CHAPTER ONE

Approaching
Application Integration

his chapter sets the stage for application integra-
Ttion concepts and introduces ways to view appli~
cation integration solution patterns. The reader should
focus on the concepts rather than the details. More
technical details will come later in the book.

Application integration is a strategic approach to

binding many information systems together, at both the
service and information levels, supporting their ability to
exchange information and leverage processes in real time.
While this sounds like a pure technology play, the result-
ing information and process flow between internal and
external systems provides enterprises with a clear strate-
gic business advantage: the ability to do business in real
time, in an eyent-driven atmosphere, and with reduced
latency (see the tidbit on page 2). The business value of
this is apparent.

Application integration can take many forms, in-

cluding internal application integration—Enterprise
Application ‘Integration (EAI)—or external application
integration—Business-to-Business Application Integra-
tion (B2B). While each form has its own set of eccentrici-
ties, once you dig into the technology, you'll find that
both inter- and intracompany integration solutions share
many common patterns. For example, there almost always
has to be transformation technology present to account for
the difference in application semantics, routing technology

to ensure that the information goes to the correct destinations, and rules process-
ing to define integration behavior. However, there is much more tozi)phcation
intégration.

Keep in mind that the application integration concept is nothing new. We've
been dealing with mechanisms to connect applications together since we’ve had
more than two business systems and a network to run between them. What is new
is understanding the need for application integration solutions to support strate-
 gic business initiatives going forward, such as participating in electronic markets,

supply chain enablement, Web visibility, Customer Relationship Management
' (CRM), and the real need to get all internal systems exchanging information and
services. Indeed, as time marches on, we see the need to view application integra-
tion as a true paradigm, something that requires a great deal of business definition
and architectural planning. Moreover, the application of new technology, such as
integration brokers, to solve this problem brings more opportunity.
So, how do innovative enterprises leverage application integration? It’s really
a matter of understanding the need first, then the requirements, and finally how to
solve the problem for their domain. Make no mistake: This is a difficult and com-
plex process, but one you can handle when armed with the right information.

Moving to Real-Time Business Integration: An Example

Few examples illuminate the difference between the conventional (non-
integrated) method of doing business and an integrated business more
clearly than the purchase of a new car. Currently, a customer walks into
an automobile dealership and orders a car. That order is then placed
with the auto manufacturer. The manufacturer, in turn, orders the parts
and creates the car, while the suppliers order raw materials to create the
parts. Paper purchase orders are sent to the suppliers, who ship the
materials and send paper invoices to request payment. Only then, when
all the parts are received from the suppliers, can the car be manufac-
tured and sent to the dealer—resulting in even more paper.

This process typically takes months, not weeks. It should only take
days.

We need to think more comprehensively about how we capture and
react to events. We need to recognize that all components of the inte-
grated enterprise, or extended enterprise, affect the supply chain itself.

For example, when a customer walks into our car dealership and orders
a car, or when the customer orders a car via the Internet, that action is,
in and of itself, a business event that is captured. Our system must react
to this event by performing several tasks instantaneously: logging the
event, processing the rules bound to such an event, and moving infor-
mation to other interested systems or humans.

The event must be logged so that it won’t be forgotten should there
be a failure as it is being processed. We need to process ruies bound to
the event, such as price limits and credit requirements. The internal (e.g.,
inventory) systems and external (supplier) systems must be informed of
the event. Finally, the information created by this event, in this example,
customer and car configuration information, must move forward to the
appropriate systems. Typically, this should be a second, subprocess.

What is of note here is that all relevant systems are notified of the
event and are supplied with all appropriate information, in real time, so
that they can, in turn, instantly react to the event. In our car purchase
example above, the sales event captured by our manufacturer’s system
generates an instant requirement for parts to create the car. In turn, this
information triggers a cascading series of additional events within sys-
tems owned by the suppliers, events such as notifying a supplier of the
raw materials required to build the parts. A single, primary event could
thus trigger as many as several hundred other events, which, in turn,
could trigger several thousand more events. It is exactly this chain re-
action of events—events that serve a business need—that we hope to create.
" Remember, this real-time application integration scenario is an in-
stantaneous process. Within seconds of the initial order, the suppliers are
processing requests for the raw materials, the factory floor is scheduling
workers, and the logistic group is assigning resources in order to ship a
car to a particular dealer. There may be hundreds of systems involved
with the sale, creation, and movement of this car, all exchanging event
information simultaneously. Of equal relevance is that all systems partici-
pating in the event will be nqtiﬁed instantly should there be any change
along the supply chain. That is, if demand changes (e.g., if car sales are
down) or if there is a parts shortage. Instantaneous notification is a two-
way street, from orders to suppliers, from suppliers to orders.

