustrating the typical uses of the loop shape, this example
will also serve to introduce additional shapes and mechanisms that can be used in
BizTalk orchestrations. Despite the present focus on BizTalk, these mechanisms find
their equivalents in other integration platforms as well.

8.5.1 Overview of the Solution

The main purpose of the orchestration to be developed here is to receive an initial
message comprising several temperature values in Fahrenheit and to provide a
final message containing those Fahrenheit values together with their conversion
to Celsius scale. Figure 8.11 illustrates the idea. The initial message contains one
or more Temperature elements, each with its own Fahrenheit and Celsius fields. On
input, the Celsius field is empty, while the Fahrenheit field provides the temperature
value to be converted. On output, a final message brings both fields filled in, for a
set of Temperature elements in the same order as in the input message.

Inside the orchestration, the Fahrenheit values are converted to Celsius using
the same Web service that was used as an example in Chap. 6. However, this Web
service can take only one input at a time, and therefore the orchestration has a loop
to iterate over all Fahrenheit values provided in the initial message. (Alternatively,
one could have another Web service to implement the loop itself, but this would
not allow us to illustrate the use of the loop shape; besides, that would require the

220 8 Orchestration Flow

Fahrenheit: 100
Temperature

Temperatures

Celsius:
Temperature

Fahrenheit: 0
Celsius:

Fahrenheit: 100
Temperature

Temperatures

Celsius: 37.8
Temperature

Fahrenheit: 0
Celsius: -17.8

Orchestration

Ini�al message

Final message

Web
service

Receive

Send

Receive

Send

Request
(Fahrenheit)

Response
(Celsius)

Fig. 8.11 A simplified overview of the orchestration

Web service to receive and process the XML with the list of temperatures.) After
invoking the Web service, each Fahrenheit value together with its conversion to
Celsius is written to a final message that is sent as output from the orchestration.

Listing 8.1 shows the XML schema to be used for the initial and final messages in
the orchestration. Basically, after some headers and namespaces, line 6 specifies that
the message has a root element called Temperatures and inside it there is a sequence
(line 8) of child elements called Temperature (line 9). An arbitrary number of
Temperature elements may be present, as specified by the minOccurs and maxOccurs
attributes in line 9. Each Temperature element has two subsequent child nodes: one
Fahrenheit element and one Celsius element, both of type double (lines 12–13).

Before we go on, we should note that there is no need to write such XML schema
definitions by hand, since most integration platforms provide tools to define XML
schemas graphically in a user-friendly way. In particular, the schema in Listing 8.1
was automatically generated using a tool of such kind. In general, the user needs
only to specify a hierarchical structure similar to the ones depicted in the left-hand

8.5 Using the Loop Shape 221

Listing 8.1 Message schema for the initial and final messages
1 <?xml version="1.0" encoding="utf�16"?>
2 <xs:schema xmlns="http://DemoLoop.Temperatures"
3 xmlns:b="http://schemas.microsoft.com/BizTalk/2003"
4 targetNamespace="http://DemoLoop.Temperatures"
5 xmlns:xs="http://www.w3.org/2001/XMLSchema">
6 <xs:element name="Temperatures">
7 <xs:complexType>
8 <xs:sequence>
9 <xs:element minOccurs="1" maxOccurs="unbounded" name="Temperature">

10 <xs:complexType mixed="true">
11 <xs:sequence>
12 <xs:element name="Fahrenheit" type="xs:double" />
13 <xs:element name="Celsius" type="xs:double" />
14 </xs:sequence>
15 </xs:complexType>
16 </xs:element>
17 </xs:sequence>
18 </xs:complexType>
19 </xs:element>
20 </xs:schema>

side of Fig. 8.11, possibly together with some additional details such as the type of
elements (in this case, double). The tool can then automatically generate the XML
schema in some format, usually XSD as explained in Sect. 5.3.2.

We are now in a position to have a look at the complete orchestration that is
required to implement this solution. The orchestration is depicted in Fig. 8.12,
together with all expressions that are embedded in its shapes. These constructs will
be explained in more detail in the next sections. For the moment, it suffices to say
that the orchestration has a set of send shapes and receive shapes to interact with
external applications through its ports. It also has a couple of construct message
shapes: one to create the request for the Web service, and another to create the final
message to be sent out in the last step. The main novelty here is the use of the loop
shape, and for this purpose a couple of expression shapes are needed as well.

8.5.2 The Use of Expression Shapes

The loop shape has a condition to specify when it should stop iterating. More
precisely, this condition is usually specified in terms of a boolean expression
which, being true, keeps the loop iterating. When the condition becomes false, this
prevents further iterations and makes the orchestration proceed to the next shape
after the loop block. In the orchestration of Fig. 8.12, the loop must iterate over all
Fahrenheit values provided in the initial message. Let us suppose that the number of
Temperature elements in the initial message is stored in a variable called tempCount.
Also, let us suppose that there is another variable called counter to count the number
of times that the loop has been executed. Then the condition that keeps the loop
running is expressed in code: counter < tempCount.

222 8 Orchestration Flow

Receive
Ini�al

Receive
port

Send
Request

Loop

Web service
port

msgRequest

Construct RequestConstruct Request

Message
assignment

Expression

Receive
Response msgResponse

Expression

Construct ResultsConstruct Results

Message
Assignment

Send
ResultsSend

port

msgIni�al

msgFinal

A

Fig. 8.12 An orchestration invoking a Web service inside a loop shape

This is precisely the condition that is associated with the loop shape in Fig. 8.12:
while the number of times that the loop has been run is less than the number
of Temperature elements, the loop is kept running in order to process the next
element. Otherwise, when the counter variable indicates that all elements have been

8.5 Using the Loop Shape 223

processed, the loop is exited. In this context, counter and tempCount are auxiliary
variables, i.e., they are variables in the sense of programming variables and they
have a different behavior from messages in an orchestration. Whereas messages
must be created through the use of special constructs and cannot be modified later
on, variables can be read and written anywhere, wherever there is an opportunity for
inserting an expression in the orchestration.

In Sect. 8.3.2 we have already seen that the message assignment shape provides
a means to construct messages through expressions. If necessary, such expressions
may involve the manipulation of some variables. In addition to message assign-
ments, it is possible to insert expressions anywhere in an orchestration through the
use of the expression shape. Figure 8.12 illustrates the use of two expression shapes:
one just before the loop, and another as the last step inside the loop. Given that the
loop condition is counter < tempCount, it should not be too difficult to understand
what these expression shapes are doing: the first expression shape is initializing the
tempCount and counter variables, and the second expression shape is incrementing
the value of the counter variable. (The other tasks that are also being performed in
each expression shape will be explained in the next section.)

The tempCount variable is being initialized by means of the XPath expression:
count(//Temperature). This expression begins with the count() function, which returns
the number of nodes that match the given template. The template //Temperature
matches every Temperature node in an XML document, no matter where it is in
the XML structure. In the first expression shape in Fig. 8.12, the XPath expression
is being applied over msgInitial, which effectively counts the number of temperature
values in the initial message. In the same expression shape, the counter variable is
being initialized with zero. This variable is incremented in the second expression
shape, which can be found inside the loop.

Therefore, the counter variable begins with a value of zero and is incremented
in every loop iteration, as intended. Once the value of counter reaches the same
value as tempCount, the loop stops. Note that the counter variable is being used both
outside and inside the loop, which means that this variable has a global scope, i.e., it
can be used anywhere in the orchestration. The same happens with other variables.
Also, note that these variables need to be declared somewhere. In Biztalk, they are
declared as “orchestration variables.” These orchestration variables are shown in the
top right corner of Fig. 8.12. Each variable has a certain name and type; in particular,
both counter and tempCount have been declared as integers.

8.5.3 Constructing the Request Message

There are actually two messages being constructed inside the loop: one is the request
message to be sent to the Web service; the other is the final message to be produced
as output from the orchestration and which collects all the results coming from the
Web service. The request message to be sent to the Web service can be constructed
using a single construct shape. Basically, one needs to fetch a Fahrenheit value from

224 8 Orchestration Flow

the initial message and copy it to the request message. The problem is that in each
loop iteration one must fetch a different value from the initial message. This is
achieved through an XPath expression in the form:

number(//Temperature[index]/Fahrenheit/text())

The number() function is intended just to convert the result to a number, since
the Fahrenheit value must be passed on to the Web service as a double parameter.
Inside the number() function, there is a template that matches a Temperature element
that contains a Fahrenheit element with some content. The text() function retrieves
that content and the number() function converts it. Now, we want to retrieve not just
any Temperature element, but a new Temperature element in every loop iteration. For
that purpose, we use an index in the expression above ([index]) to indicate which
Temperature element should be retrieved.

Naturally, index is a variable that must be somehow initialized and updated in
every loop iteration. According to XPath conventions, the index starts at 1. For this
reason, the index variable is always one unit ahead of the counter variable, which
starts at 0. Therefore, it makes sense to have: index = counter + 1. On the other
hand, it is necessary to replace the index variable in the XPath expression above
with its actual value. Since the XPath expression is provided as a string, we must
do some string concatenations, and therefore it is convenient to have the index value
available as a string, hence: index = System.Convert.ToString(counter+1) (in C#). This
expression can be found in the first expression shape in Fig. 8.12 to initialize the
index variable. It can also be found in the second expression shape in Fig. 8.12
where it increments the value of the index variable at every loop iteration.

Now it becomes clear what the first message assignment in Fig. 8.12 is doing:
it inserts the index variable (as a string) in the XPath expression, and it applies the
XPath expression to the initial message in order to retrieve a Fahrenheit value that
will be assigned to the request message. This request message is used as input to the
Web service, which then returns a response with the Celsius value.

8.5.4 Constructing the Final Message

At the end of the orchestration, it is necessary to provide a final message with all
temperatures both in Fahrenheit and in Celsius. This message must be created at
some point during the orchestration and, like any other message, it must be created
inside a construct shape. In the particular scenario of Fig. 8.12, with every loop
iteration there is a new result to be included in the final message, and therefore it
would be useful to construct the message incrementally, but this is not possible.
Instead, the final message is constructed all at once in a construct shape after the
loop block. In the meantime, the results must be stored in some variable.

One could store the results in a list or some other kind of data structure, but it
becomes more convenient to store them in a way that can be loaded directly into the
final message. For that purpose, we store the intermediate results in an XML string
that is built along with each loop iteration. The idea is to have the content ready

8.5 Using the Loop Shape 225

Listing 8.2 Example of initial and final messages for the orchestration
1 <ns0:Temperatures xmlns:ns0="http://DemoLoop.Temperatures">
2 <Temperature>
3 <Fahrenheit>100</Fahrenheit>
4 <Celsius></Celsius>
5 </Temperature>
6 <Temperature>
7 <Fahrenheit>0</Fahrenheit>
8 <Celsius></Celsius>
9 </Temperature>

10 </ns0:Temperatures>
11
12 <ns0:Temperatures xmlns:ns0="http://DemoLoop.Temperatures">
13 <Temperature>
14 <Fahrenheit>100</Fahrenheit>
15 <Celsius>37.7777777777778</Celsius>
16 </Temperature>
17 <Temperature>
18 <Fahrenheit>0</Fahrenheit>
19 <Celsius>�17.7777777777778</Celsius>
20 </Temperature>
21 </ns0:Temperatures>

to load into the final message as soon as the loop is over. Listing 8.2 provides an
example of an initial and a final message for the orchestration. For an initial message
as in Listing 8.2, lines 1–10, one should expect the final message in Listing 8.2, lines
12–21. We therefore build the message in lines 12–21 as a string, as we go along the
loop. The string is stored in a variable called strFinal.

The first expression shape in Fig. 8.12 initializes the strFinal variable with line
12 in Listing 8.2. Then the second expression shape in Fig. 8.12 does most of the
work, by adding the chunks in lines 13–16 and 17–20 in the two passes through the
loop, respectively. The expression for strFinal in the second expression shape adds
a Temperature element with two sub-elements: one to contain the Fahrenheit value
and another to contain the Celsius value. The Fahrenheit value is obtained from the
request message (msgRequest.dFahrenheit) and the Celsius value is obtained from
the response (msgResponse.ConvertTemperatureResult). Both values are converted
to strings in order to be concatenated with the rest of the XML content.

Finally, the message assignment shape after the loop finishes the XML by closing
the root element of strFinal, and then performs a trick that finds application in many
practical scenarios. This trick consists in several steps, namely: creating an XML
object (xmlFinal in Fig. 8.12); loading the XML string (strFinal) to the XML object;
and initializing the message (msgFinal) with that XML object. This is an artificial
way to construct the final message, but it is a useful workaround that often solves the
problem of constructing a message whose content must be assembled from several
parts and across several steps in the orchestration.

In this discussion, we will skip the issue of configuring the ports in the
orchestration. This can be done exactly in the same way as explained in Sect. 6.5.4.
Basically, the initial receive port and the final send port can be bound to physical
ports using the file adapter, and the Web service port must be an instance of the
port type that was automatically created when the Web service was added to the

226 8 Orchestration Flow

solution. After configuring and deploying the orchestration, it is possible to trigger
it by placing a message similar to lines 1–10 in Listing 8.2 in the folder associated
with the receive port. The orchestration will run and produce the final message (as
in lines 12–21 of Listing 8.2) in the folder associated with the send port.

8.6 Orchestrations as Subprocesses

Suppose that we want to hide the part where the orchestration in Fig. 8.12 interacts
with the Web service. In particular, we want to hide those details in a separate
orchestration that can be embedded as a subprocess in a main orchestration. Such
embedding is possible if we publish the orchestration in Fig. 6.9 on page 179 as a
Web service, and then invoke this new Web service in another orchestration. That
would be certainly useful if the two orchestrations were developed by different
people or at different points in time. It could also be done for the purpose of service
composition in a service-oriented architecture, as explained in Chap. 7.

However, here we are interested in hiding those details just for the purpose of
organizing the orchestration logic in two orchestrations, where one can be nested
into the other. Such simple nesting is possible and can be achieved through the use of
a call orchestration shape. Figure 8.13 illustrates the use of a call orchestration shape
to invoke another orchestration, also referred to as the sub-orchestration. Before
going into the details of the orchestration in Fig. 8.13, one should compare this
orchestration with the one shown earlier in Fig. 8.12. Basically, the logic inside the
loop has been somewhat simplified, as the first construct shape and the interaction
with the Web service in Fig. 8.12 have been replaced by an expression shape and a
call orchestration shape to invoke the sub-orchestration.

8.6.1 The Main Orchestration

A comparison of Fig. 8.12 with Fig.8.13 reveals that there have been some changes
in the messages and variables associated with the orchestration. The msgRequest
and msgResponse messages have disappeared in Fig. 8.13, and two new variables
(dFahrenheit and dCelsius of type double) have been created. The reason for using
these variables will become apparent if we look at the sub-orchestration that is being
invoked in the call orchestration shape. For the moment, we will focus on what is
common in both orchestrations of Figs. 8.13 and 8.12.

Both orchestrations have an expression block before the loop shape to determine
the number of iterations and initialize counter and index variables. This first
expression shape also serves to initialize a string (strFinal) that is used to assemble
the final message that will be sent out at the end of the orchestration. Just before the
end of the loop, both orchestrations have another expression shape to increment the

8.6 Orchestrations as Subprocesses 227

Receive
Ini�al

Receive
port

Loop

Expression

Expression

Construct ResultsConstruct Results

Message
Assignment

Send
ResultsSend

port

msgInitial

msgFinal

tempCount = xpath(msgInitial, "count(//Temperature)");
counter = 0;

index = System.Convert.ToString(counter+1);

strFinal = "<ns0:Temperatures xmlns:ns0=\"http://CallOrchestration.Temperatures\">";

counter < tempCount

dFahrenheit = xpath(msgInitial,
"number(//Temperature[" + index + "]/Fahrenheit/text())");

strFinal = strFinal + "</ns0:Temperatures>";

xmlFinal = new System.Xml.XmlDocument();
xmlFinal.LoadXml(strFinal);

msgFinal = xmlFinal;

Expression

Call
Orchestra�on

counter = counter + 1;

index = System.Convert.ToString(counter+1);

strFinal = strFinal + "<Temperature><Fahrenheit>" +
System.Convert.ToString(dFahrenheit) + "</Fahrenheit><Celsius>" +
System.Convert.ToString(dCelsius) + "</Celsius></Temperature>";

dFahrenheit dFahrenheit (in)
Sub-orchestration

dCelsius dCelsius (out)

Messages: Variables:
msgInitial tempCount : int
msgFinal counter : int

index : string
strFinal : string
xmlFinal : System.Xml.XmlDocument
dFahrenheit : double
dCelsius : double

A

Fig. 8.13 An orchestration using a call orchestration shape

counter and index variables and to load the next chunk of temperature values into
the strFinal variable. Whereas in Fig. 8.12 the Fahrenheit value was obtained from
the request message and the Celsius value was obtained from the response from
the Web service, in Fig. 8.13 these values are being obtained from the dFahrenheit
and dCelsius variables. After the loop, there is a construct message shape that does
exactly the same thing in both orchestrations.

So, as expected, the main difference between both orchestrations is inside the
loop. Where the orchestration in Fig. 8.12 constructs the request message through
a message assignment shape, the orchestration in Fig. 8.13 sets the value of
the dFahrenheit variable in an expression shape. It is interesting to note that the
Fahrenheit value comes from the same place (i.e., from an element in the initial

228 8 Orchestration Flow

message), and therefore both the message assignment shape in Fig. 8.12 and the
expression shape in Fig. 8.13 make use of the same XPath expression. Then in
Fig. 8.12 follows the send and receive shapes to interact with the Web service, while
in Fig. 8.13 there is simply a call orchestration shape.

8.6.2 The Sub-orchestration and Its Parameters

Clearly, if the sub-orchestration is to be invoked from within the main orchestration,
there must be some way to pass data back and forth between them. In particular, the
main orchestration is calling the sub-orchestration with the purpose of converting
a given Fahrenheit value to Celsius. The Fahrenheit value to be converted must be
somehow provided as input to the sub-orchestration, and the output value that the
sub-orchestration produces must be handed back to the main orchestration.

From the point of view of the calling orchestration, the sub-orchestration is seen
as a black box with some inputs and outputs. These inputs and outputs are referred
to as orchestration parameters. An orchestration parameter can have many different
forms, but typically it represents either a message with a certain schema or a variable
of some type. However, orchestration parameters work in a different way from either
messages or variables. First, an orchestration parameter can be defined either as “in”
or “out,” depending on whether the parameter is being used as input or output in the
sub-orchestration. Second, orchestration parameters are not meant to be exchanged
through ports; rather, they are exchanged when the sub-orchestration is being called,
and when it finishes and returns to the calling orchestration. In the call orchestration
shape, it is possible to define what happens at these two key moments.

In our scenario, all there is to be exchanged between the two orchestrations can
be reduced to a couple of double values. Therefore, in order to simplify the solution
we develop a sub-orchestration with two orchestration parameters that represent
variables rather than messages (since messages would need to have a certain schema
shared between both orchestrations). One orchestration parameter is a variable of
type double called dFahrenheit, and the other is a variable of type double called
dCelsius. The dFahrenheit parameter will be used as input and therefore will be
defined as “in,” while the dCelsius parameter will be used as output and therefore
will be defined as “out.” The two orchestration parameters dFahrenheit and dCelsius,
to be defined in the sub-orchestration, are meant to have a direct relationship with
the two variables dFahrenheit and dCelsius in the calling orchestration.

In particular, and as shown next to the call orchestration shape in Fig. 8.13,
the dFahrenheit variable in the main orchestration is mapped to the dFahrenheit
parameter in the sub-orchestration, and the dCelsius variable is mapped to the
dCelsius parameter accordingly. However, the dFahrenheit parameter is an “in”
parameter, meaning that it gets its value from the dFahrenheit variable, while the
dCelsius parameter is an “out” parameter, meaning that it sets the value of the
dCelsius variable in the main orchestration. Furthermore, the dFahrenheit parameter

8.6 Orchestrations as Subprocesses 229

Construct RequestConstruct Request

Message
Assignment

msgRequest.dFahrenheit = dFahrenheit;

Send
Request

Web service
port

msgRequest

Receive
Response

msgResponse

Expression dCelsius = msgResponse.ConvertTemperatureResult;

Orchestration parameters: Messages:
dFahrenheit : double msgRequest
dCelsius : double msgResponse

Fig. 8.14 An orchestration to
be invoked in a call
orchestration shape

is set before the sub-orchestration starts, while the dCelsius variable is set after
the sub-orchestration finishes its execution. In general, “in” parameters are written
before the orchestration starts, and “out” parameters are read after the orchestration
finishes.

Figure 8.14 shows the actual flow of the sub-orchestration. When the orchestra-
tion starts, its input parameters (in this case, dFahrenheit) have already been set, so
the orchestration can immediately proceed with what it has to do. The first thing
to do is to construct the request to be sent to the Web service. This is done using
a message assignment shape with a simple expression that copies the value of the
dFahrenheit parameter to the dFahrenheit property in the request. The orchestration
then sends request to the Web service and waits for the response. As a fourth and
final step, it sets the value of the dCelsius parameter based on the response from the
Web service. Then it just ends, as everything is done. The call orchestration shape in
the orchestration of Fig. 8.13 will make sure that the value of the dCelsius parameter
is copied to the dCelsius variable in the main orchestration.

Figure 8.14 illustrates the rare case of an orchestration which does not begin with
an activating receive. This is possible in this case because the orchestration is meant
to be called from another orchestration. As it stands, the orchestration in Fig. 8.14
cannot run on its own. Instead, it should be regarded as a piece of orchestration logic
that is to be called within the flow of other orchestrations.

230 8 Orchestration Flow

8.6.3 Calling vs. Starting an Orchestration

In the above scenario, the call to the sub-orchestration is synchronous, meaning
that the main orchestration is blocked while waiting for the sub-orchestration to
return the result (i.e., the Celsius value). Naturally, the possibility of calling a sub-
orchestration asynchronously also exists. It is possible to trigger a sub-orchestration
without waiting for it to return. In this case, both the calling orchestration and
the sub-orchestration will keep running. In particular, the calling orchestration will
proceed with its flow immediately after triggering the sub-orchestration.

The asynchronous call of an orchestration can be achieved through the start
orchestration shape (as opposed to the call orchestration shape, which is used for
synchronous calls). The start orchestration shape is used in a similar way to the
call orchestration shape, but with one important difference: in the start orchestration
shape, the sub-orchestration to be called cannot have any output parameters; only
input parameters are allowed. This restriction comes naturally, since the calling
orchestration will not be waiting for the sub-orchestration to finish its execution.

At first sight the possibility of starting orchestration asynchronously does not
seem to fit very well into the nested structure and flow of orchestrations. However,
this possibility can become very useful in some scenarios, such as when it is
necessary to hand over control from one orchestration that is about to finish to
another orchestration that will proceed with a further stage of processing. A typical
application of the start orchestration shape is when a message has several items that
can be processed independently. Figure 8.15 illustrates one such example.

Here, the orchestration receives an order comprising several items (i.e., a
repetition of XML elements as in the case of multiple temperatures). The first
expression shape determines the number of items and initializes a counter and an
index variable, as in the examples of the previous sections. The loop iterates through
all items and each item is represented as a separate message that is constructed
through a message assignment. The message for an individual item is passed as
a parameter to a sub-orchestration that is called asynchronously through the use
of a start orchestration shape. An expression shape at the end of the loop is used
to increment the counter and index variables. Once the loop has iterated through
all items, the main orchestration terminates while the items are being processed
separately and simultaneously in different instances of the sub-orchestration.

In some integration platforms, such as BizTalk, the same behavior can be
achieved through other mechanisms, namely pipelines, as explained in Sect. 2.3.
As can be seen in Fig. 2.3 on page 21, a receive pipeline may include a disassemble
stage, whose purpose is to split an incoming message into multiple messages that
are built from different elements in the incoming message. For this purpose, it is
necessary to define an envelope schema and an XPath expression that specifies
where the element to be used for splitting can be found in the incoming message.

Typically, a receive pipeline with a disassemble stage is associated with a receive
port which in turn is associated with an activating receive in an orchestration. As
a message arrives at the receive port, it goes through the pipeline and is split into

8.6 Orchestrations as Subprocesses 231

Receive
Ini�al

Receive
port

Loop

Expression

msgOrder

Start
Orchestra�on

A

Sub-orchestra�on

...

Construct MessageConstruct Message

Message
Assignment

Expression

msgItem

Fig. 8.15 An orchestration using a start orchestration shape

multiple messages; each of these messages will trigger a different instance of the
orchestration. Therefore, instead of having a main orchestration with a loop to start
multiple instances of the sub-orchestration, as in Fig. 8.15, it would be possible to
have the sub-orchestration alone with an activating receive and a receive port that
uses such pipeline with a disassemble stage.

On the other hand, the opposite process, i.e., that of assembling a message from
multiple items, is difficult (in BizTalk, impossible) to achieve with a pipeline. The
reason for this is that, as explained in Sect. 3.1.3, a pipeline works by processing the
stream of messages that go through it. Assembling multiple messages into a single
aggregated message would require a pipeline to store the messages that come along,
and to know how many messages it should wait for before aggregating all of them
in a single message. In general, this is impossible to do with a pipeline. However, in
this chapter we have seen how to do that within an orchestration, through the use of
a loop shape and several expressions, as in Fig. 8.12.

232 8 Orchestration Flow

8.7 Conclusion

In this chapter we described the fundamental building blocks of orchestrations:
we have seen how the general structure of orchestrations is based on nested
blocks; we have seen how the flow of an orchestration typically begins with an
activating receive; we have discussed two ways in which new messages can be
constructed (i.e., either through transformations or through message assignments);
we have seen how to control the flow using decide shapes, parallel shapes, and
loop shapes; we have introduced orchestration variables that can be used in several
kinds of expressions; and we have explained how to call a sub-orchestration,
both synchronously and asynchronously, together with the use of orchestration
parameters.

These are the typical constructs than can be found in practice and that can be
used to develop orchestrations in a variety of integration scenarios. However, there
are additional constructs to address special requirements, such as the need to handle
exceptions or the need to support long-running transactions. An understanding of
these advanced constructs is essential in order to have a complete knowledge about
what is possible to implement with orchestrations. We have chosen to present those
advanced constructs in a separate chapter, so that at this point the reader can review
the concepts presented thus far and prepare for some of the most complicated but
also fascinating topics about orchestrations, to be discussed in the next chapter.

Chapter 9
Advanced Constructs

Some integration scenarios involve special features or requirements which are not
supported by the basic constructs described in the previous chapter, or at least can be
very difficult to implement with those constructs. These special requirements may
have several origins. First, they may come from the need to implement a certain
business behavior. For example, in business scenarios there are usually deadlines
that must be met, after which the process may take different paths depending on
whether something happened before the deadline, as it was supposed to, or not. For
this purpose, one can use the delay shape together with a listen shape in order to
wait for events within a certain time frame, as explained in Sect. 9.1.

A second source of special requirements may come from the technical charac-
teristics of the applications to be integrated, or from the technical characteristics of
the integration platform itself. For example, up to this point we have seen request–
response interactions with external systems being implemented with bidirectional
ports, e.g., the SQL adapter port in Fig. 5.15 on page 136, or the Web service port
in Fig. 6.9 on page 179. In both cases, such bidirectional ports were created by
introspection of the external system to be invoked. For example, from a Web service
interface it is possible to figure out which methods are available together with their
input and output parameters, and therefore it is possible to automatically create a
bidirectional port to invoke any of those methods; the same can be done for a stored
procedure in a database. However, in practice not everything is as transparent as a
Web service or a stored procedure, and there will be legacy systems which are not
amenable to introspection. For these systems, it will be necessary to specify each
message to be exchanged, and to create a unidirectional port to send or to receive that
message. This means that the interaction with such systems will have to be attained
through separate unidirectional ports. In such scenario, the use of correlations will
be mandatory, for the reasons that have been already explained in Sect. 4.6 and that
will be further developed in Sect. 9.2.

A third source of special requirements often comes from the need to improve the
reliability and fault-tolerance of integration solutions. Unfortunately, in complex
scenarios involving large application infrastructures, many things can go wrong
when trying to execute even a simple orchestration. In a real-world environment,

D.R. Ferreira, Enterprise Systems Integration, DOI 10.1007/978-3-642-40796-3__9,
© Springer-Verlag Berlin Heidelberg 2013

233

234 9 Advanced Constructs

such faults may have undesirable consequences in terms of extra costs or even
damages to corporate image. Therefore, it is worthwhile to spend a significant
amount of effort in anticipating those faults and being able to cope with them at
run-time. That is where the topic of exception handling (Sect. 9.3) comes in, but
that is not all. In some scenarios it is not enough to be prepared to catch an error (if
it occurs) and handle it; in addition, it must be ensured that the whole process is in
a consistent state at all times. If the process cannot proceed due to some error, then
it may have to recede to a previous state that is known to be consistent. However,
for practical reasons, it may not be possible to undo a previous action (e.g., if a
variable was written, then it cannot be unwritten; instead, it must be written again
with an old value), so it may be necessary to carry out additional activities to bring
the process back to a consistent state. This is referred to as compensation and it is
carried out in the scope of a transaction. If an error occurs during a transaction, then
the transaction fails and it may be necessary to compensate what has been done in
order to bring the process to a consistent state. This is explained in Sect. 9.4.

Overall, the constructs described in this chapter are meant to deal with events—
either foreseen or unforeseen events. Being able to capture and respond to events
requires a slightly different paradigm from what we have seen in the previous
chapter, where orchestrations were developed essentially as a flow of activities. Here
we will look at a set of new shapes that can also be used in the orchestration flow in
order to deal with events. At first sight, some of these artifacts may seem strange and
even hard to understand due to their inherent complexity. However, one should bear
in mind the inner workings of an integration platform such as BizTalk; namely, the
fact that it comprises an orchestration engine on top of a messaging platform. This
creates the need to route messages to the correct orchestration instance, and the need
to fit exception handling and transaction mechanisms into the nested block structure
of orchestrations. With these ideas in mind, it should be easier to understand why
these advanced constructs have been devised in a certain way.

9.1 Listening for Events

Suppose that, in a given business scenario, an orchestration sends out a request and
waits for a response. If the response does not arrive, then the orchestration will
wait indefinitely. (This does not necessarily mean a waste of resources since, after
some time, the orchestration instance will be dehydrated, as explained at the end
of Sect. 3.1.4.) Now suppose that, due to business requirements, the response is
expected to arrive within 3 days after the request has been sent. If the response does
not arrive within that time frame, then the orchestration should proceed, either in
the same way or in a different way than what would happen if the response had been
received, but it should proceed nevertheless.

It is hard, if not impossible at all, to implement this behavior using the flow
constructs described in the previous chapter. For example, one could think of using
a decision shape with two branches, one for the case when the message is received

9.1 Listening for Events 235

Listen

Receive 1 Receive 2

... ...
Receive
port 1

...

Receive N

...
Receive
port 2

Receive
port N

Fig. 9.1 The listen shape

within 3 days, and another (the “Else” branch) if it happens otherwise. Even if it
would be possible to specify such condition (which is not) then one would still have
the problem that, as soon as the orchestration flow enters a receive shape, it will be
stuck there indefinitely until some message arrives. There is no mechanism to skip
or abandon a task once it has been initiated.

The listen shape provides a solution to this problem. The listen shape is similar
to the decide shape, but with an important difference: rather than a condition, each
branch has an event associated with it (typically, a receive shape). Among the set of
events that may occur, the event that occurs first determines the branch that is chosen
for execution. For example, in a listen shape with two branches (there may be more),
where each branch starts with receive shape, the branch to be followed depends on
which receive shape gets its message first; the other branch will be skipped, much
like a branch in a decide shape whose condition is false.

Figure 9.1 illustrates this behavior. There are several branches for the listen
shape, and all of these branches start with a receive shape. Naturally, each receive
shape is associated with its own receive port. The first receive shape to get a message
will trigger the corresponding branch, and the listen shape will ensure that the other
branches are skipped. Such behavior can be extended to an arbitrary number of
branches N , and only one out of N branches will be executed.

Besides the receive shape, a branch in a listen shape can also be triggered by a
timer. For this purpose, it is necessary to use the delay shape. Basically, the delay
shape is a means to insert a delay during the execution of an orchestration instance.
The delay pauses execution for a given amount of time, or until a specified date
and time is reached. As with other shapes, the condition that specifies the delay is
given as an expression in code (C# in the case of BizTalk). Essentially, the delay
shape can be seen as a special kind of expression shape, where the expression
must specify either a date and time (using System.DateTime) or a time span (using
System.TimeSpan) which can be measured in days, hours, minutes, or seconds.
Execution will proceed beyond the delay shape only when that time has passed.

236 9 Advanced Constructs

...

Send
Request

Port

msgRequest

msgResponse

Listen

Receive
Response Delay

... ...

...

Fig. 9.2 A listen shape with a delay shape

Now we can go back to the business scenario described at the beginning of this
section and devise a solution to the problem based on the listen and delay shapes.
The solution is depicted in Fig. 9.2. Basically, it comprises a listen shape with two
branches. The branch on the left-hand side is intended to receive a response after a
previously sent request. However, if the response does not arrive within 3 days then
the branch on the right-hand side will be executed instead. This branch contains a
delay shape with an expression that specifies a time span of 3 days (and zero hours,
zero minutes, and zero seconds). As a result, either a response is received within that
time frame, or execution will proceed through the right branch and in this case the
left branch is skipped (the orchestration stops waiting for a message). One and only
one of these branches will be executed. After the branch completes, the orchestration
resumes the main flow, which will be executed in either case.

In the above examples we have seen several receive shapes, but none of them
were activating receives, i.e., none of these receive shapes were being used to trigger
the orchestration; instead, they were being used somewhere along the flow. It is
possible to use activating receives in a listen shape, but in this case there are some
constraints that must be obeyed to. First, the listen shape must be the first shape in
the orchestration. Second, all branches must contain activating receives, and the use
of the delay shape is not allowed. Figure 9.3 illustrates an example.

Here, the orchestration is triggered by receiving either a message of type A or
a message of type B , whichever comes first. The receive shapes are activating
receives, meaning that both of them are capable of creating a new orchestration
instance. This solution finds application in scenarios where a business process can
be triggered by different types of message. For example, in an airline reservation

9.2 Correlations 237

Listen

Receive
Type A

Receive
Type B

... ...

...

A A
Receive
port A

MsgTypeA
Receive
port B

MsgTypeB

Fig. 9.3 A listen shape with activating receives

scenario it may be possible to handle new flight bookings as well as changes to
existing bookings in the same orchestration (because both of them involve setting up
a new flight reservation). Therefore, message type A could represent a new booking
request, whereas message type B could represent a request for change, which carries
different data and may require some additional processing.

It should be noted that there is no need to use the solution in Fig. 9.3 if the
only difference between the triggering messages is where they come from. If both
messages have the same type, but one arrives through e-mail while the other comes
in a HTTP request, then it is possible to use the same receive port (and therefore the
same receive shape) for both. As explained in Sect. 2.3 (see in particular Fig. 2.4 on
page 22), a receive port may have several receive locations with different adapters,
so there would be no need to have different receive ports. The solution in Fig. 9.3
applies only if there is a noticeable difference at the orchestration level, namely in
terms of message schemas and the processing they require.

9.2 Correlations

Suppose that in some business organization there is a mandatory procedure for
approving purchase requests. The procedure consists in forwarding the request to
a manager, who will decide whether the request is to be approved or not. Once a
decision has been made, a final request is produced with all the data from the original
request plus the approval result. Figure 9.4 illustrates this process. For simplicity,
we assume that the initial purchase request can be fetched from some folder in a

238 9 Advanced Constructs

Receive
request

Send for
approval

Receive
approval

Send
final request

Correlation

request
request approval

final
request

file system file system
Manager

input queue output queue

Fig. 9.4 A purchase approval process

file system, and that the final request is also saved to some folder (i.e., both of
these ports use the file adapter). We further assume that the manager has a simple
application for decision making that displays the request and records the approval
result. Communication with this application is attained through message queues
(i.e., through ports using the MSMQ adapter). Now that the physical send ports and
receive ports have been specified, we can bring our main focus to the process itself.

Each new purchase request will create a new instance of the process, and all
the requests will go through the manager for approval. In other words, there will
be multiple process instances sending requests to the manager and waiting for an
approval result. Ideally, the manager would dispatch work as quickly as possible,
so that as a new request comes along, the approval decision would be made
immediately. However, at some point in time the manager may have several requests
pending for approval, especially if the rate at which new requests are submitted is
higher than the rate at which the manager is able to dispatch them.

For example, suppose that three new purchase requests are submitted in a short
period of time. Each of these requests will be subject to separate analysis and
approval by the manager. Suppose that the manager picks one of these purchase
requests and approves it. Then the response must be returned to the correct process
instance. (The situation is similar to Fig. 4.5 on page 86, where three requests have
been sent out and one response is coming back in.) Now the problem is: which
process instance does the approval belong to?

To answer this question, there must be some way to correlate the response that
is now being produced with a previous request. If each request can be identified by
a unique number, for example, then the response should carry that same number, so
that it becomes clear which request the response belongs to. Such number effectively
works as a correlation id. In practice, a correlation id does not need to be a single
field, but it can be any set of message properties. All messages exchanged within a
given correlation must carry the same values in that set of properties. For simplicity,
here we will use a unique request number to serve as correlation id.

9.2 Correlations 239

Product
Number

Request

Quantity

Number
RequesApproved

Approved Product
Number

RequestFinal

Quantity
EmployeeEmployee
Approved

Request RequestApproved Request FinalFig. 9.5 Schemas for the
purchase process

9.2.1 Defining the Schemas and the Orchestration

Figure 9.5 illustrates the schemas that will be used to develop a solution for
the process above. There are three main schemas, namely: the Request schema,
the RequestApproved schema, and the RequestFinal schema. The Request schema
contains the details of the purchase request, namely the product and quantity to be
ordered as well as the employee who submitted the request. The RequestApproved
schema contains the approval result in the Approved field, which may contain either
“Yes” or “No.” The RequestFinal schema contains the details of the purchase request
together with the approval result. All three schemas contain the request number.

The process in Fig. 9.4 is to be implemented as an orchestration, and it can
be implemented as shown in Fig. 9.6. This orchestration begins by receiving the
purchase request (hence the activating receive) and then sends this message, without
change, to the manager for approval; it then waits for the approval and, once the
approval message is received, it constructs the final request, sends it, and terminates.
In this orchestration, each message is represented by its own message variable. As
such, msgRequest is a message of type Request, msgApproval is a message of type
RequestApproved, and msgFinal is a message of type RequestFinal.

In this orchestration, there is one send port to send the purchase request to the
manager’s input queue, and there is a receive port to fetch the approval from the
manager’s output queue. If the manager’s application would expose a Web service
interface, then it would have been possible to use a bidirectional port instead of
two unidirectional ports. However, since the orchestration is interacting with the
application through message queues, there needs to be a separate port for each
queue. Here we are interested precisely in having these ports separated, in order to
create the need for a correlation, and to illustrate the use of correlations in general.

In each instance of the orchestration in Fig. 9.6, the “Send for Approval”
shape sends the purchase request to the manager’s input queue, and the “Receive
Approval” shape listens for messages on the manager’s output queue. Now, there
will be multiple orchestration instances (one for each purchase request), but here
is only one input queue and one output queue. This means that all orchestration
instances will send the request to the same input queue, and all orchestration
instances will be listening for the response on the same output queue. Clearly, there
must be a way to ensure that each orchestration instance will receive the approval
message that corresponds to its purchase request. In addition, it must be ensured
that each orchestration instance receives only the correct response; otherwise, the
responses for other instances will be inadvertently removed from the queue.

240 9 Advanced Constructs

Receive
Request

Receive
Port

(request)

Construct FinalConstruct Final

Transform

Send
FinalSend

Port
(final request)

msgRequest

msgFinal

A

Send for
Approval

Receive
Approval

Send
Port

(request)
msgRequest

Receive
Port

(approval)
msgApproval

Fig. 9.6 The orchestration
for the purchase approval
process

The solution to this problem is to use a correlation. This correlation will work
by having a unique number assigned to each purchase request and by requiring each
approval message to include that number, so that it can be correlated with its original
request. In other words, the request number in both messages will serve as the
correlation id. For an incoming approval, it is necessary to establish this correlation
in order to identify the correct process instance which the approval should be
dispatched to. Therefore, the correlation must take place before the approval
message reaches the orchestration instance, and for this purpose it is necessary to
promote the request number in both messages, as explained in the next section.

9.2.2 Defining the Property Schema

As shown in Fig. 4.4 on page 82, an orchestration runs on top of a messaging
platform which sends messages through physical send ports and receives messages
through physical receive ports. It is the duty of this messaging platform to
determine, for a given incoming message, which orchestration instance should
receive that message. In our present scenario, we have an incoming approval, and the
orchestration instance which is to receive that message must be determined based on
the request number in that approval message. Therefore, the request number must
be accessible at the level of the messaging platform, and the way to do this is to
promote that property, as described in Sect. 4.3.

9.2 Correlations 241

Product
Number*

Request

Quantity

Number*
RequestApproved

Approved Product
Number

RequestFinal

Quantity
EmployeeEmployee
Approved

Number

Request RequestApproved RequestFinal

CorrelationPropertiesFig. 9.7 Schemas and
property schema for the
purchase process

To promote a message property (i.e., in order to make it accessible to the
messaging platform), it is necessary to create a property schema. This concept has
been briefly discussed in Sect. 4.3 and its use is illustrated in Fig. 4.3 on page 80,
where the goal is to route an incoming message to a number of possible send ports.
The property schema is basically a list of properties whose values can be retrieved
from the incoming message. As illustrated in Fig. 4.3, these values can then be used
to evaluate the filter expression associated with each send port in order to decide
whether the message should be forwarded to each of those send ports.

In our present scenario, the incoming message is the approval result, which is a
message of type RequestApproved. This message is to be forwarded not to a send
port, but to an existing orchestration instance. This orchestration instance must be
determined based on the request number that is present in the message. Therefore,
the request number must be promoted in the RequestApproved schema. However,
this request number in the approval message must match the request number in
the purchase request that was previously sent for approval. Therefore, the request
number in the Request schema must also be promoted, so that the messaging
platform has access to both in order to determine the correct orchestration instance.