Simply put, application integrationisa complex problem. The simple reality
s that most application integration projects exist just at th.e en’;ry 1.eve1. ‘We have
yet to see the real-time coupling of thousands of applications. Thls' slfould not
necessarily be discouraging. As with any complex p.roblem, once it is .brok;n
down to its component parts, the solution becomes simply thfa aggregation ot a
number of solution sets. In this case, it’s a combination of a variety of approaches
and several types of technology. This seems to flyin the .fac.e of those vxfho want to
oversimplify the concept of application integration, thmkm.g tl‘lat a simple stan-
dard, such as XML, or a particular technology, such as application se:rvers, holds
the answers to all of their problems. Unfortunately, it’s just not that simple.

The world of application integration is no different from the larger world of
technology—it is advancing and changing rapidly. Tronically, .as ’.Lhe '.cechnolc?gy
changes, so does the problem it is designed to solve. The application mt?graUOn
problem is morphing from the very simple to the very complex, even as it moves
from a departmental problem to an enterprise-wide probl‘em, and, ultimately, to a
trading community problem. Consequently, few companies have been al?le to get
ahead of the “application integration curve” Without a comp.lete. soliutlon, t'hey
remain short of discovering the full potential and benefits of apphc.atlon integration.

We are seeing that, as the problem grows, so do the potential beneﬁts' of the
solution. The technology continues to respond to a perceived nee.d. In this cc?n-
text, our pursuit of application integration is like chasing the tail of a growing
beast. For now, that “beast” has remained ahead of us. A great deal of work
remains ahead of us. But rest assured, a solution will be found and the om.:e-
unimaginable benefits of application integration will.become an everyday reality.

As T've suggested above, as the problem domains become mc?re 'comp:ex,
the application integration solution set evolves to addr‘ess that growing co(;np exl’—1
ity. No sooner is 2 «raditional” application integration Problen.l SOIV:h (51.1;
as app]ication—to—application and database-to-database 1ntef¢;1."a.1:1or1.),d an the
developed application integration expertise and technology is applied to more
complex, but more rewarding, business issues.

. Moving from Information-Oriented to service-Oriented
Application Integration

A clear trend is the movement away from information-oriented tcT semc:ba'sed
integration. Information-oriented integration provides an inexpensive mec am:;n
to integrate applications because, in most instances, there is no need to change the

applications.

While information-oriented integration provides a functional solution for
many application integration problem domains, it is the integration of both
application services and application methods that generally provides more value !
in the long run. That is the underlying theme of this book.

For example, a trading community looking to automate the processing of
ordering raw materials may find that simply sharing information (order goes
out, and confirmation comes in) is just fine to solve their integration problem.
However, in another trading community, there may be a need to access remote
services, such as the calculation of duty for intercountry trades. Again, you have
to leverage the right approach for the business problem you are looking to solve.

Service-based application integration is not a new approach. We've been
looking for mechanisms to bind applications together at the service level for
years, including frameworks, transactions, and distributed objects—all in wide
use today. However, the new notion of Web services, such as Microsoft’s NET
strategy, is picking up steam as we attempt to identify a new mechanism that’s
better able to leverage the power of the Internet to provide access to remote
application services through a well-defined interface and directory service:

Universal Description, Discovery and Integration (UDDI).

The uses for this type of integration are endless, including the creation of
composite applications, Or applications that aggregate the processes and infor-
mation of many applications. For example, using this ﬁé};digm, application
developers simply need to create the interface and add the application services by
binding the interface to as many Internet-connected application services as are
required.

The downside, at least with service-based integration, is that this makes it
necessary to change the source and target applications or, worse in a number of
instances, to create a new application (a composite application). This has the
effect of adding cost to the application integration project and is the reason many
choose to stay at the information level.

still, the upside of this approach is that it is consistent with the “baby step”
approach most enterprises find comfortable when implementing solutions to
integration problems. Service-based solutions tend to be created in a series of
small, lower-risk steps. This type of implementation can be successful from the
department to the enterprise to the trading community, but never the other way
around—from the trading community to the department.