Figure 9.7 shows the message schemas and also the property schema Correlation-
Properties which holds a property called Number. This property could have been
given a different name; what is important is to define where the value for this
property comes from. Figure 9.7 shows that the value for the Number property can
be obtained either from a Request message or from a RequestApproved message. In
both schemas there is a Number element that is mapped to the Number property in the
property schema. For illustrative purposes only, the star next to each Number element
indicates that it has been promoted, i.e., its value can be retrieved by the messaging
platform as the message is being routed to its destination. For the outgoing Request
message, the destination is a send port, whereas for the incoming RequestApproved
message the destination will be an orchestration instance.

9.2.3 Defining the Correlation Type

In the previous section we promoted the Number property both in the Request
schema and in the RequestApproved schema. This makes the property available
to the messaging platform, but now we must specify what we are going to do

242 9 Advanced Constructs

with it. In Sect. 4.3 we used promoted properties to specify the message filters
associated with multiple send ports. Here we want to use promoted properties to
specify a correlation between a message that goes out of the orchestration (i.e.,
the purchase request) and another message that comes back into the orchestration
(i.e., the approval result). In other words, we say that the outgoing purchase request
initiates the correlation, and the incoming approval result follows the correlation.

Even though message filters and correlations are different mechanisms, it helps
thinking about a correlation as a kind of message filter. When an orchestration
instance reaches a point in its execution where it initiates a correlation, it is as if
a filter is being created in the messaging platform for that orchestration instance.
This “filter” specifies that this particular orchestration instance is associated with
a certain value for the correlation properties (e.g., a certain value for the Number
property, as in our example above). Other instances of the same orchestration
will be associated with different values for the correlation properties. So, when
a particular orchestration instance wants to receive a message that follows a
previously initialized correlation, only a message which has matching values for
the correlation properties will be delivered to that orchestration instance.

Now, we know from Sect. 4.3 that a message filter is specified as an expression in
terms of promoted properties. Therefore, it is not surprising that a correlation is also
defined in terms of promoted properties. In Fig. 9.7 we created a property schema
called CorrelationProperties. Of course, the name we have chosen for this property
schema is an indication that we intend to use those properties in a correlation, but
the property schema might as well have been given another name; what is important
is to define a correlation based on those properties (in this case, based on the Number
property). This is done in two steps: first we define a correlation type, and then we
define a correlation set based on that correlation type.

For the moment, we focus on the correlation type. In essence, a correlation type
specifies which properties will be used in the correlation. In our scenario, we define
a correlation type that uses a single property—the Number property.

In general, a correlation type may have multiple properties. Usually, these
properties are promoted properties that can be found in the content of a message, just
like the Number property above. However, the properties to be used for correlation
may also include context properties that can be found in the message envelope. For
example, if the message arrives from a message queue, then it is possible to retrieve
any of the properties that are usually associated with a MSMQ message, such as
Label, Priority, and DestinationQueue. (A description of MSMQ message properties
can be found in Sect. 3.6.4.) If needed, these context properties can also be used for
the purpose of correlating messages.

However, it is important to note that, for the purpose of correlation, one must
choose properties that can be found in all messages to be exchanged within the
correlation. For example, the correlation may include one message to be sent to a
system folder and another message to be received from a message queue. In this
case it is impossible to use MSMQ properties for the correlation because the first
message does not include those properties. For this reason, in practice it is usually
the case that correlations are defined based on promoted properties. In our present

9.2 Correlations 243

scenario, the correlation is defined based on the Number property that can be found
both in the Request message and in the RequestApproved message.

9.2.4 Defining and Using a Correlation Set

Now that a correlation type has been defined, it is possible to define a correlation
set to be used in the orchestration. Basically, a correlation set can be regarded as an
instance of a given correlation type. Whereas the correlation type specifies only the
properties to be used in the correlation, the correlation set defines which message
exchanges will be part of the correlation. In our scenario, we want the correlation
to include the purchase request that is sent to the manager and the approval result
that comes back as a response. The purchase request (msgRequest) is sent by the
“Send for Approval” shape in the orchestration of Fig. 9.6, while the approval
result (msgApproval) is received by the “Receive Approval” shape. These are the
two message exchanges that will be part of the correlation set.

Figure 9.8 shows the same orchestration as in Fig. 9.6 but now the orchestration
has been updated to make use of a correlation set. In particular, the shape “Send
for Approval” initializes the correlation set, while the shape “Receive Approval”
follows the correlation set. There may be several shapes following a correlation
set, but there must be one (and only one) shape initializing the correlation set.
“Initializing” the correlation set means setting the property values that all messages
belonging to the same correlation should have; “following” the correlation set means
subscribing to messages which have those same property values.

The practical effect of having the correlation set in Fig. 9.8 is that the “Receive
Approval” shape will wait for a message that has the same Number as the request
that has been sent by the “Send for Approval” shape. The “Send for Approval”
initialized the property value and the “Receive Approval” shape, by following the
correlation set, will subscribe to messages having that same property value. As a
result, the messaging platform will route to each orchestration instance only the
approval message which matches the same value for the correlation property.

The correlation set ends with the “Receive Approval” shape, but it would be
possible to have other shapes (i.e., other send and receive shapes) following the
same correlation set throughout the orchestration. In general, a correlation set may
include an arbitrary number of message exchanges. In addition, it is possible to
have multiple correlation sets as well. Since a correlation set is an instance of a
correlation type, there may be several such instances, for use at different points in the
orchestration. For example, one could think of a scenario where several interactions
with different applications would require the use of a specific correlation set for
each, using either the same or different correlation types.

In the present scenario, the possibility of using multiple correlation sets does not
apply, because there is a single interaction that requires the use of a correlation,
so this can be addressed with a single correlation type and a single correlation set
based on that correlation type. Furthermore, suppose that there would be another
interaction requiring the use of a correlation; for example, suppose that the purchase

244 9 Advanced Constructs

Receive
Request

Receive
Port

(request)

Construct FinalConstruct Final

Transform

Send
FinalSend

Port
(final request)

msgRequest

msgFinal

A

Send for
Approval

Receive
Approval

Send
Port

(request)
msgRequest

Receive
Port

(approval)
msgApproval

C

C

Ini�alizes correla�on set

Follows correla�on set

Fig. 9.8 An orchestration
using a correlation set

request would need to go through a second approval, similar to the first one. Even
in this case there would be no need to create a second correlation set because this
second approval could “follow” the same correlation set that has been initialized
before. The reason for this is that the correlation type is based on the Number
property and there is only one value for this property in each orchestration instance,
so there would be no need to create multiple correlation sets from this correlation
type, since these correlation sets would use the same property value.

9.2.5 Running the Orchestration

Now that the “Receive Approval” shape in Fig. 9.8 has already been configured
with a correlation set, the orchestration can actually be run. Without this correlation
set, it would be impossible to run multiple instances of this orchestration, since the
approval messages could end up being mixed up. Now, with the correlation set, it is
ensured that each approval will be routed to the correct process instance. In general,
the receive shapes that are used along the flow of an orchestration must be following
some correlation set, with the only exceptions being the first (i.e., activating) receive
in an orchestration and any receive shapes using bidirectional (i.e., self-correlating)
ports, as in Fig. 6.9 on page 179, or Fig. 5.15 on page 136.

We can therefore state the following general rule about receive shapes:

Any receive shape that is non-activating and that is not connected
to a self-correlating port must follow some correlation set.

9.2 Correlations 245

Product
Number*

Request

Quan�ty
Employee

Number*
RequestApproved

Approved

Product
Number

RequestFinal

Quan�ty
Employee
Approved

Transforma�on map

Source
schema

Source
schema

Target
schema

Request

RequestApproved

RequestFinal

Fig. 9.9 Transformation map
for the purchase process

Listing 9.1 Examples of each message
1 <ns0:Request xmlns:ns0="http://DemoCorrelations.Request">
2 <Number>123</Number>
3 <Product>Printer Cartridge</Product>
4 <Quantity>2</Quantity>
5 <Employee>P45</Employee>
6 </ns0:Request>
7
8 <ns0:RequestApproved xmlns:ns0="http://DemoCorrelations.RequestApproved">
9 <Number>123</Number>

10 <Approved>Yes</Approved>
11 </ns0:RequestApproved>
12
13 <ns0:RequestFinal xmlns:ns0="http://DemoCorrelations.RequestFinal">
14 <Number>123</Number>
15 <Product>Printer Cartridge</Product>
16 <Quantity>2</Quantity>
17 <Employee>P45</Employee>
18 <Approved>Yes</Approved>
19 </ns0:RequestFinal>

Before we are able to run the orchestration, there is one additional component
that needs to be defined, and that is the transformation map associated with the
transform shape in Fig. 9.8. This transformation map is shown in Fig. 9.9. Basically,
it gathers all data from the purchase request and additionally it brings in the approval
result to create a RequestFinal message. In particular, the value for the Number
element is being taken from the Request message, but it could as well be taken
from the RequestApproved message since, by force of the correlation, the Number
element has the same value in both messages.

We are now ready to deploy and run the orchestration. Listing 9.1 shows an
example of the three types of messages used in this orchestration. Lines 1–6 contain
an example of the initial message that can be used to trigger the orchestration.
This purchase request has been numbered “123,” and it is forwarded as-is to the
manager’s input queue. From the manager’s output queue, the orchestration retrieves
the approval message shown in lines 8–11, where the Number element matches the
previous request. In this case, the purchase has been approved, as indicated by the
“Yes” value in the Approved field. The orchestration then applies the transformation
map in Fig. 9.9 to construct the final request shown in lines 13–19.

246 9 Advanced Constructs

In summary, correlations are a critically important, but often poorly understood
concept in orchestrations. The fact is that every non-activating receive connected to a
unidirectional port requires the use of a correlation. The reason for this should now
be clear: multiple orchestration instances listening on the same port will compete
for the messages received on that port; it is therefore necessary to have a correlation
that allows the messaging platform to determine which instance should get each
message. The fact that the messaging platform plays a key role in this process is the
reason why correlation properties need to be promoted.

9.3 Exception Handling

In orchestrations, as in many other kinds of processes, there is always the possibility
that things do not run exactly as they would be expected to. At run-time, there may
be particular circumstances, operating conditions, or external events which interfere
with the execution of an orchestration instance. For example, a typical problem
encountered in practice is that of an orchestration which gets stuck waiting for
a response that will never arrive; this may be because there is something wrong
with the way the response is being received, but most often it has to do with some
previous error that occurred in the orchestration and that prevented an earlier request
from reaching its destination.

The occurrence of errors in orchestrations is, unfortunately, more frequent than
it would be desirable. Especially for large and complex orchestrations involving
interactions with several external systems, it may become hard to ensure that
everything is correctly configured and that all systems will be available and will
respond to the orchestration when needed. As with traditional programming, where
it is hard to debug large programs, it is hard to avoid the occurrence of faults in large
orchestrations which implement complex behavior. Fortunately, as in traditional
programming, there are ways to prepare an orchestration to deal with the occurrence
of errors at run-time. This is referred to as exception handling.

An exception may represent a particular kind of system error raised during
execution. For example, if an orchestration is trying to invoke a Web service and the
invocation fails because the Web service is unreachable, or because the Web service
raised an exception during execution, then it is possible to catch this exception in
the orchestration and process it accordingly, rather than just letting the error abort
the execution of the current process instance.

Alternatively, an exception may represent a condition or logical error that points
to a problem in the process rather than in the applications. For example, during
execution the orchestration may find that a given customer does not exist in a
database, or that an employee issued a purchase order for a larger quantity than it is
allowed. In these cases the problem is not technical, but logical, and it is possible to
deal with these run-time problems using exception handling as well.

9.3 Exception Handling 247

...

Scope

...

...

Fig. 9.10 The scope shape

9.3.1 The Scope Shape

The key to using exception handling in orchestrations is to include a special kind
of shape, called the scope shape. This shape is illustrated in Fig. 9.10. Basically,
the scope shape is a block of orchestration logic enclosed within curly braces.
This block is meant to represent a local scope within the global scope of the
orchestration. The idea is to have the possibility of declaring and using local
messages, variables, and correlations sets that are not accessible outside of this
block. Therefore the scope shape is similar to the concept of having local scopes
delimited by curly braces in traditional programming languages such as C or Java.

An interesting feature of the scope shape is that it can also be used as a try-catch
construct for exception handling. In this case, the main block within the curly braces
works as a try block, and it contains the orchestration logic that may raise one or
more exceptions. Below the main block, and as illustrated in Fig. 9.11, it is possible
to have an arbitrary number of exception handlers, or catch blocks. The idea is
that each exception handler catches a different type of exception, and may contain
just about any orchestration logic to treat that exception. In general, it is possible to
implement rather sophisticated ways of handling an exception, including interacting
with external systems if necessary.

For example, if the main block in the scope shape invokes a Web service, then
it may raise exceptions such as SoapException or SoapHeaderException. There could
be one catch block to deal with exceptions of type SoapException and another catch
block to deal with exceptions of type SoapHeaderException. However, in C# the
class SoapHeaderException is a subclass of SoapException, so the catch block for
SoapHeaderException should be placed before the catch block for SoapException.
Otherwise, if the catch block for SoapException appears first, then both SoapExcep-
tion and SoapHeaderException will be caught by that exception handler.

This means that when an exception occurs in the scope block, the orchestration
engine goes through the available exceptions handlers, in the order they appear after
the scope block. The first exception handler that is able to catch the exception is the
one to be invoked. Therefore, the first exception handlers to appear after the main
block should be the ones which catch the most specific (i.e., subclass) exceptions,

248 9 Advanced Constructs

...

Scope

...

Catch Excep�on 1

...
Catch Excep�on 2

...

Fig. 9.11 Catch blocks in a
scope shape

while the ones which catch the most general (i.e., superclass) exceptions should be
the last ones to appear. In particular, it is possible to include an exception handler
for System.Exception. Since System.Exception is the base class for all exceptions,
such exception handler is able to catch any kind of exception. This is equivalent to
catch(System.Exception ex){...} in C#, where ex is an arbitrary argument name.

9.3.2 Nested Scopes

As mentioned above, a scope block may contain just about any orchestration logic,
including send shapes, receive shapes, construct message shapes, etc. In particular,
a scope block may contain other scope shapes. This opens up the possibility of
devising an orchestration as a structure of nested scopes, which is in accordance with
the nested structure of orchestrations as explained in Sect. 8.1. Naturally, an inner
scope may have its own exception handlers, independently of the outer scope. If an
exception is raised in an inner scope and there is no appropriate exception handler
to catch it, then the exception goes out to the outer scope, where there may be some
catch block for it. If not, then the exception escalates to the main orchestration,
causing the orchestration instance to suspend execution.

Figure 9.12 illustrates this behavior. The inner scope throws an exception which,
in principle, should be caught by one of its exception handlers. However, if that
does not happen, then the exception goes to the outer scope which has its own
exception handlers as well. In case the exception is not caught by any of these

9.3 Exception Handling 249

...

Scope

...

Catch Excep�on

...

Scope

Catch Excep�on

...

...

Excep�on

Catch?

Catch?

Excep�on

No

No

Fig. 9.12 Flow of an
unhandled exception

exception handlers, then it goes out to the main orchestration where it will result
in a run-time error that suspends the execution of the orchestration instance.

If the exception is caught by an exception handler, then the catch block is
executed and the orchestration flow continues after the scope shape. For example, if
the exception in Fig. 9.12 is caught by the exception handler in the inner scope, then
after executing the catch block the orchestration continues the flow after that inner
scope (and still within the outer scope). On the other hand, if the exception is caught
by the exception handler in the outer scope, then after executing the catch block the
orchestration resumes the main flow after the outer scope.

Naturally, if there is no exception, then the orchestration just skips all catch
blocks. The catch blocks will come into play only if an exception is raised.

9.3.3 The Throw Exception Shape

When an exception is caught by an exception handler, the catch block executes and
after that the orchestration carries on with its flow. However, in some cases the flow

250 9 Advanced Constructs

Scope

...

Catch Excep�on

...

Scope

Catch Excep�on

...

...

Excep�on

Catch?
(Yes)

Catch?
(Yes)

Throw
Excep�on Excep�on

Fig. 9.13 Re-throwing an
exception

should not be allowed to continue, and instead the exception should be handled and
then re-thrown to an outer scope for further treatment. Figure 9.13 illustrates the re-
throw of an exception inside a catch block. Basically the exception is raised inside
the inner scope and is caught by an exception handler within that scope. Then the
catch block re-throws the exception by means of a throw exception shape, so now
the exception can be caught by the outer scope.

In this example, the throw exception shape in the inner catch block of Fig. 9.13
was used to re-throw the same exception that was caught to the outer scope.
However, the throw exception shape could have been used to throw a different
exception from the one that was caught. In fact, a catch block may involuntarily
raise an exception if something goes wrong when handling a previous exception.

For example, suppose that there is a scope with shapes to invoke a Web service in
order to book a hotel reservation. Also, suppose that after the reservation was booked
successfully, something went wrong—an exception was raised—and the reservation
has to be canceled. A catch block can be used to cancel the hotel reservation by
invoking another method of the same Web service. However, suppose that when the
catch block is about to cancel the reservation, the Web service is no longer available,

9.3 Exception Handling 251

and a new exception is raised. In this case, this second exception has been raised
involuntarily, rather than explicitly through the use of a throw exception shape. In
principle, there should be an outer scope with an appropriate catch block to deal
with this exception. If there is not, then the exception will escalate to the main flow
and it will suspend the execution of the orchestration instance.

In most cases, an exception will be raised when there is some unexpected, low-
level technical problem, such as a system error. However, it is also possible to make
use of exception handling to deal with situations that arise during the execution of
a business process, which do not involve any system malfunction but may represent
scenarios that were not supposed to happen from a logical or business point of view.
That is when the throw exception shape becomes most useful, because it can be used
to interrupt the current flow and deal with the problem in some way.

In Fig. 9.13 we used the throw exception shape in a catch block, but of course this
shape can be used anywhere in an orchestration. Typically, it will be used inside the
main block (i.e., curly braces) of a scope shape that includes one or more exception
handlers, as in Fig. 9.11. Under certain conditions, and not necessarily because those
conditions are infrequent but simply because their occurrence might be undesirable,
the orchestration logic within the scope block will raise an exception to be handled
by one of the catch blocks. The catch block may be able to handle the exception and
let the orchestration flow resume after that, or it may terminate the orchestration
instance if it is impossible to continue.

9.3.4 Exception Objects

When a throw exception shape throws an exception, this exception is an instance of
some exception class. The base class for all exceptions is System.Exception, so the
exception being thrown may be an instance of System.Exception, but more often it is
an instance of some subclass of System.Exception. The more specific the exception
is, the more descriptive it is and, in general, the use of specific (i.e., subclass)
exceptions allows a more fine-grained control of the errors that may occur at run-
time. Still, by way of System.Exception, all exceptions share some common features.
Namely, all exception classes have a data member of type string called Message.
This field is intended to carry a user-friendly description of the error and, despite its
name, should not be confused with an orchestration message.

So, in order to use the throw exception shape, one needs to create an object
of type System.Exception or one of its subclasses. This is the object which will
be “thrown” when the throw exception shape is executed. On the other hand, this
is also the object which will be “caught” by an exception handler, if there is an
exception handler for such exception class. For example, suppose that one wants to
throw an exception with the error message “quantity is above limit.” Then one could
create an object as an instance of the System.Exception class and set the desired
error message in that object. The object would be thrown by a throw exception
shape and subsequently caught by an exception handler. Inside the catch block, the

252 9 Advanced Constructs

orchestration logic will have access to the exception object that was caught and will
be able to retrieve the error message contained in that object.

Usually, an exception handler retrieves the error message from the exception
object and records it in an event log or log file so that it is possible to keep track
of run-time errors, find their causes, and eventually eliminate them. However, if
a catch block is configured to record the error message in an event log, then all
instances from that orchestration will record their errors in the same event log.
This creates a problem if the error message to be recorded is something as simple
as “quantity is above limit.” In this case, it will be impossible to know in which
particular orchestration instance the error occurred.

Therefore, it is often necessary to include additional data in an error message
to allow a system administrator to investigate the cause of the exception. These
data should make it possible to identify the orchestration instance where the error
occurred. For example, if the error is “quantity is above limit” then at least the actual
quantity value should be included, in order to look for the orchestration instance (or
the set of orchestration instances) which had that quantity value. If possible, all data
pertaining to an orchestration instance should be logged when an exception occurs.
However, this may also create some privacy concerns if the data being logged are
sensitive for the business point of view.

In the next section we present a simple example where we do not consider such
privacy issues. In practice, one may choose to record only those data that are useful
to “debug” an orchestration, without getting into sensitive business details. On the
other hand, most integration platforms provide their own tracking and tracing tools,
so in the event of an exception—and especially for those exceptions which are not
caught by the orchestration and therefore result in an execution failure—it will be
possible to use those monitoring tools to check which orchestrations instances failed
and, if needed, what went wrong in each of them.

9.3.5 An Example

Suppose that there is an orchestration to check if the quantity being specified in a
purchase request is within a certain limit. If the quantity is up to 500 units, then the
purchase request will be forwarded to an ERP system via a send port. Otherwise,
if the quantity is above 500, then an exception will be thrown and caught by an
exception handler. This exception handler will record an error message in a system
event log. Figure 9.14 illustrates this orchestration.

The orchestration begins as usual with an activating receive that receives
a purchase request. The schema for this message contains three elements: the
first element identifies the employee submitting the request, the second element
describes the product to be purchased, and the third element contains the requested
quantity. Once the purchase request is received, the orchestration enters a scope
shape which has a main block and one catch block as well.

Inside the main block, there is a decide shape to check the quantity in the request.
The left branch contains a condition with an logical expression to test whether the

9.3 Exception Handling 253

Product

Request

Quan�ty

Employee Receive
Request

A

Scope

Catch Excep�on

Condi�on Else

Decide

msgRequest.Quan�ty > 500

Expression
1

Throw
Excep�on

Send
Send
port

msgRequest

Receive
Port

msgRequest

Expression
2

qtyExcep�on = new System.Excep�on(
System.String.Format(

"Quan�ty {0} for product {1} is above limit.",
msgRequest.Quan�ty,
msgRequest.Product));

System.Diagnos�cs.EventLog.WriteEntry(
"DemoExcep�ons",
ex.Message);

Messages:
msgRequest

Variables:
qtyExcep�on : System.Excep�on

Request

Fig. 9.14 An orchestration that throws and catches an exception

quantity is above 500. (For this condition to work, the Quantity element in the request
schema must have been distinguished, as we did, for example, with the Fahrenheit
and Celsius elements in Sect. 6.5.1.) If the condition is true, then the orchestration
follows the left branch; otherwise, it follows the right branch.

On the left branch, there is an expression shape and a throw exception shape. The
main goal of this branch is to throw an exception but, as explained in the previous
section, a throw exception shape will throw an exception object, and this object
needs to be created first. The purpose of having the expression shape is precisely to
create the exception object. In the example of Fig. 9.14, the exception object is kept
in an orchestration variable of type System.Exception called qtyException.

The exception object qtyException is being created in the expression shape by
means of a constructor which takes a string as input. This string is used to initialize
the error message in the exception. In this case, the string will contain the values

254 9 Advanced Constructs

Listing 9.2 Example of a purchase request that raises an exception
1 <ns0:Request xmlns:ns0="http://DemoExceptions.Request">
2 <Employee>P45</Employee>
3 <Product>Printer Cartridge</Product>
4 <Quantity>600</Quantity>
5 </ns0:Request>

of certain elements in the request message, namely the product and quantity. The
format being used is the following:

“Quantity {0} for product {1} is above limit.”

where {0} will be replaced by the value of msgRequest.Quantity, and {1} will be
replaced by the value of msgRequest.Product, respectively. For this to work, both
of these elements must have been distinguished in the request schema.

The throw exception shape that follows this expression in Fig. 9.14 is configured
to throw the qtyException object. On other hand, the catch exception block in the
scope shape is configured to catch an exception of type System.Exception, so it will
catch qtyException. However, the catch block will refer to the exception object using
some argument name, as in catch(System.Exception ex), where ex is an arbitrary
name. In this example, the catch block is configured to use ex for the name of the
exception object. Therefore, within the catch block, the error message contained in
the exception object can be retrieved through ex.Message.

Now it becomes clear what the expression shape in the catch block of Fig. 9.14
is doing. With a call to the WriteEntry() function, the expression is writing an entry
to the system event log. The first argument that is being passed to WriteEntry() is an
arbitrary name for the source of the event, while the second argument is a string that
contains the error message to be written to the event log.

For example, the purchase request shown in Listing 9.2 has quantity value above
500 (line 4). When used to trigger the orchestration, this message will lead to an
exception being thrown. The exception will be caught by the catch block, and the
following event will be written to the event log: “Quantity 600 for product Printer
Cartridge is above limit.”. In the Windows environment, this event can be seen using
the Event Viewer administrative tool, specifically in the “Application” log.

9.4 Transactions

In Sect. 3.2 we have seen that the concept of transaction, which has its origin
in database systems, can be extended to messaging systems. In this case, the
transaction may include a number of messages to be consumed and/or produced, as
long as the messages to be consumed do not depend on the messages to be produced,
as in a request–response interaction (as explained in Sect. 3.2, a request–response
interaction cannot be enclosed in a single transaction because the request will not
be sent until the transaction commits, and therefore the response cannot be received

9.4 Transactions 255

within the same transaction). Typically, message transactions are used in solicit–
response interactions, where the client application receives a request and produces
a response. In this scenario, the use of a message transaction ensures that no request
is left without a response because, if the transaction fails, a rollback will take place.
This rollback consists in returning all consumed messages to their original queues
and destroying any messages produced within the transaction. After the rollback, the
client application will have the opportunity to execute the transaction again from the
beginning, as if nothing had happened.

The concept of transaction can also be extended to orchestrations, but in this
case the mechanisms for executing transactions and for recovering from failed
transactions are completely different. Usually, an orchestration is an implementation
of some business process, and since a business process may take days, weeks, or
even months to complete, so too an orchestration may take long to finish. Consider
the example of the business process depicted in Fig. 9.4 on page 238. This is a
purchase approval process, where the manager may take several days to approve
a given purchase request. The process is implemented by the orchestration shown
in Fig. 9.8 on page 244. If the manager takes several days to approve a purchase
request, then this means that there will be an instance of the orchestration which
will be running for several days. Running this orchestration instance as a transaction
is impractical, because it would mean having a transaction that is active for several
days.

In database systems, a transaction will lock certain resources (e.g., a row or a
table) during a period of time, and those resources are released when the transaction
commits (or rolls back). In the meantime, other transactions are unable to access
the same resources, and they must wait for the running transaction to complete its
execution. It is easy to see that such behavior would not work well with long-running
transactions in orchestrations, because it would mean that an orchestration could
lock resources over a long period of time, preventing other running orchestrations
from carrying out their work. Instead, an orchestration should commit its actions
as it goes along, in order to release the resources that it is using for other running
orchestrations. In practice, this means that a long-running transaction may have to
be partitioned into a set of short-lived transactions.

However, if a long-running transaction is substituted by a set of short-lived
transactions, then the long-running transaction is not atomic anymore (in the sense
of executing all or nothing), because parts of this long-running transaction are being
executed and committed by shorter transactions. This creates a problem, because
a long-running transaction, as a whole, is meant to be atomic (otherwise, it cannot
be called a transaction). But how can a long-running transaction be atomic if parts
of it are being committed separately? For example, if a long-running transaction
is partitioned into three short transactions, and after the first two transactions
complete successfully the third transaction fails, then what should happen to the
two transactions that have already committed? The answer is that they need to be
compensated, i.e., their effects need to be logically undone, even though they have
already committed. This is referred to as compensation, and it is different from
rollback in the sense that rollback takes place before a transaction commits, while

256 9 Advanced Constructs

...

...

Scope

...

...

Compensa�on

Fig. 9.15 A compensation
block in a scope shape

compensation takes place after a transaction commits. Compensation refers to the
possibility of undoing the effects of actions that have been already committed.

9.4.1 Revisiting the Scope Shape

In Sect. 9.3.1, particularly in Fig. 9.11 on page 248, we have seen that a scope shape
can have one or more catch blocks that work as exception handlers. The scope shape
also plays a key role with respect to transactions, since it can be used to delimit a
long-running transaction within an orchestration. It can also be used as a container
for other transactions. Figure 9.15 shows that a scope shape, when used to delimit
a transaction, can have a special-purpose compensation block. This compensation
block is intended to be invoked in case the actions that have been executed within
the scope need to be compensated. This could only happen when this scope has
already been completely and successfully executed, but an error or exception at a
later stage create the need to undo the actions of this scope.

9.4.2 The Compensate Shape

Typically, the use of a compensation block in a scope shape makes sense if the scope
is part of a long-running transaction. Then, should the long-running transaction fail,
its internal scopes (i.e., the short-lived transactions) will need to be compensated.
Figure 9.16 illustrates such scenario. Here, there is a scope labeled “outer scope” to
represent a long-running transaction, and there is a scope labeled “inner scope” to
represent a short-lived transaction. Executing the outer scope means executing the

9.4 Transactions 257

...

Inner Scope

...

Outer Scope

Catch Excep�on

...

...

Compensate

Throw
Excep�on

Compensa�on

Excep�on

Catch

Compensate

Fig. 9.16 Use of compensate
shape to invoke compensation
block

shapes within the curly braces of the outer scope; in a similar way, executing the
inner scope consists in executing the shapes inside its curly braces.

Assuming that the inner scope has executed successfully, execution will proceed
to the next shape in the outer scope which, in this case, is a throw exception shape.
An exception is thrown and caught by the catch block of the outer scope, which
works as an exception handler. Inside the exception handler, there is a compensate
shape. This means that any inner transactions will be compensated in order to
retract to a consistent state. In this specific example, only a single inner scope is
to be compensated. The compensation block in the inner scope may contain any
orchestration logic; for example, it may communicate with external systems in order
to nullify the effects of the actions that have been performed within that scope.

The goal of compensation is to undo the effects of all committed actions in order
to bring the orchestration back to an execution state that is equivalent to the state of

258 9 Advanced Constructs

the orchestration that was in place before the long-running transaction (i.e., the outer
scope) had begun. Since the actions of the inner scope have already been performed
and committed at the point when an exception was raised, those actions need to
be compensated by additional actions in order to nullify the effects of the previous
ones. For example, if the inner scope booked a flight ticket, then its compensation
block is likely to send a message in order to cancel that flight booking.

If the long-running transaction includes multiple inner scopes, then compensa-
tion takes place in reverse order of execution. Figure 9.17 extends the previous
example with a second inner transaction inside the outer scope. An exception occurs
after the two inner scopes have completed execution. This means that when the
exception is caught and handled, both of these scopes will have to be compensated.
However, since inner scope 1 has been executed before inner scope 2, then inner
scope 2 is the first to be compensated, followed by inner scope 1.

It should be noted that in Fig. 9.17 the exception occurs after inner scope 2.
Therefore, both inner scope 2 and inner scope 1 will be compensated. However, if
the exception occurs within inner scope 2, then this scope does not run to the end.
Its execution is interrupted by the exception, and therefore inner scope 2 cannot
be compensated, since it did not complete. In this case, only inner scope 1 would
be compensated. On the other hand, if the exception occurs in inner scope 1, then
there is nothing to compensate, since none of the inner scopes have been performed
to the end. In general, compensation can only be invoked for those scopes (i.e.,
transactions) which have run successfully till the end (i.e., committed).

9.4.3 Using Both Exception and Compensation Handlers

In the example of Fig. 9.17 there are three scope shapes. The outer scope has an
exception handler but no compensation handler. On the other hand, each inner scope
has its own compensation handler, but has no exception handlers. In practice, it often
happens that a scope has either a set of exception handlers (there may be multiple
ones, as explained in Sect. 9.3.1) or a compensation handler (there is at most
one, since only one form of compensation can be defined for a given transaction).
However, nothing prevents a scope from having both types of handlers. Figure 9.18
illustrates the general structure of a scope shape.

The catch blocks are meant to handle any exception that occurs within the scope
itself, and there may be multiple catch blocks for different exceptions. On the other
hand, the compensation block is meant as a recovery plan, should the need arise to
compensate the actions of this scope. Such need can only arise after this scope has
been executed, and the compensation block can only be invoked from some larger
transaction that includes this scope, as in the example of Fig. 9.17. If everything
runs well, it may be the case that none of these blocks is actually invoked during the
execution of an orchestration instance. If no exceptions occur within the scope, then
no exception handler will be invoked; and if no errors occur after the scope, then the
compensation handler will not be invoked.

9.4 Transactions 259

...

Inner Scope 1

...

Outer Scope

Catch Excep�on

...

...

Compensate

Compensa�on

...

Inner Scope 2

...

Compensa�on

...

Compensa�on

Execu�on

Fig. 9.17 Compensation in reverse order of execution

260 9 Advanced Constructs

...

...

Scope

...

Catch Exception 1

...

Catch Exception 2

...

...

Compensation

Fig. 9.18 A scope shape
with catch blocks and a
compensation block

9.4.4 An Example

In order to illustrate a complete example of using transactions and compensation
in the BizTalk platform, we develop a simple orchestration which receives an input
string and converts it first to uppercase and then to lowercase inside a long-running
transaction. If the transaction fails (and we will make sure that it does for the sake
of the example), the string is reverted back to its original form. The simple task
of converting a string to uppercase and then to lowercase would not justify the
development of an orchestration on its own, but it has the advantage of allowing to
illustrate the mechanisms of transactional support in orchestrations while avoiding
the complications of a more realistic example.

Figure 9.19 illustrates the orchestration, together with the schema, the variables,
and the expressions that are used along the flow. As usual, the orchestration begins
with an activating receive. This receive shape is used to receive a message with
a simple schema. Basically, the schema has a root node called Input, and a single
element called Text, which contains the string to be converted to uppercase and then
to lowercase. In this schema, the Text element is defined as a distinguished property,
so that it becomes accessible to all expressions in the orchestration.

9.4 Transactions 261

Input
Text Receive

A

Outer Scope

Catch Excep�on

Receive
Port

Compensate

Messages:
msgInput

Variables:
varText : string

Input

Uppercase

Compensa�on

Expression
1

Expression
2

Expression
3

Lowercase

Compensa�on

Expression
4

Expression
5

Expression
6

varText = msgInput.Text;
System.Diagnos�cs.EventLog.WriteEntry(

"DemoTransac�ons", "Ini�alized: " + varText);

varText = varText.ToUpper();
System.Diagnos�cs.EventLog.WriteEntry(

"DemoTransac�ons", "Converted to uppercase: " + varText);

varText = msgInput.Text;
System.Diagnos�cs.EventLog.WriteEntry(

"DemoTransac�ons", "Compensated uppercase: " + varText);

varText = varText.ToLower();
System.Diagnos�cs.EventLog.WriteEntry(

"DemoTransac�ons", "Converted to lowercase: " + varText);

varText = varText.ToUpper();
System.Diagnos�cs.EventLog.WriteEntry(

"DemoTransac�ons", "Compensated lowercase: " + varText);

System.Diagnos�cs.EventLog.WriteEntry(
"DemoTransac�ons", "Causing an excep�on!");

varText = varText.Substring(100, 100); // throws excep�on

Fig. 9.19 An orchestration with compensation

262 9 Advanced Constructs

The first expression shape (Expression 1) appears right after the receive shape,
and it consists in copying the value of the Text property in the input message to
the orchestration variable varText, which is also a string. In subsequent steps, the
input string will be manipulated through the varText variable, rather than through the
original Text element in the input message since, as explained in Sect. 8.3, messages
are immutable objects in BizTalk orchestrations.

The second instruction in Expression 1 is a call to the WriteEntry() function, which
writes an entry to the event log of the operating system. This function has already
been used in the example of Fig. 9.14 on page 253. Basically, the function has two
arguments, where the first argument is an arbitrary name for the source of the event,
and the second argument is a string that contains the message to be written to the
event log. Here, the function is used to write an entry saying that the orchestration
is initializing the value of the varText variable.

After Expression 1 there is a long-running transaction in the form of an outer
scope. This outer scope includes two inner scopes: one to perform the conversion to
uppercase and another to perform the conversion to lowercase. Each of these inner
scopes represents a transaction on its own. These two inner transactions are nested
into the long-running transaction represented by the outer scope.

In the first inner scope, labeled Uppercase, there is an expression shape to convert
the contents of varText to uppercase (Expression 2). Besides the conversion, the
same expression shape writes an entry to the event log saying that the string has
been converted. In case there is a need to compensate this inner transaction, the
compensation block includes an expression shape (Expression 3) that sets the value
of the varText variable back to the original string that came in the input message that
triggered the orchestration. In addition, the expression shape in the compensation
block writes an entry to the event log saying that compensation has taken place.

The second inner scope, labeled Lowercase, follows a similar structure. This inner
scope contains an expression shape (Expression 4) to convert the contents of varText
to lowercase. Besides the conversion, the expression writes an entry to the event log
saying that the string has been converted. Up to this point this scope appears to be
very similar to the previous one, but now there is a subtle but important difference:
in the compensation block, the expression shape (Expression 5) converts the value
of the varText variable back to uppercase. This is done in order to set varText back to
the value that it had before this inner transaction had begun.

In case there is a compensation of both inner scopes, the Lowercase scope will
be compensated before the Uppercase scope. This order of compensation ensures
that the varText variable ends up with its initial value. In general, the compensation
block in any given scope shape should revert to the execution state that was in
place immediately before that scope was executed. Then, through the process of
compensation, which works in reverse order of execution, it will be possible to
backtrack across several inner scopes of a long-running transaction.

In the last expression shape (Expression 6), the orchestration causes an exception
by trying to retrieve a substring from varText. The starting position for the substring
is 100, and the number of characters to be retrieved, starting from that position,
is 100. This means that if varText holds a string of less than 200 characters, such

9.4 Transactions 263

Listing 9.3 Example of input message
1 <ns0:Input xmlns:ns0="http://DemoTransactions.Input">
2 <Text>Printer Cartridge</Text>
3 </ns0:Input>

Listing 9.4 Events recorded in the system log
1 Initialized: Printer Cartridge
2 Converted to uppercase: PRINTER CARTRIDGE
3 Converted to lowercase: printer cartridge
4 Causing an exception!
5 Compensated lowercase: PRINTER CARTRIDGE
6 Compensated uppercase: Printer Cartridge

substring cannot be retrieved and an exception will be raised. This exception is of
type ArgumentOutOfRangeException, but the type is not important since the catch
block of the outer scope is configured to catch a general exception.

Before Expression 6 attempts to retrieve the substring, there is an instruction to
write an entry to the event log saying that the orchestration is causing an exception
(even though such exception will only be raised if the text string in msgInput contains
less than 200 characters). When the exception is thrown, execution of the outer scope
is interrupted and the exception is caught by the exception handler of that scope
(but only because this exception handler is able to catch that kind of exception;
otherwise, the exception would escalate to the global scope of the orchestration,
which would cause the orchestration instance to become suspended).

The exception handler at the bottom of Fig. 9.19 could have included any
orchestration logic, but in this case it contains a single shape—a compensate
shape—to specify that all nested transactions that have been previously executed
should be compensated. If the orchestration flow enters this catch block, it is a sign
that the outer transaction has failed, and therefore the nested transactions should
be compensated. In this example, the exception occurs after both inner scopes have
been executed, and therefore both of them will need to be compensated.

Since compensation is carried out in reverse order of execution, the value of
the varText variable will be converted back to uppercase (during compensation of
the Lowercase scope) and then set to its initial value (during compensation of the
Uppercase scope). Listing 9.3 shows an example of an input message that can be
provided as input to the orchestration of Fig. 9.19. The string to be converted is
“Printer Cartridge.” This string is less than 200 characters long, so it will raise an
exception in Expression 6. Such exception will trigger compensation.

For the input message shown in Listing 9.3, the orchestration will leave a trace in
the system log with the events shown in Listing 9.4. Line 1 is the result of Expression
1 and shows the initial value for the varText variable. Lines 2 and 3 are the result of
executing the inner scopes Uppercase and Lowercase, respectively. Line 4 contains
the event that is recorded by Expression 6, just before the exception is raised. After
that, lines 5 and 6 show the result of compensation: the first to be compensated is
the Lowercase scope, followed by the Uppercase scope; the compensation handlers
for these scopes are invoked in this order. The last value of the varText variable in
line 6 is equal to the initial one, in line 1.

264 9 Advanced Constructs

9.4.5 A Note About the Previous Example

In the previous example, the compensation handlers of both inner scopes change the
value of a global orchestration variable (varText). Due to a limitation of the BizTalk
platform, these changes are not visible outside the compensation blocks. This means
that after compensation, the value of the varText variable will still be in lowercase.
This happens because, at the beginning of each compensation block, the variable is
temporarily initialized with the value that it had at the time when the scope finished
(i.e., committed). During compensation, this value can be changed as desired, but
these changes are not visible after the compensation block has run.

Therefore, if one would read the value of the varText variable after the outer
scope, this value would be the same as before the compensation has started (i.e.,
varText would be in lowercase). This behavior only applies to orchestration variables
(or variables that exist in an outer scope with respect to the scope that is being
compensated). If instead of an orchestration variable or outer-scope variable we
would be changing an external resource (such as a database record, for example),
then the changes in the compensation block would modify the external resource,
and these changes would be certainly visible from outside the compensation block.

9.4.6 Long-Running vs. Atomic Transactions

In this section, we have referred to every transaction as a long-running transaction.
For example, the outer scope in Fig. 9.19 is a long-running transaction, and the inner
scopes that are nested inside that outer scope are long-running transactions as well.
In general, a long-running transaction is a construct that allows the specification
of custom orchestration logic for exception handling and compensation. A long-
running transaction also allows nesting of other long-running transactions inside
it, as in Fig. 9.19, and this provides a means to partition a long transaction into
several steps to be committed separately. However, such long-running transaction is
no longer atomic, and the fact that it may fail when certain steps have already been
committed is the reason why compensation is needed.

In orchestrations it is possible to use also atomic transactions, which work in a
way that is more similar to traditional transactions. They have a single commit phase
at the end, and it is not possible to have any nested transactions. They are “atomic”
in the sense that all or nothing is executed, and they are also “isolated” from other
transactions, meaning that no transaction that may interfere with the same resources
can be executed at the same time. This is in contrast with long-running transactions,
which are neither atomic nor isolated. However, with respect to the remaining ACID
properties [27], both long-running transactions and atomic transactions ensure
consistency and durability. In long-running transactions, consistency is ensured
by compensation mechanisms; in atomic transactions, consistency is ensured by
automatic rollback to a previous execution state.