AP o an

i
i

p

plication Integration Approaches

As we've come to appreciate, application integration i? a combinatm.n of pr(.)b-
jems. Each organization and trading community has its 0@ set o'f 1nteg12t1(c1)n
issues that must be addressed. Because of this, it‘is nexjc to 1mpos;11blefto :aci
single technological solution set that can be applied ur.uvers'aflfly. Tt ere o:s;Ches
application integration solution will generally require d1 erent ap]i < ar;
At this time, and in the foreseeable future, one-stop shopping 1s sIMpLy I

ication integration reality. N
appliliiiugh aiproaches to application integration vary considerably; it 1s pos-
sible to create some general categories, which include

! « Information-oriented

« Business process integration-oriented
i » Service-oriented
i « Portal-oriented

pformation-Oriented

Technologists who promote the information-oriented approach to application
integration argue that integration should occur between the dat.abases 1()01‘ pro-
prietary APIs that produce information, such as BAPI)—Tthat is, (iiata afse's tor
information-producing APIs should be viewed as the primary pomts ot inte-

ithi i i ication Integra-
i 1.1). Within Information-Oriented Application
e e iented solutions can be

ation, and ’Binterface

gration :
tion (IOAI), there are many approaches. Information-or
grouped into threg:_'c_;qgggpries:qdata replication, gata feder

processing.

Dave Smith
KRK=KK-KXHX
365 Main St.
Somewhere,
Usa 11111

i ion-Ori icati tegration deals with the
11 Information-Oriented Application In
Figure simple exchange of information between two or more systems.

T

Data Replication

Data replication is simply moving data between two or more databases. These
databases can come from the same vendor, or from many vendors (see Figure 1.2).
They can even be databases that employ different models. The fundamental
requirement of database replication is that it accounts for the differences be-
tween database models and database schemas by providing the infrastructure to
exchange data. Solutions that provide for such infrastructures are plentiful and
inexpensive.

Many database-oriented middleware solutions currently on the market pro-
vide database replication services, as well. Replication services are accomplished
by placing a layer of software between two or more databases. On one side, the
data is extracted from the source database or databases, and on the other side, the
data is placed in the target database or databases. Many of these solutions pro-
vide transformation services, as well—the ability to adjust the schemas and the
content so they make sense to the target database.

The advantages of database replication are simplicity and low cost. Database
replication is easy to implement, and the technology is cheap to purchase and
install. Unfortunately, these advantages are quickly lost(ifhmethods need to be

bound to the data, or if methods are shared along with the data. If these require-

ments exist, service-based solutions must be considered.

Data Federation

Database federation is the integration of multiple databases and database models
into a single, unified view of the databases (see Figure 1.3). Put another way,

Figure 1.2 Database replication is the simple exchange of information
between databases. :

Virtual
Database

DB2

Informix

Oracle

Sybase

- database.

Figure 1.3 Data federation allows many databases to appcear as a single

database federations are virtual enterprise databases that are comprised of many
real, physical databases. While database federation has been around for some
time, the solution set has been perfected only recently.

Database federation software places a layer of software (middleware) between
the physical distributed databases and the applications that view the data. This
layer connects to the back-end databases using available interface$ and | maps the
physical databases to a virtual database model that exists only in the software.
The application uses this virtual database to access the required information. The
database federation handles the collection and distribution of the data, as needed,
to the physical databases.

The advantage of using this software is that it can bind many different data
types into a unified model that supports information exchange.

Database federation allows access to any connected database in the enter-
prise through a single, well-defined interface. This is the most elegant solution to
the data-oriented application integration problem. Unlike replication, this solu-
tion does not require changes to the source or target applications. Still, changes
do have to be made at the application-oriented level to support federated data-
base software. This is due to the fact that different interfaces are being used to
access a different database model (the virtual database).

Interface Processing

Interface processing solutions use well-defined application interfaces to focus
on the integration of both packaged and custom applications (see Figure 1.4).
Currently, interest in integrating popular Enterprise Resource Planning (ERP)
applications (e.g., SAP, PeopleSoft, and Oracle) has made this the most exciting
application integration sector. '

Information
and-Services

Figure 1.4 Interface processing externalizes information out of packaged
applications through a well-defined API.

iy -

p—

Integration%;_o_lgg;_s_ Jsupport application interface processing solutions by
providing adapters to connect to as many custom Or packaged applications as
possible, externalizing information out of those applications through their open
_or, more often than not, Eggp/rj_g;a_gy/i__rggg_rfaces. They also connect to technology
solutions that include middleware and screen scrapers as points of integration.

The efficient integration of many different types of applications defines the
primary advantage of using application integration—oriented products. In just
days, it is possible to connect a SAP R/3 application to an Oracle application, with
the application interface processing solution accounting for differences between
schema, content, and application semantics by translating on the fly the informa-
tion moving between the systems.

The downside to using application interface-oriented products is that there is
little regard for business logic and methods within the source or target systems—
logic and methods that may berelevant toa particular integration effort. In sucha
case, service-based solutions probably make the better choice. Ultimately, applica-
tion interface processing technology will learn to share methods as well as infor-
mation, perhaps by joining forces with service-based approaches.

Business Process Integration—Oriented

Simply put, business process integration—oriented products layer a set of easily
defined and centrally managed processes on top of existing sets of processes cOn=
tained within a set of enterprise applications (see Figure 1.5).

Packaged Application Interfaces: Information versus Services

While packaged application interfaces are primarily information ori-
ented, there are a few that provide access to application services as
well. These are hybrids. The best example of this is Business Application
Programming Interfaces (BAPI) from SAP, but a few others also exist.

These interfaces allow you to invoke remote application ser-
vices, such as processing a credit check or calctlating shipping costs—
processes that are more service than information oriented.

packaged application interfaces, as you'll discover in Chapter 2, pro-
vide very different approaches t0 access both information and services.
There are no standards for packaged application integration, even
though the J2EE Connector Architect (JCA)is attempting to set some.

Process Integration Model

AT

Company A Company B

Company C

Figure 1.5 Business i
process integration allows application i
plication int i
architects to place a well~defined business processeagsrtalfzeon

controlling entity, able to ac i
f cess both inform
processes encapsulated in remote systems ation and

Busine i : .
ing o ss process integration (BPI) is the science and mechanism of manag
oV . . .
oropes orde einent of data, and the invocation of processes in the correct and
o inr 0 dsu}t)pport the management and execution of common processes
a s g .
Application Inl‘: e"cween applications. Business Process Integration-Oriented
cemraly onen eg;atmn (BPIOAI) provides another layer of easily defined and
aged processes that exist on to st
. o p of an existing set 0
data contained within a set of applications & f processes and
The goal i i)
ing com ri -15 to bring together relevant processes found in an enterprise or trad
u i . -
A nity t.o obtain the maximum amount of value, while supporting the
ormation and control logic between these processes. These products

view the middleware, or the “plumbing,” as a commodity and provide easy-to-
use visual interfaces for binding these processes together.

In reality, business process integration is another layer of value resting upon
existing application integration solutions, solutions that include integration servers,
application servers, distributed objects, and other middleware layers. Business
process integration offers a mechanism to bind disparate processes together and to
create process-to-process solutions that automate tasks once performed manually.

However, by diminishing the importance of the plumbing, it is too easy to
lose sight of the larger picture. In reality, no single application integration vendor
has solved the plumbing issues. Ultimately, the solution to these issues will be
delivered by a combination of business process integration and middleware ven-
dors. That being the case, it is clear that the binding of middleware and process
automation tools represents the future of application integration.

Business process integration is a strategy, as much as technology, which
strengthens your organization’s ability to interact with disparate applications
by integrating entire business processes, both within and between enterprises.
Indeed, business process integration delivers application integration by dealing
with several organizations using various ~n__liticlata, plgt_fgrms, and processes. Thus,
business process integration technology must be flexible, providing a translation
layer between the source and target systems, and the business process integration
engine.

There are many differences between more traditional application integration
and business process integration.

* A single instance of business process integration typically spans many
instances of traditional application integration.

- Application integration typically means the exchange of information
between two or more systems without visibility into internal processes.

- Business process integration leads with a process model and moves informa-
tion between applications in support of that model.