9.4 Transactions 265

In practice, integration platforms such as BizTalk record the state of an orches-
tration at several points during execution. These are called persistence points.
If something goes wrong during execution, it is possible to recover a previous
state of the orchestration by reloading one of those persistence points. This
possibility is the basis for automatic rollback in atomic transactions. If a scope is
configured as an atomic transaction, and if it fails during execution (e.g., because
an exception is thrown), then the execution engine will automatically reload the
state of the orchestration that was in place before the scope was executed. In atomic
transactions, rollback takes place automatically if an exception occurs.

This is in contrast with long-running transactions, where there needs to be a
catch block with some orchestration logic in order to handle the exception and
clean up whatever has been done before (as in the outer scope in Fig. 9.19). In
an atomic transaction there are no catch blocks, because the behavior in case of
failure is already defined: it rolls back automatically to a previous execution state.
However, an atomic transaction may have a compensation block, if it is nested inside
a long-running transaction; in this case, if the outer transaction fails, then it may
be necessary to compensate the inner transactions, regardless of whether they are
long-running or atomic. In general, a long-running transaction may contain other
long-running transactions and atomic transactions as well; in contrast, an atomic
transaction cannot have any nested transactions, since it is atomic.

In the example of Fig. 9.19, the Uppercase scope and the Lowercase scope could
be configured either as long-running transactions or as atomic transactions. In this
example it does not make much of a difference since none of these scopes includes
nested transactions, nor do they include any special form of error handling. When
the exception occurs in Expression 6, both of these inner scopes will be compensated
regardless of whether they are long-running transactions or atomic transactions.
However, if these scopes would be configured as atomic transactions, and an
exception would occur in Expression 2 or Expression 4, then the corresponding scope
would be rolled back automatically by the execution engine.

In particular, assuming that the Uppercase scope and the Lowercase scope have
been configured as atomic transactions, if the exception occurs in Expression 2
then the Uppercase scope is rolled back and nothing happens to the Lowercase
scope, since it did not even start. On the other hand, if the exception occurs in
Expression 4 then the Lowercase scope is rolled back and the Uppercase scope will
be compensated. If the exception happens in Expression 6, both inner scopes will be
compensated in reverse order of execution, as before.

Another reason why the Uppercase and Lowercase scopes could be atomic
transactions is that they do not interact with external resources. So, in case failure,
it is possible to roll back just by reloading a previous state of the orchestration.
However, if a scope interacts with external applications, then the automatic rollback
performed by the execution engine may not be enough to ensure consistency. The
execution state of the orchestration will be recovered, but the effects on external
applications may still remain. In this case, it may be necessary to use an exception
handler with a set of appropriate actions in order to reset the state of the external

266 9 Advanced Constructs

applications as well. But then the scope should be a long-running transaction, since
atomic transactions do not allow for custom exception handling.

A scenario where atomic transactions are of much use is in distributed trans-
actions involving transactional components. In Sect. 3.6.3 we mentioned the
possibility of having a Distributed Transaction Coordinator (DTC) to manage
transactions across several kinds of systems, such as messaging systems, databases,
and file systems that support transactions. In this case, an atomic transaction can
be used to implement a distributed transaction, and the rollback of the atomic
transaction will trigger a rollback in all components associated with that distributed
transaction.

However, as in the case of message transactions, an atomic scope cannot include
request–response interactions (in the form of send and receive shapes) where the
response is an answer to a request that has been issued within the same transaction.
As explained in Sect. 3.2, and the same principle applies here, the request will not
be sent until the transaction commits, so the response cannot possibly be received
within the same transaction. It is somewhat surprising that, even though transactions
in orchestrations are so different from transactions in messaging systems, the same
principle would apply here, but one must recall that an orchestration is, after all, a
way of specifying the logic of messages exchanges between applications.

9.5 Conclusion

In this chapter we have discussed the most sophisticated mechanisms associated
with orchestration flow, namely correlations, exception handling, and transactions.
The concept of correlations is often poorly understood, but it is an absolutely essen-
tial mechanism to build orchestrations that are able to carry out message exchanges
across multiple send and receive ports. Basically, the need for correlations has to do
with the fact that an orchestration can be instantiated multiple times, and therefore
it becomes necessary to determine which instance should receive a given incoming
message. There is no need to specify a correlation for an activating receive since,
by definition, an activating receive creates a new orchestration instance. However,
for other receive shapes along the flow, these are either coupled with send shapes
through self-correlating ports (such as bidirectional ports) or they must use (i.e.,
“follow”) a correlation that has been initialized by some previous shape, usually a
send shape. In some practical scenarios, a correlation is initialized as early as the
activating receive, and then used in all subsequent receive shapes.

While correlations are used in almost every scenario, the use of exception
handling and transactions is optional, but they bring a new degree of robustness
and reliability to orchestrations. In particular, exception handling (in the form of
scopes with catch blocks) provides a convenient and familiar way to build fault-
tolerance into an orchestration, and in some cases it can be used simply as a
mechanism to control the orchestration flow, as in the example of Sect. 9.3.5.
On the other hand, transactions improve reliability by ensuring that, whatever

9.5 Conclusion 267

happens, the orchestration, and the external applications it interacts with, will be
left in a consistent state. For practical reasons, orchestrations use a special form
of transactions, known as long-running transactions. These are neither atomic nor
isolated, since they allow work to proceed and be committed in chunks, which take
the form of nested transactions. In case of failure, some chunks may have to be
undone if they have been already committed, and hence the need for compensation
mechanisms.

In this chapter we have discussed these mechanisms in detail, and we have seen
their use in some practical examples with the BizTalk platform. A natural question
that may arise at this point is whether knowledge about how these mechanisms
work in the BizTalk platform translates into knowledge about how to use the same
mechanisms in other platforms. As a matter of fact, it does, and in the next chapters
we will see how the same concepts are present in other platforms and languages for
modeling and executing business processes as orchestrations.

Chapter 10
Orchestrations with BPEL

In previous chapters, particularly in Chaps. 8 and 9, we have studied a wide range of
constructs that can be used to design the flow of an orchestration. These constructs
have been represented graphically by means of certain shapes, but more important
than being able to represent them, it is fundamental to understand the concepts
that underlie those constructs. For example, the use of an activating receive shape
means that a new orchestration instance will be created when a certain message
is received. As another example, the use of a correlation presumes that there is
a set of messages which share some common data with exactly the same values
(the correlation id). The use of certain shapes in an orchestration therefore requires
a good understanding of the concepts that are embedded in those constructs. For
example, a good knowledge of what compensation is and how it works is essential
in order to use transactions in orchestrations, as explained in Sect. 9.4.

At some point one may ask: where did these concepts come from? Who invented
them? Are they specific to a particular integration platform, or can they be found in
all integration platforms? The answer to these questions is that the set of constructs
that are currently available to design the orchestration flow are the result of several
years of development, maturing, and refinement of ideas. This effort has been made
by both industry and academia, but eventually it was only when a group of major
IT vendors joined forces that it was possible to arrive at a commonly agreed set of
constructs. The result of these efforts has materialized into a new standard known
as the Business Process Execution Language (BPEL) [19]. Most, if not all, of the
constructs that we have described in Chaps. 8 and 9 are based either directly on
BPEL or on ideas that preceded and eventually led to BPEL.

In Chap. 7 we have described how business processes can be implemented on
top of a heterogeneous application infrastructure through several layers of services
(see for example Fig. 7.6 on page 199). These services are built on top of one
another, i.e., a higher-level service can be built as a composition of lower-level
ones. As we have seen in Chap. 7, particularly in Fig. 7.3 on page 191, a service
composition can be implemented as an orchestration, which in turn exposes itself
as a new service. We have also seen that, at the topmost layer, the business process
itself can be implemented as an orchestration of services. Therefore, there is a close

D.R. Ferreira, Enterprise Systems Integration, DOI 10.1007/978-3-642-40796-3__10,
© Springer-Verlag Berlin Heidelberg 2013

269

270 10 Orchestrations with BPEL

interplay between orchestrations and services: an orchestration is a series of service
invocations, and an orchestration can also be exposed as a service.

It was with these ideas in mind that several IT vendors saw a need to have a
language to specify orchestrations as a series of service invocations. In addition,
at a time when Web services and their interface definition language WSDL
(see Sect. 6.4.3) were so popular, it was clear that the new language to define
orchestrations should bear some relationship to WSDL. In particular, the new
language should make it easy to invoke service interfaces described with WSDL,
and it should also allow exposing an orchestration as a Web service through a WSDL
interface. Now, the fact that WSDL is an interface definition language based on
XML suggests that the new orchestration definition language, which is to have a
close relationship to WSDL, should also be based on XML.

Around 2001, both IBM and Microsoft had their own XML-based languages
for orchestrating Web services, and other players were pushing their own languages
too. There was not yet a consensus, and each vendor was defining its own constructs
and mechanisms for designing service orchestrations. However, it became apparent
that these different initiatives were trying to address basically the same needs.
Eventually, the two initiatives from IBM and Microsoft merged into the BPEL
language in 2003, which succeeded in gathering the support of several other vendors
as well. After being submitted to OASIS1 for standardization, BPEL kept being
developed and improved. The BPEL standard was issued in April 2007 with the
name “WS-BPEL 2.0,” where the “WS-” prefix highlights the focus on orchestra-
tions which comprise mainly the invocation of Web services. Since then, BPEL has
been implemented by several vendors, as well as in some open-source tools.

10.1 An Example

The BPEL language does not have a graphical representation of its constructs, since
it is based solely on XML. This makes it rather difficult to describe BPEL in detail
without resorting to code listings in order to explain the purpose of each XML
element in a BPEL orchestration. Here we adopt a more “hands-on” approach, and
instead of delving into the BPEL language directly, we first introduce an example
that will guide us through the main parts and elements in a BPEL orchestration. As
previously mentioned, BPEL is in essence a language for specifying orchestrations
which comprise mainly the invocation of Web services. Therefore, in the following
example we make use of three Web services that are to be invoked sequentially.
This is perhaps the simplest possible example, but it will provide useful insight into
how an orchestration is typically defined with BPEL. The more intricate elements
of BPEL can then be explained through adaptations of this example.

1Organization for the Advancement of Structured Information Standards (OASIS)

10.1 An Example 271

Suppose that we would like to have a Web service to find the current weather
conditions (to simplify, we will use only the current temperature) in any given US
city. For that purpose, we assume that there is already a Web service available, called
Weather. However, this Weather service has some restrictions:

• As input, it must be given the ZIP code for the city.
• As output, it returns the current temperature value in Fahrenheit.

Our goal is to have a Web service that receives the city name as input and returns
the current temperature in Celsius. To achieve this, we have to find the ZIP code for
the given city, call the Weather service, and then convert the result from Fahrenheit
to Celsius. In Sect. 6.4 we have seen an example of a Web service that converts a
temperature value in Fahrenheit to Celsius, so we will assume that such service is
available. On the other hand, we need another Web service to get the ZIP code for a
given city, and there are several such services available on the Web,2 so we assume
that such Web service will be available as well.

Our solution will therefore consist in an orchestration that does the following:

1. The orchestration begins by receiving a message with the name of the city whose
temperature is to be obtained.

2. The orchestration invokes a Web service called USZipCode in order to get a ZIP
code for the given city.

3. The orchestration invokes the Weather service in order to get the current
temperature for the location that corresponds to the given ZIP code.

4. The orchestration invokes the TempConvert service in order to convert the
temperature value in Fahrenheit to Celsius.

5. The orchestration returns the temperature in Celsius as the final result.

Figure 10.1 illustrates the orchestration in a graphical notation that tries to
highlight the main elements in any BPEL definition. It should be noted that such
graphical notation is not part of BPEL, since BPEL is purely XML. However, this
graphical depiction is useful to provide an initial idea of the structure and flow of
the orchestration which is to be defined using BPEL.

First of all, the outermost block in Fig. 10.1, which is called <process>, is always
the root node in any BPEL definition. Inside this root node, one can find several
types of other elements. Some of these elements represent partner links, others
represent variables to be used within the flow, and yet others represent the flow itself,
which in this case has been defined as a <sequence> containing a series of <invoke>
elements to invoke the required Web services. These different types of elements will
be explained in more detail in the next sections. Here, we would like to highlight
the essential features of a BPEL definition.

The flow itself is conceptually very similar to what we have seen in Chaps. 8
and 9. Basically, it follows a nested block structure as explained in Sect. 8.1, with
each block corresponding to a specific BPEL tag that may contain other elements.

2An example is the USZip Web service available at: http://www.webservicex.net/uszip.asmx.

272 10 Orchestrations with BPEL

 <process>

 <partnerLink>

GetCityWeather()

 <sequence>

<receive>

<assign>

<invoke>

<assign>

<invoke>

<assign>

<invoke>

<assign>

<reply>

 <partnerLink>

 <partnerLink>

<partnerLink>

GetZipCode()

GetWeather()

ConvertTemperature()

 <variables>

GetCityWeatherIn
GetZipCodeIn
GetZipCodeOut
GetWeatherIn
GetWeatherOut
ConvertTemperatureIn
ConvertTemperatureOut
GetCityWeatherOut

GetCityWeatherIn

GetCityWeatherOut

ConvertTemperatureIn

ConvertTemperatureOut

GetWeatherIn

GetWeatherOut

GetZipCodeIn

GetZipCodeOut

Fig. 10.1 Graphical depiction of an orchestration to be defined using BPEL

Some of the basic activities that can be included in a BPEL orchestration are:
<receive> to receive a message; <invoke>, which may work either as a send or as
a send and receive; and <reply> which is used as a send that is correlated to the
initial <receive> in a BPEL orchestration. Messages are represented as <variables>
(each defined in its own <variable> element), and therefore all activities that have to
do with message exchange (namely <receive>, <invoke>, and <reply>) must refer to
variables that hold the messages to be sent or received.

In Fig. 10.1, the initial <receive> activity uses GetCityWeatherIn as input variable,
meaning that this variable will hold the incoming message. The first <invoke> activ-
ity uses GetZipCodeIn as input variable (the message to be sent) and GetZipCodeOut
as output variable (the message to be received) when invoking the USZipCode
Web service. Here, the suffix -In and -Out are always used from the perspective

10.1 An Example 273

of the service being invoked, so GetZipCodeIn carries the input to the service and
GetZipCodeOut carries the output from the service. The same logic applies to the
input and output messages for the orchestration: once the orchestration is exposed
as a Web service, GetCityWeatherIn is the input message and GetCityWeatherOut is
the output message. The remaining <invoke> activities work in a similar way. For
example, GetWeatherIn is used as input variable and GetWeatherOut is used as output
variable for the Weather service. The same applies to the TempConvert service.

In contrast with BizTalk, in BPEL there is no distinction between orchestration
messages and orchestration variables; both of them are represented as variables, and
variables can be changed at any point in the orchestration, so there is no need for
special shapes such as the construct message shape described in Sect. 8.3. There is
also no explicit distinction between changing a message through a transformation
map or through message assignment. In BPEL, both kinds of message manipulation
can be carried out inside the <assign> activity.

In Fig. 10.1 there are four <assign> activities, with the following purposes:

• The first <assign> copies the city name from GetCityWeatherIn to GetZipCodeIn.
• The second <assign> copies the ZIP code from GetZipCodeOut to GetWeatherIn.
• The third <assign> copies the temperature value (in Fahrenheit) from GetWeath-

erOut to ConvertTemperatureIn.
• Finally, the fourth <assign> copies the temperature value (in Celsius) from

ConvertTemperatureOut to GetCityWeatherOut.

At the end of the <sequence>, the variable GetCityWeatherOut is sent as the output
message from the orchestration, through the use of a <reply> activity. This activity
is a very special kind of element, which can only be used for this purpose. Despite
the fact that the <reply> activity sends a message, it cannot be used to send an input
message to a Web service. It can only be used as a means to return an output message
to the caller of orchestration. A BPEL orchestration exposes a WSDL interface of its
own, and this interface is represented on the left-hand side in Fig. 10.1. It is through
this interface that a client can invoke the orchestration.

To the outside world, the orchestration appears to be a simple Web service. In this
example, it has a single operation called GetCityWeather(). The client who invokes
this operation provides a city name as input and obtains the current temperature
in that city (assuming that everything runs as expected and without error). For the
client, it does not matter what the orchestration does, or even if this Web service is
implemented as a orchestration or in code. Once the orchestration is exposed as a
Web service, it can be invoked just like any other Web service.

In particular, this Web service can be invoked from other orchestrations, which
in turn expose themselves as Web services. The BPEL language therefore provides
a convenient way to implement orchestrations that expose themselves as services,
and that can be easily invoked from other BPEL orchestrations. This recursive
relationship between BPEL orchestrations and Web services means that BPEL is
able to realize the vision depicted in Fig. 7.3 on page 191, and therefore BPEL is a
key enabler for service-oriented architectures, as described in Chap. 7.

274 10 Orchestrations with BPEL

10.1.1 Understanding Partner Links

From the previous discussion it becomes apparent that a BPEL orchestration can
play two different roles with respect to a given WSDL interface:

• Either the orchestration invokes the WSDL interface somewhere along the flow,
and in this case the orchestration plays the role of a client;

• Or the orchestration implements the WSDL interface, and in this case the
orchestration plays the role of a service.

Therefore, when a WSDL definition is imported into a BPEL orchestration, the
two options should remain available. This is why a WSDL interface is represented as
a partner link inside a BPEL orchestration. The partner link retains the two possible
roles and offers the choice of either invoking or implementing the interface.

In Fig. 10.1 there are four partner links: one for each Web service to be invoked,
and one for the interface that the BPEL orchestration exposes to the outside world.
For the partner links on the right-hand side, the orchestration plays the role of client,
while for the partner link on the left-hand side, the orchestration plays the role of
service. In general, it is up to the BPEL orchestration to define what it will do with
each partner link, by selecting the desired role.

Listing 10.1 contains an excerpt of the BPEL orchestration showing how the
partner links are defined. This is actually the first part of the BPEL definition for the
orchestration in Fig. 10.1. In line 2 there is a root node called <process>, as depicted
earlier in Fig. 10.1. Inside this root node, one finds a series of <import> elements in
lines 7–27, followed by the partner links in lines 29–45.

The purpose of the <import> elements is to bring in all the WSDL interfaces that
are required for the BPEL orchestration. The first <import> element in lines 7–9
actually imports a WSDL file that defines the interface that the orchestration will
expose to the outside world. The remaining <import> elements concern the Web
services that are to be invoked within the orchestration.

For each Web service to be invoked, there are actually two WSDL files being
imported, as can be seen in lines 10–27:

• One is the main service interface. It comes from the Web service itself and is
fetched from the location where the Web service is available. It is imported using
a location attribute that contains the HTTP address for the Web service together
with the suffix “?WSDL” (lines 11, 17, 23).

• In addition, there should be a partner link type defined for each Web service.
Since the WSDL interface for a Web service does not usually define the
corresponding partner link type, this has to be done somewhere else. Here we
assume that the partner link type is defined in a separate WSDL file, which is
often called a wrapper WSDL file. For convenience, this auxiliary WSDL file has
a name ending with the suffix “-Wrapper.wsdl” (lines 14, 20, 26).

Listing 10.2 shows an example of how the wrapper looks like for the USZipCode
Web service. Basically, in lines 7–8 the wrapper imports the WSDL interface

10.1 An Example 275

Listing 10.1 Partner links in the BPEL orchestration
1 <?xml version="1.0" encoding="UTF�8"?>
2 <process name="cityWeatherProc"
3 targetNamespace="http://example.org/"
4 xmlns:tns="http://example.org/"
5 xmlns="http://docs.oasis�open.org/wsbpel/2.0/process/executable">
6
7 <import namespace="http://example.org/"
8 location="CityWeatherProc.wsdl"
9 importType="http://schemas.xmlsoap.org/wsdl/"/>

10 <import namespace="http://example.org/"
11 location="http://localhost:8080/WebServices/USZipCodeService?WSDL"
12 importType="http://schemas.xmlsoap.org/wsdl/"/>
13 <import namespace="http://example.org/"
14 location="USZipCodeServiceWrapper.wsdl"
15 importType="http://schemas.xmlsoap.org/wsdl/"/>
16 <import namespace="http://example.org/"
17 location="http://localhost:8080/WebServices/WeatherService?WSDL"
18 importType="http://schemas.xmlsoap.org/wsdl/"/>
19 <import namespace="http://example.org/"
20 location="WeatherServiceWrapper.wsdl"
21 importType="http://schemas.xmlsoap.org/wsdl/"/>
22 <import namespace="http://example.org/"
23 location="http://localhost:8080/WebServices/TempConvertService?WSDL"
24 importType="http://schemas.xmlsoap.org/wsdl/"/>
25 <import namespace="http://example.org/"
26 location="TempConvertServiceWrapper.wsdl"
27 importType="http://schemas.xmlsoap.org/wsdl/"/>
28
29 <partnerLinks>
30 <partnerLink name="USZipCodePL"
31 xmlns:tns="http://example.org/"
32 partnerLinkType="tns:USZipCodeLinkType"
33 partnerRole="USZipCodeRole"/>
34 <partnerLink name="WeatherPL"
35 xmlns:tns="http://example.org/"
36 partnerLinkType="tns:WeatherLinkType"
37 partnerRole="WeatherRole"/>
38 <partnerLink name="TempConvertPL"
39 xmlns:tns="http://example.org/"
40 partnerLinkType="tns:TempConvertLinkType"
41 partnerRole="TempConvertRole"/>
42 <partnerLink name="ClientPL"
43 partnerLinkType="tns:CityWeatherProc"
44 myRole="CityWeatherProcPortTypeRole"/>
45 </partnerLinks>
46 ...

in order to have access to the available port types. Then in lines 9–12 the
wrapper defines a new partner link type (USZipCodeLinkType) with a single role
(USZipCodeRole) associated with the port type defined in the WSDL interface for the
Web service. The wrappers for the other Web services are similar, and they define
their own partner link types. It is up to the orchestration to create one or more partner
links based on each partner link type, and to choose, for each partner link, whether
to invoke or implement the role defined in the corresponding partner link type.

This is precisely what is being done in lines 30–41 of Listing 10.1. For example,
a new partner link is being defined in line 30 (USZipCodePL). The partner link type
is USZipCodeLinkType (line 32), which is precisely the partner link type defined in

276 10 Orchestrations with BPEL

Listing 10.2 Wrapper for the USZipCode Web service
1 <?xml version="1.0" encoding="UTF�8"?>
2 <definitions name="USZipCodeServiceWrapper"
3 targetNamespace="http://example.org/"
4 xmlns="http://schemas.xmlsoap.org/wsdl/"
5 xmlns:plnk="http://docs.oasis�open.org/wsbpel/2.0/plnktype"
6 xmlns:ns="http://example.org/">
7 <import namespace="http://example.org/"
8 location="http://localhost:8080/WebServices/USZipCodeService?WSDL"/>
9 <plnk:partnerLinkType name="USZipCodeLinkType">

10 <plnk:role name="USZipCodeRole"
11 portType="ns:USZipCode"/>
12 </plnk:partnerLinkType>
13 </definitions>

Listing 10.2, lines 9–12. This partner link type has role, and therefore the BPEL
orchestration must specify whether it will invoke or implement this role. In line 33
of Listing 10.1, the BPEL orchestration specifies that the role will be invoked since
the partnerRole attribute is being used (line 33).

Had the myRole attribute been used instead, this would mean that the orches-
tration would implement the role defined in the partner link type. In general, for a
partner link type that defines one or more roles, the BPEL orchestration must specify
whether each role will be used as partnerRole or myRole. The use of partnerRole
means that the orchestration will play the role of client. In contrast, the use of
myRole means that the orchestration will play the role of service; this implies that
the orchestration will implement the port type associated with that role.

The use of myRole can be seen in the partner link defined in lines 42–44
of Listing 10.1. This represents the WSDL interface to be implemented by the
orchestration, and therefore it is not surprising that the orchestration will play the
role of service here. The partner link has a partner link type called CityWeatherProc,
which is defined in CityWeatherProc.wsdl (imported at line 8). The contents of
this file are shown in Listing 10.3. This is a regular WSDL file (see Listing 6.10
on page 166), except for the fact that the <binding> and <service> elements have
been omitted for simplicity, and there is a partner link type being defined in lines
25–28.

This partner link type has a role named CityWeatherProcPortTypeRole that is asso-
ciated with the port type defined earlier in lines 17–24. This port type has a single
operation called GetCityWeather, which accepts a message of type GetCityWeather-
Request as input, and returns a message of type GetCityWeatherResponse as output.
The GetCityWeatherRequest message contains a string (line 11) to hold the city
name, and GetCityWeatherResponse has a double (line 15) to hold the temperature
(in Celsius). When the BPEL orchestration uses the myRole attribute to refer to the
role CityWeatherProcPortTypeRole (line 44 of Listing 10.1), this means that it will
implement that port type. Therefore, the GetCityWeatherIn variable in Fig. 10.1 will
carry a message of type GetCityWeatherRequest, and the GetCityWeatherOut variable
will carry a message of type GetCityWeatherResponse.

10.1 An Example 277

Listing 10.3 The WSDL interface for the orchestration
1 <?xml version="1.0" encoding="UTF�8"?>
2 <definitions name="CityWeatherProc"
3 targetNamespace="http://example.org/"
4 xmlns="http://schemas.xmlsoap.org/wsdl/"
5 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
6 xmlns:plnk="http://docs.oasis�open.org/wsbpel/2.0/plnktype"
7 xmlns:tns="http://example.org/">
8 <types/>
9 <message name="GetCityWeatherRequest">

10 <part name="city"
11 type="xsd:string"/>
12 </message>
13 <message name="GetCityWeatherResponse">
14 <part name="temperature"
15 type="xsd:double"/>
16 </message>
17 <portType name="CityWeatherProcPortType">
18 <operation name="GetCityWeather">
19 <input name="input1"
20 message="tns:GetCityWeatherRequest"/>
21 <output name="output1"
22 message="tns:GetCityWeatherResponse"/>
23 </operation>
24 </portType>
25 <plnk:partnerLinkType name="CityWeatherProc">
26 <plnk:role name="CityWeatherProcPortTypeRole"
27 portType="tns:CityWeatherProcPortType"/>
28 </plnk:partnerLinkType>
29 </definitions>

10.1.2 Orchestration Variables

The second part of the BPEL definition that began in Listing 10.1 is shown in
Listing 10.4. Basically, this excerpt of the BPEL orchestration defines the variables
that will be used as messages in the orchestration flow. In lines 3–6 it is possible
to confirm that the variables GetCityWeatherIn and GetCityWeatherOut are of types
GetCityWeatherRequest and GetCityWeatherResponse, respectively. As for the other
variables, these are meant to hold the messages to be exchanged with each Web
service. Each variable has a messageType that refers to some message defined in
the WSDL interface of a Web service. For example, the variables GetZipCodeIn and
GetZipCodeOut refer to the message types GetZipCode and GetZipCodeResponse that
are defined in the WSDL interface for the USZipCode Web service.

The place at which each of these messages is used in the orchestration is shown
in Fig. 10.1. However, Fig. 10.1 shows only the points at which these messages
are being sent or received. In addition to this, each message (i.e., variable) must
be initialized somehow, and that initialization is taking place inside each <assign>
activity. For example, the message GetCityWeatherIn that serves as input to the
orchestration brings the city name, which must be copied to the GetZipCodeIn
message to be sent to the USZipCode Web service.

This can be done as shown in Listing 10.5. The <assign> element has a <copy>
element inside, which is used to copy data from one variable to another. In this

278 10 Orchestrations with BPEL

Listing 10.4 Variables in the BPEL orchestration
1 ...
2 <variables>
3 <variable name="GetCityWeatherIn"
4 messageType="tns:GetCityWeatherRequest"/>
5 <variable name="GetCityWeatherOut"
6 messageType="tns:GetCityWeatherResponse"/>
7 <variable name="GetZipCodeIn"
8 messageType="tns:GetZipCode"/>
9 <variable name="GetZipCodeOut"

10 messageType="tns:GetZipCodeResponse"/>
11 <variable name="GetWeatherIn"
12 messageType="tns:GetWeather"/>
13 <variable name="GetWeatherOut"
14 messageType="tns:GetWeatherResponse"/>
15 <variable name="ConvertTemperatureIn"
16 messageType="tns:ConvertTemperature"/>
17 <variable name="ConvertTemperatureOut"
18 messageType="tns:ConvertTemperatureResponse"/>
19 </variables>
20 ...

Listing 10.5 Example of variable assignment
1 <assign name="Assign1">
2 <copy>
3 <from variable="GetCityWeatherIn"
4 part="city"/>
5 <to>$GetZipCodeIn.parameters/city</to>
6 </copy>
7 </assign>

case, the <from> and <to> elements use different forms to refer to the source and
destination, respectively. The <from> element uses a variant where it indicates the
variable name (GetCityWeatherIn) and the part (city) from which the data is obtained.
It can be seen in Listing 10.3 (lines 9–12) that indeed GetCityWeatherRequest is a
message type that contains a part called city.

As for the <to> element, this uses a different form which is based on an XPath
expression. The term $GetZipCodeIn points to the root element of the message. This
message contains a part called parameters, so $GetZipCodeIn.parameters refers to
that message part. Furthermore, this message part contains a <city> element which
carries a string value. Therefore, the expression $GetZipCodeIn.parameters/city refers
to the element <city> inside the parameters part in the message.

As a result of the <assign> activity and its <copy> element in Listing 10.5, the
city name will be copied from the message in the GetCityWeatherIn variable to
the message in the GetZipCodeIn variable. Then GetZipCodeIn will be sent to the
USZipCode Web service in the first <invoke> activity in Fig. 10.1.

10.1.3 The Orchestration Flow

Listing 10.6 shows the third and final part of the BPEL orchestration that began with
the partner links in Listing 10.1 and the variables in Listing 10.4. This third part

10.1 An Example 279

Listing 10.6 Sequence of activities in the BPEL orchestration
1 ...
2 <sequence>
3 <receive name="Receive"
4 createInstance="yes"
5 partnerLink="ClientPL"
6 operation="GetCityWeather"
7 portType="tns:CityWeatherProcPortType"
8 variable="GetCityWeatherIn"/>
9 <assign name="Assign1">

10 <copy>
11 <from variable="GetCityWeatherIn"
12 part="city"/>
13 <to>$GetZipCodeIn.parameters/city</to>
14 </copy>
15 </assign>
16 <invoke name="Invoke1"
17 partnerLink="USZipCodePL"
18 operation="GetZipCode"
19 portType="tns:USZipCode"
20 inputVariable="GetZipCodeIn"
21 outputVariable="GetZipCodeOut"/>
22 <assign name="Assign2">
23 <copy>
24 <from>$GetZipCodeOut.parameters/return</from>
25 <to>$GetWeatherIn.parameters/zipcode</to>
26 </copy>
27 </assign>
28 <invoke name="Invoke2"
29 partnerLink="WeatherPL"
30 operation="GetWeather"
31 portType="tns:Weather"
32 inputVariable="GetWeatherIn"
33 outputVariable="GetWeatherOut"/>
34 <assign name="Assign3">
35 <copy>
36 <from>$GetWeatherOut.parameters/return</from>
37 <to>$ConvertTemperatureIn.parameters/dFahrenheit</to>
38 </copy>
39 </assign>
40 <invoke name="Invoke3"
41 partnerLink="TempConvertPL"
42 operation="ConvertTemperature"
43 portType="tns:TempConvert"
44 inputVariable="ConvertTemperatureIn"
45 outputVariable="ConvertTemperatureOut"/>
46 <assign name="Assign4">
47 <copy>
48 <from>$ConvertTemperatureOut.parameters/return</from>
49 <to variable="GetCityWeatherOut"
50 part="temperature"/>
51 </copy>
52 </assign>
53 <reply name="Reply"
54 partnerLink="ClientPL"
55 operation="GetCityWeather"
56 portType="tns:CityWeatherProcPortType"
57 variable="GetCityWeatherOut"/>
58 </sequence>
59 </process>

280 10 Orchestrations with BPEL

refers to the <sequence> element and its inner activities, as depicted in Fig. 10.1.
The fact that the activities are defined within a <sequence> element means that they
will be executed sequentially, in the same order as they appear in Listing 10.6.

The sequence begins with a <receive>, and this is a special kind of receive
since it has the attribute value createInstance="yes" (line 4). This means that a new
instance of the orchestration will be created whenever a message is received, so
it effectively corresponds to the notion of an activating receive, as explained in
Sect. 8.2. This BPEL orchestration has no other <receive> activities, but if it had
then those <receive> elements would have the attribute value createInstance="no".

The <receive> activity uses the partner link ClientPL (line 5). This partner link
represents the WSDL interface that the orchestration exposes to the outside world.
The partner link is defined in Listing 10.1 (lines 42–44), and it is an instance of
the partner link type defined in Listing 10.3 (lines 25–28). Back to Listing 10.6, the
initial <receive> activity with createInstance="yes" specifies that the orchestration
is triggered as a result of some client invoking the ClientPL partner link, which is
equivalent to saying that the client invokes the WSDL interface exposed by the
orchestration. The specific port type and operation that the client must invoke are
specified in lines 6–7. The orchestration has access to the data submitted by the
client through the GetCityWeatherIn variable (line 8).

The <receive> is followed by the first <assign> activity, named Assign1, which
copies the city name from GetCityWeatherIn to the GetZipCodeIn variable. This is
precisely the assignment that has been used as an example in Listing 10.5.

Now, after the assignment comes the first <invoke> activity. This <invoke> uses
the partner link USZipCodePL (which is defined in Listing 10.1). The port type and
operation being invoked are specified in lines 18–19. Then in lines 20–21 comes the
specification of which message will be sent (inputVariable) and which message will
be received (outputVariable) when the partner link is invoked. In this particular case,
the invocation is synchronous and therefore at this point the BPEL orchestration will
block until the USZipCode Web service returns the result.

Once the ZIP code is obtained, a second <assign> activity (Assign2 in line 22)
copies the ZIP code to the GetWeatherIn variable, which contains the message to be
sent to the Weather service. Both GetZipCodeOut and GetWeatherIn have a message
part named parameters. In the GetZipCodeOut message, there is a <return> element
which contains the ZIP code (line 24); this value is copied to the <zipcode> element
in GetWeatherIn (line 25). An XPath expression is used in both cases.

In line 28 there is a second <invoke> activity, which uses a partner link to
interact with the Weather service. (Again, the partner link WeatherPL is defined
in Listing 10.1.) The port type and operation being invoked are specified in lines
30–31. The message to be sent to the service is GetWeatherIn (line 32), and the
orchestration will be waiting to receive GetWeatherOut (line 33).

The GetWeatherOut message brings a temperature value in Fahrenheit. This value
is copied to the ConvertTemperatureIn message in the <assign> in lines 34–39.

The third <invoke> activity in lines 40–45 converts the temperature in Fahrenheit
to Celsius by calling the TempConvert Web service through the TempConvertPL
partner link. After the Web service returns the result in the ConvertTemperatureOut

10.2 Asynchronous Invocations 281

message, an <assign> activity in lines 46–52 copies the temperature value (now in
Celsius) to the GetCityWeatherOut message.

Finally, GetCityWeatherOut must be sent as a response from the orchestration to
the client. In lines 53–57 there is a <reply> activity for this purpose. The <reply> uses
the same partner link as the initial <receive>, and the port type and operation in lines
55–56 are also the same as in lines 6–7. In essence, <reply> is the mechanism that
BPEL provides to return a result to the client who invoked the orchestration in a
synchronous way. The client invoked a Web service operation and is waiting for the
result. The <reply> activity is the means to return the result. In this case, the result is
the message contained in the GetCityWeatherOut variable (line 57).

The sequence of activities ends in line 58 and the BPEL definition, which had
started in line 2 of Listing 10.1, closes in line 59.

10.2 Asynchronous Invocations

The BPEL definition in Listings 10.1, 10.4, and 10.6 is an example of a BPEL
orchestration which works fully in synchronous mode. On one hand, the orches-
tration invokes three Web services, and all three invocations are synchronous, i.e.,
the orchestration is blocked while waiting for a response. On the other hand, the
orchestration itself exposes a WSDL interface which is invoked synchronously from
clients, i.e., the client will block until the orchestration completes the sequence of
activities and returns a response. Naturally, it is possible to make these invocations
asynchronous, but this requires some changes to the BPEL orchestration.

In general, a WSDL interface provides a set of operations which, if nothing is
specified otherwise, will be synchronous by default. For example, Listing 6.14 on
page 169 defines a port type with a single operation called ConvertTemperature.
This operation has input message (with the temperature value in Fahrenheit) and
an output message (with the temperature in Celsius). When a client invokes the
operation, the invocation is synchronous, i.e., the client will block while waiting for
the output message to be returned by the Web service.

It is possible to make such operation asynchronous by having the Web service
explicitly delivering the output message to the client, without requiring the client to
be waiting for it. Typically, this is done by making the Web service invoke the client
when the output message is ready. For this purpose, the client must implement a
port type and operation that the Web service can call to deliver the output message.
In this scenario, there will be two different port types:

• One is the port type that is implemented by the Web service and that the client
invokes in order to send an input message for the operation. To make the call
asynchronous, this operation will have an input message, but no output message.
This way the operation returns immediately after being invoked from the client,
and the client may proceed with its work.

• The other port type is to be implemented by the client. This is a port type that the
Web service will invoke in order to deliver the response to the client. This port

282 10 Orchestrations with BPEL

Client
(may be a simple client
or a BPEL orchestra�on)

Service
(may be a simple service
or a BPEL orchestra�on)

Port
type

request message

response message

Synchronous call

Client
(may be a simple client
or a BPEL orchestra�on)

Service
(may be a simple service
or a BPEL orchestra�on)

Port
type

Asynchronous call

Port
type

request message

response message

Fig. 10.2 Port types in synchronous and asynchronous calls

type too will have an operation with a single input message (from the perspective
of the client, the message that is being returned from the Web service is regarded
as an incoming message). This operation will be invoked from the Web service
when it is ready to return the response.

Figure 10.2 shows the difference between synchronous and asynchronous calls
following this approach. While for a synchronous call there is a single port type,
for an asynchronous call there are two port types, one to be implemented by the
service and another to be implemented by the client. However, both port types must
have been defined by the service, so that the service knows beforehand which port
type it must invoke on the client to deliver the result. This is similar to the way
a messaging system defines a callback interface for clients that wish to receive
messages asynchronously (see Fig. 3.8 on page 44).

In fact, the client port type at the bottom of Fig. 10.2 is a kind of callback interface
that allows the service to deliver the response asynchronously to the client. This has
some implications for BPEL orchestrations as well. In case a BPEL orchestration
invokes a Web service asynchronously, then the orchestration must implement the
callback interface (i.e., port type) defined by the Web service that is being invoked.
On the other hand, if an external client invokes the orchestration asynchronously,
then the WSDL interface for the orchestration must define the port type that the
client must implement in order to receive the response.

10.2.1 Invoking a Web Service Asynchronously

Suppose that the ConvertTemperature operation in the TempConvert Web service is
now asynchronous. Then instead of having a single port type with an operation with

10.2 Asynchronous Invocations 283

Listing 10.7 WSDL port types for asynchronous Web service
1 <portType name="TempConvertPT">
2 <operation name="ConvertTemperature">
3 <input message="ConvertTemperatureRequest" />
4 </operation>
5 </portType>
6 <portType name="TempConvertCallbackPT">
7 <operation name="ConvertTemperatureCallback">
8 <input message="ConvertTemperatureResponse" />
9 </operation>

10 </portType>

Listing 10.8 Partner link type for asynchronous Web service
1 <partnerLinkType name="TempConvertLT">
2 <role name="TempConvertServiceRole"
3 portType="TempConvertPT" />
4 <role name="TempConvertClientRole"
5 portType="TempConvertCallbackPT" />
6 </partnerLinkType>

Listing 10.9 Partner link for asynchronous Web service
1 <partnerLink name="TempConvertPL"
2 partnerLinkType="TempConvertLT"
3 partnerRole="TempConvertServiceRole"
4 myRole="TempConvertClientRole"/>

input and output messages (such as in Listing 6.14 on page 169), the TempConvert
Web service would have two port types with one operation for the request and one
operation for the response, as in Listing 10.7.

Here, the port type TempConvertPT and the operation ConvertTemperature are used
to send the request to the Web service. On the other hand, the port type TempCon-
vertCallbackPT and the operation ConvertTemperatureCallback are implemented by
the orchestration in order to receive the response from the Web service.

Such WSDL interface will give origin to a partner link type with two roles, as
shown in Listing 10.8. This partner link type will be defined in an auxiliary wrapper
for this service, as explained in Sect. 10.1.1. In Listing 10.8 there is a service role
(line 2) associated with the TempConvertPT port type (line 3), and a client role (line
4) associated with the TempConvertCallbackPT port type (line 5).

In the BPEL definition for the orchestration, the first change will be in the partner
link associated with the (now asynchronous) TempConvert Web service. The new
partner link will have a similar form to the one shown in Listing 10.9. Here we can
see the simultaneous use of the partnerRole and myRole attributes. This is a strong
indication that the interaction with this partner link will be asynchronous, since both
the service and the orchestration will have a role to play.

The second important change in the BPEL orchestration is that the <invoke>
activity that was used to invoke this partner link (see lines 40–45 in Listing 10.6)
needs to be replaced by an <invoke> and a <receive>, as shown in Listing 10.10.

Here we have an <invoke> with an input variable, but without an output
variable. The <invoke> returns immediately, and a <receive> follows. This <receive>

284 10 Orchestrations with BPEL

Listing 10.10 BPEL invocation of an asynchronous Web service
1 <invoke name="Invoke3"
2 partnerLink="TempConvertPL"
3 portType="TempConvertPT"
4 operation="ConvertTemperature"
5 inputVariable="ConvertTemperatureIn"/>
6 <receive name="Receive3"
7 createInstance="no"
8 partnerLink="TempConvertPL"
9 portType="TempConvertCallbackPT"

10 operation="ConvertTemperatureCallback"
11 variable="ConvertTemperatureOut"/>

Listing 10.11 WSDL port types for asynchronous BPEL orchestration
1 <portType name="CityWeatherProcPT">
2 <operation name="GetCityWeather">
3 <input message="GetCityWeatherRequest"/>
4 </operation>
5 </portType>
6 <portType name="CityWeatherCallbackPT">
7 <operation name="GetCityWeatherCallback">
8 <input message="GetCityWeatherResponse"/>
9 </operation>

10 </portType>

Listing 10.12 Partner link type for asynchronous BPEL orchestration
1 <partnerLinkType name="CityWeatherProcLT">
2 <role name="CityWeatherProcServiceRole"
3 portType="CityWeatherProcPT"/>
4 <role name="CityWeatherProcClientRole"
5 portType="CityWeatherCallbackPT"/>
6 </partnerLinkType>

uses the same partner link, but with a different port type and operation. This
ConvertTemperatureCallback (line 10) is the operation that the remote Web service
will invoke to deliver the response message. This message will be accessible in the
orchestration through the variable ConvertTemperatureOut, as before.