« Application integration is typically a tactical solution, motivated by the
requirement for two or more applications to communicate. ‘

+ Business process integration is strategic, leveraging business rules to deter-
mine how systems should interact and better leverage the business value
from each system through a common abstract business model.

BPIOAI views middleware, or the plumbing, as a commodity, with the ability
to leverage both message-oriented and transactional middleware as points of

integration into any number of source or target systems. In fact, most integration
servers and application servers are beginning to offer business process integra-
tion tools that support their middleware technology. Indeed, business process|
integration generally provides easy-to-use visual interfaces for binding these]’
processes together and, along the way, creates visual BPIOAL)

While some may question the relevance of Business Process Integration-
Oriented Application Integration, and even of application integration itself, I
would argue that BPIOAI is the ultimate destination of application integration
(acknowledging that we still have a long way to go to perfect the middleware).
Despite current shortcomings, many application integration vendors are aggres-
sively promoting BPIOALI as a vital component of their application integration
technology package. In doing so, their strategy is clear—they are anxious to join
the world of high-end, BPIOAI modeling tools. They hope that their application
integration-enabled middleware, such as integration servers and application
servers, will accomplish just that.

BPIOALI is best defined as applying appropriate rules, in an agreed-upon log-
ical sequence, in order to pass information between participating systems, as well
as visualize and share application-level processes, including the creation of a
common abstract process that spans both internal and external systems. This
definition holds true regardless of whether the business processes are automated
or not. For example, processing an insurance claim and delivering a car to a cus-
tomer are business events that can be automated with BPIOAIL

To this end, there are three main services that business process integration
provides: the visualization of processes contained within all trading partner sys-
tems, interface abstraction, and the real-time measurement of business process
performance. N

By visualizing enterprise and cross-enterprise processes contained within
trading partners, business managers are able to become involved in enterprise
integration. The use of graphics and diagrams provides a powerful tool for com-
munication and consensus building. Moreover, this approach provides a business-
oriented view of the integration scenarios, with real-time integration with the
enabling middleware or points of integration. This provides business analysts
with the ability to make changes to the process model, implement it within the
trading community, and typically not involve the respective IT departments.

Interface abstraction refers to the mapping of the business process integra-
tion model to physical system interfaces and the abstraction of both connectivity
and system integration solutions from the business analyst. Business process

BPI by Example

There are three companies that participate in a trading community:
Companies A, B, and C. Company A produces parts for skateboards,
while Company B assembles and tests the skateboards, and finaily,
Company C sells the skateboards. Each has its own set of processes that
are.native to the respective company and its internal systems: a produc-
tion system, an assembly system, and a sales system, respectively. Until
now, automated integration has been nonexistent, and mail and fax
serve communication needs between companies.

In order to integrate these applications, the trading community has
decided to implement BPIOAI, defining a common process model that
spans all companies and internal systems. This process model defines a
sequence and logical order of events from the realization of consumer
demand, the purchase of raw materials, the creation of the parts, the as-
sembly of parts into a product, the testing of the product, and finally, the
sale of the product to the ultimate consumer. This common model inte-
grates with local systems by having visibility into their internal application
processes, if possible, or perhaps through more primitive layers such as the
database or application interface. What's important is that the common
process model is able to produce events that are understood by the sys-
tems participating in the process, as well as react to events that the appli-
cations communicate back to the business process integration engine.

The use of a common process model that spans multiple companies
for application integration provides many advantages, including:

« The ability to create a common, agreed-upon process between com-
panies automating the integration of all information systems to react
to business events such as increased consumer demand, material
shortages, and quality problems in real time.

« The ability to monitor ail aspects of the business and trading com-
munity to determine the current state of the prc;cess in real time.

« The ability to redefine the process at any given time in support of
the business, and thus makes the process more efficient.

. The ability to hide the complexities of the jocal applications from
the business users and to have the business user work with a com-
mon set of business semantics.

e R e

integration exists at the uppermost level in the application integration middl

ware stack. Those who use business process integration tools are able to vie tl:-
?vorld at a logical business level and are not limited by physical integration f‘lN y
interfaces, or adapters. What’s more, the middleware mechanisms imployed0 :f;

Walking Through a Process

Al.though-each business process integration tool and project may take a
sllghfly different approach, the internal process of interacting with the
physical systems typically consists of the following set of events:

1. The source system that exists inside of a company posts an
event to the business process integration engine; for example, a
skateboard is sold. ,

2. The event is transformed, if required, so the event adheres to a
standard set of business semantics and information processing
mechanisms (synchronous versus asynchronous). This is going
to be engine dependent, but there always has to be a common
set of process semantics and information processing mecha-
nisms defined at the engine level so the analyst can make sense
of a business process that spans many types of applications
platforms, and databases. ’

3. The business process integration engine reacts to the event, once
transformed, invoking other processes in other systems tcl) sup-
port the execution of the common process model. For example
if a skateboard is sold, then send an order to the skateboard as:
sefnbler, posting an event from the process engine\”"to the assem-
bler’s target system (typically over the Internet).

4, Fased on receiving that event, the local system reacts as per
its internal processes and posts an event back to the process
engines (say, when the skateboard is assembled).

5. The common process model sequences the master process, send-
ing and receiving other events in support of the common process
model. This is an ongoing activity, with information moving up
to the process engine from the local systems, transformed if
required, and down from the process engine to the local systems
in support of the execution of the process model.

¢

also abstracted and are not a concern of the business process analyst, as long as
the common process model is interacting correctly with all source and target sys-
tems that exist within all companies.

Another way to view the process of creating a business process integration
model is defining the hierarchy of processes within the trading community.
This means that smaller subprocesses can be linked at the lower tier of integra-
tion or are native to the source or target systems. Building up from the lower-
Jevel processes to the higher-level processes, you may link the subprocesses into
higher-level processes within the domain of the trading community.

The measurement of business process performance provides the business
process integration with the ability to analyze a business in real time. By lever-
aging tight integration with the process model and the middleware, business
analysts are able to gather business statistics in real time from the trading com-
munity; for example, the performance of a supplier in shipping goods to the
plant, and the plant’s ability to turn those raw materials into product.

Moreover, business process integration enables the technology user to track
and direct each instance of a business process; for example, processing individual
orders or medical insurance claims through a life cycle that may consume sec-
onds, minutes, hours, days, or weeks. Finally, we need to measure and maintain
contextual information for the duration of a process instance that spans many
individual activities.

Indeed, the goal of BPIOAI and of application integration in general, is to
automate the data movement and process flow so that another layer of BPIOAI
will exist over and above the processes encapsulated in existing systems. In other
words, BPIOAI completes application integration, allowing the integration of
systems, not only by sharing information readily, but also by managing the shar-
ing of that information with easy-to-use tools.

In general, business process integration Jogic addresses only process flow and
integration. It is not a traditional programming logic, such as processing a user
interface, updating a database, or executing a transaction. Indeed, in most
BPIOAI scenarios, the process logic is separated from the application logic. It
functions solely to coordinate, or manage, the information flow between many
source and target applications that exist within organizations.

ervice-Oriented

Service-Oriented Application Integration (SOAI) allows applications to share
common business logic or methods. This is accomplished either by defining

methods that can be shared, and therefore integrated, or by providing the infra-
structure for such method sharing such as Web services (see Figure 1.6). Methods
may be shared either by being hosted on a central server, by accessing them inter-

application (e.g., distributed objects), or through standard Web services mecha-
nisms, such as NET.

Figure 1.6 Service-Oriented Application Integration provides mechanisms

to create composite applications, leveraging services found in
many remote systems.

) APPIUaUIIIE MPPuULwe saxssgys ===

Attemnpts to share common processes have a long history, one that began
more than ten years ago with the multitiered client/server—a set of shared ser-
vices on a common server that provided the enterprise with the infrastructure
for reuse and, now, for integration—and the distributed object movement.
“Reusability” is a valuable objective. A common set of methods among enterprise
applications invites reusability and, as a result, significantly reduces the need for

* redundant methods and/or applications.

| While most methods exist for single-organization use, we are learning that
there are times when it makes sense to share between organizations. In a new
twist on the longstanding practice of reusability, we are now hoping to expand
this sharing beyond intraenterprise—to trading partners, as well; for example,
sharing a common logic to process credit requests from customers or to calculate

shipping costs using a set of Web services.

Unfortunately, absolute reuse has yet to be achieved on the enterprise level. It
is an even more distant goal between trading partners. The reasons for this fail-
ure are primarily political. They range from internal politics to the inability to
select a consistent technology set. In most cases, the actual limit on reuse results
directly from a lack of enterprise architecture and central control. .