10.2.2 Invoking an Orchestration Asynchronously

Similar steps have to be taken in order to change the BPEL orchestration into
an asynchronous Web service. First of all, the WSDL interface for the BPEL
orchestration must be changed in order to have a callback operation for the client.
This is shown in Listing 10.11. Again, there are two port types with an operation
having a single message. The port type CityWeatherProcPT is meant to send the
request to the orchestration (which will enter the initial <receive>), and the port
type CityWeatherCallbackPT will be used to return the response to the client.

These port types will give origin to a partner link type with two roles, as shown
in Listing 10.12. There is a service role associated with the port type CityWeather-
ProcPT and a client role associated with the port type CityWeatherCallbackPT.

10.3 Controlling the Flow 285

Listing 10.13 Partner link for asynchronous BPEL orchestration
1 <partnerLink name="ClientPL"
2 partnerLinkType="CityWeatherProcLT"
3 myRole="CityWeatherProcServiceRole"
4 partnerRole="CityWeatherProcClientRole"/>

Listing 10.14 Sending the response from an asynchronous BPEL orchestration
1 <invoke name="Invoke4"
2 partnerLink="ClientPL"
3 portType="CityWeatherCallbackPT"
4 operation="GetCityWeatherCallback"
5 inputVariable="ConvertTemperatureOut"/>

This partner link type will be used to define the partner link that allows the BPEL
orchestration to interact with external clients. This partner link for clients is shown
in Listing 10.13. Again, the fact that the partner link uses both the myRole and the
partnerRole attributes is a strong indication that the interaction with client will be
asynchronous, since there are two port types involved.

Finally, a subtle but important change must be done in the orchestration flow,
where the <reply> must be replaced by an <invoke>. The <reply> activity can only
be used to respond synchronously, using the same port type and operation as a
previous <receive>. However, here the orchestration will send the response using
a different port type and operation from the initial <receive>. Therefore, one must
use an <invoke> instead. The <invoke> is shown in Listing 10.14.

This invoke uses the same partner link as the initial <receive>, but the port
type and operation being invoked correspond to the callback interface that has
been defined for clients in Listing 10.11. The client receives the response as a
callback invocation from the orchestration. The response that the client receives
is the message contained in the ConvertTemperatureOut variable, as before.

10.3 Controlling the Flow

In the example of Sect. 10.1, the orchestration flow was relatively simple since it
comprised a group of activities enclosed in a <sequence> element (see Listing 10.6
on page 279). This means that there is only one possible path in the flow, and
that path consists in executing the activities in the same order as they are specified
inside the <sequence>. Naturally, BPEL allows for other forms of behavior as well,
and the <sequence> element is just one of the available constructs to specify the
orchestration flow. In this section we provide a brief overview of the available
constructs together with a minimal example. This example may not always be of
practical interest in the previous temperature conversion scenario, but it will serve
to illustrate how the construct can be used in this and other scenarios.

286 10 Orchestrations with BPEL

Listing 10.15 Use of <if> element
1 <if>
2 <condition>$ConvertTemperatureOut.parameters/return < 0</condition>
3 ...
4 <elseif>
5 <condition>$ConvertTemperatureOut.parameters/return < 10</condition>
6 ...
7 </elseif>
8 <elseif>
9 <condition>$ConvertTemperatureOut.parameters/return < 20</condition>

10 ...
11 </elseif>
12 <else>
13 ...
14 </else>
15 </if>

10.3.1 Decisions

Suppose that after the TempConvert service has been invoked, but before the
orchestration returns a response to the client, it is necessary to check the value of
the temperature value in Celsius, and decide whether to take some action depending
on this value. This can be done with the <if> element, which works in a similar way
to the decide shape described in Sect. 8.4.1.

Listing 10.15 shows the basic structure of the <if> element, which may optionally
contain any number of <elseif> elements and at most one <else> element. As is
the case in many programming languages, the <if> element, as well as any <elseif>
elements that it contains, must have an associated condition that evaluates to either
true or false, and determines whether a particular block of activities should be
executed. In BPEL, the condition is specified by means of a <condition> element,
as in lines 2, 5, and 9 of Listing 10.15. In this example, each condition compares the
result returned by the TempConvert Web service with some predefined value. The
characters “<” are a special entity that represents a “less than” sign (i.e., <) which
cannot be inserted directly since it could be confused with the end of an XML tag
and therefore interfere with the processing of the BPEL definition.

Below each <condition>, as well as inside the <else> element, there is an ellipsis to
represent the fact that any BPEL activity can be inserted in that block. For example,
it could be that if the temperature is below 0 ıC then it is necessary to invoke some
other Web service, and therefore there would be an <invoke> starting on line 3. Other
activities, such as <receive> and <assign>, just to mention a few possibilities, could
be included as well. However, if more than one activity is to be included in any of
those blocks, then the correct way to do it is to include a <sequence> element which,
in turn, contains the activities to be executed.

10.3.2 Parallel Activities

As an alternative to <sequence>, it is possible to run activities in parallel. By using
<flow> instead of <sequence>, any activities that are specified inside that element

10.3 Controlling the Flow 287

Listing 10.16 Use of <flow> element
1 <process ...>
2 <sequence>
3 <receive ... />
4 <flow>
5 <invoke ... />
6 <invoke ... />
7 <invoke ... />
8 </flow>
9 <assign ... />

10 <reply ... />
11 </sequence>
12 </process>

Listing 10.17 Use of <flow> with <sequence>

1 <process ...>
2 <sequence>
3 <receive ... />
4 <flow>
5 <sequence>
6 <invoke ... />
7 <invoke ... />
8 <invoke ... />
9 </sequence>

10 <sequence>
11 <invoke ... />
12 <invoke ... />
13 </sequence>
14 </flow>
15 <assign ... />
16 <reply ... />
17 </sequence>
18 </process>

will be executed concurrently. In addition, these activities will be synchronized at
the end, meaning that execution does not proceed beyond the <flow> block until
all activities contained in it are complete. Therefore, the <flow> element works in a
similar way to the parallel shape described in Sect. 8.4.2.

Listing 10.16 illustrates the use of the <flow> element by means of a sketch of a
BPEL orchestration. This orchestration has a main <sequence> with four activities:
a <receive> (line 3), a <flow> (lines 4–8), an <assign> (line 9), and a <reply> (line 10).
Inside the <flow> there are three <invoke> activities that will be executed in parallel.
It is only when all of them are complete that execution proceeds to the <assign>.
This structure could be used, for example, to query three Web services for a certain
quote or price, and then return the best price to the client.

As with other BPEL activities, it is possible to nest <flow> and <sequence> ele-
ments in an arbitrary way. Listing 10.17 extends the previous example by inserting
two <sequence> blocks inside the <flow>. This means that the two sequences will be
executed in parallel, but the activities inside each <sequence> block will be executed
sequentially. In other words, inside the <flow> there will be two separate threads of
execution: one with a <sequence> of three <invoke> activities (lines 5–9), and the
other with a <sequence> of two (lines 10–13).

288 10 Orchestrations with BPEL

Listing 10.18 Use of links in a <flow>

1 <flow>
2 <links>
3 <link name="AtoB" />
4 <link name="BtoC" />
5 <link name="DtoE" />
6 </links>
7 <invoke name="A" ...>
8 <sources>
9 <source linkName="AtoB" />

10 </sources>
11 </invoke>
12 <invoke name="B" ... >
13 <targets>
14 <target linkName="AtoB" />
15 </targets>
16 <sources>
17 <source linkName=BtoC" />
18 </sources>
19 </invoke>
20 <invoke name="C" ... >
21 <targets>
22 <target linkName="BtoC" />
23 </targets>
24 </invoke>
25 <invoke name="D" ...>
26 <sources>
27 <source linkName="DtoE" />
28 </sources>
29 </invoke>
30 <invoke name="E" ... >
31 <targets>
32 <target linkName="DtoE" />
33 </targets>
34 </invoke>
35 </flow>

The behavior in the <flow> block of Listing 10.17 can also be obtained through
a different mechanism, namely the use of links to specify dependencies between
the activities in a <flow>. Listing 10.18 illustrates the use of such links. Here, the
five <invoke> activities, now named A through E, have been inserted directly into the
<flow> without the use of any <sequence>. If nothing would be said otherwise, then
these five activities would run in parallel. However, here there are three links being
declared in lines 3–5, and these links are being used to establish some dependencies
in the order of execution of these activities.

In line 9 there is a <source> element specifying that activity A (whether it is an
<invoke> or something else it does not matter) is a source for the link named AtoB.
On the other hand, line 14 specifies that activity B is a target for the same link.
This establishes a dependency between the source activity and the target activity,
meaning that activity B (the target) can only be executed when activity A (the source)
has already completed.

A similar dependency exists between activities B and C. Activity B is at the same
time the target for the link AtoB (line 14) and the source for the link BtoC (line 17).
Since the target of the link BtoC is activity C (line 22), this means that C can only

10.3 Controlling the Flow 289

begin when B is complete. The result of these dependencies is that activities A, B,
and C will execute sequentially rather than in parallel.

A similar dependency exists between activities D and E, through the link DtoE,
for which D is a source (line 27) and E is a target (line 32). Therefore, activities D
and E will be executed sequentially as well. However, it should be noted that there
is no dependency between the group of activities A, B, C and the group of activities
D, E. Therefore, the sequences A!B!C and D!E will execute in parallel, and the
<flow> will complete only when activities C and E have finished.

The use of link dependencies is one of the most complicated features of BPEL,
since any activity can have a dependency to any other activity in the same <flow>.
Also, an activity may be the target of multiple links and it is necessary to define
whether these links work in an AND- or OR-fashion, i.e., whether the target activity
must wait for all or any of the source activities to finish. This can be defined through
the use of a join condition, which we will leave up to the interested reader to find
out more about in the BPEL standard [19].

Also, each activity may be the source of several links, and this does not cause
a problem on its own. However, each link may be associated with a transition
condition, meaning that the target activity will only be executed if the transition
condition that is specified at the source of the link is true. (A transition condition
takes a similar form to the condition of a <if> element.) If the condition is false,
then the target activity is simply skipped, along with any subsequent activities that
depend on that target activity. This feature complicates things even further and
requires the use of a special mechanism known as dead-path elimination [19].

Again, we leave it up to the interested reader to find more about these mech-
anisms in the literature, for example in [32]. Links provide a flexible way to
specify the behavior inside a <flow> element but, in association with join conditions,
transition conditions and dead-path elimination, they also introduce the possibility
of having conflicts, inconsistencies and deadlocks during execution. In practice, it
is easier to ensure the consistency of an orchestration that is built as a nested block
structure, as explained in Sect. 8.1. In this sense, the implementation in Listing 10.17
is to be preferred over the implementation in Listing 10.18.

10.3.3 Loops

Another type of construct that BPEL supports are loops, which correspond to the
same concept as described in Sect. 8.5. However, BPEL has actually two kinds of
loops: <while> and <repeatUntil>. Both of them have a loop condition that evaluates
to true or false. The <while> loop will keep executing while the condition is true and
will stop executing when the condition becomes false. In contrast, the <repeatUntil>
loop will keep executing while the condition is false and will stop executing when
the condition becomes true. In addition, in the <while> loop the condition is verified
at the beginning of each iteration, whereas in the <repeatUntil> loop the condition is
verified at the end of each iteration.

290 10 Orchestrations with BPEL

Listing 10.19 Use of a <while> loop
1 <?xml version="1.0" encoding="UTF�8"?>
2 <process
3 ...
4 xmlns:xs="http://www.w3.org/2001/XMLSchema"
5 ...
6 >
7 ...
8 <variables>
9 <variable name="counter" type="xs:int"/>

10 ...
11 </variables>
12 <sequence>
13 ...
14 <assign>
15 <copy>
16 <from>0</from>
17 <to variable="counter"/>
18 </copy>
19 </assign>
20 <while>
21 <condition>$counter < 3</condition>
22 <sequence>
23 <invoke ... />
24 <assign>
25 <copy>
26 <from>$counter + 1</from>
27 <to variable="counter"/>
28 </copy>
29 </assign>
30 </sequence>
31 </while>
32 ...
33 </sequence>
34 </process>

Listing 10.19 illustrates the use of a <while> loop. The actual loop is in lines 20–
31, and the loop condition is specified in line 21. This condition tests the value of
a variable called counter. Basically, the loop will keep executing for as long as the
value of counter is less than 3. As soon as this condition becomes false, execution
will proceed to the next activity after the <while> loop.

In this example, the loop is being used to perform a repeated invocation of some
Web service, as can be seen by the use of an <invoke> activity in line 23. Also in
the body of the loop, we can find an <assign> activity in lines 24–29. Since there is
more than one activity to be performed in the body of the loop, the correct way to
specify this is to insert a <sequence> element inside the loop and then include the
activities to be performed inside the <sequence>, as in lines 22–30.

The loop condition uses a variable (counter) that must be somehow declared
and initialized. In addition, the variable must be updated in each loop iteration
(otherwise, its value would not change and the loop condition would yield always
the same result). In line 9, it is possible to see that the variable is being declared
inside a <variables> section. This is the same section that was used in Listing 10.4
on page 278 to declare the variables that will hold the messages to be exchanged
through the several partner links in the orchestration.

10.3 Controlling the Flow 291

Listing 10.20 Use of a <while> loop
1 <?xml version="1.0" encoding="UTF�8"?>
2 <process
3 ...
4 xmlns:xs="http://www.w3.org/2001/XMLSchema"
5 ...
6 >
7 ...
8 <variables>
9 <variable name="counter" type="xs:int"/>

10 ...
11 </variables>
12 <sequence>
13 ...
14 <assign>
15 <copy>
16 <from>0</from>
17 <to variable="counter"/>
18 </copy>
19 </assign>
20 <repeatUntil>
21 <sequence>
22 <invoke ... />
23 <assign>
24 <copy>
25 <from>$counter + 1</from>
26 <to variable="counter"/>
27 </copy>
28 </assign>
29 </sequence>
30 <condition>$counter = 3</condition>
31 </repeatUntil>
32 ...
33 </sequence>
34 </process>

The type of counter is int, which is a built-in data type defined in the XML
Schema standard [31]. This standard is included through the namespace defined
in line 4. Then in lines 14–19 there is an <assign> activity to initialize the counter.
This <assign> simply copies the numeric value 0 to the variable. This is the value
that the variable will possess when execution reaches the <while> loop.

In each loop iteration, the counter variable is incremented through the <assign> in
lines 24–29. This <assign> overwrites the value of counter with the result of $counter
+ 1 (where $counter represents “the value” of counter). After the loop has been run
three times, the counter variable has been incremented to 3 and the condition in line
21 will evaluate to false. At that point the loop will be exited and execution proceeds
to whatever activity is in line 32.

The same behavior can be obtained with <repeatUntil>, as shown in Listing 10.20.
The difference is in lines 20–31, where the <while> loop from Listing 10.19 has
now been replaced by a <repeatUntil> loop. As before, the purpose of this loop
is to invoke some Web service multiple times, by means of the <invoke> activity
in line 22. However, besides the <invoke> it is necessary to increment the counter
variable, and this is done through an <assign> in lines 24–28. To be inserted into
the loop, the two activities—the <invoke> and the <assign>—must be placed inside
some container, such as a <sequence> or a <flow>. Here, a <sequence> is being used.

292 10 Orchestrations with BPEL

Listing 10.21 Use of a <forEach> loop
1 <?xml version="1.0" encoding="UTF�8"?>
2 <process ... >
3 ...
4 <sequence>
5 ...
6 <forEach counterName="counter" parallel="no">
7 <startCounterValue>1</startCounterValue>
8 <finalCounterValue>3</finalCounterValue>
9 <scope>

10 <variables>
11 ...
12 </variables>
13 <sequence>
14 <invoke ... />
15 <receive ... />
16 </sequence>
17 </scope>
18 </forEach>
19 ...
20 </sequence>
21 </process>

After the sequence comes the loop condition in line 30. This condition will
evaluate to true after the loop has been run three times. Once it is true, the loop
is exited and execution proceeds to whatever activity is in line 32.

A third form of loop that is less common, but that can be put to good use in this
example, is the <forEach> loop. The <forEach> loop is the ideal solution when the
number of iterations is known beforehand, and it has the advantage that it includes
its own counter variable, so there is no need to create a separate variable for that
purpose. Listing 10.21 illustrates an example.

The <forEach> loop that begins in line 6 has a special attribute called counter-
Name. This attribute is used to define an implicit counter variable. The counter starts
with the value 1 (line 7) and has a final value of 3 (line 8). This means that the loop
will be executed three times, one for each counter value.

An interesting feature of the <forEach> loop is the attribute called parallel (line 6).
In this example, this attribute is set to "no", but in other scenarios it might be set to
"yes". What this means is that it is possible to choose whether the loop iterations will
run in serial mode (i.e., one after the other) or whether they are to be launched in
parallel, as concurrent threads. In this example, if parallel would be "yes" then there
would be three separate threads (one for each counter value). This parallelism does
not exist in other types of loops, but only in the <forEach> loop.

When the loop iterations run in parallel, they should run isolated from each other.
For example, shared variables that may cause interference between runs should be
avoided. Therefore, the body of the <forEach> loop is placed within a special element
called <scope>. A <scope> may declare its own variables, by means of a <variables>
section that is similar to the one in the top-level <process> (lines 10–12). However,
any variable that is declared inside the <scope> is local, i.e., it is not visible outside
that <scope>. When the <scope> ends in line 17, the next iteration (if there are more)
will run in its own, separate <scope>.

10.3 Controlling the Flow 293

In particular, in each run of the <forEach> loop in Listing 10.21 there is a variable
called counter (line 6) and this variable is local to the <scope>, meaning that it
can be changed inside that <scope> without affecting the counter variable for the
next iteration. The same principle applies when the iterations run in parallel: each
iteration has its own counter variable, and this variable is initialized with a unique
value between <startCounterValue> and <finalCounterValue>. Changing this value has
no effect on the counter variable of other iterations.

The <scope> is similar to the top-level <process> also in the fact that its activities
must be enclosed in one block, such as a <sequence> or a <flow>. Therefore, the
activities in this loop have been enclosed in a <sequence> block (lines 13–16). The
<scope> element can also be used for other purposes, such as exception handling
and compensation, as we will see in Sect. 10.4.

10.3.4 Listening for Events

In Sect. 9.1 we have described a special kind of construct which allows choosing
one from several branches based on a set of possible events that may occur at run-
time. The construct was referred to as the listen shape (see Fig. 9.1 on page 235),
and each branch in the listen shape is associated with a certain event. The event that
occurs first will determine the branch to be executed, and all other branches will
be skipped. Possible events include the arrival of a certain message or a timer that
elapses after a certain length of time or due date.

The BPEL language has a construct, known as <pick>, which is in every respect
similar to the listen shape described in Sect. 9.1. The <pick> element contains a set
of possible paths for execution, where each path is associated with a certain event
that can be the arrival of a message or a timer event.

Listing 10.22 shows the sketch of a <pick> element with three possible paths.
Once execution reaches the <pick> element, it will wait for one of the specified
events to occur. Lines 6–14 specify that if a message is received on a certain
partner link, using a certain port type and operation, then the path to be executed
is the sequence in lines 10–13. Similarly, if a message is received on some other
partner link, port type or operation (lines 15–18), then the path to be executed is the
sequence in lines 19–22. Finally, the third possibility is that a timer elapses before
either message is received. The <onAlarm> element is used for this purpose in lines
24–30. In particular, line 25 specifies that the timer will wait for 24 h.

In line 25, the expression ‘P0Y0M0DT24H0M0.0S’ allows specifying an arbitrary
duration in terms of a number of years (Y), months (M), days (D), hours (H), minutes
(M) and seconds (S). Everything else being zero, the number 24H means a duration
of 24 h, after which the path in lines 26–29 will be selected for execution, and the
orchestration will stop waiting for any of the previous messages.

The configuration of the <onMessage> elements is very similar to that of a regular
(i.e., non-activating) <receive>. It specifies the partner link, port type, operation, and

294 10 Orchestrations with BPEL

Listing 10.22 Use of <pick> construct
1 <process ... >
2 ...
3 <sequence>
4 ...
5 <pick>
6 <onMessage partnerLink="..."
7 portType="..."
8 operation="..."
9 variable="...">

10 <sequence>
11 <invoke ... />
12 <receive ... />
13 </sequence>
14 </onMessage>
15 <onMessage partnerLink="..."
16 portType="..."
17 operation="..."
18 variable="...">
19 <sequence>
20 <invoke ... />
21 <assign ... />
22 </sequence>
23 </onMessage>
24 <onAlarm>
25 <for>’P0Y0M0DT24H0M0.0S’</for>
26 <sequence>
27 <assign ... />
28 <reply ... />
29 </sequence>
30 </onAlarm>
31 </pick>
32 ...
33 </sequence>
34 </process>

the variable that will hold the incoming message. These are the same attributes as,
for example, in the <receive> in Listing 10.10 on page 284.

All possible paths in Listing 10.22 are specified as a <sequence> block, but they
could have been specified as another kind of block, such as a <flow> and <while>. In
particular, if there would be a single activity in any of these paths, then the activity
could have been inserted directly without the use of an enclosing block. This is
similar to other BPEL constructs described in this section, namely <if>, <while>, and
<repeatUntil>. These constructs have a body where the activities are to be placed.
If there is a single activity to be included, then it can be inserted directly into the
body of the construct. Otherwise, there needs to be some container to hold multiple
activities; this container is typically a <sequence> or a <flow>.

10.4 Using Scopes

In Listing 10.21 we have seen a <forEach> loop that contains <scope> element to
encapsulate the activities in the body of the loop. This <scope> element is actually
a general construct that can be used anywhere in an orchestration. It appears in the

10.4 Using Scopes 295

<forEach> loop because it is mandatory in that kind of loop, but it can also be used
on its own as a means to define local variables and behavior.

The <scope> element is actually very similar in purpose to the scope shape
introduced in Sect. 9.3.1 and revisited in Sect. 9.4.1. In particular, a scope shape may
have exception handlers and possibly a compensation handler as well (see Fig. 9.18
on page 260). In a similar way, a <scope> element in BPEL can include one or more
fault handlers and at most one compensation handler, as we will see in Sects. 10.4.1
and 10.4.2, respectively. In addition, the <scope> may include a termination handler,
as explained in Sect. 10.4.3.

These three types of handlers—namely fault handlers, compensation handlers,
and termination handlers—are referred to as FCT-handlers in the BPEL specifi-
cation [19]. Although they are used for different purposes, they are all defined in a
similar way in BPEL. Also, the <scope> element shares some common features with
the top-level <process> element (we have seen, for example, that a <scope> can have
its own variables, as a <process> does). This applies to FCT-handlers as well, i.e., a
<process> can also have these types of handlers, although here we will be discussing
them mainly in connection with the <scope> element.

10.4.1 Fault Handlers

In Sect. 9.3 we have seen that a scope shape can be extended with one or more
catch blocks in order to handle any exception that may be raised during execution
of the activities in that scope. In a similar way, the <scope> element in BPEL can be
extended with one or more fault handlers in order to catch any exception raised in
the activities contained in the <scope>.

Listing 10.23 shows an example. The <process> (line 1) is specified as a
<sequence> of activities (line 3) which, at some point, include a <scope> (line 5).
This <scope> has a <variables> section in lines 6–8, a <faultHandlers> section in lines
9–30, and a <sequence> of activities in lines 31–47. The novelty here is the set of
fault handlers in lines 9–30. But before delving into these fault handlers, it will be
useful to have a look at the sequence of activities first.

In lines 32–37 there is an <assign> activity whose purpose is to copy the result
returned by the TempConvert Web service (line 34) to the temp variable (line 35).
This variable has been declared earlier in line 7, and it is a local variable in this
<scope>. The temp variable is used to specify the conditions of the <if> element
in lines 38–46. In line 39 there is a condition (temp < 0) which tests whether the
temperature value (in Celsius) is negative, and in line 42 there is another condition
(temp > 40) to test whether the temperature is above 40 ıC.

In case any of these conditions evaluates to true, then an exception will be thrown.
In line 40 there is a special element called <throw>, which is similar in purpose to
the throw exception shape described in Sect. 9.3.3. This element is used to throw an
exception (i.e., fault) with a certain name. The name of the fault being raised in line
40 is NegativeTemperature.

296 10 Orchestrations with BPEL

Listing 10.23 Use of fault handlers
1 <process ... >
2 ...
3 <sequence>
4 ...
5 <scope>
6 <variables>
7 <variable name="temp" type="xs:double"/>
8 </variables>
9 <faultHandlers>

10 <catch faultName="tns:NegativeTemperature">
11 <sequence>
12 <invoke ... />
13 <receive ... />
14 </sequence>
15 </catch>
16 <catch faultName="tns:TemperatureTooHigh"
17 faultVariable="tempResponse"
18 faultMessageType="tns:ConvertTemperatureResponse">
19 <sequence>
20 <assign ... />
21 <invoke ... />
22 </sequence>
23 </catch>
24 <catchAll>
25 <sequence>
26 <assign ... />
27 <reply ... />
28 </sequence>
29 </catchAll>
30 </faultHandlers>
31 <sequence>
32 <assign>
33 <copy>
34 <from>$ConvertTemperatureOut.parameters/return</from>
35 <to variable="temp"/>
36 </copy>
37 </assign>
38 <if>
39 <condition>temp < 0</condition>
40 <throw faultName="tns:NegativeTemperature"/>
41 <elseif>
42 <condition>temp > 40</condition>
43 <throw faultName="tns:TemperatureTooHigh"
44 faultVariable="ConvertTemperatureOut"/>
45 </elseif>
46 </if>
47 </sequence>
48 </scope>
49 ...
50 </sequence>
51 </process>

On the other hand, there is another <throw> element in lines 43–44. This element
throws a fault with the name TemperatureTooHigh, and in this case there is a fault
variable associated with the fault. Here, the fault variable is the ConvertTempera-
tureOut variable that is being used in the orchestration to hold the response from
the TempConvert Web service. This means that the fault TemperatureTooHigh is being
thrown with associated data, the data being the content of the ConvertTemperatureOut
variable, which is the response received from the TempConvert Web service.

10.4 Using Scopes 297

In the <faultHandlers> section in lines 9–23, it is possible to see that there are
three fault handlers (lines 10, 16, and 24):

• The first fault handler in lines 10–15 is for NegativeTemperature faults. If a fault
named NegativeTemperature is raised within the <scope>, then this fault handler
will catch it by carrying out the sequence of activities in lines 11–14.

• The second fault handler in lines 16–23 is for faults named TemperatureTooHigh
and which carry a fault variable of type ConvertTemperatureResponse (line 18).
This is a message type defined in the WSDL for the TempConvert Web service. If
a TemperatureTooHigh fault is raised but does not carry such data, then it will not
be caught by this fault handler; the fault really needs to bring a compatible data
type in order to match the definition of this exception handler.

In this example, the fault that is being thrown in lines 43–44 does match, since
ConvertTemperatureOut in line 44 is an orchestration variable that holds a message
of type ConvertTemperatureResponse. Therefore, the fault will be handled by
performing the sequence of activities in lines 19–22.

Inside the fault handler, the fault variable is accessible through the name
tempResponse (line 17). So, for example, it is possible to use an <assign> (line
20) to read the temperature value contained in the fault variable, and copy it to
another message which will be used to invoke some Web service (line 21).

• The third fault handler in lines 24–29 is a <cathAll>, meaning that it will catch
any fault that is not handled by the previous fault handlers. In this example it
is not clear where such fault could appear from, but anyway a <cathAll> is used
precisely as safety measure against unexpected exceptions. In this case, it is not
possible to associate any data with the exception, but it is possible to handle it in
some way, such as by returning a message to the client, as in line 27.

10.4.2 Compensation Handlers

The use of compensation in BPEL works in a similar way to the compensation
mechanisms described in Sect. 9.4. Basically, compensation is a means to undo
work that has already been committed. Typically, this requires performing additional
actions in order to cancel or revert the effects of activities which have already been
performed (e.g., after booking a flight ticket the only way to undo that action is to
perform another action to cancel the reservation).

In BPEL, any actions that may have to be compensated need to be enclosed in
a <scope> with a compensation handler. In the event of an error (i.e., a fault), the
compensation handler will be triggered in order to undo the effects of the actions that
were performed within that <scope>. However, it should be noted that, by definition,
compensation can only be applied after the <scope> has successfully completed. It
makes no sense to ask for compensation before the <scope> has been executed,
because there is nothing to compensate; and also it does not make sense to ask for
compensation during execution of the <scope>, since the outcome of its actions are

298 10 Orchestrations with BPEL

still unknown (i.e., it may happen that an error occurs and nothing gets done, so
there is no need to compensate).

Compensation of a given <scope> can only occur after the <scope> has com-
pleted, and therefore the compensating actions can only be invoked from outside that
<scope>. In other words, a <scope> has a compensation handler so that if an error
occurs in the outer element where the <scope> is embedded, that outer element will
call the compensation handler. The outer element may be the top-level <process> or
a <scope> which contains other nested <scope> elements. The mechanism is similar
to the one that is illustrated in Fig. 9.16 on page 257.

Listing 10.24 shows an example in BPEL. Here, there is an outer scope (lines
5–38) which contains two inner scopes (lines 12–23 and lines 24–35). Each of these
inner scopes has its own compensation handler (lines 13–18 and lines 25–30). On
the other hand, the outer scope has one fault handler (lines 6–10). When a fault is
raised within the outer scope (as is the case in line 36), the fault handler (lines 7–9)
triggers compensation of the inner scopes.

The outer scope is named OuterScope in line 5, and it has a <faultHandlers>
section in lines 6–10, which contains a <catchAll> fault handler. So, whatever fault
is thrown inside the OuterScope in line 36, it will be caught by the fault handler in
lines 7–9. This fault handler has a special activity, which is called <compensate>.
This BPEL activity does exactly the same thing as the compensate shape described
in Sect. 9.4.2: it triggers compensation of the inner scopes which have already
completed. As always, compensation takes place in reverse order of execution,
so the compensation handler for InnerScope2 (lines 25–30) will be run before the
compensation handler for InnerScope1 (lines 13–18).

The compensation in this example is very similar to the behavior in the example
of Sect. 9.4.4. Also, it should be noted that if an exception occurs within the
OuterScope in Listing 10.24, but before line 36, then the exception will still be
caught by the fault handler in lines 7–9 (because it is a <catchAll> fault handler)
and compensation will be triggered. However, the actual compensating actions that
will take place depend on where the exception occurred. If the exception occurred
inside InnerScope2, then this scope has not been completed and therefore only the
compensation handler for InnerScope1 will be invoked. On the other hand, if the
exception occurred inside InnerScope1, then none of the scopes have been completed
and therefore there is nothing to compensate.

In addition to <compensate>, BPEL provides another activity known as <com-
pensateScope>. The difference between <compensate> and <compensateScope>
is that <compensateScope> includes an attribute called target which is used to
indicate which specific inner scope should be compensated. For example, if the
<compensate/> activity in line 8 in Listing 10.24 would be replaced by,

<compensateScope target="InnerScope1"/>

then this would mean that only the compensation handler for InnerScope1 should be
invoked (if InnerScope1 completed successfully). Both <compensate> and <compen-
sateScope> can only be used in fault handlers (as in Listing 10.24), in compensation

10.4 Using Scopes 299

Listing 10.24 Use of compensation
1 <process ... >
2 ...
3 <sequence>
4 ...
5 <scope name="OuterScope">
6 <faultHandlers>
7 <catchAll>
8 <compensate/>
9 </catchAll>

10 </faultHandlers>
11 <sequence>
12 <scope name="InnerScope1">
13 <compensationHandler>
14 <sequence>
15 <invoke ... />
16 <receive ... />
17 </sequence>
18 </compensationHandler>
19 <sequence>
20 <invoke ... />
21 <receive ... />
22 </sequence>
23 </scope>
24 <scope name="InnerScope2">
25 <compensationHandler>
26 <sequence>
27 <invoke ... />
28 <receive ... />
29 </sequence>
30 </compensationHandler>
31 <sequence>
32 <invoke ... />
33 <receive ... />
34 </sequence>
35 </scope>
36 <throw ... />
37 </sequence>
38 </scope>
39 ...
40 </sequence>
41 </process>

handlers (to request compensation of nested scopes), and in termination handlers,
which are addressed in the next section.

10.4.3 Termination Handlers

In case an exception occurs inside a <scope>, the orchestration flow is interrupted
and control passes over to a fault handler, if there is an appropriate handler for
the exception in the current scope. If there is not, then the exception escalates to
the parent <scope>, and so on, until an appropriate fault handler is found. If no fault
handler is found, then the exception escalates to the top-level <process>, bringing the
orchestration to a halt. In any case, regardless of whether the exception is handled or

300 10 Orchestrations with BPEL

Listing 10.25 Use of termination handler
1 <process ... >
2 ...
3 <sequence>
4 ...
5 <scope name="Scope1">
6 <faultHandlers>
7 <catch ... >
8 <sequence>
9 <assign ... />

10 <reply ... />
11 </sequence>
12 </catch>
13 </faultHandlers>
14 <scope name="Scope2">
15 <terminationHandler>
16 <sequence>
17 <assign ... />
18 <invoke ... />
19 </sequence>
20 </terminationHandler>
21 <sequence>
22 <invoke ... />
23 <receive ... />
24 </sequence>
25 </scope>
26 </scope>
27 ...
28 </sequence>
29 </process>

not, the original <scope> where the exception occurred does not resume execution,
so one can say that it has been forcefully terminated.

Such forced termination may create some problems if, for example, the <scope>
was interacting with external resources or manipulating orchestration variables. It
may happen that a <scope> should not be interrupted abruptly, even in case of
an error, due to the fact that it could leave an inconsistent state in those external
resources or internal variables. In this case, and even before control is passed over
to a fault handler, some cleanup may be necessary. This is precisely the purpose
of a termination handler, i.e., it provides a <scope> (which is being forcefully
terminated) with the opportunity to perform some cleanup actions before control
is handed over to the fault handling mechanisms.

Listing 10.25 illustrates an example. Here, there is an outer scope called Scope1
(lines 5–26), which contains an inner scope called Scope2 (lines 14–25). The inner
scope has no fault handlers, because all the error handling has been left for the outer
scope to take care of. For that purpose, Scope1 has a <faultHandlers> section in lines
6–13. Therefore, if an error occurs in Scope2, the error will be caught and handled
by the fault handler Scope1. However, if an error occurs in Scope2 (i.e., somewhere
in lines 21–24), control cannot be handed over immediately to the fault handler in
Scope1, because Scope2 needs to perform some cleanup tasks.

For this reason, Scope2 has a termination handler in lines 15–20 (there can be
at most one in any <scope>). This termination handler will come into play only if
Scope2 needs to be interrupted. If everything runs without error (or, in the event of an

10.4 Using Scopes 301

error, the error occurs outside Scope2), there will be no need to run the termination
handler. In this example, the termination handler executes a sequence of an <assign>
(line 17) and an <invoke> (line 18), but it could run other types of activity as well. In
particular, if Scope2 contained other nested scopes with the need for compensation,
then the termination handler might include a <compensate> (or <compensateScope>)
activity to trigger compensation of those inner scopes.

10.4.4 Event Handlers

Besides the three types of handlers—namely fault handlers, compensation handlers,
and termination handlers—described in the previous sections, BPEL provides an
interesting feature, which is the possibility of a <scope> (or the top-level <process>
element in an orchestration) to respond to external events that occur concurrently
during execution. Such events can be either a message that is received from outside
the orchestration (through some partner link) or a timer that elapses after a specified
interval or deadline. These events are similar to the possible events in a <pick>
element, as described in Sect. 10.3.4. However, whereas the <pick> element is used
as an activity in the orchestration flow, here we are referring to events that occur in
parallel and at any point during the orchestration flow.

The purpose of such events can be better understood by considering a concrete
scenario. Suppose, for example, that the order processing of an online bookstore
is implemented by means of a BPEL orchestration. Then, as the order is being
processed, the customer may at any point inquire about the order status, or may
even want to cancel the order if it has not been shipped yet. The order processing
orchestration must be prepared to receive and handle these requests at any point in
time, in parallel with the main orchestration flow. Such behavior can be implemented
in a BPEL orchestration by means of event handlers.

Listing 10.26 shows an example of an orchestration with two event handlers.
These event handlers are enclosed in an <eventHandlers> section in lines 9–33.
The actual orchestration flow is enclosed by the <sequence> block in lines 34–36,
so it can be seen that the event handlers are being specified outside of the main
orchestration flow. They are intended to run in parallel with the orchestration flow,
should any of the specified events occur during execution.

The first event handler in lines 10–23 is intended to handle an incoming message
through a given partner link, port type, and operation. These attributes are specified
in lines 10–12. In addition, the incoming message will be accessible through a
certain variable (line 14) of a certain type (line 13). Together, the messageType and
variable attributes are an implicit declaration for a variable that will exist within the
<scope> associated with this event handler (lines 15–22). Inside that <scope>, the
event handler invokes a Web service (possibly to retrieve the order status as in the
scenario above) and replies to the client who invoked the orchestration.

The second event handler in lines 24–32 is a timer that elapses after 48 h, as
specified by the expression in line 25. The syntax of <onAlarm> here is similar to the

302 10 Orchestrations with BPEL

Listing 10.26 Use of event handlers
1 <?xml version="1.0" encoding="UTF�8"?>
2 <process ... >
3 <partnerLinks>
4 ...
5 </partnerLinks>
6 <variables>
7 ...
8 </variables>
9 <eventHandlers>

10 <onEvent partnerLink="..."
11 portType="..."
12 operation="..."
13 messageType="..."
14 variable="...">
15 <scope>
16 <sequence>
17 <assign ... />
18 <invoke ... />
19 <assign ... />
20 <reply ... />
21 </sequence>
22 </scope>
23 </onEvent>
24 <onAlarm>
25 <for>’P0Y0M0DT48H0M0.0S’</for>
26 <scope>
27 <sequence>
28 <assign ... />
29 <invoke ... />
30 </sequence>
31 </scope>
32 </onAlarm>
33 </eventHandlers>
34 <sequence>
35 ...
36 </sequence>
37 </process>

use of the same element in the <pick> construct of Sect. 10.3.4. After the specified
interval, the timer elapses and the event handler executes the <scope> in lines 26–
31. All of this happens in parallel and independently of the orchestration flow in the
<sequence> block of lines 34–36.

In contrast with the FCT-handlers described in the previous sections, which are
invoked only in special circumstances, event handlers are considered to be “normal
behavior” of the <process> or <scope> where they are embedded.

Also, event handlers are intended to be triggered by the arrival of certain
messages. For this to work, these messages must reach the correct orchestration
instance. For example, if a customer inquires about the status of an order, then
the request must be routed to the orchestration instance that is handling that order
(other orders may be under processing by other orchestration instances at the same
time). Therefore, for an event handler to be triggered by an incoming message, it
is necessary to use some sort of correlation, so that the message is delivered to the
correct orchestration instance, as explained in the next section.

10.5 Correlations 303

10.5 Correlations

In Sect. 9.2, we addressed the important concept of correlations and why they are
needed when a orchestration is instantiated multiple times. When an orchestration
includes some form of receive activity (such as a <receive>, <onMessage> or
<onEvent> in BPEL), this means that at run-time the orchestration will be waiting
for an incoming message at that point in the flow. However, at run-time there will
be multiple instances of the same orchestration running at the same time. If all of
them are waiting for an incoming message then, as soon as a message arrives, which
orchestration instance should get the message?

Correlations are a mechanism that provides an answer to this question. Basically,
the message will be delivered to the orchestration instance which has a matching
correlation id. Typically, the correlation id is a unique value or some instance-
specific data that can be used to identify each orchestration instance and distinguish
it from every other. When exchanging messages with an external system, the
correlation id should be present in every message, so that every incoming message
can be routed to the correct orchestration instance. For example, in a request–
response interaction with an external system, the outgoing message carries a
correlation id and the external system replicates the correlation id in the response,
so that the response can be routed back to the same orchestration instance.

In Sect. 9.2.2 we have seen that a correlation id is defined as a set of properties,
and that these properties come from (i.e., they are promoted from) the message
schemas available to the orchestration (see Fig. 9.7 on page 241). Now, in BPEL,
an orchestration is a means to invoke one or more Web services, and the message
schemas that are available to the orchestration are the message types defined in the
WSDL interfaces for those Web services. Back in Sect. 6.4.3, we have seen that a
WSDL interface defines a series of data types and messages to be used when invok-
ing the operations of a Web service. In addition to types and messages, it is possible
to define properties that correspond to particular elements in those messages. These
properties can then be used as a correlation id in BPEL orchestrations.

Once the properties that will serve as correlation id have been promoted, it is
possible to define a correlation based on those properties. In Sect. 9.2, we have seen
that defining a correlation involves creating a correlation type and a correlation set.
Basically, the correlation type defines the set of properties to be used as correlation
id, and the correlation set is an instance of a given correlation type. The correlation
set is the actual correlation that will be initialized and followed by the constructs in
the orchestration, as explained in Sect. 9.2.4. In a request–response interaction, for
example, the correlation set is “initialized” when the request message is sent out,
and it is “followed” when the response comes back in.

The fact that there are two separate concepts—i.e., correlation type and corre-
lation set—makes it possible to create multiple correlation sets based on the same
correlation type. This means that there can be several correlation sets of the same
type being initialized and followed in an orchestration. This would make sense if
these correlation sets would use the same set of properties for the correlation id, but

304 10 Orchestrations with BPEL

would have different values for those properties. However, usually the properties
used for correlation are chosen so that each orchestration instance will have one (and
only one) value for the correlation id. Therefore, it is rather uncommon in practice to
initialize multiple correlation sets in the same orchestration instance, since a single
correlation set will suffice. Once it has been initialized, the correlation set can be
followed by other shapes throughout the orchestration.

For this reason, the BPEL language adopts a simplified view of these concepts
and considers only the concept of correlation set, but not of correlation type (at least
not explicitly). Correlation sets are defined using the <correlationSet> element and,
even though it does not appear explicitly, the concept of correlation type can be
recognized as being embedded in the definition of a correlation set.