Utilizing the tools and techniques of application integration gives us the
opportunity to learn how to share common methods. More than that, thesc? tools
and techniques create the infrastructure that can make such sharing. a reality. By
taking advantage of this opportunity, we are integrating applications so that
information can be shared, even as we provide the infrastructure for the reuse of
business logic. .

Sounds great, doesn’t it? The downside might give you pause, howeve'r. This
“great-sounding” application integration solution also confronts us w1t1.1 the
most invasive level of application integration, thus the most costly. This is no
small matter if you're considering Web services, distributed objects, or trans-
actional frameworks.

While IOAI generally does not require changes to either the soTJrce‘ or
target applications, SOAI requires that most, if not all, g{gtergrise a.tpphcatlc?ns
be changed in order to take advantage of the paradigm. Clearly, this downs.lde
makes SOAI a tough sell. However, it is applicable in many problem domains.
You just need to make sure you leverage SOAI only when you need it. N

Changing applications is a very expensive proposition. In addition to
changing application logic, there is the need to test, integrate, and redeploy the

application within the enterprise—a process that often causes costs to spiral up-
ward. This seems to be the case, no matter if you’re approaching SOAI with older
technologies such as Common Object Request Broker Architecture (CORBA), or
new technologies such as .NET, the latest service-based architecture to come
down the road.

Before embracing the invasiveness and expense of SOAI, enterprises must
clearly understand both its opportunities and its risks. Only then can its value be
evaluated objectively. The opportunity to share application services that are
common to many applications—and therefore making it possible to integrate
those applications—represents a tremendous benefit. However, that benefit

comes with the very real risk that the expense of irriplementing SOAI will out-
pace its value. "

Portal-Oriented

Portal-Oriented Application Integration (POAI) allows us to view a multitude
of systems—both internal enterprise systems and external trading community
systems—through a single-user interface or application. POAI benefits us by
avoiding the back-end integration problem altogether; it adapts the user interface
of each system to a common user interface (aggregated user interface)—most
often a Web browser (see Figure 1.7). As a result, it integrates all participating sys-
tems through the browser, although the applications are not directly integrated
within or between the enterprises.

While the other types of application integration are focused on the real-time
exchange of information (or adherence to a common process model) between
systems and companies, POAI is concerned with externalizing information
out of a multitude of enterprise systems to a single application and interface.
That’s clearly an approach that goes against the notions of the other types of
application integration, which are more real-time- and event-driven-oriented,
and the inclusion in this book of POAI was somewhat of a judgment call.

However, application integration, while typically referring to the auto-
mated movement of information or the binding of processes between two or
more applications, without the assistance of an end user, can clearly also oc-
cur at the user interface. Indeed, most examples of B2B information exchange
today are also examples of POAI, with digital exchanges leading the way. There-
fore, it’s different, but it still belongs within the discussion of application inte-

: gration.

We are truly nioving forward into a digital economy, where business runs within
and between computers, where everything is automated, and where customers
expect no less than instantaneous access to information.

What's important in meeting this goal is not just the application of technol-
ogy to bind applications together, or externalize information to outside parties,
£ but also the way in which you do it. Application integration is of little use if it’
| not quickly deployed, if it’s not correct in operation, and if it’s not able to adjust
] quickly as business needs change. This being the case, the way in which you
[approach your problem domain, the architecture you employ, and the technol-
% ogy-you leverage has everything to do with the value of your application integra-
| tion project going forward. Remember, application integration, if done right, is
£ the strategic applica{tion of technology to provide an enterprise with the infra-
structure required to handle most business events electronically, and in real time.
In the end, that’s what makes all the difference.

[4

Web Brwser

\ _

PRI
B e]

Custom Sales
System

Web Server

inventory
System

Figure 1.7 Portal-Oriented Application Integration.

Application Integration: Clearly the Future

Enter application int‘égration———along with an opportunity to ﬁn‘a]ly. 1ntegra;e t;1111
of these disparate systems with a minimum impact on the app.hca'uons and the
way an enterprise does business. Application integration Prowdes a cleaI;l f:orrtl-
petitive advantage for most industries, an advantage that includes the ability .o
do business at light speed, along with the ability to satisfy customer demand in

record time (by using automated processes instead of paper, faxes, and humans).