10.5.1 An Example

Suppose that in order to invoke the orchestration in Sect. 10.1 we would need
to provide not only the city name (e.g., “San Francisco”) but also the state (e.g.,
“California”) so that the input string is in the form “city, state” (e.g., “San Francisco,
California”). Suppose that, in order to get such string, we would make use of another
orchestration which, given a city and a state, will concatenate the city and state into
the form “city, state.” We assume that this new orchestration will receive the city
name and the state in two separate messages, so it will be necessary to make use of
a correlation in the second <receive>.

Figure 10.3 illustrates this new orchestration. It comprises mainly a <sequence>
with two <receive> activities, one <assign> and one <reply>. The two <receive> activ-
ities are intended to receive the city and state separately, the <assign> concatenates
both into one string, and the <reply> returns the result to the client.

The first <receive> is an activating receive, i.e., it contains the attribute value
createInstance=yes. The second <receive> is non-activating (i.e., createInstance=no),
since it runs within the orchestration instance that was created by the first <receive>.
Therefore, this second <receive> needs a correlation, since the second incoming
message must be routed to an orchestration instance that already exists.

To implement such correlation, we require that both messages (i.e., SubmitCityIn
and SubmitStateIn) include a special field called reqID (for “request id”). When the
city name is sent to the orchestration in the first message, this message will carry a
certain value for reqID. Afterwards, when the state is sent to the orchestration in the
second message, this message will carry the same value for the reqID field. This way
it is possible to route the second message to the same orchestration instance.

However, for this to happen, the first <receive> must initialize a correlation set,
and the second <receive> must follow that same correlation set. For illustrative
purposes, the final <reply> was made to follow the correlation set as well, but this
would not be necessary, since the response <SubmitCityOut> is already correlated to
the initial request <SubmitCityIn> through the use of the same partner link, port type,
and operation. In addition, since the orchestration is synchronous (due to the use of

10.5 Correlations 305

<process>

<partnerLink>

submitCity()

<sequence>

<receive>

<receive>

<assign>

<reply>

<variables>

SubmitCityIn
SubmitCityOut
SubmitStateInSubmitCityIn

submitState()

SubmitCityOut

SubmitStateIn
<correla�onSets>

Correla�onSet1
(reqID)

ini�alizes

follows

follows

Fig. 10.3 Graphical depiction of an orchestration using a correlation set

<reply>), the client is blocked while waiting for the response, so there is no danger
of confusing the responses from multiple requests.

The correlation set relies on the fact that every message has a reqID field. This is
the property that will be used for correlation. Therefore, it is necessary to specify
how the value for this property can be fetched from each message (this is equivalent
to property promotion as described in Sect. 9.2.2). In particular, the value of reqID
that comes in SubmitCityIn is used to initialize the correlation set. The second
<receive> will follow the correlation set, meaning that SubmitStateIn must have a
matching reqID in order to be routed to the same orchestration instance.

10.5.2 Defining Properties and Property Aliases

In BPEL, the properties that are used for correlation are defined in the WSDL inter-
face for the orchestration, using the extensibility mechanisms of WSDL 1.1 [30].
In fact, these mechanisms can be used not only to define each property (with some
name and data type), but also to specify how that property can be obtained from
each message. In essence, this is how property promotion works in BPEL.

Listing 10.27 shows the WSDL interface for the orchestration in Fig. 10.3. This
WSDL interface defines the messages, port type, and operations available to interact
with the orchestration. These are standard WSDL elements. Further below, one finds
the definition for a partner link type (lines 41–44), one property (lines 45–46), and
three property aliases (lines 47–55). These are defined through the extensibility
mechanisms of WSDL.

306 10 Orchestrations with BPEL

Listing 10.27 WSDL interface for the BPEL orchestration
1 <?xml version="1.0" encoding="UTF�8"?>
2 <definitions name="corrDemo"
3 targetNamespace="http://example.org/"
4 xmlns="http://schemas.xmlsoap.org/wsdl/"
5 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
6 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
7 xmlns:tns="http://example.org/"
8 xmlns:plnk="http://docs.oasis�open.org/wsbpel/2.0/plnktype"
9 xmlns:vprop="http://docs.oasis�open.org/wsbpel/2.0/varprop">

10 <types/>
11 <message name="submitCityRequest">
12 <part name="reqID"
13 type="xsd:string"/>
14 <part name="city"
15 type="xsd:string"/>
16 </message>
17 <message name="submitStateRequest">
18 <part name="reqID"
19 type="xsd:string"/>
20 <part name="state"
21 type="xsd:string"/>
22 </message>
23 <message name="submitCityResponse">
24 <part name="reqID"
25 type="xsd:string"/>
26 <part name="result"
27 type="xsd:string"/>
28 </message>
29 <portType name="corrDemoPortType">
30 <operation name="submitCity">
31 <input name="input1"
32 message="tns:submitCityRequest"/>
33 <output name="output1"
34 message="tns:submitCityResponse"/>
35 </operation>
36 <operation name="submitState">
37 <input name="input2"
38 message="tns:submitStateRequest"/>
39 </operation>
40 </portType>
41 <plnk:partnerLinkType name="corrDemo">
42 <plnk:role name="corrDemoPortTypeRole"
43 portType="tns:corrDemoPortType"/>
44 </plnk:partnerLinkType>
45 <vprop:property name="reqID"
46 type="xsd:string"/>
47 <vprop:propertyAlias propertyName="tns:reqID"
48 messageType="tns:submitCityRequest"
49 part="reqID"/>
50 <vprop:propertyAlias propertyName="tns:reqID"
51 messageType="tns:submitStateRequest"
52 part="reqID"/>
53 <vprop:propertyAlias propertyName="tns:reqID"
54 messageType="tns:submitCityResponse"
55 part="reqID"/>
56 </definitions>

The partner link type defines the type of partner link that the orchestration
exposes to the outside world. It has a single role being defined in lines 42–43,
which suggests that the orchestration will be synchronous (asynchronous BPEL
orchestrations will define two roles, as explained in Sect. 10.2.2). After that, comes

10.5 Correlations 307

a property definition in lines 45–46. The property is called reqID and is of type string.
This defines the property, but does not say where the value for this property comes
from. In lines 12, 18, and 24, it is possible to see that every message to be exchanged
with the orchestration has a <reqID> element. This is where the value for the reqID
property will come from.

It should be noted that in this case, as it often happens in practice, the corre-
lation property reqID has the same name as the message elements <reqID> where
the property value comes from. However, this is by no means mandatory, and the
property could have a different name from the elements which provide its value.
For example, the request id could have a different name in each message, and the
property could have yet another name, and it would still be possible to define the
relationship between the property and each element where the property value comes
from. This relationship is defined by means of a property alias.

In lines 47–55 of Listing 10.27 there are three property aliases being defined,
one for each message. The first property alias in lines 47–49 defines a relationship
between the reqID property and the <reqID> element in the submitCityRequest
message (defined above in lines 11–16). The second property alias in lines 50–52
defines a relationship between the reqID property and the <reqID> element in the
submitStateRequest message (lines 17–22). Finally, the third property alias in lines
53–55 defines a relationship between the reqID property and the <reqID> element in
the submitCityResponse message (lines 17–22). This completes the definition of the
correlation property and its property aliases.

10.5.3 Defining the Correlation Set

Now that a property and its property aliases have been defined, it is possible to
create a correlation set based on that property. Listing 10.28 illustrates how this can
be done. In fact, Listing 10.28 contains the first part of the BPEL orchestration. Here
it is possible to recognize a <partnerLinks> section (lines 9–13), a <variables> section
(lines 14–21), and a new <correlationSets> section (lines 22–25).

As usual, the BPEL orchestration is enclosed in a <process> element, which
opens in lines 2–5 and will close in Listing 10.29 to be shown later. The <import> in
lines 8–10 brings in the elements defined in the WSDL interface of Listing 10.27.
Among other things, this imports the partner link type defined in lines 41–44 of
Listing 10.27. This partner link type is used in lines 10–12 of Listing 10.28 to create
a partner link for the orchestration. In this partner link, the orchestration will play
the role of service, as indicated by the myRole attribute in line 12.

The <variables> section in lines 14–21 defines three variables that are meant to
hold the three messages exchanged between the client and the orchestration, as
depicted in Fig. 10.3. The types for these messages—as can be seen in lines 16,
18, 20—correspond to one of the message types defined in the WSDL interface of
Listing 10.27. In particular, SubmitCityIn carries the city name, SubmitStateIn carries
the state, and SubmitCityOut carries the result of the orchestration in the form “city,

308 10 Orchestrations with BPEL

Listing 10.28 Definition of a correlation set
1 <?xml version="1.0" encoding="UTF�8"?>
2 <process name="corrDemo"
3 targetNamespace="http://example.org/"
4 xmlns:tns="http://example.org/"
5 xmlns="http://docs.oasis�open.org/wsbpel/2.0/process/executable">
6 <import namespace="http://example.org/"
7 location="corrDemo.wsdl"
8 importType="http://schemas.xmlsoap.org/wsdl/"/>
9 <partnerLinks>

10 <partnerLink name="PartnerLink1"
11 partnerLinkType="tns:corrDemo"
12 myRole="corrDemoPortTypeRole"/>
13 </partnerLinks>
14 <variables>
15 <variable name="SubmitCityIn"
16 messageType="tns:submitCityRequest"/>
17 <variable name="SubmitStateIn"
18 messageType="tns:submitStateRequest"/>
19 <variable name="SubmitCityOut"
20 messageType="tns:submitCityResponse"/>
21 </variables>
22 <correlationSets>
23 <correlationSet name="CorrelationSet1"
24 properties="tns:reqID"/>
25 </correlationSets>
26 ...

state.” It should be noted that SubmitCityOut holds the response to SubmitCityIn.
These are the input and output messages for the submitCity operation defined in
Listing 10.27. On the other hand, SubmitStateIn holds the input for the submitState
operation, which has no output message.

Now, the interesting part comes in lines 22–25, where there is a new section
to define the correlation sets that will be used in the orchestration. Here, only
one correlation set is being defined: the name is CorrelationSet1 (line 23) and the
property to be used in the correlation is reqID (line 24), which has been previously
defined in Listing 10.27 and imported through lines 6–8. The attribute in line 24 is
actually called properties, meaning that, if several properties would be used for the
correlation, these could be all specified in the value for this attribute. In this case,
they would be separated by a space (e.g., properties="tns:reqID tns:cityName", if a
property called cityName had been defined).

The name of the correlation set (line 23) is important because this is the way the
correlation set will be referred to in other constructs.

10.5.4 Using the Correlation Set

Listing 10.29 shows the second part of the BPEL orchestration. Essentially, this is
the orchestration flow enclosed in a <sequence> block. This sequence comprises
the following activities: a <receive> activity (Receive1 in line 3) to receive the first
message with the city name; another <receive> activity (Receive2 in line 14) to
receive the second message with the state; an <assign> activity (Assign1 in line 25)

10.5 Correlations 309

Listing 10.29 Use of a correlation set
1 ...
2 <sequence>
3 <receive name="Receive1"
4 createInstance="yes"
5 partnerLink="PartnerLink1"
6 operation="submitCity"
7 portType="tns:corrDemoPortType"
8 variable="SubmitCityIn">
9 <correlations>

10 <correlation set="CorrelationSet1"
11 initiate="yes"/>
12 </correlations>
13 </receive>
14 <receive name="Receive2"
15 createInstance="no"
16 partnerLink="PartnerLink1"
17 operation="submitState"
18 portType="tns:corrDemoPortType"
19 variable="SubmitStateIn">
20 <correlations>
21 <correlation set="CorrelationSet1"
22 initiate="no"/>
23 </correlations>
24 </receive>
25 <assign name="Assign1">
26 <copy>
27 <from>concat($SubmitCityIn.city, ’, ’, $SubmitStateIn.state)</from>
28 <to variable="SubmitCityOut"
29 part="result"/>
30 </copy>
31 <copy>
32 <from variable="SubmitStateIn"
33 part="reqID"/>
34 <to variable="SubmitCityOut"
35 part="reqID"/>
36 </copy>
37 </assign>
38 <reply name="Reply1"
39 partnerLink="PartnerLink1"
40 operation="submitCity"
41 portType="tns:corrDemoPortType"
42 variable="SubmitCityOut">
43 <correlations>
44 <correlation set="CorrelationSet1"
45 initiate="no"/>
46 </correlations>
47 </reply>
48 </sequence>
49 </process>

to concatenate the city and state into the form “city, state”; and finally a <reply>
activity (Reply1 in line 38) to return the result to the client.

The first <receive> is an activating receive, as can be seen by the createInstance
attribute in line 4. This is the <receive> that triggers the orchestration by creating
a new orchestration instance. The second <receive> runs within a preexisting
orchestration instance, so it must necessarily make use of some correlation. In lines
20–23 there is a nested <correlations> block to specify which correlations (if more
than one) are associated with this <receive>. In this case there is only one, and it is
the correlation set (CorrelationSet1) defined earlier.

310 10 Orchestrations with BPEL

In line 22, the attribute initiate specifies that the correlation set is not being
initialized in this <receive>. In fact, this second <receive> must follow some
preexisting correlation, because it runs within an existing orchestration instance. In
this example, we have chosen to initialize the correlation set right at the beginning
of the orchestration, in the first <receive> (in fact, there is no other choice in this
orchestration). Therefore, as soon as the first message is received, the reqID property
is retrieved (using the property alias defined for that message, see lines 47–49 in
Listing 10.27) and the correlation set is initialized.

This initialization takes place in lines 10–11 of Listing 10.29. Here, in the first
<receive>, there is also a nested <correlations> block. Inside this block, Correlation-
Set1 is being initialized, as indicated by the initiate attribute in line 11.

A third use of the same correlation set can be seen in the <reply> activity in
lines 38–47. Here, too, there is a nested <correlations> block to specify that this
message exchange follows the same correlation. As in the second <receive>, the
initiate attribute in line 45 is set to "no".

Besides "yes" and "no", BPEL provides a third possibility, which is initiate="join".
This value means that the activity follows the correlation set, if it has already been
initialized; but if it has not, then the activity initializes it. However, the use of this
third possibility is relatively less common.

10.5.5 Use of Correlation in Other Activities

In previous sections, we have described some BPEL constructs which actually
require the use of a correlation, even though that requirement has not been
mentioned at that point, because the use of correlations in BPEL had not been
discussed before. The following constructs require the use of an already initialized
correlation set (e.g., as in the second <receive> of Listing 10.29):

• When an orchestration invokes a Web service asynchronously, as explained in
Sect. 10.2.1, the invocation has two steps: an <invoke> and a <receive>. This
<receive> must follow some previously initialized correlation set. If not before,
then the correlation set can be initialized in the preceding <invoke>.

• When a orchestration uses a <pick> activity, as described in Sect. 10.3.4, every
<onMessage> event must follow some previously initialized correlation set. (This
can be done by nesting a <correlations> block, as before.) An exception is when
<pick> is the first activity in an orchestration. In this case, the <onMessage>
events need not (actually, cannot) follow any correlation, but then the <pick>
activity should make use of the createInstance attribute (i.e., as in <pick create-
Instance="yes">) in order to instantiate the orchestration.

• In Sect. 10.4.4 we discussed the possibility of an orchestration (or scope)
responding to events in parallel with the flow. In particular, we discussed
the possibility of receiving a message (through the <onEvent> construct) and
performing some tasks while the main flow in the orchestration keeps running

10.6 Conclusion 311

without being interrupted. Naturally, in order for such message to reach a running
orchestration instance, the <onEvent> construct must follow some previously
initialized correlation set. Again, this can be done by nesting a <correlations>
block.

10.6 Conclusion

In this chapter we have discussed the main constructs of the BPEL language,
which is a standard, XML-based language for defining orchestrations. Most of the
constructs available in BPEL have a direct correspondence to the concepts and
constructs that have been presented in previous chapters, namely in Chaps. 8 and 9.
For example, the decide shape can be represented by an <if>, the parallel shape by a
<flow>, the loop shape by a <while> or <repeatUntil>, and the listen shape by a <pick>
activity. Also, exception handlers and compensation handlers can be enclosed in a
<scope>, which is equivalent to the scope shape.

There are, however, some distinct and unique features that can only be found
in BPEL. The focus on partner links, for example, is one of them. Since BPEL
orchestrations have a close relationship with Web services, partner links are a
means to define the interface between the two and to specify which part will play
the role of client, and which part will play the role of service. In a sense, this is
somewhat equivalent to ports in a BizTalk orchestration, but whereas both partner
links and ports can be used to specify the interaction between the orchestration and
the external services to be invoked, partner links can also be used to specify the
interaction between an orchestration and its clients.

Another difference that is worth mentioning is the possibility of using event
handlers to respond to events in parallel with the flow. Although this is of much
practical interest, this feature is hard to find in integration platforms that are based
on languages other than BPEL. In fact, it will be very difficult to develop integration
solutions based on platforms that do not have a rich set of constructs with precise
semantics, such as the ones provided by BPEL. This shows just how important
BPEL is, as an initiative to standardize the constructs that every integration platform
should provide. In addition, some BPEL constructs have a certain similarity—at
least on a conceptual level—to the graphical constructs that are often used to create
business process models, as we will see in the next chapter.

Part V
Processes

Chapter 11
Process Modeling with BPMN

In the previous chapter, we have seen that BPEL provides a set of standard constructs
to define the behavior of an orchestration at run-time. These constructs are specified
in XML and do not have a graphical representation. However, integration platforms
that are based on (or at least inspired in) BPEL often provide development tools
where an orchestration can be designed by resorting to graphical elements (or
shapes) that represent those constructs. Examples of how flow constructs can be
depicted in a graphical way can be found in Chaps. 8 and 9. In fact, this is how we
introduced the main concepts associated with orchestration flow, by explaining what
a series of shapes actually mean in terms of run-time behavior.

Clearly, BPEL is a standard that is geared towards execution, by defining
orchestrations as a series of Web service invocations. Given a BPEL orchestration,
which is essentially an XML document, it is possible to have an execution engine
that parses the XML and runs each activity according to the behavior of each BPEL
element, as defined in the BPEL standard [19]. In this case, we could say that such
execution engine is BPEL-compliant. However, such engine can work only if a fully
specified BPEL orchestration is provided. In other words, the BPEL orchestration
is an executable model of some business process that has been fully characterized,
to the point that it can be run by an execution engine. This is the reason why BPEL
stands for Business Process Execution Language.

In practice, in order to arrive at such executable model, it is necessary to
understand and design the business process. This usually involves a significant
amount of effort, as a process model is created and then changed and refined
over several iterations. For this purpose, it is necessary to have appropriate tools—
namely, a graphical process modeling language—to represent the process in an
intuitive way, so that it can be easily understood and manipulated by business
analysts. When finished, such design model (as opposed to executable model) will
serve as the blueprint for system integrators to implement the process as a set of one
or more services and orchestrations, according to the view described in Chap. 7.

Just like there is a standard (i.e., BPEL) that defines the constructs that can
be used for execution, there is also a standard to define the graphical constructs
that can be used for designing business processes. This standard is called BPMN

D.R. Ferreira, Enterprise Systems Integration, DOI 10.1007/978-3-642-40796-3__11,
© Springer-Verlag Berlin Heidelberg 2013

315

316 11 Process Modeling with BPMN

(Business Process Model and Notation) [21] and it has succeeded in gathering the
support of most IT vendors. There are, of course, other process modeling languages,
such as Petri nets [1] and EPCs [26], but here we are interested in the fact that
BPMN is not only a standard, but is also a language that shares at least part of its
conceptual foundations with BPEL. This makes of BPMN a useful tool to design
process models which can be translated into executable orchestrations.

The purpose of this chapter is not to provide an exhaustive presentation of all
BPMN features,1 but to describe the typical structure of BPMN process models
and to highlight the similarities between BPMN constructs and BPEL constructs.
The correspondence is not one-to-one, but the concepts that underlie some BPMN
constructs are very similar to the original purpose of some BPEL constructs. In
most cases, it will be possible to figure out a way to implement a given BPMN
model with BPEL constructs. This is quite interesting from a practical point of view,
since it becomes possible to bridge the gap between the process models developed
by business analysts (typically, using BPMN) and the integration solutions that are
required to implement those business processes (e.g., using BPEL).

11.1 Elements of a BPMN Process Model

In order to illustrate the basic structure and elements in a BPMN process model,
we will use a purchasing scenario as an example. This purchasing scenario can be
described as follows:

In a company, an employee needs a certain commodity (e.g., a printer cartridge). In order
to get that product, a requisition form must be filled in and sent to the warehouse. The
warehouse will check whether the product is available in stock. If it is available, then
the warehouse dispatches the product to the employee. Otherwise, the product must be
purchased from an external supplier. In this case, the purchasing department prepares a
purchase order and sends it to a supplier. The supplier confirms the order and delivers the
product directly to the warehouse. The warehouse receives the product, which includes
updating the stock, and dispatches the product to the employee who originally submitted
the request.

Figure 11.1 shows how this process could be modeled using BPMN. Basically, there
are two different entities here—the company and the supplier—and each of them is
represented by its own pool. The process in Fig. 11.1 has two pools, one named
“Purchase Process” and another named “Supplier.” From the description above, we
know nothing about what the supplier does internally, other than the fact that it
receives the purchase order and returns an order confirmation. Therefore, its pool is
left blank, without any details. In contrast, the internal behavior of the company is
described in detail. This will be the main focus of this model.

1For that purpose, the reader may refer to a more thorough introduction, such as [4].

11.1 Elements of a BPMN Process Model 317

Pu
rc

ha
se

 P
ro

ce
ss

Em
pl

oy
ee

Pu
rc

ha
sin

g
W

ar
eh

ou
se

Su
pp

lie
r

Fill in
requisi�on

Check product
availability

Product is
available?

Dispatch
productYes

Send purchase
order

No

Order
confirma�on

Receive
product

Dispatch
product

Start

EndEnd

Fig. 11.1 Example of a purchase process represented in BPMN (adapted from [12])

Inside the company, it is possible to identify three different organization units,
namely: the employee who requests the product, the warehouse, and the purchasing
department. These are represented by so-called swimlanes in Fig. 11.1. Each
organizational unit that participates in the process has its own swimlane. A swimlane
is a placeholder for BPMN flow constructs, such as activities, gateways, and events.
Whatever is placed inside a swimlane is assumed to happen within the context of that
organizational unit. In other words, the organizational unit is the main responsible
for the tasks that are placed within its swimlane. The swimlane is a means to assign
responsibility for certain tasks to a given organizational unit.

The process begins in the “Employee” swimlane with a start event. The first
activity that appears after the start event is “Fill in requisition.” This activity is then
followed by “Check product availability,” which is performed by the warehouse,
on a different swimlane. The process description above says that the requisition is
“sent” to the warehouse. There is no need to represent this fact explicitly, since the
handover of work between organizational units occurs naturally as a result of the
task flow across swimlanes. In BPMN, this kind of flow is referred to as sequence
flow (as opposed to message flow, to be discussed later).

The warehouse checks the inventory and determines the quantity available for
the requested product. As a result of this step, it may happen that the product is
either available (if quantity > 0) or not available (if quantity D 0). Therefore, at this
point the process must contain a decision. This decision is represented by a gateway,
which in this case is an exclusive-OR gateway (i.e., either one or the other, but not
both options can occur). If the product is available, then the warehouse dispatches it
to the employee, and the process ends, as indicated by an end event.

318 11 Process Modeling with BPMN

If, on the other hand, the product is not available from the warehouse, then it
must be ordered from a supplier. The purchasing department is the organizational
unit which takes care of such orders. In this process, the purchasing department
prepares and sends a purchase order to the supplier. At this point, there is a message
exchange between the company and the supplier. The process “flows” beyond the
borders of the company (i.e., its pool) and this flow cannot be represented as a
normal sequence flow because, outside of the pool, the process is no longer under
control of the company. The company can only send a message to the supplier, and
it is the supplier who must know what to do with that message.

Therefore, the interaction between the company and the supplier takes the
form of message flows. These are represented as dashed lines in Fig. 11.1. In
general, sequence flows (represented by solid arrows) can only take place within the
boundaries of a pool, i.e., sequence flows apply only to the internal processes within
an organization. Between organizations, the interaction is represented by message
flows. This is because each organization is assumed to be autonomous and capable
of defining its own processes. Therefore, it makes no sense to design a continuous
process that crosses multiple organizations, when parts of that process are under
the control of different organizations, and therefore can be freely modified by those
organizations at any point given point in time.

It makes sense to design a business process as a sequence flow only within the
scope of an organization, which has the autonomy and authority to enforce that
behavior and to change it at any time according to business requirements. This
is the reason why the behavior of the supplier has not been specified and has
been left blank in this model—because it is up to the supplier to define its own
behavior, i.e., its internal processes. With regard to the company who is submitting
the purchase order, the supplier is a partner with whom the company exchanges a
set of messages. It is assumed that, regardless of the way the supplier designs its
own internal processes, these will be compatible with those message exchanges.

So, after the company sends the purchase order, the process will wait for the order
confirmation to arrive. This is represented as an intermediate event in Fig. 11.1 (i.e.,
“Order confirmation”). Like the start and end event in a process, an intermediate
event is also represented by a circle, specifically a double circle with an icon to
indicate what kind of event is being awaited for. In this case, the intermediate event
is being used to specify that, at this point, the process will wait for a message to
arrive. The sequence flow will proceed to the next activity only when the order
confirmation has been received.

After that, it is time for the warehouse to receive the product, do whatever it has
to do when a product arrives (e.g., update the stock) and then dispatch the product
to the employee who submitted the original request.

The activity “Dispatch product” appears twice in the swimlane for the warehouse
and it would appear that such activity has been duplicated unnecessarily. For
example, by drawing an arrow from “Receive product” to the first “Dispatch
product” on the left, it appears that the process would be able to accomplish the
same thing without the need for the second “Dispatch product” activity on the right.
However, such practice is not to be recommended since it would go against the

11.1 Elements of a BPMN Process Model 319

Service
task

Receive
task

Send
task

Instan�a�ng
receive

Manual
task

Business
rule task

User
task

Script
task

Fig. 11.2 Activity types

principle of having a nested block structure, as explained in Sect. 8.1. This principle
is as important in orchestrations as it is in process models, since it is much easier
to ensure the correct behavior of a process which follows a nested block structure,
as opposed to one with arbitrary connections between any pair of nodes. As we will
see in the next sections, the set of available constructs in BPMN is sufficiently rich
to allow any desired behavior to be implemented as a nested block structure.

11.1.1 Activities

In BPMN it is possible to decorate activities with an icon to provide some more
information about how the activity is to be performed. Figure 11.2 shows the
different types of activities available in BPMN 2.0 [21]. These can be described
as follows:

• A service task is an automated activity that consists in the invocation of some
service or application.

• A send task is an activity that consists in sending a message to an external
participant. In Fig. 11.1 there was an activity called “Send purchase order” which
could have been represented as a send task.

• The receive task is the counterpart of the send task. Basically, it represents an
activity whose main purpose is to receive a message. The activity is completed
only when the message has been received.

At a certain point in Fig. 11.1, the process waits for an “Order confirmation”
message from the supplier. This has been represented as an intermediate event
rather than as a receive task. The reason for this is that this step in the process
does not represent an actual activity. It is just something that happens and that
the process is waiting for; there is no action to be done.

In contrast, the preceding step (i.e., “Send purchase order”) is represented
as an activity, because it involves not only the act of “sending” but also the
preparation of the purchase order to be sent. Someone must be assigned to carry
out this task, and therefore it is represented as an activity.

• In addition to the regular receive task, BPMN 2.0 includes the concept of
instantiating receive, which is equivalent to the concept of activating receive in
orchestrations, as described in Sect. 8.2.

320 11 Process Modeling with BPMN

The instantiating receive means that a new process instance will be created
upon the arrival of a message. Therefore, BPMN requires that an instantiating
receive, if used, must be the first activity in the process and it must have no
incoming sequence flows. Its icon (an envelope enclosed in a circle) is intended
to resemble a start event which is triggered by a message. In fact, the instantiating
receive can be used to replace the start event in a process.

• The manual task is intended to represent an activity that is to be performed
without IT support. This could be any action in the physical world that is not
monitored or supported by an IT system.

• The user task represents an activity that is assigned to some user. Typically, this
task will be sent as a work item to the user’s worklist, and the execution engine
will be waiting for an output or completion message before resuming the process.
This is what happens in human workflows, as explained in Sect. 7.7.

• The script task contains a series of instructions that are to be carried out by the
engine that will be executing the process. When the engine reaches the script
task, it will execute the code contained therein. For this purpose, the script must
be written in a language that the engine is able to interpret and execute.

• Finally, the business rule task is used to invoke business rules. This is equivalent
to the call rules shape that was briefly mentioned in Sect. 2.6. Basically, business
rules can be used to perform calculations or make decisions based on user-defined
parameters. The reason why these rules are not embedded in the process is that
they can be changed at any time according to business requirements. The business
rule task is a means to invoke an external business rules engine that will evaluate
the rules and return the results back to process. The process can then use these
results to decide how the process should proceed.

11.1.2 Loops and Multi-Instance Activities

The process in Fig. 11.1 represents a sequence of activities where each activity is
executed before moving on to the next one. In particular, each activity is executed at
most once. However, in practice there may be scenarios where a single activity has to
be run multiple times. For example, consider that an employee submits a request for
several different items to be purchased. Each of these items may have to be ordered
separately from a different supplier. In other words, a single purchase request may
originate several purchase orders, and even though they must be handled separately,
all of these purchase orders belong to the same process instance.

In BPMN it is possible to specify that an activity is to be executed multiple
times. In some cases, the activity will be executed a number of times until a certain
condition is true. This is akin to the concept of loop, as described in Sects. 8.5
and 10.3.3. In other cases, the number of times that an activity will run is known
in advance, and all those runs can be triggered at once, either sequentially or in
parallel. This concept is referred to as multi-instance in BPMN, and it is similar to
the way a <forEach> loop works in BPEL. As explained in Sect. 10.3.3, by setting

11.1 Elements of a BPMN Process Model 321

Loop ac�vity Parallel mul�-
instance

Sequen�al
mul�-instance

Fig. 11.3 Loop activities

the parallel attribute to "yes" or "no" it is possible to run the loop iterations in parallel
or sequentially. In addition, the body of the <forEach> loop is enclosed in a <scope>,
meaning that each loop iteration is independent from every other.

Figure 11.3 shows how these concepts can be represented in BPMN. On the left-
hand side there is a loop activity, meaning that the activity will run an arbitrary
number of times before the process can proceed to the next activity. The number
of iterations is determined by some condition that is to be evaluated at run-time.
This condition can be included as a attribute of the activity, but it does not have a
graphical representation in BPMN.

The next two shapes, in the middle and on the right-hand side of Fig. 11.3,
represent the multi-instance concept. Here, the activity is seen as being instantiated
multiple times, where each instance is independent from every other. These
instances may run in parallel or in sequence, with the sequential multi-instance
being a recent addition in BPMN 2.0.

Although it may seem that the loop activity and the sequential multi-instance may
be the same, there are some subtle differences between the two. In the loop activity,
there is an exit condition that is evaluated after each run. The loop may continue or
be exited depending on the particular circumstances that occur when the condition
is being evaluated. On the other hand, for the sequential multi-instance the number
of instances is known at the start of the activity, and the process can only proceed
when all of those instances have been completed.

Usually, the multiple-instance activity, either in parallel or sequential form, is
used when there is a collection of objects to be processed independently of each
other. In this case, each instance of the activity is intended to handle a different
object. The loop activity, on the other hand, is a means to keep an activity running
until some condition is true. This may not necessarily involve a different object in
each iteration. In fact, the loop may be run over the same object until the state of
that object changes, or some other condition becomes true.

11.1.3 Subprocesses

Another interesting possibility is to define an activity as a subprocess. This means
that an activity becomes a placeholder for some process logic that one may want
to insert at that point in the process. Figure 11.4 illustrates how a subprocess
may appear in a BPMN process model. There are two forms: either collapsed or
expanded. If collapsed, the subprocess looks like a regular activity except for the
plus sign (i.e., “C”) indicating that it contains additional process logic. If expanded,

322 11 Process Modeling with BPMN

Task B (Sub-process)

Task B
(Sub-process)

Task B1 Task B2

Task A Task C

Task A Task C

Fig. 11.4 Subprocess in collapsed and expanded forms

Loop sub-process

Loop
sub-process

Parallel
mul�-instance

Sequen�al
mul�-instance

Task B1 Task B2

Fig. 11.5 Loop subprocesses

the subprocess shows the logic that is contained inside it. Such logic must follow
the same design principles as a top-level process, so usually it contains a start event,
a sequence of activities, and an end event. It is only when the subprocess reaches its
end event that the parent process can proceed to the next activity.

Just like an ordinary activity, a subprocess may be executed multiple times in the
flow of the parent process. In particular, the subprocess can be executed as a loop,
as a parallel multi-instance, or as a sequential multi-instance, as shown in Fig. 11.5.
In case the subprocess is expanded, it should keep its decoration (i.e., the loop sign),
as shown for the expanded loop subprocess in Fig. 11.5.

A particular type of subprocess that has a much different behavior from the rest
is the ad-hoc subprocess. This is a kind of subprocess that is not bound to the
typical, well-structured behavior of a sequence flow. Basically, an ad-hoc subprocess
contains a set of activities that can be executed in any order. In particular, there is
no restriction on when each activity can begin and end, so the ad-hoc subprocess
can be also regarded as a block where everything can run in any order, including
in parallel. In this respect, the ad-hoc subprocess is somewhat similar to the <flow>
construct in BPEL (see Sect. 10.3.2).

Figure 11.6 shows an example of an ad-hoc subprocess (Ad-hoc subprocess 1)
containing 3 tasks X, Y, and Z. These tasks can run in any order, including in
parallel. Also, there is no start or end event to specify where the subprocess begins

11.1 Elements of a BPMN Process Model 323

Ad-hoc sub-process 1 Ad-hoc sub-process 2

Ad-hoc
sub-process 1

Task X

Task Y

Task Z

Ad-hoc
sub-process 2

Task X Task Y

Task Z

Fig. 11.6 Ad-hoc subprocesses

or ends. It is only when all tasks in the subprocess have been completed that the
parent process can proceed to the next activity in the flow.

Also in Fig. 11.6 there is an example of a second subprocess (Ad-hoc subpro-
cess 2) which contains the same tasks but there is a sequence flow between tasks
X and Y. This means that task Y can only begin when task X is completed. In this
case, the sequence flow inside the ad-hoc subprocess works as a restriction to the
execution flow. It means that the sequence X!Y and task Z can run in any order,
including in parallel, but Y must follow X in any case.

The sequence flows inside an ad-hoc subprocess work in a similar way to link
dependencies inside a <flow> construct in BPEL. These link dependencies have
been briefly discussed in Sect. 10.3.2 (there is an example in Listing 10.18 on
page 288) and they can generate complicated behavior that is hard to interpret
and to verify whether it is really correct according to the desired behavior for the
process. As usual, this is easier to do if the process follows a nested block structure.
Rather than using an ad-hoc subprocess, the best way to represent parallelism
in BPMN is through the use of a parallel gateway, as explained in the next
section.

11.1.4 Gateways

At a certain point in the process of Fig. 11.1 there is a decision between two
branches. If the product is available, it will be dispatched directly from the
warehouse; otherwise, it will be ordered from a supplier. The element that was used
to represent this decision is a gateway. In this case, it is an exclusive gateway, but
there are other types of gateways, as illustrated in Fig. 11.7.

324 11 Process Modeling with BPMN

Exclusive
gateway

Exclusive
gateway

Parallel
gateway

Inclusive
gateway

Complex
gateway

...

...

...
Slipt Merge

Fig. 11.7 Types of gateways

Each gateway represents a different behavior and has its own symbol. A gateway
without a symbol is assumed to be an exclusive gateway. This means that one and
only one branch must be chosen. To make things clearer, the exclusive gateway
can also be drawn with a symbol (an “X” that stands for XOR, i.e., exclusive-OR).
Therefore, the exclusive gateway has two possible representations.

The logical counterpart of the exclusive gateway is the parallel gateway. This
means that all branches are to be followed in parallel. Usually, regardless of the type
of gateway that is being used, each gateway that splits the flow in multiple paths is
matched by another gateway of the same type that merges those paths back into
the main flow. This is illustrated in Fig. 11.7 by having 3 paths between a splitting
parallel gateway and a merging parallel gateway. Here, parallel gateway has been
used, but the same principle applies to other gateways too.

In the case of the parallel gateway, the merging gateway is especially important
because it works as a synchronizing merge, i.e., the process will not move on to
the next activity until all parallel branches coming into the merging gateway have
completed. For the exclusive gateway, this merging works in a different way: as
soon as one branch is complete, the process can proceed. Since, in the exclusive
gateway, only one branch can be chosen, it does not make sense to wait for the other
branches; these are simply skipped.

In Fig. 11.1 there is a splitting exclusive gateway, but there is no matching merge.
This is possible because both paths eventually lead to an end event, so there is no
need to merge them back to a common flow. However, if the dispatch activity is
seen as being exactly the same in both paths, then the process can be redesigned
as shown in Fig. 11.8. Here, if the product is available in the warehouse then the
process proceeds immediately to “Dispatch product”; otherwise, the product must
be ordered first and only then dispatched to the employee.

This process follows a nested block structure because the splitting gateway
initiates a block that is closed by the merging gateway. The same principle must
be obeyed for other types of gateways, including the parallel, the inclusive, and the
complex gateway, where the merging also plays a synchronization role.

11.1 Elements of a BPMN Process Model 325

Start

Fill in
requis�on

Check product
availability

Product is
available?

Send purchase
order

Order
confirma�on

Receive
product

Dispatch
product

Yes

No

Fig. 11.8 An alternative design for the purchase process

The inclusive gateway is an unusual type of gateway in the sense that it allows an
arbitrary number of branches to be followed. If only one branch is followed, then it
is equivalent to an exclusive gateway. If all paths are followed, then it is equivalent
to a parallel gateway. Finally, if any number of branches between one and all is
activated, then these exact same branches will be synchronized at the end.

The complex gateway is used when the splitting and/or merging condition cannot
be appropriately described by any of the previous gateways. It is included in BPMN
for completeness, but its use can hardly be recommended since it does not convey
a precise idea of the execution semantics. A more useful type of gateway, which is
driven by events, will be discussed in Sect. 11.1.7.

11.1.5 Start and End Events

The process in Fig. 11.1 begins with a start event and eventually finishes with an end
event, regardless of which path is actually taken after the exclusive gateway. Here
such events have been drawn as generic start and end events, but BPMN allows
these events to be more specific, namely to have a certain trigger (for start events) or
result (for end events). Figure 11.9 shows a subset (but not all) of the start and end
events defined by the BPMN standard. These are the types of start and end events
that can be used in top-level processes. For subprocesses, there are additional event
types, some of which will appear later in this chapter. For the moment, we focus on
the most common event types.

With regard to start events, there are several event types that are meant to specify
how such event can be triggered (and hence, since the start event is the first element
in a BPMN process, this also says how the process itself is triggered). The start
event with a message trigger means that the process begins when a certain message
is received. In practice, this plays the same role as an activating receive, since it
creates a new process instance. However, we have seen in Sect. 11.1.1 that there
is also a special type of activity that plays a similar role: the instantiating receive.
It is possible to use either one or the other. In general, an event conveys the idea
that “when something happens. . . ” whereas an activity places more focus on the
idea that “something needs to be done.” The start event with a message trigger is
probably the most common way of marking the beginning of a BPMN process.

326 11 Process Modeling with BPMN

Start Message Timer Condi�on Signal Mul�ple Parallel
mul�ple

End Message Signal Mul�ple Terminate

Fig. 11.9 Common start and end events

Other options include a timer, a condition, or a signal:

• The use of a timer means that at a certain date and time (or after a certain period
of time) the process is triggered. The timer event can also be used for processes
that need to be triggered periodically, after a certain amount of time has elapsed.

• The condition trigger is used for processes which begin when a certain condition
becomes true, such as e.g., “temperature is below zero.” The condition is usually
an expression based on some data that is accessible to the process.

• The signal is similar to a message, but it works in broadcast mode, i.e., it does
not have a particular recipient associated with it. When a signal is thrown, every
process with a start event that is triggered by that signal will start to run. The
concept of signal can be better understood by a physical analogy such as a sound
alarm which goes off and is sufficiently strong for everyone to hear. When a
signal occurs, it indicates that something has happened and everyone knows
about it, so any number of processes can start as a reaction to that signal.

The last two start events in Fig. 11.9—multiple and parallel multiple—represent
a combination of any of the previous event types. For example, a process which is
triggered either when a message is received or when a condition is true has a start
event with multiple triggers. If the occurrence of any of such events is enough to
start the process, then the multiple trigger should be used. On the other hand, if
the occurrence of all such events is required in order to start the process, then the
parallel multiple trigger should be used. In this case, the process will start only after
all of the required events have occurred.

As for the end events in Fig. 11.9, these represent the different kinds of results
that a process may produce. In case of a message result, this means that the process
will end by sending a message to some recipient. In case of a signal result, this
means that the process will end by broadcasting a signal. In case of an event with
multiple results (e.g., a message and a signal, or multiple messages, or multiple
signals), all of those results will be produced at the end of the process. Here there
is no need to distinguish between multiple and parallel multiple since an end event
with multiple results has, in effect, multiple “parallel” results.

It is interesting to note that, at least in some cases, the type of end event is the
logical counterpart of a certain type of start event. For example, the end event with a
message result means that the process ends by sending a message, whereas the start
event with a message trigger means that the process begins by receiving a message.

11.1 Elements of a BPMN Process Model 327

In a similar way, the end event with a signal result means that the process ends by
broadcasting a signal, whereas the start event with a signal trigger means that the
process begins when a certain signal occurs. This same duality between events that
produce some output and events that consume some input also exists in connection
with intermediate events, as we will see in the next section.

Before we proceed, however, there is an end event that finds no match in terms of
start event, and that is the terminate event. This means that if the process flow comes
to this event, then the process instance will terminate immediately. In particular, all
branches that may be running in parallel will also be terminated. Also, if there are
some loops or multiple-instance activities, these will be terminated as well.

11.1.6 Intermediate Events

Intermediate events are events that occur somewhere along the flow of the process.
These events can be used either to wait for some input or to produce some output.
In Fig. 11.1 there is an intermediate event to wait for an order confirmation from
the supplier. At this point, the process waits for an incoming message before
proceeding to the next activity. It is also possible to have intermediate events to
produce outgoing messages. In this case, the process does not wait, it just produces
the message and proceeds immediately to the next activity.

Figure 11.10 illustrates the graphical notation that can be used to represent
these different kinds of intermediate events. In BPMN, an intermediate event that
produces some output is said to be “throwing,” while an intermediate event that
waits for some input is said to be “catching.” In Fig. 11.10 it becomes clear that
there are several types of both catching and throwing events, and that these events
have a similar rationale to the start and end events shown earlier in Fig. 11.9 (except
for the terminate event, which is clearly an end event).

As such, the timer event in Fig. 11.10 is an intermediate event that waits until
a certain deadline has been reached, or until a certain amount of time has passed;
the condition event waits until a certain condition is true; the signal event waits
for a certain signal; and the multiple event can wait for multiple things to happen
(such as, e.g., a message and a condition, a message and a timer, etc.). As with
the start events discussed above, there are two variants for an intermediate event
with multiple triggers: the parallel multiple requires all triggers to occur before the
process can proceed, whereas the simple multiple will allow the process to proceed
after any of those triggers has occurred.

As for the throwing events, the first thing to be noted is that there is no graphical
distinction between a throwing event and a catching event if the type of result that
is being thrown is not specified. Throwing events have a more limited set of choices
(just like end events in comparison with start events). A throwing event can either
“throw” a message or a signal, or multiple messages and/or signals. It is interesting
to note that for every intermediate event that throws a message or signal there is
probably another intermediate event, in another process, to catch that message or

328 11 Process Modeling with BPMN

Intermediate Message Timer Condi�on Signal Mul�ple Parallel
mul�ple

Intermediate
(throwing)

Message Signal Mul�ple

Fig. 11.10 Common intermediate events

signal. However, it could also be the case that the message or signal that is being
thrown will be caught by the start event of another process!

One last issue to be mentioned is the fact that, along with intermediate events,
BPMN includes special activity types to send and to receive messages, as described
in Sect. 11.1.1. Again, the use of intermediate events is preferred to represent the fact
that “something happens,” whereas the use of activities is recommended when there
is some action that needs to be done in order to send or to receive the message. An
interesting example is provided in Fig. 11.1, where the process sends the purchase
order by means of an activity, but receives the order confirmation by means of an
event. This is because someone needs to actually prepare and send the order, while
there is nothing to do while waiting for the confirmation.

Alternatively, the “Send purchase order” activity could have been replaced by a
“Prepare purchase order” activity followed by an intermediate (throwing) event to
send the purchase order to the supplier.

11.1.7 Event-Based Gateways

In Sect. 9.1 on page 234 we have introduced the listen shape, which is basically a
decision with multiple branches, but where the decision of which branch to follow
is deferred until the occurrence of some event. Each branch is associated with a
particular event (such as a message being received, or a timer being elapsed) and
the path to be followed is one associated with the event that occurs first.

In Sect. 10.3.4 on page 293 we have seen a similar BPEL construct, called <pick>,
which has exactly the same behavior. The <pick> element contains one or more
<onMessage> and <onAlarm> events. Each <onMessage> event represents the arrival
of a message through a given partner link, and each <onAlarm> event represents a
timer that waits for a certain deadline or duration. In turn, each <onMessage> or
<onAlarm> event contains a block of orchestration logic that represents the branch
associated with that event.

Given that such kind of construct often appears in practice, it is natural that
BPMN should include a graphical notation for such behavior. This is represented
in the form of an event-based gateway, as illustrated in Fig. 11.11.

11.1 Elements of a BPMN Process Model 329

Send purchase
order

Order
confirma�on

Product
unavailable

48 hours

Receive
product

No�fy
employee

Inquire about
order status

Fig. 11.11 Event-based
gateway

The event-based gateway has a special symbol in it, which is similar to an
intermediate event with multiple triggers. In fact, each branch coming out of this
gateway has an intermediate (catching) event, which means that every branch will
wait for some event to occur. The event that occurs first will determine the branch
to be followed, and the remaining branches will be skipped.

Figure 11.11 shows an example where the purchase order is sent to the supplier
and then the process waits for one of several outcomes. Either the supplier sends
an order confirmation, or it sends a message saying that the product is unavailable.
As a third option, if the supplier does not respond within 48 h, then the process will
proceed with some action to inquire about the status of the purchase order.

It is interesting to note that although the event-based gateway is typically
associated with message and timer events, other types of trigger can be used as
well. In particular, any intermediate (catching) event shown at the top of Fig. 11.10
can be used. This is different from the listen shape and the <pick> element in BPEL,
which accept only message and timer events. Another possibility is to replace the
intermediate events that have message triggers with receive tasks (see Sect. 11.1.1),
although this is rarely done in practice.

In BPMN 2.0, the event-based gateway was extended to support additional
behaviors. In particular, BPMN 2.0 introduced the possibility of an event-based
gateway being the first element in a process (or subprocess). Such event-based
gateway will instantiate the process and it represents the fact that the process may
begin in one of several possible ways. Figure 9.3 on page 237 already introduced
this possibility with the listen shape, and in BPEL it is possible to use the <pick>
construct with the attribute createInstance="yes" (in this case, only <onMessage>
events are allowed). In BPMN, the instantiating event-based gateway has two
different versions, which can be represented as illustrated in Fig. 11.12.

At the top of Fig. 11.12 there is a subprocess (could be a top-level process as
well) which begins with an exclusive event-based gateway. This means that the
process will begin in one of the possible ways shown in the diagram, i.e., either by
a message, a condition, or a timer. The first event to occur instantiates the process,
determines the branch to be executed, and all other branches are disregarded.

At the bottom of Fig. 11.12 there is a curious possibility of allowing all branches
to be executed. The first event to occur instantiates the process, but the remaining

330 11 Process Modeling with BPMN

Task A

Task B1

Task C

Task B2

Task A

Task B1

Task C

Task B2

Fig. 11.12 Instantiating event-based gateways (exclusive and parallel versions)

branches will be kept alive and listening for their respective events. The process will
be complete when all branches have been executed. Naturally, only the first event
instantiates the process, the remaining events will just trigger additional branches
within the same process instance.

11.2 Exception Handling

In BPMN there are several different ways to represent exceptions, and there are
also different ways to include behavior that is specifically targeted at handling
those exceptions. The most commonly used constructs to represent exceptions are
intermediate events attached to the boundary of activities. Typically, if such an event
occurs, the activity is interrupted and the process follows a different path. These
attached events are very useful when modeling business processes, but it is not
always easy to map them to an execution language such as BPEL, since the flow
that is associated with attached events may not follow a nested block structure.

11.2 Exception Handling 331

A more traditional solution to the problem of representing exceptions in BPMN
are error events. This is a special type of event that, like other intermediate events,
can be either thrown or caught, and therefore it is possible, with relative ease, to
map these error events to the exception handling mechanisms of BPEL.

The BPMN 2.0 standard introduced additional options to deal with exceptions,
namely the use of escalation events and of event subprocesses. Basically, event
subprocesses are similar in concept to the use of event handlers in BPEL, whose
purpose is to react to events that occur in parallel with the orchestration flow (see
Sect. 10.4.4). An event subprocess can also be triggered by some event that occurs
in parallel with the main process flow.

On the other hand, escalation events can be seen as a different form of error event.
In fact, they do not represent an error in the sense of a system error, but a condition
(i.e., a business problem) that occurs during the execution of a business process,
and that requires some special handling. In particular, an escalation event means
that someone with higher responsibility (such as, e.g., a supervisor) will be called
to intervene, or at least will be notified. This is quite useful when modeling business
process in organizations with some form of hierarchical structure. However, the
semantics that are associated with escalation events do not have much impact from
an execution point of view. In this regard, an escalation event is not much different
from an error event, except that it can be non-interrupting.

The following sections provide a brief overview of these different constructs.

11.2.1 Attached Intermediate Events

Figure 11.13 shows the types of events that can be attached to an activity boundary.
In every case, the occurrence of the specified event interrupts the activity and takes
the process through another path. The graphical notation for the event itself is the
same as for intermediate (catching) events (compare with Fig. 11.10). In particular,
the trigger may be a message, a timer, a condition, or a signal. As before, there is also
the possibility of specifying an event with multiple triggers (i.e., any combination
of messages, timers, conditions, and signals). In this case, there are two possible
versions: either any of the triggers will fire the event, or all triggers are required to
occur in order to fire the event (i.e., parallel multiple).

Unfortunately, process modelers often make use of such attached events in a
way that makes it difficult both to understand the model and to translate it into
an executable language such as BPEL. Figure 11.14 shows two possible uses for
the exception flow that comes out of the attached event. In both cases, task A is
interrupted and the flow proceeds to task B. However, in the first case the exception
flow ends after task B, whereas in the second case the exception flow merges back
into the main flow, through the use of an exclusive (merge) gateway. This practice is
perfectly legal in BPMN but can be hardly recommended, since it breaks the nested
block structure that the process should adhere to.

332 11 Process Modeling with BPMN

Task Task Task

Task Task Task

Message Timer Condi�on

Signal Mul�ple Parallel
mul�ple

Fig. 11.13 Interrupting intermediate events

Task A

Task B

Task A

Task B

Fig. 11.14 Possible routings for the exception flow

Task Task Task

Task Task Task

Message Timer Condi�on

Signal Mul�ple Parallel
mul�ple

Fig. 11.15 Non-interrupting intermediate events

The attached events described above are interrupting events in the sense that their
occurrence interrupts the execution of the activity they are attached to. However,
BPMN provides also the possibility of having non-interrupting attached events.
These are shown in Fig. 11.15. They are represented as intermediate events with
a dash border. This means that their occurrence triggers the exception flow, but it
does not interrupt the main flow, so the activity keeps running.

11.2 Exception Handling 333

Task

Task

Task A

Task B

Fig. 11.16 Possible uses of
the error event

It is hard to see that such non-interrupting events will find much use in practice,
except in some very particular scenarios. An example is when someone sends an
inquiry while the activity is running. In this case, the use of a non-interrupting
message event allows the inquiry to be handled and a response to be returned without
interrupting the activity. Another example is the use of a timer: after some time
it may be necessary to do something or to notify someone without interrupting
the activity. Curiously, these are the two cases which can also be supported in
BPEL through the use of event handlers with <onEvent> or <onAlarm> elements (see
Listing 10.26 on page 302). However, besides messages and timers, BPMN allows
for signals and conditions, as well events with multiple triggers.

11.2.2 Error Events

The error event is a special kind of event that can take the form of an intermediate
event (if the error is being caught) or an end event (if the error is being thrown).
Figure 11.16 illustrates the typical uses of error events. One possibility is to use
an error event as an intermediate (catching) event attached to the boundary of
an activity. This means that, in case an error occurs during execution, the event
interrupts the activity and takes the process through an exception flow. In case
of an error trigger, the attached event is always interrupting (i.e., it cannot be
non-interrupting as some intermediate events discussed in the previous section). The
reason for this is that if an error occurs then it is because something went wrong,
and therefore the normal flow must not be allowed to proceed. In fact, the normal
flow may have been already interrupted due to occurrence of the error.

334 11 Process Modeling with BPMN

A second possibility is to throw an error by means of an end event. Here, the
throwing of an error must be represented by an end event, and not as an intermediate
event. The reason for this is that the throw of an error interrupts the flow at the point
where the error is thrown. Therefore, it would make little sense to use an error-
throwing event as an intermediate event, if the activities that come after that cannot
really be executed. In BPMN, an error-throwing event can only be an end event.

The third diagram in Fig. 11.16 illustrates the typical use of an error-throwing
event in combination with an error-catching event. Here there is a subprocess
which, under certain conditions, may throw an error. On the other hand, there is an
intermediate (catching) event attached to the boundary of the subprocess, meaning
that if the error is thrown inside the subprocess, it will be caught and handled
through an exception flow. As before, the error-catching event is interrupting,
meaning that if an error is caught, the subprocess is interrupted. In this example,
the process is interrupted anyway, since the error is thrown by an end event.

11.2.3 Escalation Events

Escalation events are somewhat different from error events, in the sense that their
main purpose is to alert someone else—particularly, someone who is above in the
hierarchical structure of the organization—of some problematic situation that occurs
in the business process. Escalation events can be used just like error events, but with
the specific semantics that is associated with “escalation.” Figure 11.17 shows an
example. Here, the flow is identical to that shown earlier in Fig. 11.16, with the
difference being that the error events have been replaced by escalation events.

Although the behavior is exactly the same as before, the escalation events are
used here to denote the fact that the problem must be handled by someone with a
higher degree of responsibility in the organization. This is represented in Fig. 11.17
by having task B performed by a supervisor. In other words, should a problem arise
in the subprocess that is being performed by the employee, an escalation event will
be thrown (as an end event), and this will be caught by an intermediate event and
handled by having the supervisor perform task B.

A significant difference between error events and escalation events is that
escalation events may be thrown by intermediate events, and they may also be
caught by non-interrupting attached events. This is illustrated in Fig. 11.18. Here,
the escalation event is not meant to interrupt the subprocess. Rather, if a problem
arises then the escalation event is thrown as an intermediate event and the subprocess
is allowed to continue. However, for this to happen it must be ensured that the
catching event is non-interrupting. Such is indeed the case in Fig. 11.18, where the
intermediate (catching) event is drawn with a dash border. This follows the same
convention as for other non-interrupting events, as shown in Fig. 11.15.

At first sight, it could seem that the same behavior as in Fig. 11.18 could be
obtained by simply replacing the intermediate, escalation-throwing event inside the
subprocess with task B, and this would avoid the need for the escalation-catching

11.2 Exception Handling 335

Pr
oc

es
s

Su
pe

rv
iso

r
Em

pl
oy

ee Task A

Task B

... ...

Fig. 11.17 Use of escalation events

Task A

Task B

Task C

Fig. 11.18 Escalation with an intermediate throwing and a non-interrupting catching event

event as well. However, this is not the case. First, there is no guarantee that in case
the escalation event occurs, task B will be performed before task C. Second, task B
is intended to be carried out by a different participant, in another swimlane, as in
Fig. 11.17. And third, BPMN models are intended to be as expressive as possible,
and the substitution of the escalation events would hide the fact that such behavior
is to take place only if there is a problem with the business process.

11.2.4 Event Subprocesses

The behavior associated with error and escalation events—in particular, the con-
cept of throwing and catching these types of events—can be used to represent
mechanisms of exception handling in BPMN processes. These mechanisms have
been described in detail in Sects. 9.3 and 10.4.1. In addition to these, Sect. 10.4.4
described the possibility of listening to and reacting to events in parallel with the
main orchestration flow. In BPMN 2.0, a new concept was introduced to support
these mechanisms: the concept of event subprocesses.

336 11 Process Modeling with BPMN

New
order

Get
product

Charge
customer

Ship
product

Order
status

Check
order status

Send
order status

Fig. 11.19 Use of event
subprocess with a
non-interrupting start event

Basically, an event subprocess is a subprocess that is triggered by some event
that occurs in parallel with the flow. This event may occur at any point during the
process, and the subprocess will be run immediately as a reaction to that event. In
fact, the event may occur or it may not occur at all, so an event subprocess should
be regarded as some process logic that is only to be invoked if some special event
occurs. Because an event subprocess is able to keep listening for events during
the entire duration of a process, it has some advantages when compared to the
intermediate events discussed in Sect. 11.2.1, which can only be attached to some
particular activity or subprocess, and therefore cease to listen for the event trigger
once the activity or subprocess completes.

An event subprocess runs concurrently with the main (i.e., parent) process. In
other words, the fact that an event subprocess gets triggered does not necessarily
imply that the parent process will get delayed or even interrupted. Imagine, as in
Sect. 10.4.4, the scenario of an online bookstore. As the order is being processed,
the customer may inquire about the order status. When this happens, the bookstore
must be able to inform about the order status in parallel with the order processing.
In this scenario, the activities that take place when the customer inquires about the
order status could be represented as an event subprocess, as in Fig. 11.19.

The event subprocess is represented with a dot border; this is the graphical
notation for event subprocesses in BPMN. Also, the start event for the event
subprocess has a dash border; this means that the event is non-interrupting.
Therefore, the customer may inquire about the order status without interrupting
the parent process, and the event subprocess will run in parallel with the order
processing.

Instead of starting the event subprocess with a non-interrupting event, as in
Fig. 11.19, it is possible to start an event subprocess with an interrupting event.
Here, the use of an interrupting event means that the parent process will be stopped
when the event subprocess is triggered. In the above scenario this could mean,
for example, that instead of inquiring about the order status, the customer just
cancels the order, so the main process is interrupted.2 Figure 11.20 expands the

2In practice, once the product has been shipped, the process may have ended already and the
customer may be unable to cancel it. However, in this example we do not consider such problem.

11.2 Exception Handling 337

New
order

Get
product

Charge
customer

Ship
product

Order
status

Check
order status

Send
order status

Cancel
order

Cancel
shipping

Refund
customer

Fig. 11.20 Use of event
subprocess with an
interrupting start event

scenario of Fig. 11.19 by including an additional event subprocess to deal with order
cancelation. The main difference is that the new event subprocess is interrupting, as
indicated by the solid border of its start event.

Figure 11.20 also illustrates the fact that a process may have several event
subprocesses. In this example, the event subprocess that has been introduced to
support order cancelation can be seen as a form of fault handler as described in
Sect. 10.4.1. On the other hand, the event subprocess that was introduced to respond
inquiries about the order status can be regarded as an event handler as described
in Sect. 10.4.4. The use of an interrupting start event versus an non-interrupting
start event is what makes the distinction here. In general, it can be observed that
event subprocesses are a flexible mechanism to implement different sorts of event
handling, be it exceptions or concurrent events.

Also, it should be noted that it is possible to use different types of start events in
these subprocess. For example, in Fig. 11.20 each event subprocess has a start event
with a message trigger. Alternatively, the start event can be a timer, a signal, or a
condition, as depicted at the top of Fig. 11.9 on page 326. It can also be a start event
with multiple (and possibly parallel) triggers. For event subprocesses, all of these
start events have an interrupting version (with a solid border) and a non-interrupting
version (with a dash border).

An interesting feature of event subprocesses is that the error event, which has
been introduced in Sect. 11.2.2 as an intermediate (catching) event and as an
end (throwing) event, can actually be used as start event in an event subprocess.
However, for this kind of start event there is only the interrupting version (i.e., the
error event, when used as the start event for an event subprocess, can only be used
as an interrupting event, but not as a non-interrupting one). This makes of an event
subprocess with an error event (as start event) a true exception handler, in the sense

338 11 Process Modeling with BPMN

New
order

Get
product

Charge
customer

Ship
product

Wrong
address

Check with
customer Re-deliver

Fig. 11.21 Use of event
subprocess with an error
event as start event

that it listens for errors and, in the case an error occurs, it interrupts the parent
process and handles the error, as illustrated in Fig. 11.21.

Here, a third event subprocess is included to deal with the case when shipping
fails because the customer address is incorrect. (For simplicity, the other event
subprocesses from Fig. 11.20 have been omitted.) The start event for the event
subprocess is an interrupting one, as can be seen from the use of a solid border.

Similar to the error event, the escalation event introduced in the previous section
can also serve as the start event for an event subprocess, and in this case both the
interrupting and the non-interrupting versions are allowed.

11.3 Transactions and Compensation

In Fig. 11.20 there is an event subprocess for order cancelation, which basically does
a rollback of the shipping and charging activities. Such scenario could be thought of
as a transaction involving those two activities. When the customer sends a message
canceling the order, the transaction would roll back to a previous state. However, in
Sect. 9.4 we have seen that, in orchestrations and business processes, transactions
work in a different way from the traditional transactions in database systems. In
particular, in a business process there are long-running transactions, where work
is committed in a stepwise fashion instead of being held until the very end of the
transaction.

For example, at a certain step in Fig. 11.20, the process charges the customer
for the product that was ordered. At this point the product has not been shipped
yet, but the assumption is that the shipping activity is part of the same transaction.
However, this transaction is actually performed in two steps that commit separately.
When the company charges the customer, the effects of this activity are immediate:
a certain amount has been charged to the customer’s credit card. If, for some reason,
the product cannot be shipped, then the “Charge customer” activity will need to
be compensated (but not rolled back, since it has already committed). Here, the
compensation consists in giving a refund to the customer.

11.3 Transactions and Compensation 339

Task A

Task B

Fig. 11.22 Use of
compensation handler in
activity

The BPMN language provides several constructs to represent transactions and
compensation in business processes. In fact, compensation may appear in a process
model without an explicit reference to an enclosing transaction. However, the use of
compensation implies that the activity or subprocess where compensation is being
used is transactional. This is somewhat equivalent to the use of the scope shape or
the <scope> element in BPEL. A scope with a compensation handler implies that
the scope is transactional, and that its compensation can be triggered by some event
or exception that occurs after the successful completion of that scope.

In BPMN, a scope can be represented as a subprocess, or as an activity if its
internal behavior is unknown or is not being modeled. The next sections explain
how to use compensation in each of these constructs.

11.3.1 Compensation Handlers

In a BPMN process model, any activity that may need to be compensated can be
represented as in Fig. 11.22. In this diagram, there is an association between task A
and task B, and in particular this association means that task B is the compensation
handler for task A. In other words, task B may never end up being executed; however,
it will be executed if the need arises to compensate task A. Naturally, such need may
only arise after task A has been successfully executed.

The fact that task B is a compensation handler is indicated by the compensation
marker inside it. Such marker effectively precludes task B from being used in the
normal flow of the process. It can only be used as a compensation handler that
is connected to the boundary of some other activity through an association. The
association is represented as an arrow with a dotted line, as opposed to an arrow
with a solid line that represents a sequence flow.

On the boundary of task A there is something similar to an attached intermediate
event (see Sect. 11.2.1). In fact, it is an attached intermediate event with a compen-
sation trigger. Such triggering may occur in different ways. It may occur because
the enclosing subprocess that contains task A failed, and therefore its inner activities
need to be compensated. Alternatively, it may happen that the compensation of task
A—specifically of task A—is invoked explicitly from somewhere else in the process,
as will be explained in Sect. 11.3.3. In any case, when compensation for task A is
triggered, task B will be executed.

340 11 Process Modeling with BPMN

Task A1 Task A2

Task B

Fig. 11.23 Use of
compensation event
subprocess

Another way to specify a compensation handler is through the use of an event
subprocess. In the previous section, we have seen that a subprocess may have a
number of event subprocesses, and each event subprocess has a start event with a
specific trigger. For the purpose of compensation handling, it is possible to use an
event subprocess with a start event that has a compensation trigger. This possibility
is illustrated in Fig. 11.23. Here, the event subprocess will be triggered if there is
a need to compensate the enclosing subprocess. Again, such need may only arise
after the enclosing subprocess has completed successfully.

In the previous section we have seen that the start event for an event subprocess
can be either interrupting (solid line) or non-interrupting (dash line). In Fig. 11.23
the compensation event is drawn with a solid line and therefore appears to be
an interrupting start event. However, since compensation can only be triggered
after the enclosing subprocess has finished, the property of being interrupting or
non-interrupting does not apply here. For an event subprocess that serves as a
compensation handler, the convention is to draw its start event with a solid line.

11.3.2 Transactional Subprocesses

In Sect. 11.1.3 we have seen that there are several types of subprocesses, namely
loop subprocesses, multi-instance subprocesses, and ad-hoc subprocesses. Another
type of subprocess available in BPMN is the transactional subprocess. In essence,
the transactional subprocess can be regarded as a transactional scope that serves as
a container for other activities or subprocesses. The transactional subprocess has the
distinctive feature that it can be canceled, meaning that its inner activities will have
to be compensated.

Figure 11.24 illustrates the use of a transactional subprocess in a scenario that is
somewhat similar to the order fulfillment process used as an example before. The
fact that the subprocess is transactional is indicated by the double-line border. Here,
the activities “Charge customer” and “Ship product” have their own compensation

11.3 Transactions and Compensation 341

New
order

Get
product

Charge
customer

Ship
product

Return
product

Refund
customer

Customer
service

follow-up

Product delivered
in good condi�on?

Yes

No

Carrier available?

Yes

No

Call
technical
support

Fig. 11.24 Use of a transactional subprocess

handlers so, if the subprocess fails, these compensation handlers will be invoked.
As explained in Sect. 9.4.2, compensation always takes place in reverse order of
execution, so if both activities need to be compensated, “Ship product” will be
compensated first, and then “Charge customer” afterwards.

When we say that the subprocess “fails,” we mean that the transaction that is
delimited by the subprocess could not be completed successfully. This can be due to
a number of reasons, and Fig. 11.24 illustrates two of them. On one hand, if a carrier
is not available then the product cannot be shipped and therefore the transaction
cannot complete. On the other hand, if the product is shipped but does not arrive in
good condition then the transaction cannot be said to have completed successfully.
In both cases, the subprocess ends with a cancel event.

The cancel event is a special type of event that can take the form of an end event
or an intermediate event attached to the boundary of the transactional subprocess.
These events work in a similar way to the end event which throws an error and to
the attached intermediate event which catches an error, as explained in Sect. 11.2.2,
and as shown in Fig. 11.16 on page 333. However, cancel events can only be used
in transactional subprocesses, and they have special semantics in the sense that the
occurrence of a cancel event automatically triggers the compensation of all activities
contained in the transactional subprocess.

In the example of Fig. 11.24, if a carrier is not available then the subprocess is
canceled, and in this case only the activity “Charge customer” is compensated. On
the other hand, if the product does not arrive in good condition, then the subprocess
is canceled and both activities are compensated, in reverse order of execution. In
addition, if any of these cancelations occurs, then the cancel event will be caught by
the intermediate cancel event attached to the boundary of the subprocess, and this
will be followed by an activity that involves the customer service getting in contact
with the customer, as shown in Fig. 11.24.

342 11 Process Modeling with BPMN

Charge
customer

Ship
product

Return
product

Refund
customer

New
order

Not
sa�sfied

30 days

Wrong
size

Compensate
“Ship product”

Ship
new size

Fig. 11.25 Use of throw compensation events

In addition to the intermediate cancel event, there is also an intermediate error
event attached to the boundary of this transactional subprocess. However, it should
be noted that this intermediate error event is used for a completely different purpose
when compared to the intermediate cancel event that is attached to the boundary of
the same subprocess. Here, the intermediate error event is being used to specify the
behavior of the process in case an unexpected error occurs. In particular, such error
means that something went terribly wrong, to the point that the subprocess can no
longer be completed or canceled in a proper way. In this scenario, the subprocess is
interrupted abruptly and no compensation takes place. The situation then needs to
be handled in some other way, and that is why Fig. 11.24 specifies that the technical
support team should be called immediately.

11.3.3 Using Compensation Events

In the previous sections we have seen how compensation handlers can be specified
and how they can be triggered implicitly by the cancelation of a transactional
subprocess. In this section, we will see that compensation handlers can also be
triggered explicitly through the use of compensation events. These events can take
the form either of an end event or of an intermediate (throwing) event.

Figure 11.25 illustrates the use of compensation events. This model represents
the order fulfillment process of an online shop that sells clothes. The shop has a
customer satisfaction policy that allows 30 days for the customer to try the product
at home and then decide whether to keep it or to return it and get a refund. A
third possibility is the product not having the correct size, and in this case it can
be returned and a new product will be sent to replace it (however, this can be done
only once for a given purchase). In the model of Fig. 11.25, these scenarios are
supported through different forms of compensation.

When a new order arrives, the shop charges the customer’s credit card and ships
the product to the customer address. After this, there is an event-based gateway

11.4 Conclusion 343

(see Sect. 11.1.7) to wait for one of several possible events. If within 30 days the
customer does not say anything, then it is assumed that the customer is satisfied
with the product and the process ends, i.e., after this point there is no longer the
possibility to return or to change the product. This is represented in the top-level
branch with an intermediate timer event followed by an end event.

If the customer is not satisfied with the product, then it is possible to send a
message through the company Web site to inform about the intention of returning
the product. This is represented by an intermediate message event in the middle
branch that comes out of the event-based gateway. If this event is the first to occur,
then the company will trigger the compensation of the whole process by means
of a special end event. This end event indicates that compensation is necessary
and, since nothing else is being specified, this means that compensation is to be
applied to all activities in the process (in general, it is applied to all activities in the
enclosing subprocess). Here, compensation of the activities “Charge customer” and
“Ship product” will be carried out, in reverse order of execution.

The third and last branch coming out of the event-based gateway represents
the scenario in which the clothes are the wrong size, and the customer uses the
company Web site to send a message about this fact. In this case, the product
must be returned and replaced by another, but there is no need to compensate the
“Charge customer” activity. Therefore, only the “Ship product” activity needs to be
compensated. This is achieved by means of a compensation event which specifies
which activity in particular is to be compensated. In addition, this is not an end event,
but an intermediate (throwing) event, since there is more to do after the product has
been returned. Namely, a new size must be shipped to replace the previous one.

This scenario illustrates that it is possible to throw a compensation event from
either an end event or from an intermediate event. In addition, each of these events
may specify a particular activity that is to be compensated, or it may not specify
any activity to be compensated and in this case it means that all activities in the
enclosing process or subprocess should be compensated. These two possibilities
are equivalent to the use of <compensateScope> and <compensate> in BPEL, as
described in Sect. 10.4.2. The <compensateScope> construct has a target attribute
which specifies which scope should be compensated, whereas the <compensate>
construct has no such attribute and triggers compensation of all inner scopes.

11.4 Conclusion

In this chapter we have explored the wide range of elements that BPMN provides
to create business process models. Also, we have seen that most of these elements
are conceptually similar to the BPEL constructs described in the previous chapter.
However, the two languages have different purposes: while BPMN is a graphical
notation for modeling business processes, BPEL is an XML-based specification for
implementing service orchestrations. In fact, BPMN cannot be used as a graphical
representation for BPEL, since several authors have shown that there are certain

344 11 Process Modeling with BPMN

mismatches between both languages [22, 24, 33]. Still, the notation of BPMN is
sufficiently clear to describe process behavior in a way that can be translated into an
executable form, even if this requires some ingenuity in the use of BPEL constructs.
From a conceptual point of view, the two languages are sufficiently similar to ease
the gap between the design of business processes and the implementation of service
orchestrations to support those processes. Using BPMN, business analysts can
describe organizational processes in a way that can be understood by developers and
system integrators, and that can serve as a blueprint for implementing the services
and orchestrations required to support those processes.

But BPMN is not restricted to the internal business processes of an organization.
As we will see in the next chapter, BPMN can also be used to model the interactions
between and across organizations, where each organization has its own internal
processes. The interconnection between processes running at different organiza-
tions is also a form of integration, and one that brings additional concerns and
requirements to the integration platforms that aim to support inter-organizational
processes. From a technological point of view, this new form of integration can be
addressed with existing technologies, with the possible addition of some security
mechanisms, so that is not where the main problem is. The main problem is in
ensuring compatibility from a behavioral point of view, i.e., in making sure that the
state of an inter-organizational process is kept consistent across all business partners,
in order to avoid situations where, for example, one organization is waiting for a
message that another organization will never produce. Using BPMN, it is possible
to describe in a precise way the inter-organizational process—more precisely, the
choreography—that takes place across multiple business partners, in order to ensure
that each partner will implement its own internal processes in a compatible way.

Chapter 12
Inter-Organizational Processes

In Sect. 11.1 we mentioned the concept of autonomy, which allows an organization
to define and implement its own internal processes. Namely, a process can be defined
using a modeling language such as BPMN, and it can be implemented through
an execution language such as BPEL, provided that the necessary services are in
place. These services may be the lowest-level services that represent the underlying
systems and applications, or they can be higher-level services that are built as
compositions of lower-level ones, and these compositions can also be implemented
through BPEL. For business analysts, BPMN provides a convenient way to express
the behavior of a process, and if the process involves interacting with external
partners, then these interactions can also be represented as message flows between
pools, as in Fig. 11.1 on page 317.

In Fig. 11.1, each pool represents a different entity. These entities have their
own internal processes and, at a certain point, these processes interact. There is a
purchase order that is sent to the supplier, and there is an order confirmation that
comes back as a response. Between sending the purchase order and receiving the
order confirmation, the supplier is doing something which is not represented in this
model, because it is up to the supplier to define its own internal process. As long as
the supplier is able to receive the purchase order and return an order confirmation—
i.e., as long as the supplier is able to comply with the expected message exchange—
then it does not matter how its internal process is actually designed.

In other words, it is impossible to extend the control of a process beyond
organizational boundaries, but it is still possible to interoperate with external
partners through a set of well-coordinated message exchanges. This set of message
exchanges can be defined independently of the way each organization implements
its own internal processes, and it is referred to as a choreography, which defines the
behavior that is expected to take place between a number of business partners. A
choreography can also be referred to as a public workflow, as opposed to the private
workflows that represent the internal processes within each organization [3].

Figure 12.1 shows an abstract example of a choreography involving two orga-
nizations. Here, organization A has an internal process, and organization B has its
own internal process as well. These are the private workflows in this scenario. On

D.R. Ferreira, Enterprise Systems Integration, DOI 10.1007/978-3-642-40796-3__12,
© Springer-Verlag Berlin Heidelberg 2013

345

346 12 Inter-Organizational Processes

Organiza�on A

Organiza�on B

Task A1

Task A2

Task A3

Task A4

Task A5

Task B1

Task B2

Task B3

Task B4

M1

M2

M3

M4

Task B5

Fig. 12.1 A choreography as a set of inter-organizational message exchanges

the other hand, there is a public workflow that consists in the following message
exchanges: M1 from A to B, M2 from B to A, M3 from A to B, and M4 from B to
A. This sequence of message exchanges is the choreography between these two
organizations, and their internal processes have been designed in such a way as to
comply with the role of each organization in the choreography.

Naturally, the internal process of each organization may contain more behavior
than what is specified in the choreography. For example, tasks A3 and A5 in
organization A, as well as tasks B1 and B3 in organization B, do not appear to
contribute directly to the choreography; rather, they are private activities that have
to do with the purpose of each internal process. Also, the internal process at
organization B includes an additional possibility: the possibility that M3 is not
received within a certain time frame, as indicated by the intermediate timer event
to the right of the event-based gateway. In this case, task B5 will be performed, and

12 Inter-Organizational Processes 347

the process of organization B will end without waiting further for M3. After that
point, if organization A tries to send M3, organization B will no longer be ready to
receive it. This illustrates just how a choreography may not work properly if partners
do not have a precise agreement as to what is their expected behavior.

In addition to the choreography, there are other concerns that must be taken into
account in an inter-organizational scenario. One of such concerns has to do with
the format or structure of the messages to be exchanged. Within an organization,
it is possible to define the message schemas to be used in a given orchestration,
according to the services and applications that are to be invoked in that orchestration.
However, in an inter-organizational setting it becomes very difficult to achieve an
agreement on the message format, since each business partner will have its own
processes and requirements. For example, consider message M1 in the choreography
of Fig. 12.1: who should define its format, is it organization A which produces it,
or is it organization B who consumes it? Organization A can argue that it can only
produce the message in certain format, while organization B can argue that it cannot
handle the message unless it is in another, different format.

The solution to this problem is to rely on well-accepted standards. Fortunately,
there are standards such as EDI (Electronic Data Interchange) which specify the
format for a wide range of documents (such as invoices and purchase orders) that
are typically exchanged between organizations. Rather than trying to impose some
proprietary format on business partners, it makes more sense to ask for compliance
with a common standard such as EDI. This way an organization that goes through
the effort of implementing a standard message format will at least know that it
will become interoperable not only with the current business partners but also
with any potential partner that adheres to the same standard. In general, having the
message formats defined by an independent third party facilitates business relations
by relieving organizations from having to set up their own formats.

Another important concern that applies to inter-organizational processes is
security. When business partners exchange messages over the network, they would
like to ensure that such messages are authentic, that they have not been modified
while in transit, and also that they have not been read by anyone else other than the
intended recipient. This is usually attained through the use of digital certificates
and public-key cryptography [28]. Here, too, the role of a trusted third-party—
specifically, a certification authority (CA)—is essential in order to provide each
business partner with its own digital certificate, and to allow a message recipient to
check that the incoming message comes from a trusted source.

Naturally, these security mechanisms can also be used within an organization to
protect against eavesdropping and impersonation. In this case, every user or system
involved in message exchanges, either as sender or as a receiver, should have its
own certificate. However, it is in inter-organizational scenarios that these security
mechanisms become absolutely fundamental. In this chapter, we begin with the
topic of security in Sect. 12.1; then we will move to EDI and related standards in
Sect. 12.2; finally, Sect. 12.3 describes the special kind of diagrams that are available
in BPMN in order to model choreographies.

348 12 Inter-Organizational Processes

12.1 Security

At the lowest level of an inter-organizational exchange there is the need to establish
a secure connection between both ends. In particular, the message that flows across
such connection should be encrypted so that it cannot be read or tampered with
by anyone else except the receiver. In addition, the message should be signed
by the sender, so that the receiver can verify that the message is authentic, i.e.,
that it comes from the supposed source. Both of these features can be achieved
through public-key cryptography, with the advantage that public-key cryptography,
as opposed to symmetric-key cryptography, does not require that both parties have
met or exchanged some encryption/decryption key before.

In symmetric-key cryptography, the same key is used for both message encryp-
tion and decryption. Both parties have access to this key and they trust each other
in keeping that key—i.e., their shared secret—as safe as possible. During message
exchange, the sender uses the key to encrypt the message, and the receiver uses
the same key to decrypt it. However, for this to work, both sender and receiver
must have previously exchanged, by some means, the symmetric key that they will
use for encryption/decryption. This creates a problem that must be solved through
some other security mechanism, and it is also an obstacle to initiating an interaction
between two business partners who have not met before.

In public-key cryptography, every entity that is to engage in some exchange has
a pair of keys: one is the public key and the other is the private key. The private key,
as the name indicates, is to be kept private and not to be shared with anyone. The
public key, on the other hand, can be shared with everyone else, and it can even be
published on some central repository. Each pair of public and private keys works in
such a way that whatever is encrypted with the public key can only be decrypted with
the corresponding private key, and vice versa (i.e., whatever is encrypted with the
private key can only be decrypted with the corresponding public key). This is why
the public and private keys are called a “pair,” i.e., because they work in combination
and they do not work with any other private/public key.

12.1.1 Encryption, Authentication, and Digital Signatures

In practice, there are at least two parties in any exchange, and each party will have
its own pair of public and private keys. Therefore, there are two pairs of keys at
play, and each party has access to three keys, namely: its own private key, its own
public key, and the other party’s public key. These keys can be used as encryption
or decryption keys in different scenarios and for different purposes, as follows:

• The sender can encrypt the message with the receiver’s public key. In this case,
only the receiver’s private key can decrypt the message. Since the receiver’s
private key is known only to the receiver, only the receiver can decrypt the

12.1 Security 349

En�ty A

Private key A

Public key A

Encrypt Decrypt En�ty B
Send

Private key B

Public key B

Sender Receiver

Fig. 12.2 Encryption with the receiver’s public key

En�ty A

Private key A

Public key A

Encrypt Decrypt En�ty B
Send

Private key B

Public key B

Sender Receiver

Fig. 12.3 Authentication with the sender’s public key

message. This scenario is illustrated in Fig. 12.2 and it can be used as a security
mechanism to protect the message against eavesdropping (i.e., reading by others).

• The sender can encrypt the message with its own private key. In this case, only
the sender’s public key can decrypt the message. But the sender’s public key is
accessible to everyone. Therefore, anyone can decrypt it. However, if the message
is successfully decrypted with the sender’s public key, then this means that only
the sender could have encrypted the message, with its own private key. No one
else could have produced such encrypted message. Therefore, this scenario can
be used as a form of authentication and as a protection against impersonation
(i.e., false identity). The scenario is illustrated in Fig. 12.3.

The second scenario above is the principle behind digital signatures. In essence,
the sender can use its own private key to create a hash of the message content, to be
sent together with the message. Then the sender’s public key can be used to verify
that hash. Such verification will simply fail against any other public key.

The two mechanisms above can also be combined together to create a message
that is simultaneously signed and encrypted. First, the sender signs the message with
its own private key, and then encrypts the whole message (signature included) with
the receiver’s public key. At the receiving end, the receiver decrypts the message
with its own private key and verifies the signature with the sender’s public key. This
procedure is illustrated in Fig. 12.4.

350 12 Inter-Organizational Processes

En�ty A

Private key A

Public key A

Encrypt Verify En�ty B
Send

Private key B

Public key B

Sender Receiver

Sign Decrypt

Fig. 12.4 Signing and encryption

Therefore, in contrast with symmetric-key cryptography, public-key cryptogra-
phy does not require the sender and receiver to have a shared secret. Each party has
its own private key (that is a secret, but is not shared) and also a public key (which
is shared, but is no secret). Using either one’s own private key or the other party’s
public key, one can encrypt and authenticate all messages.

12.1.2 Certification Authorities and Digital Certificates

The mechanisms described above rely on a fundamental assumption—that any given
public key actually belongs to its alleged owner. Otherwise, anyone who (falsely)
claims to have a certain identity and presents a valid public key will be able to
impersonate that identity and exchange messages while posing as someone else. In
particular, consider the following examples:

• Suppose that an entity X claims to be entity B in Fig. 12.2 and registers itself
as being entity B together with its own public key in a central repository. Then
entity X will start receiving and decrypting messages (with its own private key)
that were originally intended for entity B.

• Suppose that an entity X claims to be entity A in Fig. 12.3 and registers itself as
entity A together with its own public key in a central repository. Then entity X
will start signing messages (with its own private key) as if it were entity A.

Clearly, there must be some way to determine that a given public key actually
belongs to the entity that is registered as the owner of that public key, and not to
someone else who is posing as that entity. This is why certification authorities are
needed. A certification authority, or CA for short, certifies that a given public key
belongs to certain entity. This is achieved by means of digital certificates. Basically,
a digital certificate asserts that a given public key (included in the certificate) belongs
to a certain entity (also specified in the certificate).

To ensure that a digital certificate is actually authentic and has not been forged,
the CA signs the certificate with its own private key. This way, everyone can verify
the certificate using the CA’s public key.

12.1 Security 351

En�ty A Encrypt Decrypt En�ty B
Send

Private key B

Public key B

Sender Receiver

CA1

CA2

CA3

Root
CA

Cer�fica�on authori�es

Fig. 12.5 Tree of certification authorities

Through digital certificates, the problem of trusting the public key of a given
entity has now been turned into the problem of trusting the CA that signed the digital
certificate for that public key. For example, when entity A in Fig. 12.3 encrypts the
message with the public key of entity B, it trusts the CA that signed the digital
certificate for this public key. It could be the case that this CA is the same who
certified the public key of entity A. In this case, the CA is trusted by both parties and
they can communicate with each other without further concerns.

However, if the CA that certified the public key of entity B is unknown to entity A,
then the scenario gets more complicated. In general, the trustworthiness of a given
CA can only be asserted by a higher-level CA. Trustworthiness is granted to a CA
(let us call it CA1) by having a higher-level CA (let us call it CA2) sign the public-
key certificate for CA1. If CA1 is unknown to entity A but CA2 is trusted by that
entity, then entity A can safely send the message to entity B. Otherwise, if CA2 is
not trusted by entity A, then there may be an even higher-level CA3 which is trusted,
and entity A can still safely send the message to entity B.

This chain of verifications across a tree of digital certificates issued by different
CAs, who have certified one another, is a usual procedure to determine the validity
of a given public key. If entity A reaches the topmost root certificate (Fig. 12.5)
without finding along the way a single CA that it can trust, then the public key
cannot be trusted. Otherwise, as soon entity A finds a CA in that chain that it can
trust, then the public key for entity B has been validated. Ideally, there should be
some higher-level CA that is trusted by both entity A and entity B, so that the two
parties can safely communicate with each other.

352 12 Inter-Organizational Processes

Orchestra�on

Receive Port

Receive Loca�on

Receive
pipeline

Receive
adapter

Message Box

Send Port

Send
pipeline

Send
adapter

Receive

Incoming
message

Outgoing
message

Send

To remote partyFrom remote party

Use secure
transport
protocol

Use security
components
to decrypt

and validate
signature

Use secure
transport
protocol

Use security
components
to sign and

encrypt

or
or

Fig. 12.6 Security in BizTalk solutions

12.1.3 Security in Integration

Public-key cryptography is the basis for many secure communication protocols
available today. For example, SSL and it successor TLS are commonly used
protocols for the exchange of data between a Web server and a Web browser (i.e.,
a client), and both of these protocols use public-key cryptography (with server
authentication and possibly client authentication as well) during the initial setup of
a session between client and server. Besides the Web, these security protocols can
also be used in other scenarios, for example to secure the communication between
an e-mail client and an e-mail server, or between e-mail servers.

In practice, there are implementations of SSL, TLS, and other security pro-
tocols available for general use, so many integration platforms already include
those protocols. For the systems integrator, incorporating security mechanisms in
an integration solution is often as simple as selecting the appropriate transport
protocols, or including some predefined components for message encryption and
authentication. Figure 12.6 illustrates how security mechanisms can be incorporated
in an integration solution, using BizTalk as an example. In Sect. 2.3 we had
already seen that each port includes an adapter and a pipeline, and optionally a
transformation map as well. In Fig. 12.6, only the adapter and the pipeline have been
represented in each port, since this is where security mechanisms can come into play.

Basically, communication with a remote party can be made secure in two
different ways: either at the level of the adapter or at the level of the pipeline. At the
level of the adapter, a port can be configured to use a secure transport protocol. For
example, instead of using HTTP for communication, the adapter can use HTTPS
(i.e., HTTP on top of SSL/TLS). This approach applies equally well to receive

12.1 Security 353

Decode
stage

 ...

Disassemble
stage

...

Validate
stage

...

Resolve party
stage

...

Incoming
message

To
orchestra�on

Pre-assemble
stage

...

Assemble
stage

...

Encode
stage

From
orchestra�on

Outgoing
message

Receive pipeline

Send pipeline

S/MIME
decoder

S/MIME
encoder

Fig. 12.7 Security components in BizTalk pipelines

ports and to send ports, since SSL/TSL provide encryption and the possibility of
authenticating both ends through the use of digital certificates. This is also the
approach that requires less changes to the integration solution, since it is essentially
a matter of port configuration. However, it should be noted that an adapter can
provide security only while the message is in transit; to secure the actual content of
the message, it is necessary to perform some processing at the level of the pipeline.

As described in Sect. 2.3, particularly in Fig. 2.3 on page 21, a pipeline has
several stages of processing. By default, the pipeline is empty and does nothing,
but it is possible to insert some special, predefined components in these stages
for custom processing. One of such components is the S/MIME encoder (for a
send pipeline) or S/MIME decoder (for a receive pipeline). Basically, S/MIME
is a standard for message encryption and authentication based on public-key
cryptography. In a send pipeline, it is possible to use an S/MIME encoder to sign
and encrypt the message; conversely, in a receive pipeline it is possible to use an
S/MIME decoder to decrypt the message and validate its signature. This is the same
sequence of operations as shown earlier in Fig. 12.4.

Figure 12.7 illustrates the use of S/MIME components in BizTalk pipelines:

• In a receive pipeline, the S/MIME decoder is placed in the decode stage, which
is the first stage of processing. Once the message has been decrypted and its
signature validated, other stages of processing may follow, such as disassemble
(i.e., parsing and possibly breaking the message into multiple parts), validation
(i.e., XML validation of the message or of each of its parts), and party resolution
(i.e., mapping of the sender to a local party identifier).

• In a send pipeline, the S/MIME encoder is placed in the decode stage, which is
the last stage of processing, when the message gets signed and encrypted. Before
that, there is the pre-assemble stage (where custom processing can be applied
to the message through some custom-developed components) and the assemble
stage (which can be used to convert the message XML to flat file, or to add an
envelope to the XML message).

Naturally, the use of the S/MIME components in pipelines dispenses with the
need for transport security at the adapter level, since the content of the message has

354 12 Inter-Organizational Processes

been already encrypted by the pipeline. However, if desired, it is possible to use
both mechanisms at the same time, i.e., to encrypt the message through the pipeline,
and to encrypt the communication channel where the message (which is already
encrypted) will go through. In practice, only one of these mechanisms is typically
used, and pipeline security is often preferred over adapter security, since it secures
the message content regardless of where the message ends up.

For integration solutions that involve the invocation of Web services—such as
is the case with BPEL—there are additional possibilities with regard to security,
namely WS-Security [18]. Basically, WS-Security is a standard for the encryption
and authentication of SOAP messages, which are the type of messages exchanged
between a Web service and its clients, as explained in Sect. 6.4.2. However,
the signing and encryption of each message at the sender, and the subsequent
decryption and signature validation at the receiver, impose a significant performance
overhead, especially when multiple exchanges are to take place. Therefore, other
standards have been proposed, such as WS-SecureConversation [20]. The idea of
WS-SecureConversation is to use WS-Security only in an initial setup phase, to
establish a shared secret between parties. This shared secret can then be used to
secure all subsequent exchanges between those parties in a more efficient way.

12.2 Electronic Data Interchange

Assuming that security concerns have been addressed by the mechanisms and tech-
nologies described above, the next issue to be considered in an inter-organizational
scenario has to do with the actual content or structure of the messages to be
exchanged. In particular, the problem of who defines the message format for an
inter-organizational exchange becomes an especially sensitive issue, since each
business partner will have its own requirements, and in the worst case there may be
no consensus as to what format should be used. This can become a major obstacle
to setting up the interaction between processes running at different organizations.

Within an organization, when there is a message to be exchanged between a
sender and a receiver, it is possible to decide whether it is the receiver who will have
to adapt to the message schema produced by the sender, or whether it is the sender
who will have to adapt to the message schema consumed by the receiver. Also,
there could be a third possibility, which is to have a transformation map between
the two schemas. However, none of these options are very practical in an inter-
organizational environment, because this would require the development of a new
adapter or a new transformation map for every new business partner.

Inter-organizational relationships are supposed to be dynamic. For example, if a
company has a supplier for a certain commodity, but suddenly finds that it can buy
the same commodity at a lower price from a different supplier, then the company
will want to switch to the new supplier immediately, without having to go through
the effort of setting up new message schemas, new adapters, or new transformation
maps just to be able to interact with the new supplier. Ideally, the trade of a given

12.2 Electronic Data Interchange 355

product or service should be standardized in such a way that it is possible to establish
relationships with new business partners without having to introduce significant
changes either in the processes or in the supporting infrastructure.

In general, the trade of any product or service involves the exchange of certain
business documents such as, for example, a request for quote (when a customer
asks for the price of a certain product), a purchase order (when the customer orders
the product from the supplier), a delivery note (where the supplier says when the
product will arrive), and an invoice (when the supplier requests payment for the
product). These and many other types of business documents are well known to any
business organization. The problem is that, in practice, each organization has its own
internal representation for these documents, and this makes it difficult to automate
the exchange of such documents in an inter-organizational scenario.

In an effort to devise a solution to this problem, several standards have been
proposed for the representation of business documents. These standards were meant
not only to provide a uniform format, but also to facilitate the automated exchange
of those documents between systems running at different organizations. Because
of this focus on automated processing, such standards are collectively known as
EDI (Electronic Data Interchange), and they include the EDIFACT standard by the
United Nations, which is used in Europe and Asia, the X12 standard which is used
in North America, as well as some other standards that are used in specific industry
sectors. Here we will be focusing mainly on the UN/EDIFACT standard.

12.2.1 Message Format in EDI

As of November 2012, the UN/EDIFACT standard (version D.12B) includes 196
different message types that can be exchanged between business partners.1 Each
message type is basically an EDI representation of a certain business document.

For example, in the process of Fig. 11.1 on page 317 there is an interaction
between two organizations: a customer (the company whose purchase process
is being modeled) and a supplier. At a certain point, the customer sends a
purchase order to the supplier, and the supplier returns an order confirmation to the
customer. Both of these messages have their EDI-equivalents: the purchase order
corresponds to the ORDERS message type in the UN/EDIFACT standard, and the
order confirmation corresponds to the ORDRSP (order response) message type.

In general, each message type defined in the UN/EDIFACT standard is identified
by a six-letter acronym (e.g., ORDERS, ORDRSP, and INVOIC). In contrast, in the
X12 standard these documents are identified by a three-digit number instead, e.g.,
850 for a purchase order, 855 for a “purchase order acknowledgment,” and 810 for

1For a complete list of these message types, see: http://www.unece.org/trade/untdid/d12b/trmd/
trmdi1.htm.

http://www.unece.org/trade/untdid/d12b/trmd/trmdi1.htm
http://www.unece.org/trade/untdid/d12b/trmd/trmdi1.htm

356 12 Inter-Organizational Processes

Order no. 123456
Date: March 8, 2013

Contact person: ...

From:
Customer Name
Customer Street
Customer City
Postal Code

To:
Supplier Name
Supplier Street
Supplier City
Postal Code

Ref. Descrip�on Price

68454 Bycicle Rockrider 6.0 250,00 €

57063 Helmet Procycle V 30,00 €

Quan�ty

1

1

Order total: 280,00 €

All prices with VAT 20% included.
Payment terms: as previously agreed.
Delivery: customer will pick up the goods.

Fig. 12.8 Paper-based
purchase order

an invoice. There are also some slight differences with respect to the content of these
messages in both standards, although they are governed by the same principles.

Figure 12.8 shows how a purchase order could look like when printed on
paper. This example is somewhat inspired in the bike store scenario of Chap. 5.
In particular, the order is being placed by a certain customer, to a certain supplier;
it has a number and a date; it has a contact person; it has two items that are being
ordered, namely a bicycle and a helmet; for each item, there is a product reference, a
description, a quantity, and a price; there is the order total amount; and finally there
are some details concerning taxes, payment terms, and delivery conditions.

All of the information contained in this purchase order—the customer info, the
supplier info, the product info, and even the payment and delivery details—can be
represented as an EDI message. When represented as an EDI message, the purchase
order can be transmitted electronically and processed by a remote system (i.e., the
supplier’s system) in an automated way. In particular, Listing 12.1 shows how the
purchase order in Fig. 12.8 would look like when represented as a UN/EDIFACT
purchase order message (i.e., a message of type ORDERS).

Clearly, the EDI message in Listing 12.1 is not intended to be human-readable;
rather, it is a machine-processable representation of the purchase order. In any case,
it is still possible to make sense of this message by referring to the specification of
the ORDERS message type in the UN/EDIFACT standard.2 Although here we will

2The D.12B version of this specification can be found at: http://www.unece.org/trade/untdid/d12b/
trmd/orders_c.htm.

http://www.unece.org/trade/untdid/d12b/trmd/orders_c.htm
http://www.unece.org/trade/untdid/d12b/trmd/orders_c.htm

12.2 Electronic Data Interchange 357

Listing 12.1 UN/EDIFACT purchase order message
1 UNA:+.?�’
2 UNB+UNOA:3+CUSTOMER:ZZZ+SUPPLIER:ZZZ+20130308:1430+1234’
3 UNH+001+ORDERS:D:12B:UN’
4 BGM+220+123456’
5 DTM+137:20130308:102’
6 NAD+BY+++CUSTOMER NAME+CUSTOMER STREET+CUSTOMER CITY++POSTAL CODE’
7 CTA+AC+CONTACT PERSON’
8 NAD+SU+++SUPPLIER NAME+SUPPLIER STREET+SUPPLIER CITY++POSTAL CODE’
9 TAX+7+VAT+++20’

10 CUX+1:EUR:9’
11 PYT+18’
12 TOD+4’
13 LIN+1+1+68454:SK’
14 QTY+21:1’
15 FTX+AAA+1+DESCRIPTION+BYCICLE ROCKRIDER 6.0’
16 PRI+AAA:25000:PE’
17 LIN+2+1+57063:SK’
18 QTY+21:1’
19 FTX+AAA+1+DESCRIPTION+HELMET PROCYCLE V’
20 PRI+AAA:3000:PE’
21 UNS+S’
22 MOA+86:28000’
23 CNT+2:2’
24 UNT+22+001’
25 UNZ+1+1234’

go through some of the details of this particular message type, this is meant as an
illustrative example of the general structure of EDI messages.

Basically, an EDI message comprises a series of segments, where each segment is
identified by a three-letter code (e.g., QTY in line 14). Usually, there is one segment
per line (as is the case in Listing 12.1) but this is not mandatory, since each segment
is explicitly terminated by an apostrophe (’), after which another segment may
follow immediately, on the same line. However, it is common practice to introduce
a line break, as a “suffix,” after each segment.

Each segment may have several data elements, which are separated by a plus
sign (+). For example, the QTY segment in line 14 has a single data element, but
the LIN segment in line 13 has three data elements. In some cases, there are several
consecutive plus signs; for example, in line 9 there is a TAX segment which, at a
certain point, has three plus signs (+++). This is the result of two data elements being
left empty. When a data element is not used, its separator must be kept anyway,
because each segment has a fixed number of data elements.

The EDI standards define the meaning of each data element according to its
position in the segment. Therefore, when data elements are skipped, their separators
must be kept anyway to ensure the correct position of the remaining elements. An
exception is the data elements that are skipped at the end of the segment; in this
case, there is no need to keep their separators, because no other nonempty element
will follow until the terminating apostrophe.

Each data element may contain a single value, or it may have multiple compo-
nents. In case there are multiple components, these are separated by a colon (:).
For example, the QTY segment in line 14 has a data element with two components,
which are represented by the values 21 and 1.

358 12 Inter-Organizational Processes

Now that the basic syntax of the EDI message has been explained, its actual
content can be described as follows:

• The UNA segment specifies the special characters that will be used as delimiters.

– The first character (:) is the component separator and the second character is
the data element separator (+).

– The third character (.) refers to the decimal notation, i.e., it is the character
that will be used as a decimal point.

– The fourth character (?) is an indicator to prevent misinterpretation when a
data element happens to contain one of the characters that are being used as
delimiters. For example, if a data element contains an apostrophe, then this
should be preceded by the indicator (?’).

– The fifth character (*) can be given different interpretations. In earlier versions
of the UN/EDIFACT standard, it was a reserved character for future use (in
this case it must be a space character). In recent versions, it is interpreted as a
repetition separator, to be used when a data element has multiple, consecutive
occurrences inside a data segment (which is actually quite rare). In this case,
an asterisk is used to separate those occurrences (rather than a plus sign, which
would indicate the end of the data element).

– The sixth character (’) is the segment terminator, and if this is followed by a
suffix (i.e., some form of line break) then it is assumed that every segment in
the message will be followed by the same suffix.

The UNA segment is optional. If it is not included in the message, then the default
separators will be used. These default separators are exactly the same as the ones
that are being used here, so the UNA segment in line 1 of Listing 12.1 is actually
redundant. It has been included here in order to illustrate that it is possible to
adjust the syntax of EDI messages.

• The UNB segment is mandatory and it works as an envelope for the EDI message.
It is matched by a UNZ segment which closes the envelope at the end (line 25).
Such envelope may actually contain more than one message, but in this case a
single message is being transmitted. The envelope defined by a UNB segment and
a UNZ segment is referred to as an interchange in the EDI terminology, where an
interchange may contain several messages.

In particular, the UNB segment specifies:

– The character encoding for the interchange (UNOA version 3 refers to an
encoding which is similar to ASCII but does not allow lowercase letters).

– An identification for both the sender and the receiver of the interchange. The
qualifier ZZZ in each of these elements specifies that the identifiers are user-
defined.

– The date and time when this interchange was prepared.
– A unique reference number that the sender assigns to the interchange.

12.2 Electronic Data Interchange 359

On the other hand, the UNZ segment comprises:

– The number of EDI messages contained in this interchange. In this case, there
is only one message being transmitted.

– The reference number assigned to the interchange, as in the UNB segment.

• The UNH segment represents the message header. It is matched by a closing
UNT segment (i.e., the message trailer) in line 24. The UNH segment has a
unique reference number that the sender assigns to the message (in this case,
001) and also it specifies the message type (ORDERS), the version number
(directory version D.12B), and the agency that specified this message type (UN
for UN/EDIFACT). On the other hand, the UNT segment specifies the number
of segments in the message (including header and trailer) and also includes the
reference number assigned to the message in the UNH header.

• The BGM segment marks the beginning of the message. The first data element
contains a code for the document name, which in this case indicates that it is
some type of “order” (220). The second data element is an arbitrary document
identifier (123456), which corresponds to the order number in Fig. 12.8.

• The following segment (DTM) contains the order date. The data element has three
components. The code 137 indicates that this is the date when the order was
issued, and the code 102 specifies that the date format is YYYYMMDD.

• The NAD segment in line 6 specifies the name and address for the “buyer” (this
role is identified by the code BY). Not every data element is being used here,
since this depends on how the party is being identified and how the address is
being specified. Also, there is a country code at the end of the NAD segment that
is not being used in this example.

• The CTA segment in line 7 specifies the name of the contact person as in the
purchase order of Fig. 12.8. In this context, AC is a function code that specifies
that the contact person is the person responsible for accepting the goods.

• The NAD segment in line 8 specifies the name and address for the “supplier” (SU),
and it follows the same structure as the NAD segment in line 6.

• The TAX segment is used to include tax information. In this case, code 7 indicates
that it is a general tax (as opposed to special taxes such as customs duties for
imported products). The tax type is VAT, and the fifth data element specifies the
applicable tax rate.

• The CUX segment in line 10 specifies that the prices are in Euros. Code 1 indicates
that this is the currency for payment, and code 9 indicates that this currency is
being used in an order.

• The segment PYT refers to the payment terms. In particular, code 18 means that
payment will be carried out “as previously agreed.”

• The segment TOD refers to the terms of delivery. Code 4 means that the goods
are to be picked up by the customer, as specified in Fig. 12.8.

• Lines 13–20 contain the list of ordered items:

– The LIN segment contains a line item identifier, an action code (1 for “add”)
and a product reference number in the form of a “stock keeping unit” (hence
the code SK).

360 12 Inter-Organizational Processes

– The QTY segment refers to the “ordered” quantity (code 21).
– The FTX segment contains a free text description of the product. The code AAA

indicates that this description is intended for customs or transport purposes.
Code 1 means that this text is not relevant for order processing (because the
item has already been clearly identified in the LIN segment).

– The PRI segment refers to the price for each item. The code AAA indicates
that this is the net price, i.e., it includes all charges. The PE code means that
the price is “per each” unit, so this price must be multiplied by the quantity
specified in the QTY segment.

• Finally, we enter the summary section for the order:

– The UNS segment is a general separator segment. Here it is being used to mark
the beginning of the summary section for this order.

– The MOA segment refers to the total monetary amount associated with this
order. Basically, it is the sum for all items in the order plus any additional
charges, if applicable. The code 86 means that this segment contains the total
of all amounts mentioned in the order.

– The CNT segment is a control count. Here, it is being used as a checksum for
the number of line items in the order (as indicated by code 2). There are two
line items, so the value is, coincidentally, 2. The data element in this segment
contains 2:2, where the first component denotes the type of control count and
the second component is the value for the count.

It should be noted that these segments are not exclusive to the ORDERS message.
In addition to the fact that every EDI message has a header and trailer (UNH and
UNT segments), many of the inner segments are also shared across multiple message
types. For example, the QTY segment appears in 102 out of the 196 message types
defined by the UN/EDIFACT standard (version D.12B).

Because the same segment may appear in different messages, there are several
codes to specify how the segment relates to the current message. For example, the
QTY segment in Listing 12.1 is used with code 21 to denote an “ordered quantity,”
but in other message types the same segment is used with different meanings, such
as the number of returned items, the number of pieces delivered, the number of
goods that are on back-order, a number of hours, a number of job vacancies, or even
a number of livestock (i.e., live animals). There are about 500 different codes to
characterize the type of quantity being specified in a QTY segment.

There are many data elements in other segments that need to be properly qualified
as well (e.g., the codes associated with PYT and TOD in Listing 12.1). In essence,
the UN/EDIFACT standard consists in the specification of the message types, the
segments within each message type, the data elements within each segment, and the
components within each data element. Where applicable, the standard also specifies
the codes that can be used in a given data element or component.

12.2 Electronic Data Interchange 361

12.2.2 Integration with EDI

The EDI standards specify the rules and basic syntax for EDI messages, but there
are several settings that are left up to business partners to define. For example, a
party may want to use different separators (to be specified in the UNA segment),
or to use a character encoding that allows lowercase letters (to be specified in the
UNB segment). In addition, each party has to decide how it will be identified in the
EDI messages to be exchanged (UNB segment). Other terms, such as payment and
delivery conditions, may also have to be settled beforehand.

Naturally, such settings—which govern the interaction between two parties—
cannot be defined unilaterally by one of the parties alone. The terms, conditions,
and parameters that are to be established before the interaction takes place must be
the subject of an agreement between both parties. Such agreement is called a trading
partner agreement (TPA). Typically, a TPA is valid within a certain time frame. If
at the end of that time frame both parties are happy with the current TPA, they may
decide to extend, renew, or renegotiate its terms.

A TPA may include business terms (such as pricing, payment, and delivery
conditions) and also technical specifications that apply to the message exchanges
between both parties. It is these technical specifications that we will be most
interested in, since they have an impact on the integration between both parties.
In an inter-organizational scenario, the TPA is an integral part of any integration
solution that aims at connecting the parties at both ends, because it has important
details concerning the format and transmission of messages between parties.

From a technical point of view, producing and consuming EDI messages are
not very difficult. The message format may be rather elaborate as there are a lot
of segments and data elements for different purposes, but the EDI standards are
fairly clear with respect to the structure and use of such elements. Therefore, an
EDI message can be regarded as being essentially a flat file with special delimiters
(see Sect. 5.3.1 for a discussion of flat files, in particular delimited flat files).

While business partners may exchange messages in an EDI format, internally
they will probably want to use XML in order to take advantage of modern
integration solutions based on orchestrations, message transformation, and service
invocation. In the BizTalk platform, the conversion of flat files to and from
XML can be done through the use of special pipeline components, as shown in
Fig. 12.9.

For a receive pipeline, the disassemble stage may include a flat file disassembler
component which converts an incoming text message into an XML representation.
Similarly, for a send pipeline, the assemble stage may contain a flat file assembler
component that converts an outgoing XML message into a text message. In both
cases, a flat file schema for the message must have been previously defined, and this
schema is provided as input to the flat file disassembler component in the receive
pipeline, and to the flat file assembler component in the send pipeline.

However, when using EDI the situation is slightly different because some of the
information that is required to parse an EDI message may come from the technical

362 12 Inter-Organizational Processes

Decode
stage

...

Disassemble
stage

...

Validate
stage

...

Resolve party
stage

...

Incoming
message

To
orchestra�on

Pre-assemble
stage

...

Assemble
stage

...

Encode
stage

...

From
orchestra�on

Outgoing
message

Receive pipeline

Send pipeline

Flat file
disassembler

Flat file
assembler

Fig. 12.9 Flat file components in BizTalk pipelines

specifications that can only be found in the TPA established between both parties.
Therefore, to receive an EDI message it is necessary to use a special component
in the receive pipeline that is able to parse the message (and convert it to XML)
according to the specifications in the TPA. Conversely, to send an EDI message it is
necessary to use a special component in the send pipeline that is able to produce the
message (from XML) according to the specifications in the TPA.

In the case of BizTalk, this platform already includes special-purpose pipelines
for sending and receiving EDI messages according to a given TPA. The use of these
pipelines is illustrated in Fig. 12.10. Basically, to receive an EDI message, one must
use the EDI receive pipeline in the corresponding receive port, and to send an EDI
message one must use the special-purpose EDI send pipeline in the corresponding
send port. Both of these pipelines are able to fetch the TPA and check the technical
specifications that have been agreed between partners with regard to the separators,
character encoding, and envelopes to be used with those messages.

As shown in Fig. 12.10, the TPA itself is kept in a separate module called “trading
partner management.” The TPA can be changed on-the-fly and its settings will be
immediately applied to the next EDI message that is sent or received.

In practice, setting up a TPA in BizTalk involves the following steps:

• First, it is necessary to define the local party and the remote party. This means
setting up an identity (i.e., a name) for each party, and optionally a digital
certificate as well, to be used for party resolution purposes (i.e., the last stage
in the receive pipeline of Fig. 12.9).

• Second, each party may be configured as having one or more business profiles
(i.e., organizational units, divisions, or subsystems) which are able to engage
in EDI exchanges. Each business profile may use a different EDI standard.
For example, a global company with branches in Europe and North America
may have two business profiles, one which uses the UN/EDIFACT standard and
another that uses the X12 standard, respectively.

• Third, assuming that there is a business profile from the local party and a business
profile from the local party which use the same EDI standard, it is possible to
create a TPA involving both parties. In this context, the TPA is essentially a set

12.2 Electronic Data Interchange 363

Trading partner management

Orchestra�on

Receive Port

Receive Loca�on

EDI
receive
pipeline

Receive
adapter

Message Box

Send Port

EDI
send

pipeline

Send
adapter

Receive

Incoming
EDI message

Outgoing
EDI message

Send

To remote partyFrom remote party

Trading partner
agreement

Local
organiza�on

Remote
party

Fig. 12.10 EDI pipelines in BizTalk

of configurations regarding the separators, character encoding, and envelopes to
be used in the actual messages to be exchanged.

Figure 12.11 illustrates how a TPA is set up in BizTalk according to the three
steps above: first, the identities for the local party and for the remote party are
defined; then their business profiles are created; and finally the messages to be
exchanged are specified together with a set of configurations regarding special
characters, encoding, etc. In the example of Fig. 12.11, the settings apply to a
bidirectional exchange where an ORDERS message (i.e., purchase order) is sent
from the customer to the supplier, and an ORDRSP message (i.e., order response) is
to be returned from the supplier to the customer.

Each party will have to ensure that its local system is properly configured
according to its own role in this exchange. Specifically, for the customer the
ORDERS message is an outgoing message and the ORDRSP message is an incoming
message, whereas for the supplier it is the other way around.

Another important feature of TPAs in BizTalk is that they specify how an
incoming EDI message can be mapped to a local XML schema. In Fig. 12.9 we have
seen that the flat file disassembler component in a receive pipeline must be provided
with the local XML schema that the incoming message will be disassembled into.
A similar requirement applies to the special-purpose EDI receive pipeline, with the

364 12 Inter-Organizational Processes

Customer Supplier

Purchasing Sales

EDIFACT EDIFACT

...
...

...
...

Trading partner agreement

Purchase Order – Order Response
(ORDERS – ORDRSP) agreement

Trading partners

Business profiles

Protocol se�ngs

Fig. 12.11 Trading partner management in BizTalk

difference that some of the information required to identify the local schema must
be fetched from the TPA, as illustrated in Fig. 12.10.

In Sect. 6.5.1 on page 176 we have seen that a (local) message type is identified
by a combination of the target namespace and the root node of the XML schema. For
an incoming EDI message, the root node can be obtained from the UNH segment, as
shown in Listing 12.1. In this case, it is a UN/EDIFACT message of type ORDERS,
version D.12B. However, the EDI message carries no target namespace, so one of
the configurations that it is possible to include in the TPA is the relationship of a
given EDI message type and version to a target namespace.

This way, when an EDI message arrives, the EDI receive pipeline retrieves the
EDI message type and version from the UNH segment in order to identify the root
node (for the message in Listing 12.1, the root node will be EFACT_D12B_ORDERS). On
the other hand, the EDI receive pipeline verifies in the TPA which target namespace
should be associated with such EDI message type and version. As a result, the EDI
receive pipeline is able to obtain a fully qualified message type (in terms of target
namespace and root node) that can be used to determine the local XML schema that
the incoming EDI message must be disassembled to.

12.2.3 Security in EDI

Originally, the EDI standards were designed to be independent of any particular
communication technology, i.e., an EDI message can be transmitted using any
transport protocol agreed between the sender and the receiver. However, as more
business partners started using the Internet for transmitting EDI messages, it became
clear that it would be useful to have some predefined communication standards. In
particular, those standards should address the security concerns of business partners,
especially the need for encryption and authentication of EDI messages.

Initially, some business partners started exchanging EDI messages through e-
mail in order to take advantage of the security features of S/MIME. This led to

12.2 Electronic Data Interchange 365

Decode
stage

...

Disassemble
stage

...

Validate
stage

...

Resolve party
stage

...

Incoming
message

To
orchestra�on

Pre-assemble
stage

...

Assemble
stage

...

Encode
stage

...

From
orchestra�on

Outgoing
message

Receive pipeline

Send pipeline

EDI
disassembler

EDI
assembler

AS2
decoder

AS2
encoder

Fig. 12.12 EDI pipelines with AS2 support

a specification known as AS1 (Applicability Statement 1) [13] which is based on
SMTP and S/MIME. However, soon it was realized that HTTP would be more con-
venient as a transport protocol, which led to a new specification known as AS2 [17]
based on HTTP and S/MIME. Despite the fact that additional standards have been
developed, namely AS3 based on FTP and AS4 based on Web service protocols,
AS2 is still perhaps the most popular standard used in connection with EDI.

Using AS2, the message is transmitted to a remote party within an HTTP request.
This HTTP request will have a special set of headers, which are referred to as
AS2 headers. These headers identify the sender and the receiver, and also indicate
whether a message acknowledgment is being requested by the sender. In AS2, the
acknowledgment is referred to as a “Message Disposition Notification” (MDN), and
it serves as a confirmation that the message reached its destination. If the MDN is
requested by the sender, the receiver is obliged to produce it regardless of whether
the AS2 message has been successfully processed or not.

The actual content of an AS2 message (i.e., the payload of the HTTP message)
is the MIME-encoded version of an EDI message. In particular, the use of S/MIME
allows the EDI message to be encrypted and digitally signed. As explained in
Sect. 12.1.1, if the message is to be signed then it will be signed with the private
key of the sender, and if the message is to be encrypted then it will be encrypted
with the public key of the receiver. For a message that needs to be simultaneously
signed and encrypted, it will be first signed and then the whole message (with the
signature) will be encrypted, as illustrated in Fig. 12.4 on page 350.

In the BizTalk platform, AS2 is supported by means of a special pair of pipelines.
Basically, these are similar to the EDI pipelines discussed in the previous section,
with the difference being that AS2 pipelines have an additional component in the
decode/encode stage to support the AS2 protocol.

As illustrated in Fig. 12.12, an AS2 receive pipeline has an AS2 decoder in the
decode stage that precedes the disassemble stage (i.e., the EDI message will be first
decoded and only then converted to a local XML schema). Conversely, an AS2 send
pipeline has an AS2 encoder in the encode stage that follows the assemble stage
(i.e., the EDI message will be first generated from a local XML schema, and then
encoded before being sent out via HTTP to the remote party).

366 12 Inter-Organizational Processes

It is important to note that every port has a pipeline and an adapter (see, for
example, Fig. 12.10). If the port uses an AS2 pipeline, then it must also use
the HTTP adapter since, by definition, AS2 messages are transmitted over HTTP.
Alternatively, the port may use the HTTPS protocol (i.e., HTTP with SSL/TLS)
since AS2 supports this possibility as well, but this is somewhat redundant if the
message content has already been encrypted through S/MIME. On the other hand,
if the message has been signed but not encrypted in the pipeline, then the use of
transport-layer encryption with HTTPS will make sense.

These options for implementing security have already been discussed in
Sect. 12.1.3 (see Fig. 12.6 in particular). Basically, it is possible to implement
security either at the pipeline level or at the adapter level, but pipeline-level security
is preferred because it is aimed at securing the message content, whereas adapter-
level security aims at securing the communication channel between both ends.
Therefore, when an EDI exchange needs to be secured, this is best done through the
use of a pipeline that is able to securely encode the message content according to
some standard protocol, as is the case with AS2.

12.3 Choreography Modeling

In Sect. 12.2.2 we have seen that a trading partner agreement (TPA) contains
important configurations with respect to the message exchanges that will take place
between the two business partners, in both directions. In particular, the TPA in
Sect. 12.2.2 concerned the exchange of an ORDERS (i.e., purchase order) message
sent from customer to supplier, and the exchange of an ORDRSP (i.e., order
response) message returned from the supplier to the customer. If there would be
other exchanges between these business partners, these additional exchanges could
be the subject of separate TPAs. Also, if there would be more business partners in
this inter-organizational scenario, then there would be a separate TPA to govern the
exchanges between each pair of business partners.

This means that, typically, a TPA is intended to govern a specific pair of
exchanges, and such pairs of exchanges are the basic building blocks of inter-
organizational processes, or choreographies, as described at the beginning of
this chapter. This concept is perhaps better illustrated by means of an example.
Figure 12.13 shows an inter-organizational scenario with four business partners.
Basically, this scenario can be described as follows:

1. The buyer sends a request for quote to the supplier, in order to obtain the price
for a certain product (and possibly other details as well, such as payment and
delivery conditions).

2. The supplier replies with a quote for the product.
3. If the buyer keeps an interest in acquiring the product, it sends a purchase order

to the supplier. Besides the product being ordered, the purchase order contains
additional info, such as the delivery address and payment details.

12.3 Choreography Modeling 367

Logis�cs
provider

Buyer Supplier

Payment
authority

1. Request for quote

2. Quote

3. Purchase order

8. Ship no�ce

Fig. 12.13 A
business-to-business (B2B)
scenario involving four
partners

4. For its own protection, the supplier may inquire about the credit status of the
buyer before proceeding with the order fulfillment.

5. An external payment authority (e.g., the buyer’s bank or the supplier’s bank)
will provide information about the customer’s credit status.

6. Assuming the credit status is alright, the supplier proceeds with the order
fulfillment by sending a shipping order to an external, third-party logistics
provider.

7. The logistics provider confirms that it will be able to deliver the package to the
final destination and also provides an estimate for the arrival date.

8. The supplier informs that the product has been dispatched by sending a ship
notice to the buyer. In addition to the estimate for the arrival date, the ship notice
contains information about the logistics provider and the package identifier so
that the buyer may track its progress.

9. After some time, the supplier charges the buyer for the due amount. In this
example, the payment takes place through the payment authority, as if the
buyer’s credit card or account balance is being charged.

10. A payment acknowledgment is generated when the operation is complete.
11. If, in the meantime, the product is taking longer than expected to arrive, the

buyer may inquire the logistics provider about the delivery status.
12. Upon receiving the query, the logistics provider returns a response with the

current location or stage of processing for the incoming package.

In this scenario it is possible to see that virtually every exchange is part of some
request–response pair. For example, the buyer sends a request for quote and receives
a quote as a response; the supplier inquires about the credit status and receives the
corresponding information as a response; the supplier also sends a shipping order
to the logistics provider and receives a confirmation as a response; the supplier
charges the customer and receives a payment acknowledgment; the buyer queries
the logistics provider and receives the shipping status as a response; and even the

368 12 Inter-Organizational Processes

ship notice, which does not seem to be directly related to a previous request can be
interpreted as result of submitting the purchase order to the supplier.

Naturally, the correspondence between requests and responses does not need to
be exact, since there may be a request without a response, and there may be a request
which triggers more than one response. In any case, the most common message
exchange pattern in an inter-organizational scenario is the request–response and, in
general, every choreography can be described as a sequence of multiple request–
response interactions. For example, the choreography depicted in Fig. 12.1 on
page 346 can be described as a sequence of two request–response interactions (M1
and M2 on one hand, and M3 and M4 on the other hand).

However, even in a choreography—as in any process—there may be several
possible behaviors. For example, in the scenario above (Fig. 12.13) there are several
possible deviations from the described sequence of exchanges, namely:

• After receiving the quote, the buyer may no longer be interested in the purchase,
and therefore the choreography ends prematurely.

• If payment is due in advance (i.e., before shipping) then the supplier may skip the
credit check and charge the customer immediately after receiving the purchase
order, or after receiving the confirmation for the shipping order.

• If the supplier checks the credit status for the buyer, and that status is negative or
non-advisable, the supplier may decide not to continue with the order fulfillment,
or it may require advance payment.

• If the logistics partner is unable to deliver the product to the buyer’s location,
then the supplier may be unable to proceed with the order fulfillment.

• The product may take long to arrive, and in the meantime the buyer may inquire
the logistics provider several times. For each query, the logistics provider must
respond with the current location of the package.

These are just some examples of what can happen as the choreography between
these business partners is taking place. The informal diagram of Fig. 12.13 lists
the message exchanges and provides an idea of their sequence, but this is clearly
insufficient to serve as a precise model for the behavior of the choreography. As we
will see in the following sections, it is possible to use BPMN to describe the behavior
of a choreography in a more precise way. In fact, one of the major improvements in
BPMN 2.0 was the introduction of special diagrams for modeling choreographies—
namely conversation diagrams and choreography diagrams. Previously, if one would
like to model a choreography, the only option would be to use a collaboration
diagram based on message flows between pools, as in Fig. 12.1. However, as we
will see in the next section, these are also unable to capture the behavior in a precise
way. Therefore, although choreography diagrams are a new feature in BPMN, they
will have an important role to play in inter-organizational integration.

12.3.1 Collaboration Diagrams

Figure 12.14 shows a collaboration diagram for the B2B scenario of Fig. 12.13.
In this diagram, each business partner is represented as a separate pool, and these

12.3 Choreography Modeling 369

Buyer

Payment
authority

Supplier

Logis�cs
provider

Request for quote

Quote

Purchase order

Ship no�ce

Shipping order

Shipping conf.

Query status

Delivery status

Check credit

Credit status

Charge customer

Payment ack.

Fig. 12.14 A collaboration diagram

pools are empty of any detail since the main focus is on the choreography, i.e.,
on the message exchanges between partners. The use of message flows between
pools indicates the sender and receiver for each message. However, a collaboration
diagram does not specify the exact sequence in which these message exchanges take
place. The order in which the message flows appear in the diagram provides a rough
indication of the sequence of exchanges, but it cannot be taken for granted that the
messages will be exchanged in that order.

For example, according to the scenario description, the ship notice is sent after
the supplier has received the shipping confirmation from the logistics partner.
However, the arrangement of elements in the collaboration diagram of Fig. 12.14
is such that the message flow for the ship notice is drawn above the interaction
with the logistics partner. As another example, the interaction between the buyer
and the logistics provider has been drawn at roughly the same level as the payment
interaction between the supplier and the payment authority. However, this does not
mean that these exchanges will take place at the same time; instead, one may happen
before the other, or both may happen to be intertwined.

Some additional problems can be recognized within this sort of diagram. For
example, it may be the case that the supplier does not actually check the credit
status of the buyer; however, such pair of messages exchanges with the payment

370 12 Inter-Organizational Processes

Buyer

Payment
authority

Supplier

Logis�cs
provider

Quote
& order

Credit status
& payment

Shipping

Delivery
status

+

+

Fig. 12.15 A conversation diagram

authority is drawn to show that it may happen. Also, the interaction between the
buyer and the logistics provider (i.e., the query about the delivery status) may not
occur at all, it may occur only once, or it may occur multiple times; there is hardly
a convenient way to represent these possibilities in a collaboration diagram.

12.3.2 Conversation Diagrams

The conversation diagram is a new type of diagram introduced in BPMN 2.0.
It is meant to provide a quick overview of which partners collaborate in which
phase of the choreography. Figure 12.15 illustrates a conversation diagram for
the choreography shown above as a collaboration diagram in Fig. 12.14. In fact,
there is an interesting relationship between conversation diagrams and collaboration
diagrams: basically, a conversation diagram can be “expanded” into a collaboration
diagram, where each conversation is expanded into a set of message flows. For
example, the conversations “Shipping” and “Delivery status” in Fig. 12.15 can be
expanded into the corresponding set of message flows in Fig. 12.14.

A conversation can also be expanded into a set of other conversations, which
in turn are expanded into a set of message flows. In this case, the parent (i.e.,
topmost) conversation is referred to as a sub-conversation much in the same way
that an activity which can be expanded into multiple activities is referred to as
a subprocess (see Sect. 11.1.3). In Fig. 12.15 there are two examples of sub-
conversations: “Quote & order” and “Credit status & payment.” Each of these
sub-conversations is expanded into separate conversations in Fig. 12.16. Each of
these lower-level conversations (i.e., “Quote request,” “Order submission,” “Credit
status,” and “Payment”) can then be expanded into a set of message flows, as in
Fig. 12.14.

12.3 Choreography Modeling 371

Buyer

Payment
authority

Supplier

Logis�cs
provider

Quote request
(request id)

Credit status
(customer id)

Shipping
(package id)

Delivery status
(package id)

Order submission
(order id)

Payment
(order id)

Fig. 12.16 Expansion of the sub-conversations in Fig. 12.15

But why should a conversation (actually, a sub-conversation) be expanded into
a set of lower-level conversations rather than being expanded directly into a set of
message flows? The answer is that, within a conversation, all messages exchanges
are related by a correlation id which is present in every message (for a discussion
on the important concept of correlations in business processes, see Sect. 9.2). In the
case of “Quote request” and “Order submission” in Fig. 12.16, and the same applies
to “Credit status” and “Payment,” these conversations have different correlation ids,
and therefore they cannot be represented as a single conversation. However, they
can be grouped into a higher-level sub-conversation, as in Fig. 12.15.

The correlation id associated with each conversation is shown in parenthesis in
Fig. 12.16. This is a standard notation in BPMN 2.0. In particular, “Quote request”
uses a request id as correlation id, whereas “Order submission” uses an order id. This
is the case in this scenario because the two conversations are somewhat independent:
on one hand, a request for quote may not lead to an actual order and, on the other
hand, an order id only exists when an actual order is submitted. This means that, for
example, the “Quote request” and the “Order submission” conversations could be
implemented by separate orchestrations at the supplier:

• The “Quote request” conversation is analogous to querying a product catalog.
The buyer sends the request for quote with a certain request id, and the supplier
returns a quote (i.e., the price for the product) with the same request id. An
orchestration running at the supplier is activated by the arrival of the request for
quote. The same orchestration queries the product catalog and returns the quote
to the buyer, after which it ends. This interaction may or may not be followed by
an order from the buyer. In any case, the supplier is left in a consistent state (i.e.,
no orchestration instance is running).

• If a subsequent order is received from the buyer, then this triggers a separate
orchestration for order fulfillment. In this new orchestration, all messages

372 12 Inter-Organizational Processes

Buyer Supplier
Quote request

(request id)

Order submission
(order id)

Query
catalog

Request
for quote

Quote

Purchase
order

...

...

Send
Ship no�ce

Fig. 12.17 Conversation links to events and activities in a process

exchanged between buyer and supplier will have a unique order id. However, the
same orchestration may use a different correlation id for interacting with other
partners, such as a package id when interacting with the logistics provider.

This idea of having two separate orchestrations at the supplier—i.e., one to
handle the request for quote and another to handle the actual order—is illustrated
in Fig. 12.17. This diagram also shows that the conversation links (drawn with
double lines) can be extended to the events and activities in an internal process. For
simplicity, only the events and activities that pertain to the “Quote request” and to
the “Order submission” conversations have been represented, but the same diagram
could be extended to include the conversations with the logistics provider and with
the payment authority as well.

In fact, a similar scheme could be used for the two conversations that take place
between the supplier and the payment authority (see Fig. 12.16). Here, too, it would
be possible to have these conversations implemented by two separate orchestrations
at the payment authority: one to handle the credit status request, and another to
handle the actual payment. These two interactions have been separated into distinct
conversations because they use different correlation ids. In particular, the “Credit
status” conversation uses a customer id, whereas the “Payment” uses the order id.
The use of customer id in the first conversation does not make perfect sense, because
the same customer may have multiple orders being processed; in this case, there
would be multiple instances of the order fulfillment process with the same customer
id, and therefore this property would be inadequate to identify the correct process
instance which the credit status response should be sent to.

12.3 Choreography Modeling 373

Nevertheless, the customer id property was used here for illustrative purposes
only, in order to show another example of an interaction between two parties that
comprises multiple conversations. If the correlation id would be the same across
these two conversations, then the two conversations could be represented as a single
one, which could then be expanded into the four message exchanges shown on the
right-hand side of Fig. 12.14.

12.3.3 Choreography Diagrams

The conversation diagrams described in the previous section have some of the
same inconveniences as the collaboration diagrams discussed earlier. Namely, a
conversation can be expanded into a set of message exchanges, but the order in
which these exchanges take place cannot be specified in a precise way. Also, some
conversations, or parts of conversations, may not actually occur, depending on how
the choreography unfolds at run-time. For example, if the buyer does not have a good
credit status, then the supplier may decide not to proceed with the order fulfillment.
Clearly, there should be a way to specify the behavior of a choreography as if it
would be a process with a sequence of steps, decisions, etc. However, there are
some important differences between a process and a choreography, namely:

• The unit of work in a process is an activity or task, whereas in a choreography
the unit of work is the exchange of a message (or pair of messages, in case of a
request–response) between two partners.

• A choreography, even if modeled as a process, has only a descriptive purpose.
In contrast with a process, which can often be implemented as an orchestration,
a choreography is outside the control of any single organization, and therefore
cannot be implemented in a centralized way. Rather, a choreography arises as the
combined behavior of processes running at different organizations.

• A choreography is the public view of an inter-organizational process. Internally,
each organization may have to perform many other (i.e., private) activities in
order to produce the messages that are to be exchanged in a choreography.

These differences require the use of modeling constructs that are somewhat
different from the activities in a process. However, there are certain features in
a process model that would be desirable to have in a choreography as well. For
example, the control flow in a process specifies an exact order of execution, and there
is also the possibility of having decisions, parallel branches, etc. It would be useful
to have these features in a choreography, since they would allow specifying the
sequence of exchanges, as well as possible deviations to that sequence. To address
these requirements, BPMN 2.0 introduced a new type of model—the choreography
diagram—which combines message flows with control-flow elements in order to
provide a precise description for the behavior of a choreography.

As explained before, the basic building block of a choreography is a message
exchange between two business partners (or pair of message exchanges, in case of a

374 12 Inter-Organizational Processes

A tnapicitraP
B tnapicitraP

Request Response
Choreography

ac�vity

Par�cipant A

Par�cipant B

Request

Response

Fig. 12.18 Representation of
a pair of message exchanges
as a choreography activity

request–response interaction). Therefore, it is not surprising that the basic building
block of a choreography diagram in BPMN is a modeling construct that represents
such message exchange (or pair of message exchanges). That modeling construct is
shown in Fig. 12.3, and it is known as a choreography activity.

Basically, a choreography activity is represented as a rounded rectangle with two
bands to represent the two participants in the message exchange. The white band
represents the partner who initiates the exchange with a request message, whereas
the shaded band represents the partner at the receiving end, who may or may not
produce a response. The request message and the response message, if it exists, are
drawn as envelopes connected with association links to their respective bands (i.e.,
the band that represents the partner who produces the message). Again, the white
envelope represents the message that initiates the exchange, whereas the shaded
envelope, if present, represents the response (Fig. 12.18).

Now, the interesting feature of choreography activities is that it is possible to con-
nect them to one another with sequence flows, something that one would not expect
to see in a choreography, but here those sequence flows are actually specifying a
sequence of message flows. In addition, it is possible to use some particular types of
events and gateways in that sequence flow. Figure 12.19 illustrates a simple example.
Here, the choreography activities are used in a collaboration diagram to specify the
sequence of exchanges between a buyer, a supplier, and a logistics provider. The
choreography begins after the start event, with the “Quote request” activity, and
then follows a sequence with three other activities, until the end event.

In summary, the first activity in the choreography is a pair of exchanges where
the buyer sends a request for quote to the supplier, and the supplier responds
with a quote message. The second activity contains just a single exchange, and it
consists in the buyer sending a purchase order to the supplier. The third activity
is a pair of exchanges where the supplier sends a shipping order to the logistics
provider, and the logistics provider replies with a shipping confirmation back to the
supplier. Finally, the fourth and final activity in this choreography consists in the
supplier sending a ship notice to the buyer. Here, the message flow has to go around
the diagram in order to reach the buyer’s pool; the point at which this message

12.3 Choreography Modeling 375

Bu
ye

r
Su

pp
lie

r

Lo
gi

s�
cs

 p
ro

v.
Ship

no�ce

Purchase
order

Quote
request

Buyer

Supplier

Request
for quote

Quote

Order
submission

Buyer

Supplier

Shipping

Logis�cs prov.

Supplier

Shipping
conf.

Shipping
order

Shipping
no�fica�on

Buyer

Supplier

Fig. 12.19 Use of choreography activities in a collaboration diagram

flow connects to that pool is irrelevant, since the sequence of messages is clearly
established by the sequence flow shown in the center of the diagram.

The use of choreography activities in a collaboration diagram, as in Fig. 12.19, is
allowed by the BPMN standard, but it is somewhat redundant. Since a choreography
activity already specifies the sender and the receiver for each message exchange in
the white and shaded bands, it becomes unnecessary to include the actual pools
for those parties (at least in the type of collaboration diagram shown in Fig. 12.19,
because in collaboration diagrams where the pools are not empty, i.e., when they
contain internal processes, it becomes possible to connect the message flows to
specific activities inside those processes). Therefore, if the pools are to be kept
empty, then they can be simply omitted without loss of information.

Another reason for omitting the pools is that they may create problems in the
layout of the diagram, if it includes more than two interacting partners. In the
example of Fig. 12.19, it was necessary to draw a message flow that goes around
the diagram in order to reach the buyer’s pool. This could get even worse if there
would be additional exchanges between these partners. For example, if there would
be a fifth choreography activity to represent an interaction between the buyer and the
logistics provider, then the diagram would become significantly more complicated,
because it would be necessary to rearrange the position of the pools and also route
the sequence flow of the choreography around and between those pools.

For these reasons (i.e., redundancy and possible difficulties in placing all
pools in the same diagram), a choreography diagram is usually drawn separately
from a collaboration diagram, as a flow of choreography activities on their own.

376 12 Inter-Organizational Processes

Figure 12.20 shows an example of a choreography diagram for the scenario shown
earlier in Fig. 12.13, with the inclusion of some possible deviations through the use
of control-flow elements such as events and different types of gateways.

In particular, the choreography can be described as follows:

• The choreography begins with an exchange where the buyer sends a request for
quote to the supplier, and the supplier returns a quote.

• After receiving the quote, the buyer may or may not submit a purchase order. It
is impossible to predict whether the buyer will submit an order, but in any case it
can be safely assumed that if the buyer does not submit an order within 30 days,
then it has lost interest in the purchase (and, anyway, the quote provided by the
supplier may not be valid for more than 30 days).

These possibilities are represented in Fig. 12.20 by means of an event-based
gateway. As explained in Sect. 11.1.7, an event-based gateway represents a
decision based on events (i.e., the first event to occur determines the branch to be
executed). In Sect. 11.1.7, we have seen that each branch contains an intermediate
event that represents the trigger for that branch. In a choreography diagram, a
choreography activity can serve as the trigger for a branch in an event-based
gateway, meaning that if the message exchange that is represented by that activity
occurs, then the branch to be executed is automatically chosen.

In Fig. 12.20 the event-based gateway contains a branch with a timer event
and another branch with a choreography activity. The first event to occur decides
the branch to be followed. In other words, if a purchase order is not submitted
within 30 days, then the choreography just ends at that point.

• If the purchase order is submitted by the buyer, then the next steps in the
choreography will depend on whether payment has to be done in advance or not.
In general, in a choreography diagram the branching conditions of a gateway
can only be based on the content of messages exchanged earlier, so the payment
conditions must have been specified in a previous message, possibly in the quote
that the supplier sent to the buyer.

• If payment is due in advance, the choreography follows the upper branch,
where payment is requested immediately to the payment authority. Assuming
that payment is successful (the choreography does not specify what happens
otherwise), this is followed by the exchange of a shipping order and a shipping
confirmation with the logistics partner. After that, the ship notice is sent to the
buyer, and then the choreography will enter the order tracking phase.

In the original scenario of Fig. 12.13, the buyer may query the logistics
provider multiple times in order to find out the current location of the package.
This is done by sending a “query status” message to the logistics provider, who
will then return a “delivery status” message, as depicted in the last choreography
activity in the upper (i.e., rightmost) branch of Fig. 12.20.

Because this “Order tracking” activity can be carried out an arbitrary number
of times, it is represented with a loop marker. When the number of times that a
choreography activity will run is known in advance, it is possible to use a multi-
instance marker instead, as in Fig. 11.3 on page 321.

12.3 Choreography Modeling 377

Q
uo

te
re

qu
es

t

Bu
ye

r

Su
pp

lie
rRe

qu
es

t
fo

r q
uo

te

Q
uo

te
O

rd
er

su
bm

iss
io

n

Bu
ye

r

Su
pp

lie
rPu

rc
ha

se
or

de
r

30
 d

ay
s

Ad
va

nc
e

pa
ym

en
t?

Ch
ec

k
cr

ed
it

st
at

us

Pa
ym

en
t a

ut
h.

Su
pp

lie
rCr

ed
it

st
at

us

Ch
ec

k
cr

ed
it

O
rd

er
tr

ac
ki

ng

Bu
ye

r

Lo
gi

s�
cs

 p
ro

v.Q
ue

ry
st

at
us

De
liv

er
y

st
at

us

Sh
ip

pi
ng

no
�fi

ca
�o

n

Bu
ye

r

Su
pp

lie
r Sh

ip
no

�c
e

Ye
s

N
o

Go
od

 c
re

di
t

st
at

us
?N
o

N
on

-fu
lfi

llm
en

t

Bu
ye

r

Su
pp

lie
r Ba

d
cr

ed
it

Sh
ip

pi
ng

Lo
gi

s�
cs

 p
ro

v.

Su
pp

lie
rSh

ip
pi

ng
co

nf
.

Sh
ip

pi
ng

or
de

r
O

rd
er

tr
ac

ki
ng

Bu
ye

r

Lo
gi

s�
cs

 p
ro

v.Q
ue

ry
st

at
us

De
liv

er
y

st
at

us

Sh
ip

pi
ng

no
�fi

ca
�o

n

Bu
ye

r

Su
pp

lie
r Sh

ip
no

�c
e

Ye
s

Pa
ym

en
t

Pa
ym

en
t a

ut
h.

Su
pp

lie
rPa

ym
en

t
ac

k.

Ch
ar

ge
cu

st
om

er

Sh
ip

pi
ng

Lo
gi

s�
cs

 p
ro

v.

Su
pp

lie
rSh

ip
pi

ng
co

nf
.

Sh
ip

pi
ng

or
de

r

Pa
ym

en
t

Pa
ym

en
t a

ut
h.

Su
pp

lie
rPa

ym
en

t
ac

k.

Ch
ar

ge
cu

st
om

er

F
ig

.1
2.

20
A

ch
or

eo
gr

ap
hy

di
ag

ra
m

(r
ot

at
ed

)

378 12 Inter-Organizational Processes

• If payment is not due in advance, then the supplier will check the credit status
of the buyer by exchanging a pair of messages with the payment authority.
After that, and depending on the credit status, the supplier can decide whether
to proceed with the order fulfillment or not. Again, this is represented as an
exclusive gateway, where the decision is based on the content of a previous
message (in this case, it is the credit status message returned by the payment
authority).

• If the credit status is not good, the supplier may decide not to proceed with the
order, and in this case the choreography terminates here. However, the buyer
should be informed of this fact; otherwise, the buyer will be expecting a ship
notice that will never arrive. This would leave the buyer with a process instance
in a pending state, that would never be allowed to finish. To avoid this situation,
there is a “Non-fulfillment” activity in the choreography that consists in the
supplier sending a “bad credit” message to the buyer.

Having this activity in the choreography means that every buyer that adheres
to this choreography must be prepared to received such message. In fact, after
sending the purchase order, the buyer must be prepared to receive either a ship
notice or a “bad credit” message, as specified in Fig. 12.20. Most likely, the
internal process at the buyer will have an event-based gateway to support these
possibilities. Each branch in this event-based gateway will have an intermediate
event with a message trigger, where one branch will be triggered by the ship
notice and the other branch will be triggered by the “bad credit” message.

• If the credit status of the buyer is good, the supplier proceeds with the order
fulfillment and the next step is to exchange a shipping order and a shipping
confirmation with the logistics partner. After this, the ship notice is sent to the
buyer, and then two things will happen independently of each other (hence the
use of a parallel gateway):

– On one hand, the supplier will take care of payment with the payment
authority (top branch after the parallel split).

– On the other hand, the buyer will be waiting to receive the products and, if
needed, it may contact the logistics partner in order to track the location of the
package. Again, this “Order tracking” activity can be carried out an arbitrary
number of times, so it has a loop marker.

After payment is complete (i.e., the payment acknowledgment is received by the
supplier) and the products arrive at the buyer’s site (i.e., no more tracking needs
to be done), the choreography ends.

An important feature in any choreography is that it should be “consistent” in the
sense that every exchange (i.e., every choreography activity) must be initiated by
a partner who was either the initiating party or the receiving party in the previous
exchange (the only exception being the first activity which is preceded by a start
event). This way, there is always some partner in the choreography who has done
something before and knows what to do next. Otherwise, if this is not the case, then
there is no way to enforce the intended sequence of exchanges.

12.3 Choreography Modeling 379

Ac�vity 1

Par�cipant A

Par�cipant B

Ac�vity 2

Par�cipant A

Par�cipant C

Ac�vity 1

Par�cipant A

Par�cipant B

Ac�vity 2

Par�cipant A

Par�cipant B

Ac�vity 1

Par�cipant A

Par�cipant B

Ac�vity 2

Par�cipant C

Par�cipant B

Ac�vity 1

Par�cipant A

Par�cipant B

Ac�vity 2

Par�cipant A

Par�cipant C

Ac�vity 1

Par�cipant A

Par�cipant B

Ac�vity 2

Par�cipant B

Par�cipant C

Ac�vity 1

Par�cipant A

Par�cipant B

Ac�vity 2

Par�cipant C

Par�cipant D

a

b

c

d

e

f

Fig. 12.21 Consistent vs. inconsistent sequences of choreography activities

Figure 12.21 illustrates this point with a few examples:

• In case (a) the sequence of activities is consistent because it is participant A
who initiates the exchange in both activities. Participant A will know that it must
initiate Activity 2 after having performed Activity 1.

• In case (b) the sequence of activities is consistent because participant B, who
initiates the second activity, was the recipient in the previous exchange, so B will
know that it must initiate Activity 2 after receiving a message from A.

• In case (c) the sequence of activities is consistent because B, again, is both the
recipient of the first exchange and the initiator of the second exchange.

• In case (d) the sequence of activities is inconsistent because there is no way for
participant C to know when it should initiate Activity 2. Unless someone tells
participant C that Activity 1 has been done, there is no way to guarantee that
C will initiate Activity 2 at the right moment. For this to work, there should be
an intermediate activity (between Activity 1 and Activity 2) where either A or B
inform participant C that it can initiate Activity 2. With such intermediate activity,
the sequence of exchanges would become consistent.

• Cases (e) and (f) are inconsistent for the same reason as case (d). Since the
initiator of Activity 2 is neither the initiator nor the recipient of Activity 1, there
is no way for participant C to know when it should initiate the exchange.

Therefore, besides requiring business partners to implement their processes in a
compatible way, a choreography must be consistent by itself, so that one exchange
follows naturally another, without leaving the participants uncertain about what to
do next. As illustrated in Fig. 12.21, the proper sequencing of a choreography can
be guaranteed by ensuring that the initiator of a given exchange is either the initiator
or the recipient of the previous exchange. The interested reader may check that this
is indeed the case for all exchanges in Fig. 12.20.

380 12 Inter-Organizational Processes

12.4 Conclusion

In this chapter we have discussed the problem of inter-organizational integration at
three different levels. At the lowest level, organizations need security mechanisms
to ensure that the messages they exchange are authentic and confidential. This is
achieved through the use of digital signatures and encryption, respectively. Both of
these mechanisms are based on public-key cryptography, where each partner has
both a public key and a private key. A third security artifact is the digital certificate;
this is issued by a trusted certification authority and it asserts that a given public key
actually belongs to its alleged owner.

Once these security mechanisms are in place, business partners will have to
agree on a common format for the messages to be exchanged. A compromise can
be difficult to achieve because each partner has its own preferred schemas, and
also it is impractical to set up common formats for each interaction with a new
business partner. Instead, business partners can rely on EDI standards, which specify
the format for a wide range of documents that are typically exchanged between
business organizations. Although the syntax of these standards predates the use of
XML, it is not difficult to transform EDI messages into XML through the use of
appropriate pipelines. These pipelines also play an important role in securing the
message exchanges through the use of encryption and digital signatures.

Finally, the third level of inter-organizational integration consists in defining the
choreography of message exchanges between partners. Just like a process defines
the sequence of activities that are to be performed by different resources in an
organization, a choreography defines the sequence of message exchanges that are
to take place between a set of business partners. However, in contrast with a
process, which can be implemented within a single organization, a choreography
is the combined result of the internal processes running at different organizations.
In particular, those internal processes must implement the message exchanges that
are required to comply with the role of each organization in the choreography.

Naturally, for a choreography to work out correctly when all partners come
together, the expected behavior for each business partner must be made absolutely
clear from the start. This explains why it is important to have appropriate models to
define the behavior of choreographies with the same rigor as in the case of business
processes. In practice, both kinds of models will have a key role in shaping the
orchestrations and integration solutions in each organization.

References

1. van der Aalst, W.: The application of Petri nets to workflow management. J. Circ. Syst. Comput.
8(1), 21–66 (1998)

2. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns. Distr.
Parallel Databases 14(3), 5–51 (2003)

3. van der Aalst, W., Weske, M.: The P2P approach to interorganizational workflows. In:
Advanced Information Systems Engineering, Lecture Notes in Computer Science, vol. 2068.
Springer, Heidelberg (2001)

4. Allweyer, T.: BPMN 2.0: Introduction to the Standard for Business Process Modeling. Books
on Demand GmbH, Norderstedt (2010)

5. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures and
Applications. Springer, Heidelberg (2003)

6. Beynon-Davies, P.: Information Systems: An Introduction to Informatics in Organizations.
Palgrave Macmillan, Basingstoke (2002)

7. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide, 2nd edn.
Addison-Wesley, Boston, MA (2005)

8. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling the
Web services web: an introduction to SOAP, WSDL, and UDDI. IEEE Internet Comput. 6(2),
86–93 (2002)

9. Edwards, J.: 3-Tier Client/Server at Work. Wiley, Chichester (1999)
10. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall,

Upper Saddle River, NJ (2005)
11. Erl, T.: SOA: Principles of Service Design. Prentice Hall, Upper Saddle River, NJ (2007)
12. Ferreira, D.R., Szimanski, F., Ralha, C.G.: A hierarchical Markov model to understand the

behaviour of agents in business processes. In: Business Process Management Workshops,
Lecture Notes in Business Information Processing, vol. 132, pp. 150–161. Springer, Heidelberg
(2013)

13. Harding, T., Drummond, R., Shih, C.: MIME-based secure peer-to-peer business data inter-
change over the internet. Doc. no. RFC 3335, IETF (2002)

14. Henning, M.: The rise and fall of CORBA. Comm. ACM 51(8), 52–57 (2008)
15. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Solutions. Addison-Wesley, Boston, MA (2003)
16. Hollingsworth, D.: The workflow reference model. Doc. no. TC00-1003, Workflow Manage-

ment Coalition (1995)
17. Moberg, D., Drummond, R.: MIME-based secure peer-to-peer business data interchange using

HTTP, applicability statement 2 (AS2). Doc. no. RFC 4130, IETF (2005)
18. OASIS: Web Services Security: SOAP Message Security 1.1 (2006)
19. OASIS: Web Services Business Process Execution Language Version 2.0 (2007)

D.R. Ferreira, Enterprise Systems Integration, DOI 10.1007/978-3-642-40796-3,
© Springer-Verlag Berlin Heidelberg 2013

381

382 References

20. OASIS: WS-SecureConversation 1.4 (2009)
21. OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011)
22. Ouvans, C., Dumas, M., ter Hofstede, A., van der Aalst, W.: From BPMN process models

to BPEL web services. In: IEEE International Conference on Web Services (ICWS 2006),
pp. 285–292 (2006)

23. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: State of
the art and research challenges. IEEE Comput. 40(11), 38–45 (2007)

24. Recker, J.C., Mendling, J.: On the translation between BPMN and BPEL: Conceptual mismatch
between process modeling languages. In: 18th International Conference on Advanced Informa-
tion Systems Engineering. Proceedings of Workshops and Doctoral Consortium, pp. 521–532.
Namur University Press, Luxembourg (2006)

25. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly, Sebastopol, CA (2007)
26. Scheer, A.W.: ARIS: Business Process Modeling, 3rd edn. Springer, Heidelberg (2000)
27. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 5th edn. McGraw-

Hill, Boston, MA (2006)
28. Stallings, W.: Cryptography and Network Security: Principles and Practice, 5th edn. Prentice

Hall, Upper Saddle River, NJ (2010)
29. Vinoski, S.: CORBA: integrating diverse applications within distributed heterogeneous envi-

ronments. IEEE Comm. Mag. 35(2), 46–55 (1997)
30. W3C: Web Services Description Language (WSDL) 1.1 (2001)
31. W3C: XML Schema Part 2: Datatypes, Second Edition (2004)
32. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web Services Platform

Architecture. Prentice Hall, Upper Saddle River, NJ (2005)
33. Weidlich, M., Decker, G., Großkopf Alexander andWeske, M.: BPEL to BPMN: The myth

of a straight-forward mapping. In: On the Move to Meaningful Internet Systems: OTM 2008,
Lecture Notes in Computer Science, vol. 5331, pp. 265–282. Springer, Heidelberg (2008)

34. White, S.A., Miers, D.: BPMN Modeling and Reference Guide. Future Strategies, Lighthouse
Point, FL (2008)

35. Wollrath, A., Waldo, J., Riggs, R.: Java-centric distributed computing. IEEE Micro. 17(3),
44–53 (1997)

Index

Activating receive, 24, 88, 208, 260, 280
Activity (BPMN), 317
Ad-hoc subprocess, 322
Adapter, 21, 352
Administration queue, 60
API, 97, 144
Application adapter, 144
Artifact, 15, 25
AS2 receive pipeline, 365
AS2 send pipeline, 365
Assign (BPEL), 277
Association (BPMN), 339
Atomic transaction, 264
Attached events, 331

BizTalk application, 25, 138
BPEL, 269
BPMN, 315, 368
Business Activity Monitoring, 17
Business function, 6
Business policy, 28
Business process, 4, 193
Business profile, 362
Business rule task, 320
Business rules, 27
Business service, 199
Business vocabulary, 27

Callback interface, 145, 146, 282
Callback method, 44, 71
Call orchestration shape, 226, 228
Call rules shape, 27
Cancel event, 341
Canonical format, 106
Certification authority, 347, 350

Channel, 35
bridge, 36

Choreography, 344, 345, 366
activity, 374
diagram, 373

Classpath, 147
Client (JMS), 50
Client (RPC), 154
Client stub, 155
Collaboration diagram, 368
Compatibility, 318
Compensate shape, 257, 263
Compensation, 234, 255, 338

BPMN, 339
event, 342
order, 262, 341

Compensation handler, 256, 258
in BPEL, 297
in BPMN, 339

Complex type, 104, 129
Component (EDI), 357
Computer journal, 60
Condition (BPEL), 286
Construct message shape, 24, 178, 210, 223,

224
Content-based routing, 36, 39
Content enricher, 42
Content filter, 42
Context property, 242
Contract, 143, 195
Control channel, 40
Conversation diagram, 370
CORBA, 154, 156
Correlation, 38, 85, 233, 238, 240

in BPEL, 303, 310
id, 49, 57, 64, 85, 238, 240, 372
type, 87, 242, 303

D.R. Ferreira, Enterprise Systems Integration, DOI 10.1007/978-3-642-40796-3,
© Springer-Verlag Berlin Heidelberg 2013

383

384 Index

Correlation set, 87, 242, 243, 303
in BPEL, 304, 307, 308
multiple, 304

CSV format, 17, 102

Database API, 108
Data element (EDI), 357
Dead-letter channel, 36
Dead-letter queue, 60
Dead-path elimination, 289
Decide shape, 24, 215, 252
Decoupling, 143, 195
De-duping, 37
Dehydration, 41
Delay shape, 233, 235
Deployment, 25, 77, 138, 180
Design model, 315
Destination (JMS), 50
Digital certificate, 350
Digital signature, 349
Direct routing, 60
Distinguished property, 83, 175, 176, 253
Durable subscription, 51
Dynamic invocation, 160
Dynamic routing, 39

EDI, 355
EDI receive pipeline, 362
EDI send pipeline, 362
End event, 317, 325
Endpoint, 44
Envelope schema, 230
Error event, 331, 333
Escalation event, 331, 334
Event (BPMN), 317
Event-based gateway, 328
Event handler (BPEL), 301
Event handler (MSMQ), 71
Event log, 262
Event Service, 159
Event subprocess, 331, 335
Exception handler, 247, 258, 263
Exception handling, 234, 246

in BPMN, 331
Exception object, 251, 253
Exclusive gateway, 323
Exclusive-OR gateway, 317
Executable model, 315
Expression shape, 221, 223, 226, 227, 253, 262

Fault handler, 295, 337. See also Exception
handler

Fault variable, 296
FCT-handlers (BPEL), 295
Flat file, 8, 102

delimited, 102
positional, 103

Flow (BPEL), 287
Forward interface, 146
Functoid, 18, 42

Gateway, 317, 323
Global scope, 247

Handle, 110
Hash, 349
Human workflow, 200

Instantiating receive, 319
Interchange (EDI), 358
Interface, 143
Interface Repository, 160
Intermediate event, 318, 327
Invoke (BPEL), 280

JDBC driver, 113, 115
JMS, 50
Join condition, 289

Legacy system, 95
Link dependencies (BPEL), 288
LINQ, 119
Listen shape, 233, 235
Local party, 362
Local scope, 247
Logical error, 246
Logical port, 26, 82
Long-running transaction, 255, 260, 264, 338

example, 262, 341
Loop (BPEL), 289
Loop (BPMN), 320
Loop shape, 219

Manual task, 320
Marshalling, 156
Message, 36

aggregation, 38
assignment shape, 174, 178, 212
authentication, 349
body, 36, 56, 63, 64
body stream, 64, 90

Index 385

box, 16
construction, 131, 212, 223
construction with loop, 224
consumer, 50
consumption, 45
correlation, 48
disassembling, 20
encryption, 348
envelope, 36
expiry date, 37, 51
filter, 39, 77
flow, 317, 318
header, 36, 56
id, 48, 57, 65
immutable, 24, 28, 209
instantiation, 211
priority, 57, 65
producer, 50
production, 45
properties, 56, 63
SOAP, 164
splitting, 38, 230
time to live, 37, 50
transaction, 45 (see also Transaction)
type, 176

Message acknowledgment, 47
explicit, 47, 58
implicit, 47, 58
in JMS, 51, 58
in MSMQ, 61, 73
negative, 47, 61
positive, 47, 61

Method, 143
Method signature (JNI), 152
Milestone, 193
MSMQ, 59
Multicast, 60
Multi-instance, 320
Multi-part message type, 177

Naming Service, 159
Nested block structure, 204
Nested scope, 248
Notification, 167
Notification Service, 159

Object, 143, 181
Object-oriented programming, 143
Object-relational mapping, 119
ODBC, 110
OLE DB, 117
One-way request, 167

Orchestration, 15, 22, 192
asynchronous invocation in BPEL, 284
correlation, 85
example, 219, 226, 239, 260
instance, 208, 236
model, 208
multiple instances, 239, 246
parameter, 228
ports, 135, 179
variable, 223, 262, 264, 277

Orchestrator, 9, 22, 76, 81
Outgoing queue, 60

Package (Java), 147
Parallel gateway, 324
Parallel shape, 217
Parser, 105
Partner link, 271, 274
Partner link type, 274, 306
Persistence point, 265
Physical port, 26, 82
Pick (BPEL), 293
Pipeline, 20, 37, 352
Point-to-point, 35
Polling, 44
Pool, 316
Port (type), 15, 21, 177

binding, 81, 82
WSDL, 167, 169, 281

Prepared statement, 109
Private key, 348
Private queue, 62
Private workflow, 345
Process-based routing, 40
Programming variable, 223
Promoted property, 78, 79, 241, 303
Property (BPEL), 303, 307
Property alias, 307
Property promotion, 79, 80, 240
Property schema, 79, 241
Provider (JMS), 50
Public key, 348
Public queue, 62
Public workflow, 345
Publisher, 35
Publish-subscribe, 16, 35, 76, 77
Purchase order, 356

Queue (JMS), 50
Queue (MSMQ), 60
Queue journal, 60
Queue Manager, 60

386 Index

Re-throw exception, 250
Receive (BPEL), 280
Receive location, 21
Receive pipeline, 20, 353, 361
Receive port, 16, 19, 135, 207
Receiver (MSMQ), 60
Receive shape, 207, 260
Receive task, 319
Rehydration, 41
Remote party, 362
Reply (BPEL), 281
Report queue, 60
Request-response, 48, 167
Reusability, 195
Rollback, 45, 255
Root element, 103, 176
Router, 39
RPC, 154

Schema, 15, 17, 104, 128, 133, 176, 239
Scope (BPEL), 292, 295
Scope shape, 247, 256, 258, 262
Screen scraping, 98
Script task, 320
Segment (EDI), 357
Self-correlating port, 244
Sender (MSMQ), 60
Send pipeline, 20, 353, 361
Send port, 16, 19, 135
Send shape, 24, 207
Send task, 319
Sequence flow, 317
Servant (CORBA), 160
Server (RPC), 154
Server stub (RPC), 155
Service, 12, 181, 186

vs. application, 187
composition, 12, 188
design principles, 195
orchestration, 12, 190, 203
provider, 12
registry, 12
requester, 12
task, 319

Service-oriented architecture, 14, 181, 195
Shape, 23, 131, 207
Shared secret, 348
Skeleton (CORBA), 156
Socket, 153
Solicit-response, 167
Source schema, 211
SQL adapter, 131, 135, 174
Start event, 317, 325

Start orchestration shape, 230
Statelessness, 195
Store and forward, 60
Stored procedure, 132
Structured programming, 143
Stub (CORBA), 157
Sub-conversation, 370
Sub-orchestration, 226, 228
Subprocess, 193, 226

in BPMN, 321
Subscriber, 35
Swimlane, 317
Symmetric key, 65, 348
System error, 246

Target namespace, 167, 176
Target schema, 211
Terminate event, 327
Termination handler, 295, 300
Throw exception shape, 250, 253
Time Service, 159
To-do list, 200
Topic, 35
Topic (JMS), 50
Trading partner agreement, 361
Transaction, 45, 234, 254, 338

in BPMN, 339
distributed, 62, 266
in JMS, 59
in MSMQ, 72
Service, 159

Transactional subprocess, cancellation, 340
Transform shape, 24, 211
Transformation map, 15, 18, 41, 135, 245

with multiple source schemas, 211
Transition condition, 289
Translator, 41
Try-catch, 247

Unmarshalling, 156
User task, 320

Web message type, 178
Web service, 12, 161

asynchronous invocation in BPEL, 281
client, 171
example, 163
hosting, 162
invoking from an orchestration, 174
proxy, 171
security, 354

Index 387

Work item, 200
Workflow, 200

client application, 200
engine, 200
pattern, 214

Worklist, 200

Wrapper, 172
Wrapper WSDL file, 274
WSDL, 166

XML, 103, 120. See also Schema

	Preface
	Contents
	Acronyms
	Part I Introduction
	1 Evolution of Enterprise Systems
	1.1 Essential Systems of a Business Organization
	1.2 Evolution of System Architectures
	1.3 Integrating Several Applications Together
	1.4 Services: The Ultimate Solution?
	1.5 Conclusion

	2 Introduction to BizTalk Server
	2.1 The Message Box
	2.2 Schemas and Transformation Maps
	2.3 Ports, Pipelines, and Adapters
	2.4 Orchestrations
	2.5 BizTalk Applications
	2.6 Business Rules
	2.7 Conclusion

	Part II Messaging
	3 Messaging Systems
	3.1 Fundamental Concepts
	3.1.1 Channels
	3.1.2 Messages
	3.1.3 Pipelines
	3.1.4 Routers
	3.1.5 Translators
	3.1.6 Endpoints

	3.2 Message Transactions
	3.3 Message Acknowledgments
	3.4 Message Correlation
	3.5 The Java Message Service
	3.5.1 The JMS API
	3.5.2 How to Use JMS
	3.5.3 JMS Messages
	3.5.4 Message Acknowledgments in JMS
	3.5.5 Transactions in JMS

	3.6 Microsoft Message Queuing
	3.6.1 Message Acknowledgments in MSMQ
	3.6.2 Public and Private Queues
	3.6.3 Distributed Transactions in MSMQ
	3.6.4 The Structure of MSMQ Messages
	3.6.5 How to Use MSMQ
	3.6.6 Receiving Messages Asynchronously
	3.6.7 Using MSMQ Transactions
	3.6.8 Using Acknowledgments

	3.7 Conclusion

	4 Message Brokers
	4.1 Message-Level vs. Orchestration-Level Integration
	4.2 Publish–Subscribe with Message Filters
	4.3 Promoted Properties
	4.4 Orchestration-Level Integration
	4.5 Distinguished Properties
	4.6 Correlations
	4.7 Using Asynchronous Messaging
	4.8 Conclusion

	Part III Adapters
	5 Data Adapters
	5.1 The Three-Tier Model
	5.2 Capturing the User Interface
	5.3 Integrating Through Files
	5.3.1 Delimited and Positional Flat Files
	5.3.2 Using XML Files
	5.3.3 Canonical Data Formats

	5.4 Database Access APIs
	5.4.1 Using ODBC
	5.4.2 Using JDBC
	5.4.3 Types of JDBC Drivers
	5.4.4 Database APIs in Windows
	5.4.5 Database Access in the .NET Framework
	5.4.6 Using LINQ

	5.5 Returning Data in XML
	5.5.1 Using the RAW Mode
	5.5.2 Using the AUTO Mode
	5.5.3 Using the EXPLICIT Mode
	5.5.4 Using the PATH Mode
	5.5.5 How to Obtain the XML Schema

	5.6 Using the SQL Adapter
	5.6.1 Creating the Stored Procedure
	5.6.2 Defining the Message Schemas
	5.6.3 Defining the Transformation Maps
	5.6.4 Configuring the Ports in the Orchestration
	5.6.5 Removing the XMLDATA Command
	5.6.6 Deploying and Running the Orchestration

	5.7 Conclusion

	6 Application Adapters
	6.1 Methods and Interfaces
	6.1.1 Interfaces and Adapters
	6.1.2 Forward and Callback Interfaces

	6.2 Integration of Application Code
	6.2.1 Calling C/C++ Code from Java
	6.2.2 Calling Java Code from C/C++
	6.2.3 Integrating Across the Network

	6.3 Revisiting RPC and CORBA
	6.3.1 From RPC to CORBA
	6.3.2 The CORBA Services
	6.3.3 Dynamic Invocations in CORBA

	6.4 Web Services
	6.4.1 A Simple Example
	6.4.2 Invoking Operations with SOAP Messages
	6.4.3 The WSDL Interface Definition
	6.4.4 Creating a Client for the Web Service

	6.5 Invoking a Web Service from an Orchestration
	6.5.1 Defining the Message Schema
	6.5.2 Adding a Reference to the Web Service
	6.5.3 Configuring the Message Assignments
	6.5.4 Configuring the Ports in the Orchestration
	6.5.5 Deploying and Running the Orchestration

	6.6 Conclusion

	Part IV Orchestrations
	7 Services and SOA
	7.1 Services and Applications
	7.2 Service Composition
	7.3 Service Orchestrations
	7.4 Orchestrations and Business Processes
	7.5 SOA and Service Design Principles
	7.6 The Benefits of SOA
	7.7 Support for Human Workflows
	7.8 Conclusion

	8 Orchestration Flow
	8.1 Block Structure
	8.2 Beginning the Flow
	8.3 Message Construction
	8.3.1 Constructing Messages Through Transformation
	8.3.2 Constructing Through Message Assignment

	8.4 Controlling the Flow
	8.4.1 The Decide Shape
	8.4.2 The Parallel Shape

	8.5 Using the Loop Shape
	8.5.1 Overview of the Solution
	8.5.2 The Use of Expression Shapes
	8.5.3 Constructing the Request Message
	8.5.4 Constructing the Final Message

	8.6 Orchestrations as Subprocesses
	8.6.1 The Main Orchestration
	8.6.2 The Sub-orchestration and Its Parameters
	8.6.3 Calling vs. Starting an Orchestration

	8.7 Conclusion

	9 Advanced Constructs
	9.1 Listening for Events
	9.2 Correlations
	9.2.1 Defining the Schemas and the Orchestration
	9.2.2 Defining the Property Schema
	9.2.3 Defining the Correlation Type
	9.2.4 Defining and Using a Correlation Set
	9.2.5 Running the Orchestration

	9.3 Exception Handling
	9.3.1 The Scope Shape
	9.3.2 Nested Scopes
	9.3.3 The Throw Exception Shape
	9.3.4 Exception Objects
	9.3.5 An Example

	9.4 Transactions
	9.4.1 Revisiting the Scope Shape
	9.4.2 The Compensate Shape
	9.4.3 Using Both Exception and Compensation Handlers
	9.4.4 An Example
	9.4.5 A Note About the Previous Example
	9.4.6 Long-Running vs. Atomic Transactions

	9.5 Conclusion

	10 Orchestrations with BPEL
	10.1 An Example
	10.1.1 Understanding Partner Links
	10.1.2 Orchestration Variables
	10.1.3 The Orchestration Flow

	10.2 Asynchronous Invocations
	10.2.1 Invoking a Web Service Asynchronously
	10.2.2 Invoking an Orchestration Asynchronously

	10.3 Controlling the Flow
	10.3.1 Decisions
	10.3.2 Parallel Activities
	10.3.3 Loops
	10.3.4 Listening for Events

	10.4 Using Scopes
	10.4.1 Fault Handlers
	10.4.2 Compensation Handlers
	10.4.3 Termination Handlers
	10.4.4 Event Handlers

	10.5 Correlations
	10.5.1 An Example
	10.5.2 Defining Properties and Property Aliases
	10.5.3 Defining the Correlation Set
	10.5.4 Using the Correlation Set
	10.5.5 Use of Correlation in Other Activities

	10.6 Conclusion

	Part V Processes
	11 Process Modeling with BPMN
	11.1 Elements of a BPMN Process Model
	11.1.1 Activities
	11.1.2 Loops and Multi-Instance Activities
	11.1.3 Subprocesses
	11.1.4 Gateways
	11.1.5 Start and End Events
	11.1.6 Intermediate Events
	11.1.7 Event-Based Gateways

	11.2 Exception Handling
	11.2.1 Attached Intermediate Events
	11.2.2 Error Events
	11.2.3 Escalation Events
	11.2.4 Event Subprocesses

	11.3 Transactions and Compensation
	11.3.1 Compensation Handlers
	11.3.2 Transactional Subprocesses
	11.3.3 Using Compensation Events

	11.4 Conclusion

	12 Inter-Organizational Processes
	12.1 Security
	12.1.1 Encryption, Authentication, and Digital Signatures
	12.1.2 Certification Authorities and Digital Certificates
	12.1.3 Security in Integration

	12.2 Electronic Data Interchange
	12.2.1 Message Format in EDI
	12.2.2 Integration with EDI
	12.2.3 Security in EDI

	12.3 Choreography Modeling
	12.3.1 Collaboration Diagrams
	12.3.2 Conversation Diagrams
	12.3.3 Choreography Diagrams

	12.4 Conclusion

	References
	Index

